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Abstract
We propose a method that finds the position and orientation
of an acoustic source in an enclosed environment. For each
of eight T-shaped arrays forming a microphone array network,
the time delay of arrival (TDOA) of signals from microphone
pairs, a source position candidate, and energy related features
are estimated. These form the input for artificial neural net-
works (ANNs), the purpose of which is to provide indirectly
a more precise position of the source and, additionally, to es-
timate the source’s orientation using various combinations of
the estimated parameters. The best combination of parameters
(TDOAs and microphone positions) yields a 21.8% reduction
in the mean average position error compared to baselines, and
a correct orientation ratio higher than 99.0%. The position es-
timation baselines include two estimation methods: a TDOA-
based method that finds the source position geometrically, and
the SRP-PHAT that finds the most likely source position by spa-
tial exploration.
Index Terms: microphone array network, position and orienta-
tion estimation, artificial neural network

1. Introduction
Microphone arrays [1] have received increasing attention in the
past few years, especially for spatial filtering (beamforming)[2],
and sound source localization for speech, audio, and acous-
tics processing. Acoustic localization is also an important task
in many practical applications such as videoconferencing [3],
hands-free communication systems [4], hearing aids [5], and
human-machine interaction [6]. In a previous work [7], we tried
to find the best array, defined as the one that yields the best posi-
tion estimate, out of all the arrays in an array network, and addi-
tionally, to estimate the source orientation. For the task, we used
an ANN with its input set composed of energy related features
(power and correlation values) and a distance value defined as
the Euclidean distance between the array and its estimated po-
sition candidate, and giving as its result the orientation and best
array at the output. In this paper, instead of choosing the best
array using distance information, we estimate a more accurate
position using the position candidates set, the TDOAs set, and
the microphone positions of all arrays in the network. This ap-
proach has the advantage of exploring more spatial information
in 2D and 3D spaces compared to the one-dimensional informa-
tion given by the distance information only.

For the estimation of TDOA and position candidates, a
robust GCC-PHAT (generalized cross-correlation with phase
transform) function [7] was employed. Position candidates
were estimated by two different methods: a TDOA-based
method [8] and the SRP-PHAT (steered response power with
phase transform) [1]. In the former method, the optimal posi-

tion is determined by geometric derivation and is highly depen-
dent on the correct estimation of the time delays, whereas in
the latter method, the optimal position is obtained by steering
the microphone array to all potential source positions looking
for the point in the space with the highest spatial likelihood.
We note that using position candidates estimated by SRP-PHAT
yielded better results than using those obtained by the TDOA-
based method. However, the best results were obtained using
a combination of TDOAs and microphone positions based on
ANNs.

The outline of this paper is as follows. In Section 2, we
briefly describe both the TDOA-based and the SRP-PHAT po-
sition estimation methods. In Section 3, we present the modi-
fication to our position and orientation estimation method from
our previous work. In Sections 4 and 5, we discuss the experi-
mental conditions and results, respectively, and we conclude in
Section 6.

2. Background
In position estimation methods employed as baselines, a ro-
bust version of the GCC-PHAT function [7] was employed. In
the TDOA-based method, the function was used to estimate the
time delay of arrival of signals from microphone pairs, whereas
in the SRP-PHAT method, it was used to create a spatial sound
map of the test environment. Given below is a short description
of each position localization method adopted as a baseline.

2.1. TDOA-based position estimation method

We used the position estimation method from [8] tailored
for the T-shaped microphone array shown in Figure 1. In
the initial step, using the robust GCC-PHAT function, a set
of 3 TDOAs, {τ12,τ13,τ14}, is estimated for pairs {q1, q2},
{q1, q3}, {q1, q4}, taking q1 as the reference, while in the sec-
ond step, the source position is found by geometric derivation.
The idea behind this method involves finding the intersection
point of 3 hyperplanes in the space, with each one defined for
each TDOA.
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Figure 1: T-shaped microphone array composed by micro-
phones {q1, q2, q3, q4}. d is the distance between adjacent mi-
crophones.
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2.2. SRP-PHAT estimation method

The SRP-PHAT [1] is a robust position localization method
that explores the space, searching for the region with the high-
est spatial likelihood obtained by a cumulative voting process
involving cross-correlation functions of microphone pairs. In
practice, the space is divided into small regions and the theo-
retical delays between these regions and microphone pairs are
pre-computed and stored. Thus, each small region l, character-
ized by a point in the space αl = (xl, yl, zl), is associated with
a vector of time delays

τ (αl) = [τ12(αl), τ13(αl), . . . , τmn(αl)], (1)

where m,n = 1, . . . , Q for m �= n. After the cross-correlation
functions between microphone pairs have been calculated by
a robust GCC-PHAT function, a search-and-sum procedure is
performed. For each small region l, the cross-correlation val-
ues (R(.)) corresponding to the theoretical time delays τ (αl)
are found and accumulated. Once all regions have been swept,
an acoustic map is created in the space. Finally, it is assumed
that the most likely source position α̂ will be the region with
the highest spatial likelihood. The SRP-PHAT method can be
mathematically formulated as:

α̂ = arg max
αl

X

m�=n

R(τ (αl)). (2)

In our experiments, we divide the space into small regions of
5.0 cm × 5.0 cm × 5.0 cm. In this work, we denote SRP-
PHATArray as the method in which one position estimate (po-
sition candidate) is obtained by each array, and SRP-PHATAll

as the method in which one position estimate is obtained by the
entire array network.

