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A robust method for pricing options at strikes where theredsan observed price is a vital tool for the pricing,
hedging, and risk management of derivatives. All institng that trade derivatives will have an approach to this
task. Typical examples might be a simple interpolation salacross implied volatilities, or the use of a model-
based formula optimized to fit observed prices. It is our vileat while these methods work well forterpolation
across actively traded strikes, they often break down whssd dorextrapolation. We introduce in this paper

a technique for smile extrapolation that is robust, simfdset and offers control on the form of the tails in the
distribution. Using this method allows distribution-sire products such as CMS rates or inverse-FX options to
be priced consistently with the smile of traded vanilla ops. The resulting arbitrage-free distributions are also
key to the copula-based pricing of multi-asset producth siscspread options, quantos and hybrids. Our approach
fixes several problems currently seen in today’s stresseklatsa e.g. with CMS rates.

There are two distinct areas where smile extrapolationdeanproblem: when an institution has legacy trades
on its books that are struck far from today’s at-the-monekesta common situation in the current market) and
in the pricing of more exotic products that depend on the dissm@ntire risk-neutral probability density function
(PDF) of the underlying. Examples of the second area include

e Pricing derivatives with non-standard payoffs by replimaivith a portfolio of vanilla options over all strikes.
Calculating the convexity correction for constant magusiivap (CMS) rates is a particularly topical case.

¢ Pricing options that depend on multiple underlyings, sushybrids, using copulas. This method requires
the entire marginal cumulative distributions (CDFs).

e Generating the local volatility surface from a set of obsérprices. This requires inter- and extrapolation of
prices both in the strike dimension (considered in thiska}ias well as in the time dimension.

The most important feature of a smile extrapolation methsothat it should deliver arbitrage-free prices for
the vanilla options, i.e., the option prices must be conumctions of strike, and stay within certain bounds. In
addition, the extrapolation method should ideally havefdfilewing properties:

1. It should reprice albbserved vanilla options correctly.
2. The PDF, CDF and vanilla option prices should be easy tqpchen

3. The method should not generate unrealistically fat,taitsl if possible, it should allow us to control how fat
the tails are.

4. It should be robust and flexible enough to use with a widetiaof different implied volatility surfaces.
5. It should be easy and fast to initialize for a given smile.

The above points are not so straightforward to satisfy. \gyKirectly with the PDF or the CDF makes it difficult
to satisfy the first property on the list above as the condititnat we impose (on option prices) are on the integral
of the CDF. Therefore the traditional method concentratesxirapolating the price; it is common practice to do



this via the extrapolation of implied volatility. We can namwo such commonly used methods which do not satisfy
our above wish list: The first is to use a simple interpolatiéthin the region of observed prices, and just set the
implied volatility to be a constant outside of this regiohi§method is flawed as it introduces unstable behaviour
at the boundary between the smile and the flat volatility, @edwill have unrealistically narrow tails at extreme
strikes. The second is to fit a parametric form for the impliethtility derived from a model, such as the SABR
formula (see [5]). There are two problems with this method: it givedittie control over the distribution; indeed
this approach often leads to excessively fat tails. Thislead to risk neutral distributions that have unrealistical
large probabilities of extreme movements, and have mom@hbsions that lead to infinite prices, even for simple
products like Libor in arrears and FX quantos (see e.g., Bythermore, in the case of the SABR formula, which
is the result of an asymptotic expansion about a simple asithvolatility model, the expansion becomes less
accurate at strikes away from the money, and often leadsrtcase option prices, or equivalently negative PDFs,
even at modestly low strike’s.

We introduce a method that allows us to control the extrajwrlaf option prices outside of a core region of
market observability. A crucial point of our method is the wf calls/puts as the basis of our extrapolation. This
allows us to control the convexity so as to keep the set oépraver all strikes arbitrage free, while retaining some
control on the fatness of the tail at extreme strikes. In &t of this article we describe our method in more detalil,
and give examples where the method is applied to a rangefefditt pricing problems.

