

Conquest: Better Per formance Through
A Disk/Persistent-RAM Hybr id File System

An-I A. Wang, Peter Reiher, and Gerald J. Popek
�

Computer Science Department

University of California, Los Angeles
{awang, reiher, popek}@fmg.cs.ucla.edu

Geoffrey H. Kuenning
Computer Science Department

Harvey Mudd College
geoff@cs.hmc.edu

Abstract
�� ��

The rapidly declining cost of persistent RAM
technologies prompts the question of when, not
whether, such memory will become the preferred
storage medium for many computers. Conquest is a file
system that provides a transition from disk to persistent
RAM as the primary storage medium. Conquest
provides two specialized and simplified data paths to
in-core and on-disk storage, and Conquest realizes
most of the benefits of persistent RAM at a fractional
cost of a RAM-only solution. As of October 2001,
Conquest can be used effectively for a hardware cost of
under $200.

We compare Conquest’s performance to ext2,
reiserfs, SGI XFS, and ramfs, using popular
benchmarks. Our measurements show that Conquest
incurs little overhead compared to ramfs. Compared to
the disk-based file systems, Conquest achieves 24% to
1900% faster memory performance, and 43% to 96%
faster performance when exercising both memory and
disk.

1 Introduction

For over 25 years, long-term storage has been
dominated by rotating magnetic media. At the
beginning of the disk era, tapes were still widely used
for online storage; today, they are almost exclusively
used for backup despite still being cheaper than disks.
The reasons are both price threshold and performance:
although disks are more expensive, they are cheap
enough for common use, and their performance is
vastly superior.

Today, the rapidly dropping price of RAM
suggests that a similar transition may soon take place,
with all-electronic technologies gradually replacing
disk storage. This transition is already happening in
portable devices such as cameras, PDAs, and MP3
players. Because rotational delays are not relevant to

�

 Gerald Popek is also associated with United On-Line.

persistent RAM storage, it is appropriate to consider
whether existing file system designs are suitable in this
new environment.

The Conquest file system is designed to address
these questions and to smooth the transition from disk-
based to persistent-RAM-based storage. Unlike other
memory file systems [21, 10, 43], Conquest provides an
incremental solution that assumes more file system
responsibility in-core as memory prices decline. Unlike
HeRMES [25], which deploys a relatively modest
amount of persistent RAM to alleviate disk traffic,
Conquest assumes an abundance of RAM to perform
most file system functions. In essence, Conquest
provides two specialized and simplified data paths to
in-core and on-disk storage. Conquest achieves most of
the benefits of persistent RAM without the full cost of
RAM-only solutions. As persistent RAM becomes
cheaply abundant, Conquest can realize more additional
benefits incrementally.

2 Alternatives to Conquest

Given the promise of using increasingly cheap memory
to improve file systems performance, it would be
desirable to do so as simply as possible. However, the
obvious simple methods for gaining such benefits fail to
take complete advantage of the new possibilities. In
many cases, extensions to the simple methods can give
results similar to our approach, but to make these
extensions, so much complexity must be added that
they are no longer attractive alternatives to the
Conquest approach.

In this section, we will discuss the limitations of
these alternatives. Some do not provide the expected
performance gains, while others do not provide a
complete solution to the problem of storing arbitrary
amounts of data persistently, reliably, and conveniently.
Rather than adding the complications necessary to fix
these approaches, it is better to start the design with a
clean slate.

2.1 Caching

One alternative to a hybrid RAM-based file system like
Conquest is instead to take advantage of the existing
file buffer cache. Given that a computer has an ample
amount of RAM, why not just allocate that RAM to a
buffer cache, rather than dedicating it to a file storage
system? This approach seems especially appropriate
because the buffer cache tends to populate itself with
the most frequently referenced files, rather than wasting
space on files that have been untouched for lengthy
periods.

However, using the buffer cache has several
drawbacks. Roselli et al., [34] showed that caching
often experiences diminishing marginal returns as the
size of cache grows larger. They also found that caches
could experience miss rates as high as 10% for some
workloads, which is enough to reduce performance
significantly.

Another challenge is handling cache pollution,
which can have a variety of causes—reading large files,
buffering asynchronous writes, daily backups, global
searches, disk maintenance utilities, etc. This problem
led to remedies such as LFU buffer replacement for
large files or attempts to reduce cache-miss latency by
modifying compilers [39], placing the burden on the
programmer [31], or constructing user behavior-
analysis mechanisms within the kernel [15, 19].

Caches also make it difficult to maintain data
consistency between memory and disk. A classic
example is metadata commits, which are synchronous
in most file systems. Asynchronous solutions do exist,
but at the cost of code complexity [12, 38].

Moving data between disk and memory can
involve remarkably complex management. For
example, moving file data from disk to memory
involves locating the metadata, scheduling the metadata
transfer to memory, translating the metadata into
runtime form, locating data and perhaps additional
metadata, scheduling the data transfer, and reading the
next data block ahead of time.

Conquest fundamentally differs from caching by
not treating memory as a scarce resource. Instead,
Conquest anticipates the abundance of cheap persistent
RAM and uses disk to store the data well suited to disk
characteristics. We can then achieve simpler disk
optimizations by narrowing the range of access patterns
and characteristics anticipated by the file system.

2.2 RAM Dr ives and RAM File Systems

Many computer scientists are so used to disk storage
that we sometimes forget that persistence is not
automatic. In addition to the storage medium,
persistence also requires a protocol for storing and
retrieving the information from the persistent medium,

so that a file system can survive reboots. While
persistent RAM provides nonvolatility of memory
content, the file system and the memory manager also
need to know how to take advantage of the storage
medium.

Most RAM disk drivers operate by emulating a
physical disk drive. Although there is a file system
protocol for storing and retrieving the in-memory
information, there is no protocol to recover the
associated memory states. Given that the existing
memory manager is not aware of RAM drives, isolating
these memory states for persistence can be nontrivial.

RAM file systems under Linux and BSD [21] use
the IO caching infrastructure provided by VFS to store
both metadata and data in various temporary caches
directly. Since the memory manager is unaware of
RAM file systems, neither the file system nor the
memory states survive reboots without significant
modifications to the existing memory manager.

Both RAM drives and RAM file systems also incur
unnecessary disk-related overhead. For RAM drives,
existing file systems, tuned for disk, are installed on the
emulated drive without regard for the absence of the
mechanical limitations of disks. For example, access to
RAM drives is done in blocks, and the file system will
still waste effort attempting to place files in "cylinder
groups" even though cylinders and block boundaries no
longer exist. Although RAM file systems have
eliminated some disk-related complexities, many RAM
file systems rely on VFS and its generic storage access
routines; many built-in mechanisms such as readahead
and buffer-cache reflect assumptions that the
underlying storage medium is slower than memory.

In addition, both RAM drives and RAM file
systems limit the size of the files they can store to the
size of main memory. These restrictions have limited
the use of RAM disks to caching and temporary file
systems. To move to a general-purpose persistent-
RAM file system, we need a substantially new design.

2.3 Disk Emulators

Some manufacturers advocate RAM-based disk
emulators for specialty applications [44]. These
emulators generally plug into a standard SCSI or
similar IO port, and look exactly like a disk drive to the
CPU. Although they provide a convenient solution to
those who need an instant speedup, and they do not
suffer the persistence problem of RAM disks, they
again are an interim solution that does not address the
underlying problem and does not take advantage of the
unique benefits of RAM. In addition, standard IO
interfaces force the emulators to operate through
inadequate access methods and low-bandwidth cables,
greatly limiting the utility of this option [33] as
something other than a stopgap measure.

2.4 Ad Hoc Approaches

There are also a number of less structured approaches
to using existing tools to exploit the abundance of
RAM. For example, one could achieve persistence by
manually transferring files into ramfs at boot time and
preserving them again before shutdown. However, this
method would drastically limit the total file system size.

Another option is to attempt to manage RAM space
by using a background daemon to stage files to a disk
partition. Although this could be made to work, it
would require significant additional complexity to
maintain the single name space provided by Conquest
and to preserve the semantics of symbolic and hard
links when moving files between storage media.

