
QOM - Quick Ontology Mapping

Marc Ehrig and Steffen Staab

Institute AIFB, University of Karlsruhe

Abstract. (Semi-)automatic mapping — also called (semi-)automatic alignment
— of ontologies is a core task to achieve interoperability when two agents or
services use different ontologies. In the existing literature, the focus has so far
been on improving the quality of mapping results. We here consider QOM, Quick
Ontology Mapping, as a way to trade off between effectiveness (i.e. quality)
and efficiency of the mapping generation algorithms. We show that QOM has
lower run-time complexity than existing prominent approaches. Then, weshow
in experiments that this theoretical investigation translates into practical benefits.
While QOM gives up some of the possibilities for producing high-quality results
in favor of efficiency, our experiments show that this loss of quality is marginal.

1 Introduction

Semantic mapping1 between ontologies is a necessary precondition to establish inter-
operability between agents or services using different ontologies.

The problem of finding adequate alignments is a hard one. In fact, it is hard with re-
gard to several dimensions, two of which we focus on in this paper: 1. Effectiveness: We
demand high-quality alignments for ontology schemas and metadata. 2. Efficiency: The
size of ontologies tends to grow and ontologies with severalthousand entities become
commonplace. Even finding a proposal for an alignment of ontology subsets becomes
a problem of practical tractability.

In recent years we have seen a range of research work on methods proposing such
mappings [AS01,NM03,DDH03]. The focus of the previous work, however, has been
laid exclusively on improving theeffectivenessof the approach (i.e. the quality of pro-
posed mappings such as evaluated against some human judgement given either a pos-
teriori or a priori). When we tried to apply these methods to some of the real-world
scenarios we address in other research contributions [EHvH+03], we found that exist-
ing mapping methods were not suitable for the ontology integration task at hand, as
they all neglectedefficiency.

To illustrate our requirements: We have been working in realms where light-weight
ontologies are applied such as the ACM Topic hierarchy with its104 concepts or folder
structures of individual computers, which corresponded to104 to 105 concepts. Finally,
we are working with Wordnet exploiting its106 concepts (cf. [HSS03]) or107 concepts
in UMLS. When mapping between such light-weight ontologies,the trade-off that one
has to face is between effectiveness and efficiency. For instance, consider the knowl-
edge management platform built on a Semantic Web And Peer-to-peer basis in SWAP

1 Frequently also called alignment.

[EHvH+03]. It is not sufficient to provide its user with the best possible mapping, it is
also necessary to answer his queries within a few seconds — even if two peers use two
different ontologies and have never encountered each otherbefore.

In this paper we present an approach that considers both the quality of mapping
results as well as the run-time complexity. Our hypothesis is that mapping algorithms
may be streamlined such that the loss of quality (compared toa standard baseline) is
marginal, but the improvement of efficiency is so tremendousthat it allows for the
ad-hoc mapping of large-size, light-weight ontologies. Tosubstantiate the hypothesis,
we outline a comparison of the worst-case run-time behavior(given in full detail in
[ES04a]) and we report on a number of practical experiments.The approaches used
for our comparison represent different classes of algorithms for ontology mapping.
Comparing to these approaches we can observe that our new efficient approach QOM
achieves good quality. The complexity of QOM is ofO(n · log(n)) (measuring withn
being the number of the entities in the ontologies) againstO(n2) for approaches that
have similar effective outcomes.

The remainder of the paper starts with a clarification of terminology (Section 2). To
compare the worst-case run-time behavior of different approaches, we first describe a
canonical process for ontology mapping that subsumes the different approaches com-
pared in this paper (Section 3). The process is a core building block for later deriving
the run-time complexity of the different mapping algorithms. Section 4 further presents
basic tools for these algorithms. In Section 5, different approaches for proposing map-
pings are described and aligned to the canonical process. The way to derive their run-
time complexity is outlined in Section 6. Experimental results (Section 7) complement
the run-time considerations of the comparison.

2 Terminology

As a first step we want to present the basic definitions we require for our mapping
process and algorithms.

2.1 Ontology

The underlying data models in our process are ontologies. Tofacilitate the further de-
scription, we briefly summarize their major primitives and introduce some shorthand
notations. In the understanding of this paper it consists ofboth schema and metadata.
As we currently focus on light-weight ontologies, we build on RDF/S2 to represent on-
tologies. To facilitate the further description, we brieflysummarize its major primitives
and introduce some shorthand notations. In the understanding of this paper it consists
of both schema and metadata. An RDF model is described by a setof statements, each
consisting of a subject, a predicate and an object.

O := (C,HC , RC ,HR, I, RI , A)

2 http://www.w3.org/RDFS/

2

An ontology O is defined by its set of ConceptsC (instances of “rdfs:Class”)
with a corresponding subsumption hierarchyHC (a binary relation corresponding to
“rdfs:subClassOf”). RelationsR (instances of “rdf:Property”) exist between single con-
cepts. Relations are arranged alike in a hierarchyHR (“rdfs:subPropertyOf”). An entity
i ∈ I may be an instance of a classc ∈ C (“rdf:type”). An instancei ∈ I may have
onej or many role fillers fromI for a relationr fromR. We also call this type of triple
(i, r, j) a property instance. Additionally one can define axiomsA which can be used
to infer knowledge from already existing one. An extended definition of ontologies can
be found in [Gru93] and [SEH+03].

<rdf:RDF>
<rdfs:Class rdf:ID="Vehicle"/>
<rdfs:Classrdf:ID="Car">

<rdfs:subClassOf rdf:resource="#Vehicle"/>
</rdfs:Class>
<rdf:Property rdf:ID="hasSpeed">

<rdfs:domain rdf:resource="#Car"/>
<rdfs:range rdf:resource="#Speed"/>

</rdf:Property>
<example:Speed rdf:ID="250 km/h"/>
<example:Car rdf:ID="Porsche KA-123">

<example:hasSpeed rdf:resource="#250 km/h">
</exmaple:Car>
</rdf:RDF>

Example 1.An ontology describing a specific car.

OWL3 is another language offering more complex modelling primitives.

2.2 Mapping

Goal of the process is to provide correct mappings. Due to thewide range of expres-
sions used in this area (merging, alignment, integration etc.), we want to describe our
understanding of the term “mapping”: Given two ontologiesO1 andO2, mapping one
ontology onto another means that for each entity (conceptC, relationR, or instance
I) in ontologyO1, we try to find a corresponding entity, which has the same intended
meaning, in ontologyO2. [Su02] set a pointer to this definition.

Definition 1. We define an ontology mapping function,map, based on the vocabulary,
E , of all termse ∈ E and based on the set of possible ontologies,O, as a partial
function:

map : E × O ×O ⇀ E ,

with ∀e ∈ O1(∃f ∈ O2 : map(e,O1, O2) = f ∨ map(e,O1, O2) = ⊥).

A term e interpreted in an ontologyO is either a concept, a relation or an instance,
i.e. e|O ∈ C ∪ R ∪ I. We usually writee instead ofe|O when the ontologyO is clear
from the context of the writing. We writemapO1,O2

(e) for map(e,O1, O2). We derive

3 http://www.w3.org/OWL/

3

a relationmapO1,O2
by definingmapO1,O2

(e, f) ⇔ mapO1,O2
(e) = f . We leave out

O1, O2 when they are evident from the context and writemap(e) = f andmap(e, f),
respectively. Once a (partial) mapping,map, between two ontologiesO1 and O2 is
established, we also say “entitye is mapped onto entityf ” iff map(e, f). An entity can
either be mapped to at most one other entity. A pair of entities (e, f) that is not yet
in map and for which appropriate mapping criteria still need to be tested is called a
candidate mapping.