Thetails as parametrised option prices

It is well known that, given the prices of options on a patacwandom variable (such as a stock price at a given
maturity) for all strikes, we can deduce the probabilitytidiition of this random variable by differentiating the
option prices. In particular, the cumulative distributfonction and the density are respectively the first and sgcon
derivatives of (undiscounted) put prices with respect fiest

As mentioned above we do not, in practice, have this infoianatOnly options for a finite set of strikes are
traded and therefore have observable prices. However,danénterpolate and extrapolate the kngwitesto the
entire positive real line (for a positive random variablesla stock) we can use this to derive the full distribution.
By construction, the probability distribution derived img way will match all our observed market prices. The
interpolation of option prices is relatively straightfaamd. For example, we could use a cubic spline, either on call
prices or implied volatilities, but this leads to problerssfae option prices computed in this way will not necessarily
be convex in strike, leading to arbitrage and negative diessiA better approach is a convexity-preserving spline.
Alternatively, we can fit a parametric form to the implied atility smile. Popular choices for the parametric form
are the SABR formula or the SVI parametric fotgsee[4]).

Extrapolation outside the range of observable prices, kiewe more difficult. We may be tempted to simply
use the same functional form used for interpolation. Howe¥és is problematic, since there is no guarantee that
this functional form will lead to arbitrage free prices fary large and small strikes. The SABR formula discussed
above, for example, is based on an asymptotic expansiorbteaks down for extreme strikes, violating Lee’s
bounds for the limiting implied volatility [6]. This meankdt the risk neutral distribution implied by the SABR
formula will not be arbitrage free and will have negative sidas. Furthermore, blindly using the functional form
used for interpolation can lead to very fat tails that imgdy, example, that most of the value of even a simple
vanilla product comes from extremely large movements in.spo

It is for these reasons that we propose to separate the atatigg and extrapolation methods. Briefly, the

1This is an asymptotic expansion for the implied volatilitya particular stochastic volatility model. The justificatifor using the SABR
formula to describe smiles is that it is derived from an aalgje-free option-pricing model, so the interpolated optivices should also be
arbitrage free. However, this is not the case when the agjtiogixpansion loses accuracy. The SABR formula is now widekd by market
participants, despite the problems that can occur becdtbke breakdown of the expansion far enough away from the mnone

20ne might argue that the use of a better description of theFSABdel, or indeed another model, might solve these probl&ven so, the
tail methodology that we introduce here is a more generailcagah, that allows for a greater control of extrapolations.

3'Stochastic Volatility Inspired’ i.e. based on the behawiof the smile in the Heston stochastic volatility model.



method works as follows: We define a core region of obserngbithere we use any standard smile interpolation
method. Outside of this region we extrapolate by using a kirapalytic formula for the option prices. In the low
strike extrapolation we use a formula for put prices that wahish at zero strike, and that remains convex. In
the high strike extrapolation we use a formula for call psitteat will approach zero at very large strikes, and that
remains convex. We parametrize each of these formulas sevthaan match the option price as well as its first
two derivatives at the corresponding boundary with the cegéon. We are also able to retain a measure of control
over the form of the tails at extreme strikes. A further causnce of our method is that the first moment of the
distribution will be exactly equal to the forward value irigal by put-call parity:

Constructing thetails

We will assume that we can interpolate observed prices soviinave a parametrisation for the prices over a finite
interval [K—, K] with 0 < K~ < K+ < oo. In practice the choice ok~ and K+ may come from specific
knowledge of the range of market quoted prices, or from a rgereeral system that defines the range where the
core region will lie, e.g. with the use of Black-Scholes dslt The interpolation in the core region can be done
using the SABR formula as described above, or otherwise. ddeneed to extrapolate these prices so that we have
option prices for all positive strikes. It is more converitmuse put prices for the range, K —) and call prices

for the rangd K, 0o). Extrapolation is by its nature relatively arbitrary; alggthere is not a unique extrapolating
function. However, our methodology depends on the follgAeatures:

e We require a functional form for our extrapolation, whictcantinuous, twice differentiable, and tend<to
as strike tends to or infinity.

e The functional form should have at least three parametatsath can choose to ensure that prices are twice
continuously differentiable at the boundarfekieally the boundary conditions will lead to linear equatio
in these parameters.