3 Conquest File System Design

Our initial design assumes the popular single-user
desktop environment with 1 to 4 GB of persistent
RAM, which is affordable today. As of October 2001,
we can add 2 GB of battery-backed RAM to our
desktop computers and deploy Conquest for under $200
[32]. Extending our design to other environments will
be future work.

We will first present the design of Conquest,
followed by a discussion of major design decisions.

3.1 File System Design

In our current design, Conquest stores all small files,
metadata, executables, and shared libraries in persistent
RAM; disks hold only the data content of remaining
large files. We will discuss this media usage strategy
further in Section 3.2.

An in-core file is stored logically contiguously in
persistent RAM. Disks store only the data content of
large files with coarse granularity, thereby reducing
management overhead. For each large file, Conquest
maintains a segment table in persistent RAM. On-disk
allocation is done contiguously whenever possible in
temporal order, similar to LFS [35] but without the
need to perform continuous disk cleaning in the
background.

For each directory, Conquest maintains a variant of
an extensible hash table for its file metadata entries,
with file names as keys. Hard links are supported by
allowing multiple names (potentially under different
directories) to hash to the same file metadata entry.

RAM storage allocation uses existing mechanisms
in the memory manager when possible to avoid
duplicate functionality. For example, the storage
manager is relieved of maintaining a metadata

allocation table and a free list by using the memory
address of the file metadata as its unique ID.

Although it reuses the code of the existing memory
manager, Conquest has its own dedicated instances of
the manager, residing persistently inside Conquest, each
governing its own memory region. Paging and
swapping are disabled for Conquest memory, but
enabled for the non-Conquest memory region.

Unlike caching, RAM drives, and RAM file
systems, Conquest memory is the final storage
destination for many files and all metadata. We can
access the critical path of Conquest’s main store
without disk-related complexity in data duplication,
migration, translation, synchronization, and associated
management. Unlike RAM drives and RAM file
systems, Conquest provides persistence and storage
capacity beyond the size limitation of the physical main
store.

3.2 Media-Usage Strategy

The first major design decision of Conquest is the
choice of which data to place on disk, and the answer
depends on the characteristics of popular workloads.
Recent studies [9, 34, 42] independently confirm the
often-repeated observations [30]:

• Most files are small.
• Most accesses are to small files.
• Most storage is consumed by large files, which

are, most of the time, accessed sequentially.

Although one could imagine many complex data-
placement algorithms (including LRU-style migration
of unused files to the disk), we have taken advantage of
the above characteristics by using a simple threshold to
choose which files are candidates for disk storage.
Only the data content of files above the threshold
(currently 1 MB) are stored on disk. Smaller files, as
well as metadata, executables, and libraries, are stored
in RAM. The current choice of threshold works well,
leaving 99% of all files in RAM in our tests. By
enlarging this threshold, Conquest can incrementally
use more RAM storage as the price of RAM declines.
The current threshold was chosen somewhat arbitrarily,
and future research will examine its appropriateness.

The decision to use a threshold simplifies the code,
yet does not waste an unreasonable amount of memory
since small files do not consume a large amount of total
space. An additional advantage of the size-based
threshold is that all on-disk files are large, which allows
us to achieve significant simplifications in disk layout.
For example, we can avoid adding complexity to handle
fragmentation with "large" and "small" disk blocks, as
in FFS [20]. Since we assume cheap and abundant
RAM, the advantages of using a threshold far outweigh

the small amount of space lost by storing rarely used
files in RAM.

3.2.1 Files Stored in Persistent RAM

Small files and metadata benefit the most from being
stored in persistent RAM, given that they are more
susceptible to disk-related overheads. Since persistent
RAM access granularity is byte-oriented rather than
block-oriented, a single-byte access can be six orders of
magnitude faster than accessing disk [23].

Metadata no longer have dual representations, one
in memory and one on disk. The removal of the disk
representation also removes the complex synchronous
or asynchronous mechanisms needed to propagate the
metadata changes to disk [20, 12, 38], and avoids
translation between the memory and disk
representations.

At this time, Conquest does not give special
treatment to executables and shared libraries by forcing
them into memory, but we anticipate benefits from
doing so. In-place execution will reduce startup costs
and the time involved in faulting pages into memory
during execution. Since shared libraries are modular
extensions of executables, we intend to store them in-
core as well.1

3.2.2 Large-File-Only Disk Storage

Historically, the handling of small files has been one
major source of file system design complexity. Since
small files are accessed frequently, and a small transfer
size makes mechanical overheads significant, designers
employ various techniques to speed up small-file
accesses. For example, the content of small files can be
stored in the metadata directly, or a directory structure
can be mapped into a balanced tree on disk to ensure a
minimum number of indirections before locating a
small file [26]. Methods to reduce the seek time and
rotational latency [20] are other attempts to speed up
small-file accesses.

Small files introduce significant storage overhead
because optimal disk-access granularities tend to be
large and fixed, causing excessive internal
fragmentation. Although reducing the access
granularity necessitates higher overhead and lower disk
bandwidth, the common remedy is nevertheless to
introduce sub-granularities and extra management code
to handle small files.

Large-file-only disk storage can avoid all these
small-file-related complexities, and management
overhead can be reduced with coarser access
granularity. Sequential-access-mostly large files

1 Shared libraries can be trivially identified through magic numbers
and existing naming and placement conventions.

exhibit well-defined read-ahead semantics. Large files
are also read-mostly and incur little synchronization-
related overhead. Combined with large data transfers
and the lack of disk arm movements, disks can deliver
near raw bandwidth when accessing such files.

3.3 Metadata Representation

How file system metadata is handled is critical, since
this information is in the path of all file accesses.
Below, we outline how Conquest optimizes behavior by
its choices of metadata representation.

3.3.1 In-Core File M etadata

One major simplification of our metadata representation
is the removal of nested indirect blocks from the
commonly used i-node design. Conquest stores small
files, metadata, executables, and shared libraries in
persistent RAM, via uniform, single-level, dynamically
allocated index blocks, so in-core data blocks are
virtually contiguous.

Conquest does not use the v-node data structure
provided by VFS to store metadata, because the v-node
is designed to accommodate different file systems with
a wide variety of attributes. Also, Conquest does not
need many mechanisms involved in manipulating v-
nodes, such as metadata caching. Conquest’s file
metadata consists of only the fields (53 bytes) needed to
conform to POSIX specifications.

To avoid file metadata management, we use the
memory addresses of the Conquest file metadata as
unique IDs. By leveraging the existing memory
management code, this approach ensures unique file
metadata IDs, no duplicate allocation, and fast retrieval
of the file metadata. The downside of this decision is
that we may need to modify the memory manager to
anticipate that certain allocations will be relatively
permanent.

For small in-core write requests where the total
allocation is unknown in advance, Conquest allocates
data blocks incrementally. The current implementation
does not return unused memory in the last block of a
file, though we plan to add automatic truncation as a
future optimization. Conquest also supports “holes”
within a file, since they are commonly seen during
compilation and other activities.

3.3.2 Directory M etadata

We used a variant of extensible hashing [11] for our
directory representation. The directory structure is built
with a hierarchy of hash tables, using file names as
keys. Collisions are resolved by splitting (or doubling)
hash indices and unmasking an additional hash bit for
each key. A path is resolved by recursively hashing

each name component of the path at each level of the
hash table.

Compared to ext2’s approach, hashing removes the
need to compact directories that live in multiple
(possibly indirect) blocks. Also, the use of hashing
easily supports hard links by allowing multiple names
to hash to the same file metadata entry. In addition,
extendible hashing preserves the ordering of hashed
items when changing the table size, and this property
allows r eaddi r () to walk through a directory
correctly while resizing a hash table (e.g., recursive
deletions).

 One concern with using extensible hashing is the
wasted indices due to collisions and subsequent
splitting of hash indices. However, we found that
alternative compact hashing schemes would consume
similar amount of space to preserve ordering during a
resize operation.