It is the purpose of this paper to define effective and efficient mechanisms to define
mapO1,O2

. However, we do not consider its further use, e.g. for query answering over
different ontologies and the different ways that this can bedone, such as immediate
translation of data (cf. [MMSV02]) or theory approximation(cf. [Stu02]).

2.3 Example

The following example illustrates a mapping. Two ontologiesO1 andO2 describing the
domain of car retailing are given (Figure 1). A reasonable mapping between the two
ontologies is given in Table 1 as well as by the dashed lines inthe figure.

Ontology 1

Ontology 2

Ontology 1

Ontology 2

Fig. 1.Example Ontologies and their Mappings

Apart from one-to-one mappings as investigated in this paper one entity often has
to be mapped to a complex composite such as a concatenation ofterms (first and last
name) or an entity with restrictions (a sports-car is a car going faster than 250 km/h).
[DR02,DLD+04] propose approaches for this. We do not deal with such issues of com-
plete ontology mappings here.

4

OntologyO1 OntologyO2

Object Thing
Car Automobile

Porsche KA-123Marc’s Porsche
Speed Characteristic

250 km/h fast
Table 1.Mapping Table for RelationmapO1,O2

(e, f)

3 Process

We briefly introduce a canonical process that subsumes all the mapping approaches we
are aware of.4 Figure 2 illustrates its six main steps. It is started with two ontologies,
which are going to be mapped onto one another, as its input:

1. Feature Engineeringtransforms the initial representation of ontologies into afor-
mat digestible for the similarity calculations. For instance, the subsequent mapping
process may only work on a subset of RDFS primitives. This step may also involve
complex transformations, e.g. it may require the learning of classifiers as input to
the next steps.

2. Selection of Next Search Steps.The derivation of ontology mappings takes place
in a search space of candidate mappings. This step may choose, to compute the
similarity of a restricted subset of candidate concepts pairs {(e, f)|e ∈ O1, f ∈
O2} and to ignore others.

3. Similarity Computationdetermines similarity values between candidate mappings
(e, f) based on their definitions inO1 andO2, respectively.

4. Similarity Aggregation.In general, there may be several similarity values for a can-
didate pair of entitiese, f from two ontologiesO1, O2, e.g. one for the similarity
of their labels and one for the similarity of their relationship to other terms. These
different similarity values for one candidate pair must be aggregated into a single
aggregated similarity value.

5. Interpretationuses the individual or aggregated similarity values to derive map-
pings between entities fromO1 andO2. Some mechanisms here are, to use thresh-
olds for similarity mappings [NM03], to perform relaxationlabelling [DDH03], or
to combine structural and similarity criteria.

6. Iteration. Several algorithms perform an iteration over the whole process in order
to bootstrap the amount of structural knowledge. Iterationmay stop when no new
mappings are proposed.
Note that in a subsequent iteration one or several of steps 1 through 5 may be
skipped, because all features might already be available inthe appropriate format
or because some similarity computation might only be required in the first round.

Eventually, the output returned is a mapping table representing the relation
mapO1,O2

.

4 The process is inspired by CRISP-DM, http://www.crisp-dm.org/, the CRoss Industry Standard
Process for Data Mining [She00].

5

Search Step

Selection

Similarity

Computation

Similarity

Aggergation

Iteration

2 3 4

6

Feature

Engineering

Inter-

pretation

1 5Input Output
Search Step

Selection

Similarity

Computation

Similarity

Aggergation

Iteration

2 3 4

6

Feature

Engineering

Inter-

pretation

1 5InputInput OutputOutput

Fig. 2.Mapping Process

In the next sections we will further describe the concepts ofthe different steps. After
that we model some of the best-known mapping algorithms according to this process in
order to compare them against our own proposal QOM with regard to effectiveness as
well as efficiency.

4 A Toolbox of Data Structures and Methods

The principal idea of this section is to provide a toolbox of data structures and methods
common to many approaches that determine mappings. This gives us a least common
denominator based on which concrete approaches instantiating the process depicted in
Figure 2 can be compared more easily. The following Section 5will then describe how
existing mechanisms use this toolbox.

4.1 Features of Ontological Entities

To compare two entities from two different ontologies, one considers their character-
istics, i.e. their features. We will now emphasize those features which can give hints
on whether two entities are actually the same. Basically ourassumption is that entities
with the same features are identical. The features may be specific for a mapping gener-
ation algorithm, in any case the features of ontological entities (of concepts, relations,
instances) need to be extracted from extensional and intensional ontology definitions.
These features have to be determined by an expert understanding the encoded knowl-
edge in ontologies. See also [ES04b] and [EV03] for an overview of possible features
and a classification of them. Possible characteristics include:

– Identifiers: i.e. strings with dedicated formats, such as unified resource identifiers
(URIs) or RDF labels.

– RDF/S Primitives: such as properties or subclass relations
– Derived Features: which constrain or extend simple RDFS primitives (e.g.most-

specific-class-of-instance)
– Aggregated Features: i.e. aggregating more than one simple RDFS primitive, e.g.a

sibling is every instance-of the parent-concept of an instance
– OWL Primitives: such as an entity being thesameAs another entity
– Domain Specific Featuresare features which only apply to a certain domain with

a predefined shared ontology. For instance, in an application where files are repre-
sented as instances and the relationhashcode-of-file is defined, we use this feature
to compare representations of concrete files.

6

Three are now exemplarily explained to illustrate the usageof features for map-
ping: Labelsare human identifiers (names) for entities, normally sharedby a commu-
nity speaking a common language. We can therefore infer thatif labels are the same, the
entities are probably also the same. Concepts are arranged in a taxonomy. A resulting
rule would be: ifsub-conceptsare the same, the actual concepts are also the same. The
closer the common sub-concepts are to the compared concepts, the more information
about similarity can be inferred[MMSV02]. Whereas the former two similarity hints
were based on intensional features of ontologies, it is alsopossible to use extensional
knowledge. Concepts are generalizations ofinstances. Therefore, if two concepts con-
sist of the same instances they are the same.

ExampleWe again refer to the example in Figure 1. The actual feature consists of a jux-
taposition of relation name and entity name. TheCar concept of ontology 1 is character-
ized through its (label, Car), the concept which it is linked to through (subclassOf, Ve-
hicle), its (concept sibling,boat), and the (direct property,hasSpeed). Car is also de-
scribed by its instances through (instance,Porsche KA-123). The relationhasSpeed
on the other hand is described through the (domain,Car) and the (range,Speed).
An instance would bePorsche KA-123, which is characterized through the instanti-
ated (property instance, (hasOwner, Marc)) and (property instance, (hasSpeed, 250
km/h)).

4.2 Similarity Computation

Definition 2. We define a similarity measure for comparison of ontology entities as a
function as follows (cf. [Bis95]):

sim : E × E × O ×O → [0, 1]

– sim(e, f) = 1 ⇔ e = f : two objects are assumed to be identical.
– sim(e, f) = 0 ⇔ e 6= f : two objects are assumed to be different and have no

common characteristics.
– sim(e, e) = 1: similarity is reflexive.
– sim(e, f) = sim(f, e): similarity is symmetric.5

– Similarity and distance are inverse to each other.

Different similarity measuressimk(e, f,O1, O2) are indexed through a labelk. Further,
we leave outO1, O2 when they are evident from the context and writesimk(e, f). The
paper focuses on the similarity of pairs of single entities from different ontologies. At
the current stage we do not compare whole ontologies or partslarger than one entity.

Similarity Measures The following similarity measures are needed to compare the
features of ontological entities at iterationt.