3. Proposed position and orientation
estimation method

The proposed method is implemented using a two-stage ANN
(Figure 2), where the outputs of the first and second stages are
the orientation and position, respectively. Two different input
sets were tested. In the first set, power, correlation, and position
candidate estimates for every array were combined; whereas in
the second set, power, correlation, TDOA, and microphone po-
sitions for every array were combined. The purpose of the ANN
is to provide indirectly a more precise position of the source
and, additionally, to estimate the source’s orientation using dif-
ferent combinations of the estimated parameters.

The power of an array is defined as the highest power value
for all microphones in the array, while the correlation of an
array is defined as the highest correlation value for all micro-
phone pairs in the array. For each array, we have a single value
for power, a single value for correlation, 2 or 3 values rep-
resenting the position candidates in 2D or 3D, respectively, 3
values for time delays corresponding to the same set used by
the TDOA-based position estimation method, and 12 micro-
phone values corresponding to 4 microphones coordinate val-
ues in 3D space. The sets of values for power, correlation,
position candidates, TDOAs, and microphone positions for the
entire network are denoted by “P” (8 values), “C” (8 values),
{x̂, ŷ}/{x̂, ŷ, ẑ} in 2D/3D space (16/24 values), {τ̂} (24 val-
ues), and [x,y,z]pqm (96 values) for array p = 1, . . . , P and
microphones q1, q2, q3, q4, respectively.
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Figure 2: Two-stage artificial neural network topology used
in this study. INPUT = {P + C + {x̂, ŷ} / {x̂, ŷ, ẑ}}; or IN-
PUT = {P + C + {τ̂} + [x, y, z]pqm

}; 1st STAGE OUTPUT =
{Orientation (E, N, S, W)}; 2nd STAGE OUTPUT = {POSITION}.

4. Experimental setup
All experiments were conducted in a 5 m × 6.4 m × 2.65 m
room. Eight T-shaped microphone arrays (P = 8) were used,
with one array fixed to each wall (arrays A, B, C, and D) and
four arrays fixed to the ceiling (arrays E, F, G, and H). Each ar-
ray was mounted on a structure composed of acoustic absorber
to reduce reflection effects near the microphones. The distance
between pairs of microphones in each array was set to 20cm.
The room was divided into 50 areas, each one 50 cm by 50 cm,
but only 29 areas, suitably distributed and covering the entire
room, were considered in our analyses. The array positions and
areas are depicted in Figure 3. A loudspeaker (ALR JORDAN)
was set-up over a stand fixed 140 cm above the floor to sim-
ulate an acoustic source. The stand was centered in each area
and 300 Japanese words were played, with the mean duration of
an utterance being 0.6 s. In each studied area, the loudspeaker
was turned to four different orientations shifted by 90◦; east (E),
north (N), south (S), and west (W) orientations were considered,
resulting in 116 study cases (29 × 4). In the experiments, one
position estimate was obtained per utterance.
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Figure 3: View of the room from above. The 29 studied areas
are numbered, while the origin of the coordinate system, as well
as the relative orientation are shown at the bottom left.

In the ANN analyses, fully connected feedforward ANNs
were implemented using the Stuttgart Neural Network Simula-
tor (SNNS) 1. We considered results in both 2D and 3D space
(x̃, ỹ) / (x̃, ỹ, z̃). The ANN topology used in this study is illus-
trated in Figure 2. The first stage consists of a single ANN that
estimates the source orientation, while the second stage con-
sists of four individual ANNs, each one trained to consider one
of the orientations E, N, S, or W. In the gating ANN at the first

1 http://www.ra.cs.uni-tuebingen.de/SNNS/
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stage, using a combination of power “P” values, correlation “C”
values and {x̂, ŷ} / {x̂, ŷ, ẑ} values, the source orientation is es-
timated and used to select the corresponding ANN at the second
stage whose output is (x̃, ỹ) or (x̃, ỹ, z̃), depending on whether
the ANN was trained using 2D or 3D position candidates. Note
that at the second stage, both the orientation information and
the initial input set are required. The same observations are
valid using “P”, “C”, {τ̂ } and [x, y, z]pqm

as the input set, but
considering only the 3D case. Table 1 presents the ANN con-
figurations studied in this research.