3.3.3 Large-File M etadata

For the data content of large files on disk, Conquest
currently maintains a dynamically allocated, doubly
linked list of segments to keep track of disk storage
locations. Disk storage is allocated contiguously
whenever possible, in temporal, or LFS, order [35].

Although we have a linear search structure, its
simplicity and in-core speed outweigh its algorithmic
inefficiency, as we will demonstrate in the performance
evaluation (Section 5). In the worst case of severe disk
fragmentation, we will encounter a linear slowdown in
traversing the metadata. However, given that we have
coarse disk-management granularity, the segment list is
likely to be short. Also, since the search is in-core but
access is limited by disk bandwidth, we expect little
performance degradation for random accesses to large
files.

Currently, we store the large-file data blocks
sequentially as the write requests arrive, without regard
to file membership. We chose this temporal order only
for simplicity in the initial implementation. Unlike
LFS, we keep metadata in-core, and existing file blocks
are updated in-place as opposed to appending various
versions of data blocks to the end of the log. Therefore,
Conquest does not consume contiguous regions of disk
space nearly as fast as LFS, and demands no continuous
background disk cleaning.

Still, our eventual goal is to apply existing
approaches from both video-on-demand (VoD) servers
and traditional file systems research to design the final
layout. For example, given its sequential-access
nature, a large media file can be striped across disk
zones, so disk scanning can serve concurrent accesses
more effectively [8]. Frequently accessed large files
can be stored completely near outer zones for higher
disk bandwidth. Spatial and temporal ordering can be

applied within each disk zone, at the granularity of an
enlarged disk block.

With a variety of options available, the
presumption is that after enlarging the disk access
granularity for large file accesses, disk transfer time
will dominate access times. Since most large files are
accessed sequentially, IO buffering and simple
predictive prefetching methods should still be able to
deliver good read bandwidth.

3.4 Memory Management

Although it reuses the code of the existing memory
manager, Conquest has its own dedicated instances of
the manager, residing completely in Conquest, with
each governing its own memory region. Since all
references within a Conquest memory manager are
encapsulated within its governed region, and each
region has its own dedicated physical address space, we
can save and restore the runtime states of a Conquest
memory manager directly in-core without serialization
and deserialization.

Conquest avoids memory fragmentation by using
existing mechanisms built in various layers of the
memory managers under Linux. For sub-block
allocations, the slab allocator compacts small memory
requests according to object types and sizes [4]. For
block-level allocations, memory mapping assures
virtual contiguity without external fragmentation.

In the case of in-core storage depletion, we have
several options. The simplest handling is to declare the
resource depleted, which is our current approach (the
same as is used for PDAs). However, under Conquest,
this option implies that storage capacity is now limited
by both memory and disk capacities. Dynamically
adjusting the in-core storage threshold is another
possibility, but changing the threshold can potentially
lead to a massive migration of files. Our disk storage is
potentially threatened with smaller-than-expected files
and associated performance degradation.

3.5 Reliability

Storing data in-core inevitably raises the question of
reliability and data integrity. At the conceptual level,
disk storage is often less vulnerable to corruption by
software failures because it is less likely to perform
illegal operations through the rigid disk interface,
unless memory-mapped. Main memory has a very
simple interface, which allows a greater risk of
corruption. A single wild kernel pointer could easily
destroy many important files. However, a study
conducted at the University of Michigan has shown that
the risk of data corruption due to kernel failures is less
than one might expect. Assuming one system crash

every two months, one can expect to lose in-memory
data about once a decade [27].

Another threat to the reliability of an in-memory
file system is the hardware itself. Modern disks have a
mean time between failures (MTBF) of 1 million hours
[37]. Two hardware components, the RAM and the
battery backup system, cause Conquest's MTBF to be
different from that of a disk. In our prototype, we use a
UPS as the battery backup. The MTBF of a modern
UPS is lower than that of disks, but is still around
100,000 hours [14, 36]. The MTBF of the RAM is
comparable to disk [22]; however, the MTBF of
Conquest is dominated by the characteristics of the
complete computer system; modern machines again
have an MTBF of over 100,000 hours. Thus, it can be
seen that Conquest should lose data due to hardware
failures at most once every few years. This is well
within the range that users find acceptable in
combination with standard backup procedures.

 At the implementation level, an extension is to use
approaches similar to Rio [7], which allows volatile
memory to be used as a persistent store with little
overhead. For metadata, we rely heavily on atomic
pointer commits. In the event of crashes, the system
integrity can remain intact, at the cost of potential
memory leaks (which can be cleaned by fsck) for in-
transit memory allocations.

In addition, we can still apply the conventional
techniques of sandboxing, access control,
checkpointing, fsck, and object-oriented self-
verification. For example, Conquest still needs to
perform system backups. Conquest uses common
memory protection mechanisms by having a dedicated
memory address space for storage (assuming a 64-bit
address space). A periodic fsck is still necessary, but it
can run at memory speed. We are also exploring the
object-store approach of having a “ typed” memory area,
so a pointer can be verified to be of a certain type
before being accessed.

3.6 64-Bit Addressing

Having a dedicated physical address space in which to
run Conquest significantly reduces the 32-bit address
space and raises the question of 64-bit addressing.
However, our current implementation on a 32-bit
machine demonstrates that 64-bit addressing
implications are largely orthogonal to materializing
Conquest, although a wide address space does offer
many future extensions (i.e., having distributed
Conquest sharing the same address space, so pointers
can be stored directly and transferred across machine
boundaries as in [6].)

4 Conquest Implementation Status

The Conquest prototype is operational as a loadable
kernel module under Linux 2.4.2. The current
implementation follows the VFS API, but we need to
override generic file access routines at times to provide
both in-core and on-disk accesses. For example, inside
the read routine, we assume that accessing memory is
the common case, while providing a forwarding path
for disk accesses. The in-core data path no longer
contains code for checking the status of the buffer
cache, faulting and prefetching pages from disk,
flushing dirty pages to disk to make space, performing
garbage collection, and so on. The disk data path no
longer contains mechanisms for on-disk metadata
chasing and various internal fragmentation and seek-
time optimizations for small files.

Because we found it relatively difficult to alter the
VFS to not cache metadata, we needed to pass our
metadata structures through VFS calls such as mknod,
unlink, and lookup. We altered the VFS, so that the
Conquest root node and metadata are not destroyed at
umount times.

We modified the Linux memory manager in
several ways. First, we introduced Conquest zones.
With the flexibility built into the Linux zone allocator,
it is feasible to allocate unused Conquest memory
within a zone to perform other tasks such as IO
buffering and program execution. However, we chose
to manage memory at the coarser grain of zones, to
conserve memory in a simpler way.

The Conquest memory manager is instantiated top-
down instead of bottom-up, meaning Conquest uses
high-level slab allocator constructs to instantiate
dedicated Conquest slab managers, then lower-level
zone and page managers. By using high-level
constructs, we only need to build an instantiation
routine, invoked at file system creation times.

Since Conquest managers reside completely in the
memory region they govern, runtime states (i.e.,
pointers) of Conquest managers can survive reboots
with only code written for reconnecting several data
structure entry points back to Conquest runtime
managers. No pointer translation was required.

Conquest is POSIX-compliant and supports both
in-core and on-disk storage. We use a 1-MB static
dividing line to separate small files from large files
(Section 3.2). Large files are stored on disk in 4-KB
blocks, so that we can use the existing paging and
protection code without alterations. An optimization is
to enlarge the block size to 64 KB or 256 KB for better
performance.

5 Conquest Per formance

We compared Conquest with ext2 [5], reiserfs [26],
SGI XFS [40], and ramfs by Transmeta. We chose
ext2, reiserfs, and SGI XFS largely because they are the
common basis for various performance comparisons.
Note that with 2 Gbytes of physical RAM, these disk-
based file systems use caching extensively, and our
performance numbers reflect how well these file
systems exploit memory hardware. In the experiments,
all file systems have the same amount of memory
available as Conquest.

Ramfs by Transmeta uses the page cache and v-
nodes to store the file system content and metadata
directly, and ramfs provides no means of achieving data
persistence after a system reboot. Given that both
Conquest and ramfs are under the VFS API and various
OS legacy constraints, ramfs should approximate the
practical achievable bound for Conquest performance.
Our experimental platform is described in Table 5.1.
Various file system settings are listed in Table 5.2.