5 We assume symmetry in this paper, although we are aware that it is controversially discussed
[MW01].

7

– Object Equalityis based on existing logical assertions — especially assertions
from previous iterations:

simobj(a, b) :=

{

1 mapt−1(a) = b,

0 otherwise

– Explicit Equalitychecks whether a logical assertion already forces two entities to
be equal:

simexp(a, b) :=

{

1 ∃statement(a, “sameAs′′, b),

0 otherwise

– String Equalityis a strict measure to compare strings. All characters (char(x) at
positionx) of the two strings have to be identical.

simstrequ(c, d) :=

{

1 c.char(i) = d.char(i)∀i ∈ [0, |c|]with|c| = |d|

0 otherwise

– String Similaritymeasures the similarity of two strings on a scale from 0 to 1 (cf.
[MS02]) based on Levenshtein’s edit distance,ed [Lev66].

simstrsim(c, d) := max(0,
min(|c|, |d|) − ed(c, d)

min(|c|, |d|)
)

– Dice Coefficientcompares two sets of entities [CAFP98].

simdice(E,F) :=
|x ∈ (E ∩ F)|

|x ∈ (E ∪ F)|

– SimSet: For many features we have to determine to what extent two sets of entities
are similar. As the individual entities have various and very different features, it is
difficult to create a vector representing a whole sets of individuals. To remedy the
problem, we use a technique known from statistics as multidimensional scaling
[CC94]. We describe each entity through a vector representing the similarity to any
other entity contained in the two sets. Multidimensional scaling assumes that if
they have very similar distances to all other entities, theymust be very similar. This
is easily achieved, as we rely on other measures which already did the computation
of similarity values[0..1] between single entities. For both sets a representative
vector is now created by determining an average vector over all individuals. Finally
we determine the cosine between the two set vectors through the scalar product as
the similarity value.

simset(E,F) =

∑

e∈E e

|E|
·

∑

f∈F f

|F |

with e = (sim(e, e1), sim(e, e2), . . . , sim(e, f1), sim(e, f2), . . .), f analogously.

This list is by no means complete, but together with the features already allows to
create very complex mapping measures, which are sufficient to describe most ontology
mapping tools.

8

4.3 Similarity Aggregation

These measures are all input to the similarity aggregation.Similarities are aggregated
by:

simagg(e, f) =

∑

k=1...n wk · adj(simk(e, f))
∑

k=1...n wk

with wk being the weight for each individual similarity measure, and adj being a func-
tion to transform the original similarity value (adj : [0, 1] → [0, 1]), which yields better
results.

One of the following measures is each applied with an ontology feature as described
in the beginning of this section. Some features require syntactic comparisons, some
object comparisons, and yet some others set comparisons. This list could be continued,
in general, but is sufficient for our subsequent analysis.

4.4 Interpretation

From the similarity values we derive the actual mappings. The basic idea is that each
entity may only participate in one mapping and that we assignmappings based on a
thresholdt and a greedy strategy that starts with the largest similarity values first. Ties
are broken arbitrarily by ˜argmax(g,h), but with a deterministic strategy.

P (⊥,⊥, E ∪ {⊥}, E ∪ {⊥}).
P (g, h, U\{e}, V \{f}) ← P (e, f, U, V) ∧ sim(g, h) > t

∧(g, h) = ˜argmax(g,h)∈U\{e}×V \{f}simagg(g, h).
map(e, f) ← ∃X1,X2P (e, f,X1,X2) ∧ (e, f) 6= (⊥,⊥).

5 Approaches to Determine Mappings

In the following we now use the toolbox, and extend it, too, inorder to define a range of
different mapping generation approaches. In the course of this section we present our
novel Quick Ontology Mapping approach — QOM.

5.1 NOM - Naive Ontology Mapping

Our Naive Ontology Mapping (NOM)[ES04b] constitutes a straight forward baseline
for later comparisons. It is defined by the steps of the process model as follows.

1. Feature EngineeringFirstly, the ontologies for the NOM approach have to be in a
format equivalent to the RDFS format. We use features as shown in Section 4.1.

2. Search Step SelectionThe selection of data for the comparison process is straight
forward. All entities of the first ontology are compared withall entities of the second
ontology. Any pair is treated as a candidate mapping.

3. Similarity Computation The similarity computation between an entity ofO1 and
an entity ofO2 is done by using a wide range of similarity functions. Each similarity

9

ComparingNo. Feature Similarity Measure

Concepts

1 (label,X1) string similarity(X1, X2)
2 (URI1) string equality(URI1, URI2)
3 (X1,sameAs,X2) relation explicit equality(X1, X2)
4 (direct properties,Y1) SimSet(Y1, Y2)
5 all (inherited properties,Y1) SimSet(Y1, Y2)
6 all (super-concepts,Y1) SimSet(Y1, Y2)
7 all (sub-concepts,Y1) SimSet(Y1, Y2)
8 (concept siblings,Y1) SimSet(Y1, Y2)
9 (direct instances,Y1) SimSet(Y1, Y2)
10 (instances,Y1) SimSet(Y1, Y2)

Relations

1 (label,X1) string similarity(X1, X2)
2 (URI1) string equality(URI1, URI2)
3 (X1,sameAs,X2) relation explicit equality(X1, X2)
4 (domain,Xd1) and (range,Xr1) object equality(Xd1, Xd2), (Xr1, Xr2)
5 all (super-properties,Y1) SimSet(Y1, Y2)
6 all (sub-properties,Y1) SimSet(Y1, Y2)
7 (property siblings,Y1) SimSet(Y1, Y2)
8 (property instances,Y1) SimSet(Y1, Y2)

Instances

1 (label,X1) string similarity(X1, X2)
2 (URI1) string equality(URI1, URI2)
3 (X1,sameAs,X2) relation explicit equality(X1, X2)
4 all (parent-concepts,Y1) SimSet(Y1, Y2)
5 (property instances,Y1) SimSet(Y1, Y2)

Property-
Instances

1 (domain,Xd1) and (range,Xr1) object equality(Xd1, Xd2), (Xr1, Xr2)
2 (parent property,Y1) SimSet(Y1, Y2)

Table 2. Features and Similarity Measures for Different Entity Types Contributing to
Aggregated Similarity in NOM. The corresponding ontology is indicated through an
index.

10

function is based on a feature (Section 4.1) of both ontologies and a respective similar-
ity measure (Section 4.2). For NOM they are shown in Table 2. Each combination is
assigned a number so we can refer to it in later sections.

4. Similarity Aggregation In our approachwe do not just aggregate the single simi-
larity results linearly (weighted). NOM emphasizes high individual similarities and de-
emphasizes low individual similarities by weighting individual similarity results with a
sigmoid function first and summing the modified values then. To produce an aggregated
similarity (cf. Section 4.2) NOM applies

adj(x) =
1

1 + e−5(x−0.5)

Weightswk are assigned by manually maximizing the f-measure on overall training
data from different test ontologies.

5. Interpretation NOM interpretes similarity results by two means. First, it applies a
threshold to discard spurious evidence of similarity. For the general threshold NOM
also uses a maximized f-measure of training data. Second, NOM enforces bijectivity of
the mapping by ignoring candidate mappings that would violate this constraint and by
favoring candidate mappings with highest aggregated similarity scores. As there may
only be onebestmapping, every other match is a potential mistake, which is ultimately
dropped.

6. Iteration The first round uses only the basic comparison method based onlabels and
string similarity to compute the similarity between entities. By doing the computation
in several rounds one can access the already computed pairs and use more sophisticated
structural similarity measures. Therefore, in the second round and thereafter NOM re-
lies on all the similarity functions listed in Table 2.