For the ANN training/testing phase, recorded data from
each of the 29 areas were divided into two sets with 80% of
the data used in the training phase and 20% in the testing phase,
and with no overlap between the training and testing data sets.
Five different data sets were created by permuting all recorded
data for cross-validation. Results are presented in terms of cor-
rect orientation ratio (%), mean average orientation error (o),
and mean average position error (cm), where ratio is the rela-
tion of the total number of correct estimates by the ANN to
the total number of input patterns, orientation error corresponds
to the mismatch between the actual and estimated orientations,
and the position error is the Euclidean distance between the es-
timated position and the actual source position. CLOSED and
OPEN tests refer to results obtained by the trained ANN evalu-
ated using the training and testing data sets, respectively. In the
training phase, at the first stage, the correct orientation was used
as the target value, while at the second stage the actual source
position was used.

Table 1: Two-stage ANN configuration. The results were ob-
tained considering the hidden unit numbers in bold. “4/2” or
“4/3” in OUTPUT column denotes the number of outputs in the
first and second stages, respectively.

NUMBER OF ANN UNITS
INPUT HIDDEN OUTPUT

32 (P+C+{x̂, ŷ}) 80 4/2
40 (P+C+{x̂, ŷ, ẑ}) 80 4/3

120 ([x, y, z]pqm
+{τ̂}) 240 4/3

136 (P+C+[x, y, z]pqm
+{τ̂}) 272 4/3

5. Experimental results
Table 2 gives the comparative results for the position localiza-
tion methods presented in Section 2. In this table, the TDOA-
based and SRP-PHATArray methods calculate position candi-
dates for every array, and the mean average position error con-
siders the case when the best estimate from all arrays is always
selected, that is, using an oracle selection. SRP-PHATAll finds
the position estimate using the whole microphone array net-
work. These values are adopted as baselines for comparison
with the performance of our proposed automatic system. In
the oracle selection, SRP-PHATArray is better than the TDOA-
based method; however, SRP-PHATAll is the best estimation
method because in using the entire network the exploration of
the spatial properties of the sound field is not restricted to the
characteristics of an individual microphone array.

Tables 3 and 4 present the results for the proposed au-
tomatic position and orientation estimation method using, re-
spectively, position candidates from the TDOA-based and SRP-
PHATArray methods, and TDOAs and microphone positions.
INPUTS, SPACE and TEST denote, respectively, the number
of units in the ANN input layer, the dimensional space, that is,

Table 2: Mean average position error in centimeters for TDOA-
based and SRP-PHATArray estimation methods in oracle se-
lection. In SRP-PHATAll, all arrays are used in the estimation
task. 2D (3D) represent two (three) dimensional space, respec-
tively.

SPACE
Method 2D 3D

TDOA-based (oracle ) 21.2 34.1
SRP-PHATArray (oracle ) 18.6 31.7
SRP-PHATAll 16.0 29.8

whether ANNs were trained using 2D or 3D position estimated
data, and the test condition, that is, either an OPEN or CLOSED
test.

In Table 3, we compare the performance of our ANN ap-
proach using position candidates from both position localization
methods. Using TDOA-based position candidates in the ANN,
we obtained a mean average position error of 31.8 cm, which
is better than the TDOA-based (oracle) results of 34.1 cm in
3D space, and a correct orientation ratio around 90%. Using
SRP-PHATArray position candidates in the ANN, a mean av-
erage position error of 27.9 cm was obtained, which is better
than all the baselines in 3D space, even the SRP-PHATAll with
29.8 cm. Moreover, a correct orientation ratio of more than
98% was obtained. The values marked by (∗) are 2D estimates
obtained directly from the 3D estimates but disregarding the z
dimension, and these appear to be better estimates than those
obtained by training the ANNs using the 2D data set. Com-
paring the results obtained using position candidates from the
TDOA-based and SRP-PHATArray methods in the ANNs, it is
evident that SRP-PHATArray yields better results, because the
TDOA-based method is highly dependent on the correct esti-
mation of time delays, and it is quite difficult to estimate these
precisely in a real environment.

Table 4 presents the results using the energy related
features, TDOAs, and microphone positions in the ANN.
In the columns marked “CLOSED” (CLOSED POSITIONS
TEST), the training and testing data sets were obtained as in
Table 3. In the columns marked “OPEN” (OPEN POSITIONS
TEST) the simulation conditions were modified to separate the
training and testing data sets by area. Six areas were randomly
chosen inside the room, and avoiding border areas. (Areas 1,
3, 5, 11, 22, 23, 29, 37, 43, 45, 47, and 49 are border areas
in Figure 3. Although area 48 is also a border area, it is sur-
rounded by other areas and can thus be disregarded.) The data
from these areas were used as the testing data set, while the data
from the other 23 areas formed the training data set. There was
no overlap between the training and testing data sets, and five
different data permutations were simulated for cross-validation.
Based on this separation, approximately 80% and 20% of the
data were used as training and testing data sets, respectively.