 Experimental platform
Manufacturer
model

Dell PowerEdge 4400

Processor 1 GHz 32-bit Xeon Pentium
Processor bus 133 MHz
Memory 4x512 MB, Micron MT18LSDT6472G,

SYNCH, 133 MHz, CL3, ECC
L2 cache 256 KB Advanced
Disk 73.4 GB, 10,000 RPM, Seagate ST173404LC
Disk partition
for testing

6.1 GB partition starting at cylinder 7197

I/O adaptor Adaptec AIC-7899 Ultra 160/m SCSI host
Adaptor, BIOS v25306

UPS APC Smart-UPS 700
OS Linux 2.4.2

Table 5.1: Experimental platform.

 File system settings
cfs creation: default, mount: default
ext2fs (0.5b) creation: default, mount: default
tramsmeta ramfs creation: default, mount: default
reiserfs (3.6.25) creation: default, mount: -o notail
SGI XFS (1.0) creation: -l size=32768b

mount: -o logbufs=8, logbsize32768

Table 5.2: File system settings.

We used the Sprite LFS microbenchmarks [35]. As for
macrobenchmarks, the most widely used in the file
system literature is the Andrew File System Benchmark
[16]. Unfortunately, this benchmark no longer stresses
modern file systems because its data set is too small.
Instead, we present results from the PostMark

macrobenchmark2 [18] and our modified PostMark
macrobenchmark, which is described in Section 5.3.
All results are presented at a 90% confidence level.

5.1 Spr ite LFS Microbenchmarks

The Sprite LFS microbenchmarks measure the latency
and throughput of various file operations, and the
benchmark suite consists of two separate tests for small
and large files.

5.1.1 Small-File Benchmark

The small-file benchmark measures the latency of file
operations, and consists of creating, reading, and
unlinking 10,000 1-KB files, in three separate phases.
Figure 5.1 summarizes the results.

Conquest vs. ramfs: Compared to ramfs,
Conquest incurs 5% and 13% overheads in file creation
and deletion respectively, because Conquest maintains
its own metadata and hashing data structures to support
persistence, which is not provided by ramfs. Also, we
have not removed or disabled VFS caching for
metadata; therefore, VFS needs to go through an extra
level of indirection to access Conquest metadata at
times, while ramfs stores its metadata in cache.

Nevertheless, Conquest has demonstrated a 15%
faster read transaction rate than ramfs, even when ramfs
is performing at near-memory bandwidth. Conquest is
able to improve this aspect of performance because the
critical path to the in-core data contains no generic
disk-related code, such as readahead and checking for
cache status.

Conquest vs. disk-based file systems: Compared
to ext2, Conquest demonstrates a 50% speed
improvement for creation and deletion, mostly
attributable to the lack of synchronous metadata
manipulations. Like ramfs, ext2 uses the generic disk
access routines provided by VFS, and Conquest is 19%
faster in read performance than cached ext2.

The performance of SGI XFS and reiserfs is slower
than ext2 because of both journaling overheads and
their in-memory behaviors. Reiserfs actually achieved
poorer performance with its original default settings.
Interestingly, reiserfs performs better with the notail
option, which disables certain disk optimizations for
small files and the fractional block at the end of large
files. While the intent of these disk optimizations is to
save extra disk accesses, their overhead outweighs the
benefits when there is sufficient memory to buffer disk
accesses.

2 As downloaded, Postmark v1.5 reported times only to a 1-second
resolution. We have altered the benchmark to report timing data at
the resolution of the system clock.

 As for SGI XFS, its original default settings also
produced poorer performance, since journaling
consumes the log buffer quite rapidly. As we increased
the buffer size for logging, SGI XFS performance
improved. The numbers for both reiserfs and SGI XFS
suggest that the overhead of journaling is very high.

� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
0

20

40

60

80

100

120

140

160

180

create read delete

1000s of
op / sec

� � � � �� � � � �
xfs

� � � � �� � � � �
reiserfs

� � � � �� � � � �
ext2fs

� � � � �� � � � �
ramfs

� � � � �� � � � �
cfs

Figure 5.1: Transaction rate for the different phases of the Sprite LFS
small-file benchmark, run over SGI XFS, reiserfs, ext2, ramfs, and
Conquest. The benchmark creates, reads, and unlinks 10,000 1-KB
files in separate phases. In this and most subsequent figures, the 90%
confidence bars are nearly invisible due to the narrow confidence
intervals.

5.1.2 Large-File Benchmark

The large-file benchmark writes a large file sequentially
(with flushing), reads from it sequentially, and then
writes a new large file randomly (with flushing), reads
it randomly, and finally reads it sequentially. The final
read phase was originally designed to measure
sequential read performance after random write
requests were sequentially appended to the log in a log-
structured file system. Data was flushed to disk at the
end of each write phase.

For Conquest on-disk files, we altered the large-file
benchmark to perform each phase of the benchmark on
forty 100-MB files before moving to the next phase.
Since we have a dividing line between small and large
files, we also investigated the sizes of 1 MB and 1.01
MB, with each phase of benchmark performed on ten 1-
MB or 1.01-MB files. In addition, we memory-aligned
all random accesses to reflect real-world usage patterns.

The 1-M B benchmark: The 1-MB large-file
benchmark measures the throughput of Conquest’s in-
core files (Figure 5.2a). Compared to ramfs, Conquest
achieves 8% higher bandwidth in both random and
sequential writes and 15% to 17% higher bandwidth in
both random and sequential reads. It is interesting to
observe that random memory writes and reads are faster
than corresponding sequential accesses. This is because
of cache hits: for 1-MB memory accesses with a 256-
KB L2 cache size, random accesses have a roughly
25% chance of reusing the L2 cache content. We
believe that the difference is larger for writes because
of a write-back, write-allocate L2 cache design, which

incurs additional overhead on sequential writes of large
amounts of data.

� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � � � � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

! ! ! ! ! !! ! ! ! ! !! ! ! ! ! !! ! ! ! ! !! ! ! ! ! !! ! ! ! ! !! ! ! ! ! !! ! ! ! ! !! ! ! ! ! !

" " " " " "" " " " " "" " " " " "" " " " " "" " " " " "" " " " " "" " " " " "" " " " " "

#

$ $ $ $ $ $$ $ $ $ $ $$ $ $ $ $ $$ $ $ $ $ $$ $ $ $ $ $$ $ $ $ $ $$ $ $ $ $ $$ $ $ $ $ $

% % % % % %% % % % % %% % % % % %% % % % % %% % % % % %% % % % % %% % % % % %

& & & & & && & & & & && & & & & && & & & & && & & & & && & & & & && & & & & && & & & & && & & & & &

' ' ' ' '' ' ' ' '' ' ' ' '' ' ' ' '' ' ' ' '' ' ' ' '' ' ' ' '' ' ' ' '

((((((((((((((((((((((((((((((((((((

))))))))))))))))))))))))))))))))))))))))))))))))))

* * * * * ** * * * * ** * * * * ** * * * * ** * * * * ** * * * * ** * * * * *

+ + + + ++ + + + ++ + + + ++ + + + ++ + + + ++ + + + ++ + + + ++ + + + ++ + + + ++ + + + +

, , , , , ,, , , , , ,, , , , , ,, , , , , ,, , , , , ,, , , , , ,, , , , , ,, , , , , ,, , , , , ,
0

100
200
300
400
500
600
700

sw sr rw rr sr

MB / s

- - - -- - - - xfs reiserfs / / / / // / / / / ext2fs 0 0 0 0 00 0 0 0 0 ramfs 1 1 1 1 11 1 1 1 1 cfs

(a) Sprite LFS large-file benchmark for 1-MB (in-core Conquest)
files.