5.2 PROMPT

PROMPT is a semi-automatic tool described in [NM03]. Together with its predeces-
sor ONION [MWK00] it was one of the first tools for ontology merging. For this pa-
per we concentrate on the actions performed to identify possible mapping candidates
aka. merging candidates.

For this PROMPT does not require all of the steps of the process model.

1. Feature EngineeringAs a plug-in to Protege, PROMPT uses RDFS with features as
in the previous approach.

2. Search Step SelectionLike NOM, PROMPT relies on a complete comparison. Each
pair of entities from ontology one and two is checked for their similarities.

3. Similarity Computation The system determines the similarities based on whether
entities have similar labels. Specifically, PROMPT checks for identical labels. This is a
further restriction compared to our string similarity, which also allows small deviations
in the spelling.

4. Similarity Aggregation As PROMPT uses only one similarity measure, aggregation
is not necessary.

11

5. Interpretation PROMPT presents the pairs with a similarity above a defined thresh-
old. For these pairs chances are high that they are merged by the user. The user selects
the ones he deems to be correct, which are then merged in PROMPT.

6. Iteration Iteration is done in PROMPT to allow manual refinement. Afterthe user has
acknowledged the proposition, the system recalculates thecorresponding similarities
and comes up with new merging suggestions.

Comparing No. Feature Similarity Measure

Entity
Similarity

1 (label,X1) explicit equality(X1, X2

Table 3.PROMPT: Features and Measures for Similarity

5.3 Anchor-PROMPT

Anchor-PROMPT represents an advanced version of PROMPT which includes simi-
larity measures based on ontology structures. Only the similarity computation (step 3)
changes.

3. Similarity Computation Anchor-PROMPT traverses paths between anchor points
(entity pairs already identified as equal). Along these paths new mapping candidates
are suggested. Specifically, paths are traversed along hierarchies as well as along other
relations. This corresponds to our similarity functions based on sub- and super-concepts
no. 6 and 7 and direct properties no. 4.

Comparing No. Feature Similarity Measure

Concept
Similarity

1 (label,X1) explicit equality(X1, X2

4 all (direct properties,Y1) Set(Y1,Y2)
6 all (super-concepts,Y1) Set(Y1,Y2)
7 all (sub-concepts,Y1) Set(Y1,Y2)

Other Entity
Similarity

1 (label,X1) explicit equality(X1, X2

Table 4.Anchor-PROMPT: Features and Measures for Similarity

5.4 GLUE

GLUE [DDH03] uses machine learning techniques to determinemappings.

1. Feature EngineeringIn a first step the Distribution Estimator uses a multi-strategy
machine learning approach based on a sample mapping set. It learns a strategy to
identify equal instances and concepts. Naturally a big amount of example instances
is needed for this learning step.

12

2. Search Step SelectionAs in the previous approaches GLUE checks every candidate
mapping.

3. Similarity Computation, 4. Similarity Aggregation, 5. Interpretation In GLUE,
steps 3, 4, and 5 are very tightly interconnected, which is the reason why they are
presented as one step here. The Similarity Estimator determines the similarity of two
instances based on the learnt rules. From this also the mapping of concepts is derived.
Concepts and relations are further compared using Relaxation Labelling. The intuition
of Relaxation Labelling is that the label of a node (in our terminology: mapping as-
signed to an entity) is typically influenced by the features of the node’s neighborhood
in the graph. The authors explicitly mention subsumption, frequency, and “nearby”
nodes.A local optimal mapping for each entity is determinedusing the similarity results
of neighboring entity pairs from a previous round. The individual constraint similarities
are summarized for the final mapping probability.
Normally one would have to check all possible labelling configurations, which includes
the mappings of all other entities. The developers are well aware of the problem aris-
ing in complexity, so they set up sensible partitions i.e. labelling sets with the same
features are grouped and processed only once. The probabilities for the partitions are
determined. One assumption is that features are independent, which the authors admit
will not necessarily hold true. Through multiplication of the probabilities we finally re-
ceive the probability of a label fitting the node i.e. one entity being mapped onto another
one.
From the previous step we receive the probabilities of two entities mapping onto each
other. The maximum probable pair is the final mapping result.

6. Iteration To gain meaningful results only the relaxation labelling step and its inter-
pretation have to be repeated several times. The other stepsare just carried out once.

5.5 QOM — Quick Ontology Mapping

The goal of this paper is to present an efficient mapping algorithm. For this purpose, we
optimize the effective, but inefficient NOM approach towards our goal. The outcome
is QOM — Quick Ontology Mapping. Efficiency and complexity isdescribed in Sec-
tion 6. Here we solely present the algorithm. We would also like to point out that the
efficiency gaining steps can be applied to other mapping approaches as well.

1. Feature EngineeringLike NOM, QOM exploits RDF triples.

2. Search Step SelectionA major ingredient of run-time complexity is the number of
candidate mapping pairs which have to be compared to actually find the best mappings.
Therefore, we use heuristics to lower the number of candidate mappings. Fortunately we
can make use of ontological structures to classify the candidate mappings into promis-
ing and less promising pairs.

In particular we use a dynamic programming approach [Bod91]. In this approach
we have two main data structures. First, we have candidate mappings which ought to
be investigated. Second, an agenda orders the candidate mappings, discarding some
of them entirely to gain efficiency. After the completion of the similarity analysis and
their interpretation new decisions have to be taken. The system has to determine which

13

candidate mappings to add to the agenda for the next iteration. The behavior of initiative
and ordering constitutes a search strategy.

We suggest the subsequent strategies to propose new candidate mappings for in-
spection:

Random A simple approach is to limit the number of candidate mappings by selecting
either a fixed number or percentage from all possible mappings.

Label This restricts candidate mappings to entity pairs whose labels are near to each
other in a sorted list. Every entity is compared to its “label”-neighbors.

Area Already after the first rounds some mappings have been identified. For subse-
quent rounds we concentrate our efforts on areas bordering to the mappings in the
graph e.g. if instances have been identified to be equal, we check for their parent-
concepts in the round after. In our example in the beginning of this paper (figure 1)
this corresponds to: having found that250 km/hmaps ontofast, we would then try
to mapspeedandcharacteristic. We expect to find more mapping partners within
the two close ranges.

Change Propagation QOM further compares only entities for which adjacent entities
were assigned new mappings in a previous iteration. This is motivated by the fact
that every time a new mapping has been found, we can expect to also find similar
entities adjacent to these found mappings. Further, to prevent very large numbers
of comparisons, the number of pairs is restricted.

Hierarchy We start comparisons at a high level of the concept and property taxonomy.
Only the top level entities are compared in the beginning. Wethen subsequently
descend the taxonomy. Again referring to our example: we start comparingobject
andthing, subsequently we continue withvehicleor car andautomobile.

Combination The combined approach used in QOM follows different optimization
strategies: it uses a label subagenda, a randomness subagenda, and a mapping
change propagation subagenda. In the first iteration the label subagenda is pursued.
Afterwards we focus on mapping change propagation. Finallywe shift to the ran-
domness subagenda, if the other strategies do not identify sufficiently many correct
mapping candidates.

With these multiple agenda strategies we only have to check afixed and restricted num-
ber of mapping candidates for each original entity.6 Please note that the creation of the
presented agendas does require processing resources itself.

3. Similarity Computation QOM, just like NOM, is based on a wide range of ontology
feature and heuristic combinations. To keep up the high quality of mapping results we
retain using as many ontology features as possible. But, in order to optimize QOM, we
have restricted the range of costly features as specified in Table 5. In particular, QOM
avoids the complete pair-wise comparison of trees in favor of a(n incomplete) top-down
strategy. The marked comparisons in the table were changed from features which point
to complete inferred sets to features only retrieving limited size direct sets.