As an example, we have found the following functional fornbéouseful for the extrapolation of put prices for
a variety of underlyings. Let
P(K) = K" exp(a + bK + cK?). 1)

We fix . > 1, which ensures that the price is zero at zero strike, ane tisemo probability for the underlying to
be zero at maturit§. Alternatively, we can choose to reflect our view of the fatness of the tail of the risk neltra
distribution. It is easy to check that this extrapolationgmtes a distribution where the-th negative moment is
finite form < 1 — p and infinite form > 1 — . While there is no general reason for a negative moment &i,exi
there are cases such as the inverse FX option described héiere we do expect a certain negative moment to
remain finite.

An advantage of this form of tail is that the condition for ifgihg the price and its first two derivatives/st
is a set oflinear equations in the parametersb andc. We can then solve rather than optimize o, andc to
give an exact match at the boundary. The setting up of théstéilerefore fast and stable. We should be clear at
this stage that the tail form (1) it guaranteed always to be convex, and thus arbitrage free. In extremescase
sometimes find a region in the tail with negative density. Waéfore note the following points:

e The convexity of the tails always needs to be checked.

e If extrapolating the SABR formula, it may be legitimate to vedkx _ closer to the forward to recover an
arbitrage-free tail.

4One can easilty prove that the distribution is correctlynmalized, [ p(z)dz = 1. Less obviously, one can also show that we have
[ zp(z)dx = F whereF = [C(K) — P(K)]/D — K is the forward satisfying put-call parityX is the discount factor).

5This is so that the CDH)~'dP/dK , and the PDFD~1d? P/dK?, are both continuous. Strictly speaking, we only need thmopprice
to be continuously differentiable, as the density may haspssand still be arbitrage free.

6A “natural” choice of the exponent is = dln P/dIn K|i—_ . This makes sense from a theoretical point of view as thivatere
should converge tp as strike goes to zero.



e Alternatively, in the rare cases where the tail extrapofatias a negative density we can simply change the
functional form, either by choosing a different valueroin (1), or by exploring other forms. For example,
the problem may be solved by choosing a tail form where the @@)ffoaches a finite value &5 — 0, which
corresponds to a delta function in the density at zero, shilescribed below in the example on a defaultable
stock.

e We have not found an example that we couldn't fix.

For the extrapolation of call prices for large strikes, wghtiuse the functional form
C(K)= K "exp(a+b/K+c/K?). 2)

We fix v > 0 to ensure that the call price approaches zero at large ergitigbs. Our choice of controls the
fatness of the talil; the:-th moment will be finite ifm < v — 1 and infinite ifm > v — 1.

Because these functional forms are relatively simple, wedifferentiate them analytically and so we can
efficiently compute the distribution and density functiove can of course use other functional forms, with lighter
tails, say, instead of the ones above, using the same fdeas.

In Figures 1-3 we illustrate our extrapolation method at kivikes. We take our example from the rates
markets, where the use of SABR formulas for smiles is ubigusit Figure 1 shows the smile for a 10-year expiry
EUR caplet with a forward 05%. The smile is characterized by a SABR formula, with différertrapolations
belowK_ = 3.5%; we plot the original SABR extrapolation, as well as threamaples of formula (1) with, = 1.5,

2.5 and4.5. Note the large range of implied volatilities that can réfwm our choice of tail exponent. This should
be an explicitinput in a pricing system.