2 2 2 2 2

3 3 3 3 33 3 3 3 33 3 3 3 33 3 3 3 33 3 3 3 33 3 3 3 33 3 3 3 33 3 3 3 3 4 4 4 4 4

5 5 5 5 5 55 5 5 5 5 55 5 5 5 5 55 5 5 5 5 55 5 5 5 5 55 5 5 5 5 55 5 5 5 5 55 5 5 5 5 55 5 5 5 5 5

6 6 6 6 66 6 6 6 66 6 6 6 66 6 6 6 66 6 6 6 66 6 6 6 66 6 6 6 66 6 6 6 67 7 7 7 7 7

8 8 8 8 88 8 8 8 88 8 8 8 88 8 8 8 88 8 8 8 88 8 8 8 88 8 8 8 8 9 9 9 9 9 9

: : : : :: : : : :: : : : :: : : : :: : : : :: : : : :: : : : :

; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ;< < < < <

= = = = = == = = = = == = = = = == = = = = == = = = = == = = = = == = = = = == = = = = == = = = = = > > > > >

? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?

@ @ @ @ @ @@ @ @ @ @ @@ @ @ @ @ @@ @ @ @ @ @@ @ @ @ @ @@ @ @ @ @ @@ @ @ @ @ @@ @ @ @ @ @@ @ @ @ @ @

A A A A A AA A A A A AA A A A A AA A A A A AA A A A A AA A A A A A

B B B B B BB B B B B BB B B B B BB B B B B BB B B B B BB B B B B BB B B B B BB B B B B BB B B B B B

C C C C C CC C C C C CC C C C C CC C C C C CC C C C C CC C C C C CC C C C C C

D D D D D DD D D D D DD D D D D DD D D D D DD D D D D DD D D D D DD D D D D DD D D D D DD D D D D D

E E E E EE E E E EE E E E EE E E E EE E E E EE E E E EE E E E EE E E E EE E E E EF F F F F F

G G G G GG G G G GG G G G GG G G G GG G G G GG G G G GG G G G GG G G G GG G G G G H H H H H H

I I I I II I I I II I I I II I I I II I I I II I I I II I I I II I I I II I I I I

J J J J J JJ J J J J JJ J J J J JJ J J J J JJ J J J J JJ J J J J JJ J J J J JJ J J J J JJ J J J J J
0

100
200
300
400
500
600
700

sw sr rw rr sr

MB / s

K K K K
xfs L L L L L reiserfs M M M M M ext2fs N N N N N ramfs O O O O O cfs

(b) Sprite LFS large-file benchmark for 1.01MB (on-disk Conquest)
files.

P P P P P P PP P P P P P PP P P P P P PP P P P P P PP P P P P P PP P P P P P PP P P P P P PP P P P P P PP P P P P P PP P P P P P P

Q Q Q Q Q QQ Q Q Q Q QQ Q Q Q Q QQ Q Q Q Q QQ Q Q Q Q QQ Q Q Q Q QQ Q Q Q Q QQ Q Q Q Q QQ Q Q Q Q QQ Q Q Q Q QQ Q Q Q Q QQ Q Q Q Q QQ Q Q Q Q Q R R R R R R R S S S S S S SS S S S S S S

T T T T T T TT T T T T T TT T T T T T TT T T T T T TT T T T T T TT T T T T T TT T T T T T TT T T T T T TT T T T T T TT T T T T T TT T T T T T TT T T T T T TT T T T T T T

U U U U U U UU U U U U U UU U U U U U UU U U U U U UU U U U U U UU U U U U U UU U U U U U UU U U U U U UU U U U U U U

V V V V V V VV V V V V V VV V V V V V VV V V V V V VV V V V V V VV V V V V V VV V V V V V VV V V V V V VV V V V V V VV V V V V V VV V V V V V VV V V V V V VV V V V V V V W W W W W W W X X X X X X XX X X X X X X

Y Y Y Y Y Y Y YY Y Y Y Y Y Y YY Y Y Y Y Y Y YY Y Y Y Y Y Y YY Y Y Y Y Y Y YY Y Y Y Y Y Y YY Y Y Y Y Y Y YY Y Y Y Y Y Y YY Y Y Y Y Y Y YY Y Y Y Y Y Y YY Y Y Y Y Y Y YY Y Y Y Y Y Y Y

Z Z Z Z Z Z ZZ Z Z Z Z Z ZZ Z Z Z Z Z ZZ Z Z Z Z Z ZZ Z Z Z Z Z ZZ Z Z Z Z Z ZZ Z Z Z Z Z ZZ Z Z Z Z Z ZZ Z Z Z Z Z ZZ Z Z Z Z Z Z

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\ \ \ \ \ \ \]]]]]]]]]]]]]]

^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^

_ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _

` ` ` ` ` ` `` ` ` ` ` ` `` ` ` ` ` ` `` ` ` ` ` ` `` ` ` ` ` ` `` ` ` ` ` ` `` ` ` ` ` ` `` ` ` ` ` ` `` ` ` ` ` ` `` ` ` ` ` ` `` ` ` ` ` ` `` ` ` ` ` ` `` ` ` ` ` ` ` a a a a a a a b b b b b b bb b b b b b b

c c c c c c cc c c c c c cc c c c c c cc c c c c c cc c c c c c cc c c c c c cc c c c c c cc c c c c c cc c c c c c cc c c c c c cc c c c c c cc c c c c c cc c c c c c c
0

5

10

15

20

25

30

sw sr rw rr sr

MB / sec

d d d dd d d d xfs e e e e ee e e e e reiserfs f f f f ff f f f f ext2fs g g g g gg g g g g cfs

(c) Sprite LFS large-file benchmark for 100-MB (on-disk Conquest)
files.

Figure 5.2: Bandwidth for the different phases (sequential write,
sequential read, random write, random read, sequential read) of the
Sprite LFS large-file benchmarks, run over SGI XFS, reiserfs, ext2,
ramfs, and Conquest. These two tests compare the performance of
in-core and on-disk files under Conquest.

Compared to disk-based file systems, Conquest
demonstrates a 1900% speed improvement in sequential
writes over ext2, 15% in sequential reads, 6700% in
random writes, and 18% in random reads. SGI XFS and
reiserfs perform either comparably to or slower than
ext2.

The 1.01-M B benchmark: The 1.01-MB large-
file benchmark shows the performance effects of
switching a file from memory to disk under Conquest
(Figure 5.2b). Conquest disk performance matches the
performance of cached ext2 pretty well. In our design,
in-core and on-disk data accesses use disjoint data paths
wherever possible, so Conquest imposes little or no
extra overhead for disk accesses.

The 100-M B benchmark: The 100-MB large-file
benchmark measures the throughput of Conquest on-
disk files (Figure 5.2c). We only compared against
disk-based file systems because the total size exercised
by the benchmark exceeds the capacity of ramfs. All
file systems demonstrate similar performance.
Compared to cached ext2, Conquest shows only 8% and
4% improvements in sequential and random writes. We
expect further performance improvements after
enlarging the block size to 64 KB or 256 KB.

5.2 PostMark Macrobenchmark

The PostMark benchmark was designed to model the
workload seen by Internet service providers [18].
Specifically, the workload is meant to simulate a
combination of electronic mail, netnews, and web-
based commerce transactions.

PostMark creates a set of files with random sizes
within a set range. The files are then subjected to
transactions consisting of a pairing of file creation or
deletion with file read or append. Each pair of
transactions is chosen randomly and can be biased via
parameter settings. The sizes of these files are chosen
at random and are uniformly distributed over the file
size range. A deletion operation removes a file from
the active set. A read operation reads a randomly
selected file in entirety. An append operation opens a
random file, seeks to the end of the file, and writes a
random amount of data, not exceeding the maximum
file size.

We initially ran our experiments using the
configuration of 10,000 files with a size range of 512
bytes to 16 KB. One run of this configuration performs
200,000 transactions with equal probability of creates
and deletes, and a four times higher probability of
performing reads than appends. The transaction block
size is 512 bytes. However, since this workload is far
smaller than the workload observed at any ISP today,
we varied the total number of files from 5,000 to 30,000
to see the effects of scaling.

Another adjustment of the default setting is the
assumption of a single flat directory. Since it is unusual
to store 5,000 to 30,000 files in a single directory, we
reconfigured PostMark to use one subdirectory level to
distribute files uniformly, with the number of
directories equal to the square root of the file set size.