6 We have also explored a number of other strategies or combinations of strategies with simple
data sets but they did not outperform results of QOM presented here.

14

Comparing No. Feature Similarity Measure

Concepts

1 (label,X1) string similarity(X1, X2)
2 (URI1) string equality(URI1, URI2)
3 (X1,sameAs,X2) relation explicit equality(X1, X2)
4 (direct properties,Y1) SimSet(Y1, Y2)

−→5a (properties of direct super-concepts,Y1) SimSet(Y1, Y2)
−→6a (direct super-concepts,Y1) SimSet(Y1, Y2)
−→7a (direct sub-concepts,Y1) SimSet(Y1, Y2)

8 (concept siblings,Y1) SimSet(Y1, Y2)
9 (direct instances,Y1) SimSet(Y1, Y2)

−→10a (instances of direct sub-concepts,Y1) SimSet(Y1, Y2)

Relations

1 (label,X1) string similarity(X1, X2)
2 (URI1) string equality(URI1, URI2)
3 (X1,sameAs,X2) relation explicit equality(X1, X2)
4 (domain,Xd1) and (range,Xr1) object equality(Xd1, Xd2),(Xr1, Xr2)

−→5a (direct super-properties,Y1) SimSet(Y1, Y2)
−→6a (direct sub-properties,Y1) SimSet(Y1, Y2)

7 (property siblings,Y1) SimSet(Y1, Y2)
8 (property instances,Y1) SimSet(Y1, Y2)

Instances

1 (label,X1) string similarity(X1, X2)
2 (URI1) string equality(URI1, URI2)
3 (X1,sameAs,X2) relation explicit equality(X1, X2)

−→4a (direct parent-concepts,Y1) SimSet(Y1, Y2)
5 (property instances,Y1) SimSet(Y1, Y2)

Property-
Instances

1 (domain,Xd1) and (range,Xr1) object equality(Xd1, Xd2),(Xr1, Xr2)
2 (parent property,Y1) SimSet(Y1, Y2)

Table 5. Features and Similarity Measures for Different Entity Types Contributing to
Aggregated Similarity in QOM. Features with a lower case “a”have been modified for
efficiency considerations.

15

4. Similarity Aggregation The aggregation of single methods is only performed once
per candidate mapping and is therefore not critical for the overall efficiency. Therefore,
QOM works like NOM in this step.

5. Interpretation Also the interpretation step of QOM is the same as in NOM. Bijec-
tivity is enforced.

6. Iteration QOM iterates to find mappings based on lexical knowledge firstand based
on knowledge structures later.

In all our tests we have found that after ten rounds hardly anyfurther changes occur
in the mapping table. This is independent from the actual size of the involved ontologies.
QOM therefore restricts the number of runs.

Assuming that ontologies have a fixed percentage of entitieswith similar lexical
labels, we will easily find their correct mappings in the firstiteration. These are further
evenly distributed over the two ontologies, i.e. the distance to the furthest not directly
found mapping is constant. Through the change propagation agenda we pass on to the
next adjacent mapping candidates with every iteration step. The number of required
iterations remains constant; it is independent from the size of the ontologies.

We expect that especially the restrictions imposed on steps2. Search Step Selection
and 3. Similarity Computation limit the calculational effort for mappings.

6 Comparing Run-time Complexity

We determine the worst-case run-time complexity of the algorithms to propose map-
pings as a function of the size of the two given ontologies. Thereby, we wanted to base
our analysis on realistic ontologies and not on artifacts. We wanted to avoid the con-
sideration of large ontologies withn leaf concepts but a depth of the concept hierarchy
HC of n − 1. [TV03] have examined the structure of a large number of ontologies and
found, that concept hierarchies on average have a branchingfactor of around2 and that
the concept hierarchies are neither extremely shallow nor extremely deep. The actual
branching factor can be described by a power law distribution. Hence, in the following
we base our results on their findings.

Proof Sketch 1 The different algorithmic steps contributing to complexity are aligned
to the canonical process of Section 3.

For each of the algorithms, one may then determine the costs of each step. First,
one determines the cost for feature engineering (feat). The second step is the search
step i.e. candidate mappings selection (sele). For each of the selected candidate map-
pings (comp) we need to computek different similarity functionssimk and aggregate
them (agg). The number of entities involved and the complexity of the respective simi-
larity measure affect the run-time performance. Subsequently the interpretation of the
similarity values with respect to mapping requires a run-time complexity ofinter. Fi-
nally we have to iterate over the previous steps multiple times (iter).

Then, the worst case run-time complexity is defined for all approaches by:

c = (feat + sele + comp · (
∑

k simk + agg) + inter) · iter

16

Depending on the concrete values that show up in the individual process steps the dif-
ferent run-time complexities are derived in detail in [ES04a].

In this paper we assume that the retrieval of a statement of anontology entity
from a database can be done in constant access time, independent of the ontology size,
e.g. based on sufficient memory and a hash function.

In the following sections we will reference to this definition and mention the corre-
sponding complexity for each action in the process.

6.1 Background Assumptions on Ontology Complexity

As background information for this section we rely on [TV03], who have examined the
structure of a large number of ontologies. Ontologies typically have a branching factorb
of around2. [TV03] have also shown that the tree-like structures are neither extremely
shallow nor extremely deep. All of the subsequent considerations are based on these
assumptions.

We recapitulate the complexity levels which occur when doing comparisons of en-
tity sets.n is the number of entities in the ontology. Retrieving singleentities or fixed
sets of entities is independent of the size of the ontology. From the constant size of
all sets we say straight forward that complexity isO(1). Other methods require access
to a whole subtree of an ontology. The depth of an even tree leads to a complexity
of O(log(n)). Yet even other methods need access to the whole ontology resulting in
O(n).

6.2 Similarity Complexity

Another issue of complexity is due to specific similarity measures. Some of the mea-
sures are considerably costly.

Object Equality requires a fixed runtime complexityO(1). Comparing two individual
objects (i.e. their URIs) through an equality operator is independent of the structure
they are taken from.

Explicit Equality Checking the ontology whether one entity has a specific relation is
also ofO(1).

String Equality complexity is dependent of the string sizeO(length). But, if we as-
sume that the length is limited by a fixed bound, complexity also isO(1).

Syntactic String Similarity complexity of strings has the same considerations of fixed
bounds, as for string equality (O(1)).

Dice For Dice one has to check for every element of the two comparedsets (union)
whether it is also part of the intersection. This results to acomplexity ofO(|E| ·
log(|E|) + |F | · log(|F |) + (|E| + |F |)).

SimSet has to compute the similarity vector for every entity with every other entity
(O(|E + F |2) = O(setSize2)). Creating the average and normalizing does not
change this complexity.

17

6.3 NOM - Naive Ontology Mapping

In this baseline approach we compute complex similarity methods for each possible
entity pair. These are then aggregated and cleaned returning a final result.

– feat: No explicit feature engineering is done:feat = 0

– sele: As we check all possible mapping partners the step of choosing the mapping
partners is not performed:choice = 0

– comp: All pairs of entities of the whole ontologies times themselves are processed:
(O(n2)).

– simk: The complexity of the similarity methods is determined through the number
of entities which have to be explicitly accessed for a certain method. These are
either single entities (O(1)), a fixed set of entities (O(1)), or in the worst case
whole subtrees (O(log(n))). These have to be applied to the similarity measures.
Table 6 shows the complexity corresponding to each rule. Critical for our case is
the highest complexity i.e.O(log2(n)).