Comparing Tables 4 and 3, it appears that the TDOA es-
timates and microphone positions are more suitable as input
for the ANNs for estimating the orientation and position than
the position candidates. In CLOSED POSITIONS TEST, an
almost perfect orientation estimation of 99.5% in the correct
orientation ratio, and position estimation of 23.3 cm in 3D in
the OPEN test case were obtained, which reflects a reduction
of 21.8% compared to the baseline SRP-PHATAll. However,
SRP-PHATAll (16.0 cm) is still better in 2D space compared
to this method (20.5 cm). In OPEN POSITIONS TEST, the
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Table 3: Results obtained by the input set {P+C+{x̂, ŷ}/{x̂, ŷ, ẑ}}. Position candidates {x̂, ŷ}/{x̂, ŷ, ẑ} in 2D/3D were estimated by
TDOA-based (TDOA) and SRP-PHATArray (SRP) methods. CLOSED/OPEN means that the training/testing data set was used to
evaluated the ANN. The mean average position error value was calculated in the considered dimensional space, and the value (∗) was
the mean average position error in 2D directly calculated from 3D estimates.

RESULTS
Corr. orient. Mean avg. Mean avg.

ratio (%) orient. error (◦) pos. error (cm)
INPUTS SPACE TEST TDOA SRP TDOA SRP TDOA SRP

32(P+C+{x̂, ŷ}) 2D CLOSED 87.4 97.6 15.7 2.9 29.9 (27.9∗) 23.1 (23.1∗)
32(P+C+{x̂, ŷ}) 2D OPEN 83.9 94.7 19.7 6.5 31.1 (29.1∗) 23.5 (23.5∗)

40(P+C+{x̂, ŷ, ẑ}) 3D CLOSED 93.4 99.7 8.2 0.4 32.9 27.6
40(P+C+{x̂, ŷ, ẑ}) 3D OPEN 90.3 98.3 12.0 2.2 33.9 27.9

Table 4: Results obtained by the input set {P + C + {τ̂ } + [x, y, z]pqm
}. TDOAs and microphone positions of every array were

employed. CLOSED/OPEN states for closed/open position conditions. CLOSED/OPEN means that the training/testing data set was
used to evaluated the ANN. The value (∗) was the mean average position error in 2D directly calculated from 3D estimate.

RESULTS
Corr. orient. Mean avg. Mean avg.

ratio (%) orient. error (◦) pos. error (cm)
INPUTS

�������TEST
POSITION

CLOSED OPEN CLOSED OPEN CLOSED OPEN

120([x,y,z]pqm +{τ̂}) CLOSED 99.9 96.8 0.1 4.2 24.4 (20.9∗) 24.9 (21.6∗)
120([x,y,z]pqm +{τ̂}) OPEN 99.4 87.0 0.7 17.0 24.6 (21.0∗) 25.3 (22.5∗)

136(P+C+[x,y,z]pqm +{τ̂}) CLOSED 99.9 96.3 0.1 4.5 23.2 (20.3∗) 25.7 (22.1∗)
136(P+C+[x,y,z]pqm +{τ̂}) OPEN 99.5 84.2 0.6 18.5 23.3 (20.5∗) 28.2 (24.8∗)

objective was to estimate jointly the position and orientation
in untrained areas. The results show a correct orientation ratio
range from 84% to 87% and a mean average position error of
25.3 cm, which is still better than the baseline SRP-PHATAll in
3D space.

Just for comparison, in our previous work [7] using the dis-
tance information, we obtained values for correct orientation ra-
tio and mean average position error of 77.8% (76.0%) and 32.6
cm (45.8 cm), respectively, in 2D (3D) space for the TDOA-
based method, and of 79.3% (76.8%) and 28.5 cm (43.4 cm),
respectively, in 2D (3D) space for the SRP-PHATArray method
under OPEN test conditions. The improvement in the results
from this work can be explained by the fact that 2D or 3D co-
ordinates have more spatial information than a one-dimensional
value defined by distance information that leads to unreliable
estimation values. In other words, using distance values derived
from position estimation candidates there is a loss of useful in-
formation.

6. Conclusions
In this work, we expanded our research on position and orien-
tation estimation of an acoustic source. Exploring spatial infor-
mation provided by position candidates derived from each array,
TDOAs between microphone pairs in each array, and micro-
phone positions in the array network, we achieved a significant
improvement in the position and orientation estimations. The
proposed method could be applicable, for instance, in position
dependent speech recognition tasks [9].
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