This setting ensures that each level has the same
directory fanout.

Since all files within the specified size range will
be stored in memory under Conquest, this benchmark
does not exercise the disk aspect of the Conquest file
system. Also, since this configuration specifies an
average file set of only 250 MB, which fits comfortably
in 2 GB of memory, this benchmark compares the
memory performance of Conquest against the
performance of existing cache and IO buffering
mechanisms, under a realistic mix of file operations.

� � � � �� � � � �� �
� � � � �� � � � �� � � � � � � � � � �� � � � � �

� � � � �� � � � � 	 	 	 	 	 		 	 	 	 	 	

 � � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � � � � � � �� � � � �
� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �
0

2

4

6

8

10

5000 10000 15000 20000 25000 30000

files

1000s of
trans / sec

� � � � �
xfs � � � � � reiserfs ext2fs ! ! ! ! ! ramfs " " " " " cfs

Figure 5.3: PostMark transaction rate for SGI XFS, reiserfs, ext2,
ramfs, and Conquest, varying from 5,000 and 30,000 files. The
results are averaged over five runs.

Figure 5.3 compares the transaction rates of
Conquest with various file systems as the number of
files is varied from 5,000 to 30,000. First, the
performance of Conquest differs little from ramfs
performance. We feel comfortable with Conquest’s
performance at this point, given that we still have room
to reduce costs for at least sequential writes (enlarging
the disk block size). Conquest outperforms ext2
significantly; the performance gap widens from 24% to
350% as the number of files increases. SGI XFS and
reiserfs perform slower than ext2 due to journaling
overheads.

For space reasons, we have omitted other graphs
with similar trends—bandwidth, average creation rate,
read rate, append rate, and average deletion rate.

Taking a closer look at the file-creation component
of the performance numbers, we can see that without
interference from other types of file transactions
(Figure 5.4a), file creation rates show little degradation
for all systems as the number of files increases. When
mixed with other types of file transactions (Figure
5.4b), file creation rates degrade drastically.

With only file creations, Conquest creates 9%
fewer files per second than ramfs. However, when
creations are mixed with other types of file transactions,
Conquest creates files at a rate comparable to ramfs.

� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �
� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �
� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � � � � � � � �� � � � � �
� � � � �� � � � � 	 	 	 	 	 		 	 	 	 	 	

 � � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
0

2

4

6

8

10

12

14

5000 10000 15000 20000 25000 30000

files

1000s of
op / sec

� � � �� � � � xfs � � � � �� � � � � reiserfs ext2fs ! ! ! ! !! ! ! ! ! ramfs " " " " "" " " " " cfs

(a) PostMark file creation rate.

$ $ $ $ $ $$ $ $ $ $ $
% % % % %% % % % % & & & & && & & & &

' ' ' ' '' ' ' ' ' ((((((((((

)))))))))))))))
* * * * ** * * * ** * * * * + + + + ++ + + + +

, , , , ,, , , , , - - - - - -- - - - - -
.

/ / / / / // / / / / // / / / / // / / / / // / / / / // / / / / // / / / / // / / / / /

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

1 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 1
2 2 2 2 22 2 2 2 22 2 2 2 2

3 3 3 3 33 3 3 3 33 3 3 3 3
4 4 4 4 44 4 4 4 44 4 4 4 4

5 5 5 5 55 5 5 5 55 5 5 5 55 5 5 5 55 5 5 5 55 5 5 5 55 5 5 5 55 5 5 5 55 5 5 5 55 5 5 5 5

6 6 6 6 66 6 6 6 66 6 6 6 66 6 6 6 66 6 6 6 66 6 6 6 66 6 6 6 6

7 7 7 7 77 7 7 7 77 7 7 7 77 7 7 7 77 7 7 7 77 7 7 7 7

8 8 8 8 8 88 8 8 8 8 88 8 8 8 8 88 8 8 8 8 88 8 8 8 8 8

9 9 9 9 9 99 9 9 9 9 99 9 9 9 9 99 9 9 9 9 99 9 9 9 9 9

: : : : : :: : : : : :: : : : : :: : : : : :: : : : : :

; ; ; ; ;; ; ; ; ;; ; ; ; ;; ; ; ; ;; ; ; ; ;; ; ; ; ;; ; ; ; ;; ; ; ; ;; ; ; ; ;; ; ; ; ;

< < < < << < < < << < < < << < < < << < < < << < < < << < < < <

= = = = == = = = == = = = == = = = == = = = == = = = =

> > > > >> > > > >> > > > >> > > > >> > > > >> > > > >

? ? ? ? ?? ? ? ? ?? ? ? ? ?? ? ? ? ?? ? ? ? ?

@ @ @ @ @@ @ @ @ @@ @ @ @ @@ @ @ @ @@ @ @ @ @0

1

2

3

4

5

5000 10000 15000 20000 25000 30000

files

1000s of
op / sec

A A A AA A A A xfs
B B B B BB B B B B reiserfs

C C C C CC C C C C ext2fs
D D D D DD D D D D ramfs

E E E E EE E E E E cfs

(b) PostMark file creation rate, mixed with other types of file
transactions.

Figure 5.4: PostMark file creation performance for SGI XFS, reiserfs,
ext2, ramfs, and Conquest, varying from 5,000 and 30,000 files. The
results are averaged over five runs.

Compared to ext2, Conquest performs at a 26%
faster creation rate (Figure 5.4a), compared to the 50%
faster rate in the LFS Sprite benchmark. Ext2 has a
better creation rate under PostMark because files being
created have larger file sizes. The write buffer used by
ext2 narrows the performance difference of file creation
when compared to Conquest.

Similar to the comparison between Conquest and
ramfs, it is interesting to see that SGI XFS has a faster
file creation rate than reiserfs without mixed traffic, but
a slower rate than reiserfs with mixed traffic. This
result demonstrates that optimizing individual
operations in isolation does not necessarily produce
better performance when mixed with other operations.

We have omitted the graphs for file deletion, since
they show similar trends.

5.3 Modified Postmark Benchmark

To exercise both the memory and disk components of
Conquest, we modified the Postmark benchmark in the
following way. We generated a percentage of files in a
large-file category, with file sizes uniformly distributed
between 2 MB and 5MB. The remaining files were
uniformly distributed between 512 bytes to 16 KB. We

fixed the total number of files at 10,000 and varied the
percentage of large files from 0.0 to 10.0 (0 GB to 3.5
GB). Since the file set exceeds the storage capacity of
ramfs, we were forced to omit ramfs from our results.

Figure 5.6 compares the transaction rate of SGI
XFS, reiserfs, ext2, and Conquest. Figure 5.6a shows
how the measured transaction rates of the four file
systems vary as the percentage of large files increases.
Because the scale of this graph obscures important
detail at the right-hand side, Figure 5.6b zooms into the
graph with an expanded vertical scale. Finally, Figure
5.6c shows the performance ratio of Conquest over
other disk-based file systems.

0

1000

2000

3000

4000

5000

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

percentage of large files

trans / sec

xfs reiserfs ext2fs cfs

(a) The full-scale graph.

0

50

100

150

200

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

percentage of large files

trans / sec

xfs reiserfs ext2fs cfs

(b) The zoomed graph.

0

0.5

1

1.5

2

2.5

3

3.5

4

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

cfs speed up
factor

cfs/xfs cfs/reiserfs cfs/ext2fs

(c) Conquest speedup curves for the full graph.

Figure 5.6: Modified PostMark transaction rate for SGI XFS, reiserfs,
ext2, and Conquest, with varying percentages of large (on-disk
Conquest) files ranging from 0.0 to 10.0 percent.

Conquest demonstrates 29% to 310% faster

transfer rates than ext2 (Figure 5.6c). The shape of the
Conquest speedup curve over ext2 reflects the rapid
degradation of ext2 performance with the injection of
disk traffic. As more disk traffic is injected, we start to
see a relatively steady performance ratio. At steady
state, Conquest shows a 75% faster transaction rate than
ext2..
Both SGI XFS and reiserfs show significantly slower
memory performance (left side of Figure 5.6a).
However, as the file set exceeds the memory size, SGI
XFS starts to outperform ext2 and reiserfs (Figure 5.6c).
Clearly, different file systems are optimized for
different conditions.