– agg is done once for every entity and therefore results inO(n).
– inter: We have to traverse the whole mapping table once moreO(n) for transfor-

mation of results and cleansing of duplicates (to ensure bijectivity) .
– iter: Several iteration roundsr are required, which itself is ofO(1).

We eventually receive:

c = (0 + 0 + O(n2) · k · O(log2(n)) + O(n) + O(n)) · r = O(n2 · log2(n))

6.4 PROMPT

PROMPT compares all entity pairs based on their labels. In a postprocessing step an
acknowledgement of the user becomes necessary.

– comp: Using an ideal implementation which sorts the labels first we receiveO(n ·
log(n)). The tool itself requiresO(n2).

– simk: The complexity of the similarity method is restricted to one single entity
access for labels (O(1)).

– inter: The acknowledgement in the postprocessing step is done once for every
entity: inter = O(n)

– iteration: PROMPT performs multiple roundsr: O(1).

The total complexity is also calculated very easily.

c = (O(n · log(n)) · O(1) + O(n)) · r = O(n · log(n))

The complexity for this approach is lower than for NOM, but onthe other hand only
minimal features of ontologies are used for mapping computation. The consequence are
results with a lower quality.

18

No. Rule Complexity

Concepts
Similarity

1 labels singleO(1)
2 URIs singleO(1)
3 sameAs relation singleO(1)
4 direct properties fixed set + SimSetO(12)
5 all inherited propertiessubtree+SimSetO(log2(n))
6 all super-concepts subtree+SimSetO(log2(n))
7 all sub-concepts subtree+SimSetO(log2(n))
8 concept siblings fixed set + SimSetO(12)
9 direct instances fixed set + SimSetO(12)
10 instances subtree+SimSetO(log2(n))

Relation
Similarity

1 labels singleO(1)
2 URIs singleO(1)
3 sameAs relation singleO(1)
4 domain and range fixed set + SimSetO(12)
5 all super-properties subtree+SimSetO(log2(n))
6 all sub-properties subtree+SimSetO(log2(n))
7 property siblings fixed set + SimSetO(12)
8 property instances fixed set + SimSetO(12)

Instance
Similarity

1 labels singleO(1)
2 URIs singleO(1)
3 sameAs relation singleO(1)
4 all parent-concepts subtree+SimSetO(log2(n))
5 property instances fixed set + SimSetO(12)

Property-
Instances
Similarity

1 domain and range fixed set + SimSetO(12)
2 parent property singleO(1)

Table 6.NOM: Rules and Complexity

19

6.5 Anchor-PROMPT

PROMPT is enhanced by structural elements. Only the complexity of the similarity
function changes.

– simk: This time we have to compare sub-, super-classes, and relation paths which
equals subtrees:O(log2(n)).

The runtime complexity changes in comparison to the original PROMPT approach to:

c = (O(n2) · O(log2(n)) + O(n)) · r = O(n2 · log2(n))

The complexity corresponds to the complexity of the NOM approach.

6.6 GLUE

GLUE has three major steps. Preprocessing to build a classifier, the similarity determi-
nation, and the relaxation labelling.

– feat: The authors use machine learning techniques for the distribution estimator.
An optimistic assumption could be that we use a fixed size for the training examples
with a complexity ofO(1).

– comp: For every entity pair (label assignment) the probability has to be computed
(O(n2)).

– simk: If we assume a fixed size of the partitions such as being basedon the num-
ber of featuresk, we can assume that computing the probability for one labelling
configuration is done constant timeO(1).

– agg, inter: Aggregation and interpretation are part of the similaritycomputation
and do not provide an own complexity.

– iter: We process several rounds, but this doesn’t affectO(1). Please note that only
steps 3, 4, and 5 are repeated. The feature engineering aka. learning of the relaxation
labeller is processed just once.

Based on the described assumptions we estimate the overall complexity as follows:

c = O(1) + O(n2) · O(1) · r = O(n2)

6.7 QOM - Quick Ontology Mapping

QOM implements different changes in comparison to the base approach NOM. We now
show how this affects the outcome of complexity.

– feat: No transformations are required,feat = 0.
– sele: For creating the best agenda each entity is checked and a fixed set of potential

comparison partners is determined. In the worst case QOM compares labels and
sorts them.sele = O(n · log(n))

– comp: The major efficiency leap is won through the pair reduction.As one entity
only has a limited numberl of other entities connected to it, only these are added to
the agenda. Our complexity for this part is therefore reduced toO(n)·O(l) = O(n).

20

– simk: The reduced complexity of the rules is shown in table 7. Basically we have
omitted the highest level of complexity - the complete subtrees. We only allow fixed
setsO(1).

– agg: Aggregation stays the same from NOM i.e. one action for eachentity:O(n).
– inter: Again we use the same as for NOM: transformation and cleansing once per

entity:O(n).
– iter: A constant number of roundsr is done - in our case 10. Complexity is again

of O(1).

Change Rule Complexity

Concept
Similarity

5a properties of super-conceptsfixed set + SimSetO(12)
6a direct super-concepts fixed set + SimSetO(12)
7a direct sub-concepts fixed set + SimSetO(12)
10a instances of sub-conceptsfixed set + SimSetO(12)

Relation
Similarity

5a direct super-properties fixed set + SimSetO(12)
6a direct sub-properties fixed set + SimSetO(12)

Instance
Similarity

4a direct parent-concepts fixed set + SimSetO(12)

Table 7.QOM: Changed Rules and Complexity

Setting the variables according to the new methods and procedures returns:

c = (O(n · log(n)) + O(n) · k · O(1) + O(n) + O(n)) · r = O(n · log(n))

One can see that the theoretical complexity of this approachis much lower than in any
other presented approach.

6.8 Discussion

The worst case run-time behaviors of NOM, PROMPT, Anchor-PROMPT, GLUE and
QOM are given by the following table:

NOM O(n2 · log2(n))
PROMPT O(n · log(n))
Anchor-PROMPT O(n2 · log2(n))
GLUE O(n2)
QOM O(n · log(n))

We have shown that many approaches to discover mappings in ontologies pay a high
calculational price for their results: NOMO(n2 · log2(n)), PROMPTO(n · log(n)),
Anchor-PROMPTO(n2 · log2(n)), and GLUE at leastO(n2). Regardless they are very
elaborated considering the quality of mapping results. Butas one can easily see this

21

complexity is manageable neither for a real world application with large ontologies nor
for small ontologies in real time environments.

We have further shown theoretically that it is possible to lower these complexities
considerably. QOM only requiresO(n · (log(n)) of runtime. In the next section we
show that the effectiveness of the mappings is not lower thanin other approaches.

7 Empirical Evaluation and Results

In this section we show that the worst case considerations carry over to practical ex-
periments and that the quality of QOM is only negligibly lower than the one of other
approaches. The implementation itself was coded in Java using the KAON-framework7

for ontology operations.

7.1 Test Scenario

Metrics We use standard information retrieval metrics to assess thedifferent ap-
proaches (cf. [DMR02]):

Precision We measure the number of correct mappings found versus the total number
of retrieved mappings (correct and wrong).
p = #correct found mapping

#found mappings

Recall describes the number of correct mappings found in comparison to the total num-
ber of existing mappings.
r = #correct found mappings

#existing mappings

In our tests we measure the level of f-measure reached after time. The f-measure
combines the two parameters precision and recall. It was first introduced by [VR79].
The standard formula is defined as:

f = (b2+1)pr

b2p+r

b is a factor to quantify the value of precision and recall against each other. For the
consequent test runs we useb = 1.

Data SetsThree separate data sets were used for evaluation purposes.As real world on-
tologies and especially their mappings are scarce, students were asked to independently
create and map ontologies.8

Russia 1In this first set we have two ontologies describing Russia. The students cre-
ated the ontologies with the objectives to represent the content of two independent travel
websites about Russia. These ontologies have approximately 400 entities each, includ-
ing concepts, relations, and instances. The total number ofpossible mappings is 160,
which the students have assigned manually. This scenario isan easy scenario, with
which many individual methods can be tested.

7 http://kaon.semanticweb.org/
8 The datasets are available from http://www.aifb.uni-karlsruhe.de/WBS/meh/mapping/.

22

Russia 2The second set again covers Russia, but the two ontologies are more difficult
to map. After their creation they have been altered by deleting entities and changing the
labels at random. They differ substantially in both labels and structure. Each ontology
has 300 entities with 215 possible mappings, which were captured during generation.
Often not even humans are capable of identifying these mappings.

Tourism Finally, the participants of a seminar created two ontologies which separately
describe the tourism domain of Mecklenburg-Vorpommern. Both ontologies have an
extent of about 500 entities. No instances were modelled with this ontology though,
they only consist of concepts and relations. The 300 mappings were created manually.

Strategies We evaluated the mapping strategies described in the previous sections:

– PROMPT — As the PROMPT algorithm is rather simple and fast we use it as
a baseline to evaluate the speed. The empirical evaluation is based on the actual
implementation of PROMPT rather than its theoretic potential, as described in the
previous section.

– NOM / Anchor-PROMPT — Naive Ontology Mapping is an approach making use
of a wide range of features and measures. Therefore it reaches high levels of effec-
tiveness and represents our quality baseline. In terms of structural information used
and complexity incurred it is similar to Anchor-PROMPT.

– QOM — Quick Ontology Mapping is our novel approach focusing on efficiency. It
uses an agenda of combined strategies as well as several other optimizing measures
as described.

To circumvent the problem of having semi-automatic mergingtools (PROMPT and
Anchor-PROMPT) in our fully automatic mapping tests, we assumed that every propo-
sition of the system is meaningful and correct. Further, as we had difficulties in running
Anchor-PROMPT with the size of the given data sets, we refer to the results of the
somewhat similar NOM. For GLUE we face another general problem. The algorithm
has a strong focus on example instance mappings. As we can notprovide this, we re-
frained from running the tests on a poorly trained estimatorwhich would immediately
result in poor quality results.

7.2 Results and Discussion

We present the results of the strategies on each of the data sets in Figures 3 to 5. The
x-axis shows the elapsed time on a logarithmic scale, the y-axis corresponds to the
f-measure. The symbols represent the result after each iteration step.

Depending on the scenario PROMPT reaches good results within a short period of
time. Please notice that for ontologies with a small number of similar labels (Figure 4)
this strategy is not satisfactory (f-measure 0.06). In contrast, the f-measure value of the
NOM strategy rises slowly but reaches high absolute values of up to 0.8. Unfortunately
it requires a lot of time. Finally the QOM Strategy is plotted. It reaches high quality
levels very quickly. In terms of absolute values it also seems to reach the best quality
results of all strategies. This appears to be an effect of QOMachieving an about 20
times higher number of iterations than NOM within the given time frame.

23

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1000 10000 100000 1000000 10000000

time (ms)

f-
m

e
a

s
u

re

PROMPT

NOM

QOM

Fig. 3.Mapping quality reached over time with Russia 1 ontologies.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1000 10000 100000 1000000

time (ms)

f-
m

e
a

s
u

re

PROMPT

NOM

QOM

Fig. 4.Mapping quality reached over time with Russia 2 ontologies.

Lessons Learned.We had the hypothesis that faster mapping results can be obtained
with only a negligible loss of quality. We here briefly present the bottom line of our
considerations in this paper:

1. Optimizing the mapping approach for efficiency — like QOM does — decreases
the overall mapping quality. If ontologies are not too largeone might prefer to
rather avoid this.

2. Labels are very important for mapping, if not the most important feature of all, and
alone already return very satisfying results.

3. Using an approach combining many features to determine mappings clearly leads
to significantly higher quality mappings.

4. The Quick Ontology Mapping approach shows very good results. Quality is low-
ered only marginally, thus supporting our hypothesis.

24

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1000 10000 100000 1000000 10000000

time (ms)

f-
m

e
a

s
u

re

PROMPT

NOM

QOM

Fig. 5.Mapping quality reached over time with Tourism ontologies.

5. QOM is faster than standard prominent approaches by a factor of 10 to 100 times.

Recapitulating we can say that our mapping approach is very effective and efficient.

8 Related Work

Most of the ideas for measuring similarity are derived from common sense and are
easily understood. To our knowledge existing approaches focus on specific methods to
determine similarity rather than using an overall integrating and efficient approach.

Various authors have tried to find a general description of similarity with several of
them being based on knowledge networks. [RE00] give a general overview of similarity.

As the basic ontology mapping problem has been around for some years, first tools
have already been developed to address this. The tools PROMPT and AnchorPROMPT
[NM03] use labels and to a certain extent the structure of ontologies. However, their
focus lies on ontology merging i.e. how to create one ontology out of two. Potential
matches are presented to the user for confirmation. In their tool ONION [MWK00]
the authors use rules and inferencing to execute mappings, but is based on manu-
ally assigned mappings or very simple heuristics. [DDH03] use a general approach
of relaxation labelling in their tool GLUE. However, most oftheir work is based
on the similarity of instances only. [McG00] created a tool for mapping called Chi-
maera. Besides equality first steps are taken in the direction of complex matches. These
could also include concatenation of two fields such as “first name” and “last name”
to “name”[DR02]. Another interesting approach for schema and ontology mapping is
presented by [BMSZ03]. Explicit semantic rules are added for consideration. A SAT
solver is used to prevent mappings to imply semantical contradictions.

Despite the large number of related work on effective mapping already mentioned
throughout this paper, there are very few approaches raising the issue of efficiency.

Apart from the ontology domain research on mapping and integration has been
done in various computer science fields. [AS01] present an approach to integrate

25

documents from different sources into a master catalog. There has also been re-
search on efficient schema and instance integration within the database community.
[RHdV03,MNU00,YMK02] are a good source for an overview. However, even though
these algorithms have been optimized for many years, they can only be partly used for
our purposes, as they are mainly oriented towards (domain-specific) instance compar-
isons rather than schema matching. Due to this comparisons with our approach are very
difficult. Another community involved in similarity and mapping are object-oriented
representations[BS98]. To the best of our knowledge, the OOcommunity has explored
efficient similarity computations to very little extent. [Ruf03] shows an approach for
UML. Even though efficiency has been a topic in related areas,only very little can
directly be transferred to ontology mapping.

9 Conclusion

The problem of mapping two ontologies effectively and efficiently arises in many ap-
plication scenarios [EHvH+03,HSS03]. We have devised a generic process model to
investigate and compare different approaches that generate ontology mappings. In par-
ticular, we have developed an original method, QOM, for identifying mappings between
two ontologies. We have shown that it is on a par with other good state-of-the-art al-
gorithms concerning the quality of proposed mappings, while outperforming them with
respect to efficiency — in terms of run-time complexity (O(n·log(n)) instead ofO(n2))
and in terms of the experiments we have performed (by a factorof 10 to 100). Vice versa
QOM shows better quality results than approaches within thesame complexity class.