6 Related Work

The database community has a long established history
of memory-only systems. An early survey paper
reveals key architectural implications of sufficient
RAM and identifies several early main memory
databases [13]. The cost of main memory may be the
primary concern that prevents operating systems from
adopting similar solutions for practical use, and
Conquest offers a transition for delivering file system
services from main memory in a practical and cost-
effective way.

In the operating system arena, one early use of
persistent RAM was for buffering write requests [2].
Since dirty data were buffered in persistent memory,
the interval between synchronizations to the disk could
be lengthened.

The Rio file cache [28] combines UPS, volatile
memory, and a modified write-back scheme to achieve
the reliability of write-through file cache and
performance of pure write-back file cache (with no
reliability-induced writes to disk). The resiliency
offered by Rio complements Conquest’s performance
well. While Conquest uses main store as the final
storage destination, Rio’s BIOS safe sync mechanism
provides a high assurance of dumping Conquest
memory to disk in the event of infrequent failures that
require power cycles.

Persistent RAM has been gaining acceptance as the
primary storage medium on small mobile computing
devices through a plethora of flash-memory-based file
systems [29, 41]. Although this departure from disk
storage marks a major milestone toward persistent-
RAM-based storage, flash memory has some
unpleasant characteristics, notably the limited number
of erase-write cycles and slow (second-range) time for
storage reclamation. These characteristics cause
performance problems and introduce a different kind of
operating system complexity. Our research currently

focuses on the general performance characteristics
exemplified by battery-backed DRAM (BB-DRAM).

The leading PDA operating systems, PalmOS and
Windows CE, deliver memory and file system services
via BB-DRAM, but both systems are more concerned
with fitting an operating system into a memory-
constrained environment, in contrast to the assumed
abundance of persistent RAM under Conquest.
PalmOS lacks a full-featured execution model, and
efficient methods for accessing large data objects are
limited [1]. Windows CE is unsuitable for general
desktop-scale deployment because it tries to shrink the
full operating system environment to the scale of a
PDA. Also, the Windows CE architecture inherits
many disk-related assumptions [24].

IBM AS/400 servers provide the appearance of
storing all files in memory from the user’s point of
view. This uniform view of storage access is
accomplished by the extensive use of virtual memory.
The AS/400 design is an example of how Conquest can
enable a different file system API. However,
underneath the hood of AS/400, conventional roles of
memory acting as the cache for disk content still apply,
and disks are still the persistent storage medium for
files [17].

One form of persistent RAM under development is
Magnetic RAM (MRAM) [3]. An ongoing project on
MRAM-enabled storage, HeRMES, also takes
advantage of persistent RAM technologies [25].
HeRMES uses MRAM primarily to store the file
metadata to reduce a large component of existing disk
traffic, and also to buffer writes to lengthen the time
frame for committing modified data. HeRMES also
assumes that persistent RAM will remain a relatively
scarce resource for the foreseeable future, especially for
large file systems.

7 Lessons Learned

Through the design and implementation of Conquest,
we have learned the following major lessons:

First, the handling of disk characteristics permeates
file system design even at levels above the device layer.
For example, default VFS routines contain readahead
and buffer-cache mechanisms, which add high and
unnecessary overheads to low-latency main store.
Because we needed to bypass these mechanisms,
building Conquest was much more difficult than we
initially expected. For example, certain downstream
storage routines anticipate data structures associated
with disk handling. We either need to find ways to
reuse these routines with memory data structures, or
construct memory-specific access routines from scratch.

Second, file systems that are optimized for disk are
not suitable for an environment where memory is

abundant. For example, reiserfs and SGI XFS do not
exploit the speed of RAM as well as we anticipated.
Disk-related optimizations impose high overheads for
in-memory accesses.

Third, matching the physical characteristics of
media to storage objects provides opportunities for
faster performance and considerable simplification for
each medium-specific data path. Conquest applies this
principle of specialization: leaving only the data
content of large files on disk leads to simpler and
cleaner management for both memory and disk storage.
This observation may seem obvious, but results are not
automatic. For example, if the cache footprint of two
specialized data paths exceeds the size of a single
generic data path, the resulting performance can go in
either direction, depending on the size of the physical
cache.

Fourth, access to cached data in traditional file
systems incurs performance costs due to commingled
disk-related code. Removing disk-related complexity
for in-core storage under Conquest therefore yields
unexpected benefits even for cache accesses. In
particular, we were surprised to see Conquest
outperform ramfs by 15% in read bandwidth, knowing
that storage data paths are already heavily optimized.

Finally, it is much more difficult to use RAM to
improve disk performance than it might appear at first.
Simple approaches such as increasing the buffer cache
size or installing simple RAM-disk drivers do not
generate a full-featured, high-performance solution.

The overall lesson that can be drawn is that
seemingly simple changes can have much more far-
reaching effects than first anticipated. The
modifications may be more difficult than expected, but
the benefits can also be far greater.

8 Future Work

Conquest is now operational, but we can further
improve its performance and usability in a number of
ways. A few previously mentioned areas are designing
mechanisms for adjusting file size threshold
dynamically (Section 3.4) and finding a better disk
layout for large data blocks (Section 3.3.3).

High-speed in-core storage also opens up
additional possibilities for operating systems. Conquest
provides a simple and efficient way for kernel-level
code to access a general storage service, which is
conventionally either avoided entirely or achieved
through the use of more limited buffering mechanisms.
One major area of application for this capability would
be system monitoring and lightweight logging, but there
are numerous other possibilities.

In terms of research, so far we have aggressively
removed many disk-related complexities from the in-

core critical path without questioning exactly how
much each disk optimization adversely affects file
system performance. One area of research is to break
down these performance costs, so designers can
improve the memory performance for disk-based file
systems.

Memory under Conquest is a shared resource
among execution, storage, and buffering for disk
access. Finding the “sweet spot” for optimal system
performance will require both modeling and empirical
investigation. In addition, after reducing the roles of
disk storage, Conquest exhibits different system-wide
performance characteristics, and the implications can be
subtle. For example, the conventional wisdom of
mixing CPU- and IO-bound jobs may no longer be a
suitable scheduling policy. We are currently
experimenting with a wider variation of workloads to
investigate a fuller range of Conquest behavior.

9 Conclusion

We have presented Conquest, a fully operational file
system that integrates persistent RAM with disk storage
to provide significantly improved performance
compared to other approaches such as RAM disks or
enlarged buffer caches. With the involvement of both
memory and disk components, we measure a 43% to
96% speedup compared to popular disk-based file
systems.

During the development of Conquest, we
discovered a number of unexpected results. Obvious ad
hoc approaches not only fail to provide a complete
solution, but perform more poorly than Conquest due to
the unexpectedly high cost of going through the buffer
cache and disk-specific code. We found that it was
very difficult to remove the disk-based assumptions
integrated into operating systems, a task that was
necessary to allow Conquest to achieve its goals.

The benefits of Conquest arose from rethinking
basic file system design assumptions. This success
suggests that the radical changes in hardware,
applications, and user expectations of the past decade
should also lead us to rethink other aspects of operating
system design.

10 Acknowledgements

We would like to thank our shepherd Darrell Anderson
and the anonymous reviewers who have offered
invaluable suggestions to strengthen this paper. We
would also like to thank Michael Gorlick and Richard
Guy for reviewing an early presentation of the
Conquest performance results and offering useful

insights. In addition, we want to thank Mark Yarvis,
Scott Michel, and Janice Wheeler for commenting on
earlier drafts of this paper. This work was supported by
the National Science Foundation under Grant No. CCR-
0098363.

11 References

[1] 3COM. Palm OS® Programmer’s Companion.

http://www.palmos.com (under site map and
documentation), 2002.

[2] Baker M, Asami S, Deprit E, Ousterhout J, Seltzer
M. Non-Volatile Memory for Fast, Reliable File
Systems. Proceedings of the 5th International
Conference on Architectural Support for
Programming Languages and Operating Systems,
October 1992.