AcknowledgementsResearch reported in this paper has been partially financed by the
EU in the IST projects WonderWeb (IST-2001-33052), SWAP (IST-2001-34103) and
SEKT (IST-2003-506826).

References

[AS01] Rakesh Agrawal and Ramakrishnan Srikant. On integrating catalogs. InProceedings
of the tenth international conference on World Wide Web, pages 603–612. ACM
Press, 2001.

[Bis95] G. Bisson. Why and how to define a similarity measure for object based representa-
tion systems.Towards Very Large Knowledge Bases, pages 236–246, 1995.

[BMSZ03] Paolo Bouquet, B. Magnini, L. Serafini, and S. Zanobini. A SAT-based algorithm for
context matching. InIV International and Interdisciplinary Conference on Modeling
and Using Context (CONTEXT’2003), Stanford University (CA, USA), June 2003.

[Bod91] M. Boddy. Anytime problem solving using dynamic programming. In Proceedings
of the Ninth National Conference on Artificial Intelligence, pages 738–743, Ana-
heim, California, 1991. Shaker Verlag.

[BS98] Ralph Bergmann and Armin Stahl. Similarity measures for object-oriented case
representations.Lecture Notes in Computer Science, 1488:25+, 1998.

[CAFP98] S. V. Castano, M. G. De Antonellis, B. Fugini, and C. Pernici. Schema analysis:
Techniques and applications.ACM Trans. Systems, 23(3):286–333, 1998.

[CC94] T. Cox and M. Cox.Multidimensional Scaling. Chapman and Hall, 1994.

26

[DDH03] A. Doan, P. Domingos, and A. Halevy. Learning to match the schemas of data
sources: A multistrategy approach.VLDB Journal, 50:279–301, 2003.

[DLD+04] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Halevy, and Pedro Domin-
gos. imap: discovering complex semantic matches between database schemas. In
Proceedings of the 2004 ACM SIGMOD international conference on Management
of data, pages 383–394, 2004.

[DMR02] H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evaluations. In
Proceedings of the second int. workshop on Web Databases (German Informatics
Society), 2002.

[DR02] H. Do and E. Rahm. COMA - a system for flexible combination of schema matching
approaches. InProceedings of the 28th VLDB Conference, Hong Kong, China, 2002.

[EHvH+03] M. Ehrig, P. Haase, F. van Harmelen, R. Siebes, S. Staab, H. Stuckenschmidt,
R. Studer, and C. Tempich. The SWAP data and metadata model for semantics-based
peer-to-peer systems. InProceedings of MATES-2003. First German Conference on
Multiagent Technologies, LNAI, Erfurt, Germany, September 22-25 2003. Springer.

[ES04a] M. Ehrig and S. Staab. Quick ontology mapping with QOM. Techni-
cal report, University of Karlsruhe, Institute AIFB, 2004. http://www.aifb.uni-
karlsruhe.de/WBS/meh/mapping/.

[ES04b] Marc Ehrig and York Sure. Ontology mapping - an integrated approach. In Christoph
Bussler, John Davis, Dieter Fensel, and Rudi Studer, editors,Proceedings of the 1st
ESWS, volume 3053 ofLecture Notes in Computer Science, pages 76–91, Heraklion,
Greece, MAY 2004. Springer Verlag.

[EV03] J. Euzenat and P. Valtchev. An integrative proximity measure for ontology alignment.
In Anhai Doan, Alon Halevy, and Natasha Noy, editors,Proceedings of the Semantic
Integration Workshop at ISWC-03, 2003.

[Gru93] Tom R. Gruber. Towards Principles for the Design of Ontologies Used for Knowl-
edge Sharing. In N. Guarino and R. Poli, editors,Formal Ontology in Conceptual
Analysis and Knowledge Representation, Deventer, The Netherlands, 1993. Kluwer
Academic Publishers.

[HSS03] A. Hotho, S. Staab, and G. Stumme. Ontologies improve text document clustering. In
Proceedings of the International Conference on Data Mining — ICDM-2003. IEEE
Press, 2003.

[Lev66] I. V. Levenshtein. Binary codes capable of correcting deletions, insertions, and re-
versals.Cybernetics and Control Theory, 1966.

[McG00] Deborah L. McGuinness. Conceptual modeling for distributedontology environ-
ments. InInternational Conference on Conceptual Structures, pages 100–112, 2000.

[MMSV02] Alexander Maedche, Boris Motik, Nuno Silva, and Raphael Volz. Mafra - a mapping
framework for distributed ontologies. InProceedings of the EKAW 2002, 2002.

[MNU00] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficientclustering of high-
dimensional data sets with application to reference matching. InKnowledge Discov-
ery and Data Mining, pages 169–178, 2000.

[MS02] Alexander Maedche and Steffen Staab. Measuring similarity between ontologies. In
Proceedings of the European Conference on Knowledge Acquisition andManage-
ment (EKAW). Springer, 2002.

[MW01] Prasenjit Mitra and Gio Wiederhold. An ontology-composition algebra. Technical
report, Stanford University, Stanford, California, USA, 2001.

[MWK00] Prasenjit Mitra, Gio Wiederhold, and Martin Kersten. A graph-oriented model for
articulation of ontology interdependencies.Lecture Notes in Computer Science,
1777:86+, 2000.

27

[NM03] Natalya F. Noy and Mark A. Musen. The PROMPT suite: interactive tools for on-
tology merging and mapping.International Journal of Human-Computer Studies,
59(6):983–1024, 2003.

[RE00] M. Andrea Rodrguez and Max J. Egenhofer. Determining semantic similarity among
entity classes from different ontologies.IEEE Transactions on Knowledge and Data
Engineering, 2000.

[RHdV03] John Roddick, Kathleen Hornsby, and Denise de Vries. A unifying semantic distance
model for determining the similarity of attribute values. InProceedings of the 26th
Australsian Computer Science Conference (ACSC2003), Adelaide, Australia, 2003.

[Ruf03] Raimi Ayinde Rufai. Similarity metric for uml models. Master’s thesis, King Fahd
University of Petroleum and Minerals, 2003.

[SEH+03] Gerd Stumme, Marc Ehrig, Siegrfried Handschuh, Andreas Hotho, Alecander Maed-
che, Boris Motik, Daniel Oberle, Christoph Schmitz, Steffen staab, LjiljanaSto-
janovic, Nenad Stojanovic, Rudi Studer, York Sure, Raphael Volz, and Valentin
Zacharias. The Karlsruhe view on ontologies. Technical report, University of Karl-
sruhe, Institute AIFB, 2003.

[She00] Colin Shearer. The CRISP-DM model: The new blueprint for data mining.Journal
of Data Warehousing, 2000.

[Stu02] H. Stuckenschmidt. Approximate information filtering with multiple classifica-
tion hierarchies.International Journal on Computational Intelligence Applications,
2002. Accepted for publication.

[Su02] Xiaomeng Su. A text categorization perspective for ontology mapping. Technical
report, Department of Computer and Information Science, NorwegianUniversity of
Science and Technology, Norway, 2002.

[TV03] Christoph Tempich and Raphael Volz. Towards a benchmark for semantic web rea-
soners - an analysis of the DAML ontology library. In York Sure, editor,Evaluation
of Ontology-based Tools (EON2003) at Second International SemanticWeb Confer-
ence (ISWC 2003), October 2003.

[VR79] C. J. Van Rijsbergen.Information Retrieval, 2nd edition. Dept. of Computer Science,
University of Glasgow, 1979.

[YMK02] Liu Yaolin, Martin Molenaar, and Menno-Jan Kraak. Semantic similarity evaluation
model in categorical database generalization. InSymposium on Geospatial Theory,
2002.

28