[3] Boeve H, Bruynseraede C, Das J, Dessein K,
Borghs G, De Boeck J, Sousa R, Melo L, Freitas P.
Technology assessment for the implementation of
magnetoresistive elements with semiconductor
components in magnetic random access memory
(MRAM) architectures. IEEE Transactions on
Magnetics 35(5), pp. 2820-2825, 1999.

[4] Bonwick J. The Slab Allocator: An Object-
Caching Kernel Memory Allocator. Proceedings
of USENIX Summer 1994 Technical Conference,
June 1994.

[5] Card R, Ts’o T, Tweedie S. Design and
Implementation of the Second Extended
Filesystem. The HyperNews Linux KHG
Discussion. http://www.linuxdoc.org (search for
ext2 Card Tweedie design), 1999.

[6] Chase J, Levy H, Lazowska E, Baker-Harvey M.
Opal: A Single Address Space System for 64-Bit
Architectures. Proceedings of IEEE Workshop on
Workstation Operating Systems, April 1992.

[7] Chen PM, Ng WT, Chandra S, Aycock C,
Rajamani G, Lowell D. The Rio File Cache:
Surviving Operating System Crashes. Proceedings
of the International Conference on Architectural
Support for Programming Languages and
Operating Systems, October 1996.

[8] Chen S, Thapar M. A Novel Video Layout
Strategy for Near-Video-on-Demand Servers.
Technical Report HPL-97-52, 1997.

[9] Douceur JR, Bolosky WJ. A Large-Scale Study of
File-System Contents. Proceedings of the ACM
Sigmetrics '99 International Conference on
Measurement and Modeling of Computer Systems,
May 1999.

[10] Douglis F, Caceres R, Kaashoek F, Li K, Marsh
B, Tauber JA. Storage Alternatives for Mobile
Computers. Proceedings of the 1st Symposium on

Operating Systems Design and Implementation,
November 1994.

[11] Fagin R, Nievergelt J, Pippenger N, Raymond
Strong H. Extensible hashing—a fast access
method for dynamic files, ACM Transactions on
Database Systems, 4(3) pp. 315-344, 1979.

[12] Ganger GR, McKusick MK, Soules CAN, Patt
YN. Soft Updates: A Solution to the Metadata
Update Problem in File Systems. ACM
Transactions on Computer Systems, 18(2) pp. 127-
153, May 2000.

[13] Garcia-Molina H, Salem K. IEEE Transactions
on Knowledge and Data Engineering, 4(6) pp. 509-
516, December 1992.

[14] Gibson GA, Patterson DA. Designing Disk
Arrays for High Data Reliability. Journal of
Parallel and Distributed Computing, 1993.

[15] Griffioen J, Appleton R. Performance
Measurements of Automatic Prefetching.
Proceedings of the ISCA International Conference
on Parallel and Distributed Computing Systems,
September 1995.

[16] Howard J, Kazar M, Menees S, Nichols D,
Satyanarayanan M, Sidebotham R, West M. Scale
and Performance in a Distributed File System,
ACM Transactions on Computer Systems, 6(1), pp.
51-81, February 1988.

[17] IBM@ Server iSeries Storage Solutions.
http://www-
1.ibm.com/servers/eserver/iseries/hardware/storage
/overview.html, 2002.

[18] Katcher J. PostMark: A New File System
Benchmark. Technical Report TR3022. Network
Appliance Inc., October 1997.

[19] Kroeger KM, Long DDE. Predicting File System
Actions from Prior Events. Proceedings of the
USENIX 1996 Annual Technical Conference,
January 1996.

[20] McKusick MK, Joy WN, Leffler SJ, Fabry RS. A
Fast File System for UNIX. ACM Transactions on
Computer Systems, 2(3), pp. 181-197, 1984.

[21] McKusick MK, Karels MJ, Bostic K. A Pageable
Memory Based Filesystem. Proceeding of
USENIX Conference, June 1990.

[22] Module Mean Time Between Failures (MTBF).
Technical Note TN-04-45.
http://download.micron.com/pdf/technotes/DT45.p
df (go to micron.com, and search for MTBF),
1997.

[23] Micron DRAM Product Information.
http://www.micron.com (under DRAM and data
sheets), 2002.

[24] Microsoft. MSDN Online Library,
http://msdn.microsoft.com/library (under
embedded development and Windows CE), 2002.

[25] Miller EL, Brandt SA, Long DDE. HerMES:
High-Performance Reliable MRAM-Enabled
Storage. Proceedings of the 8th IEEE Workshop on
Hot Topics in Operating Systems, May 2001.

[26] Namesys. http://www.namesys.com, 2002.
[27] Ng WT, Aycock CM, Rajamani G, Chen PM.

Comparing Disk and Memory’s Resistance to
Operating System Crashes. Proceedings of the
1996 International Symposium on Software
Reliability Engineering, October 1996.

[28] Ng WT, Chen PM. The Design and Verification
of the Rio File Cache. IEEE Transactions on
Computers, 50(4), April 2001.

[29] Niijima H. Design of a Solid-State File Using
Flash EEPROM. IBM Journal of Research and
Development. 39(5), September 1995.

[30] Ousterhout JK, Da Costa H, Harrison D, Kunze A,
Kupfer M, Thompson JG. A Trace Driven
Analysis of the UNIX 4.2 BSD File Systems.
Proceedings of the 10th ACM Symposium on
Operating Systems Principles, pp. 15-24,
December 1985.

[31] Patterson RH, Gibson GA, Ginting E, Stodolsky
D, Zelenka J. Informed Prefetching and Caching.
Proceedings of the 15th ACM Symposium on
Operating Systems Principles, pp. 79-95,
December 1995.

[32] Price Watch. New Computer Components.
http://www.pricewatch.com, 2001.

[33] Riedel E. A Performance Study of Sequential I/O
on Windows NT 4. Proceedings of the 2nd
USENIX Windows NT Symposium, Seattle, August
1998.

[34] Roselli D, Lorch JR, Anderson TE. A
Comparison of File System Workloads.
Proceedings of the 2000 USENIX Annual
Technical Conference, June 2000.

[35] Rosenblum M, Ousterhout J. The Design and
Implementation of a Log-Structured File System.
Proceedings of the 13th ACM Symposium on
Operating Systems Principles, October 1991.

[36] Power Conversion Systems,
http://www.schaeferpower.com/sminvter.htm
(Google keywords: schaeferpower, UPS, MIL-
HDBK-217), 2000.

[37] Barracuda Technical Specifications.
http://www.seagate.com (click on find, barracuda,
and technical specifications), 2002.

[38] Seltzer MI, Ganger GR, McKusick MK, Smith
KA, Soules CAN, Stein CA. Journaling Versus
Soft Updates: Asynchronous Meta-Data Protection
in File Systems. Proceedings of 2000 USENIX
Annual Technical Conference, June 2000.

[39] Steere DC. Exploiting the Non-Determinism and
Asynchrony of Set Iterators to Reduce Aggregate
File I/O Latency. Proceedings of the 16th ACM

Symposium on Operating Systems Principles,
December 1997.

[40] Sweeney A, Doucette D, Hu W, Anderson C,
Nishimoto M, Peck G. Scalability in the XFS File
System. Proceedings of the USENIX 1996 Annual
Technical Conference, January 1996.

[41] Torelli P. The Microsoft Flash File System. Dr.
Dobb’s Journal, pp. 63-70, February 1995.

[42] Vogels W. File System Usage in Windows NT
4.0. Proceedings of the 17th Symposium on
Operating Systems Principles, December 1999.

[43] Wu M, Zwaenepoel W, eNVy: A Non-Volatile,
Main Memory Storage System. Proceedings of the
6th Conference on Architectural Support for
Programming Languages and Operating Systems,
October 1994.

[44] ZDNet. Quantum Rushmore Solid-State Disk.
http://www.zdnet.com/sp/stories/issue/0,4537,3963
22,00.html (Google keywords: zdnet solid state
disk), 1999.