Figure 2 shows that the SABR extrapolation clearly leadstaribtrageable smile: the negative slope in the
CDF below 0.4% means that option prices are concave at tbesstiikes. The three cases that use (1) are arbitrage-
free extrapolations. This figure also illustrates a cotirgtien the form of the tails: the integral of the CDF from
zero toK _ is fixed by the put price at this strike. Figure 3 shows the tiegaensity at low strikes for the SABR
formula. For the three tail extrapolations we always havbimbdal” distribution, which is related to the skew in
the original smilé® Whether or not the density goes to zerdsat— 0 or diverges in this limit depends on the value
of 4. However, our earlier requirement that> 1 ensures that integration over the density will be finite.

Example pricing problems

In the rest of this paper we use the above described methaaportant examples over a range of asset classes.
The low-strike digital option

For our first application, consider Figure 2. This figure esants the (undiscounted) price of a digital floorlet, that
pays a notional amount only if the Euribor fixes below a cerstiike. If we were to use the SABR formula (the
black curve) to price such a digital option, we might end upibg a digital floorlet at a strikd( = 0.25% and
selling a digital floorlet at a lower price with a striké = 0.5%. The net payoff for us will be always negative (i.e.,
we pay) or zero, but we have paid a positive amount for thdlpgg. We can remove this channel for throwing
away money by using a controlled tail, as shown in the samedigu

While the digital gives a very graphic example of how the us&ABR formulas can lead to arbitrageable
prices, the same is true for plain vanilla options at lowkssi When there is a region of concavity in the vanilla
option prices as a function of strike, it is easy to constpactfolios of options with payoffs that are positive or zero
in all future scenarios, but which will have a negative vaiogay using this smile. Again, using a controlled tail
extrapolation removes this arbitrage.

Other choices of tails includ®(K) = aK* /(K — b)¢ andC(K) = e*~bK+c/K" The crucial point is that there should be simple
solutions to matching at the boundary; this can be ensurtdanguasilinear form in the parameters.

8The bimodal distribution with a second peak in the densitgwtstrikes seems to be neccessary to fit the market smile antzitrage-free
manner. Note that the CEV model that underlies the SABR mioakekhis bimodality for all values ¢f between 0 and 1.



The Inverse FX option

Consider an FX market where options are actively traded emateX between a foreign and a domestic currency.
Say we want to price an inverse FX option, which is defined bytyoff in the domestic curency @XT_l ~K71),

at an expiryT. A possible pricing method would be to replicate this paysfing standard option payoffs over
different strikes. This is equivalent to integrating the@fimultiplied by the risk-neutral probability density tfe

FX rate.

Clearly the relevant integral will be dominated by low sésk and so the smile extrapolation used is crucial to
the pricing. In fact, the use of SABR formulas is extremelpgierous here: negative densities at low strikes can
give completely nonsensical results. Even when the dessiémain positive, the form of the densityx) can be
such that the integral of(x) /= diverges as the lower integration limit approaches zero.

We have priced inverse FX options with our tail methodoldgfe take the USDJPY market, and characterize
the smiles over a core region with SABR formulas. We can th&a tlifferent values of the lower tail exponent
for which we show the smiles in Figure 4. Note that, while thesniles are identical down to a strike of 50, which
covers 96% of the distribution, there is a significant ranigeriwes for an inverse FX option struck at the forward,
see Table 1. Note also that the SABR formula cannot be usedd®e ihis product as it has negative densities at
small strikes. The important point is that we are now ablaitetthe lower tail, to which the inverse option is so
sensitive, with the choice qf, thereby giving control of the pricing to the trader.

This example product can be described as a regular FX optithreiforeign market, quantoed into the domestic
currency. If we want to generalize to FX options between tiffeic:nt foreign currencies, quantoed into the domes-
tic currency, we can do this in a smile-consistent manner thi¢ use of a copula on two risk-neutral distributions
(because the cross FX can be written in terms of the two otKenakes, X235 = Xo1/X31). This is another case
where our tail methodology is extremely useful. We do notdbs this in detail here, as it is rather similar to the
calculation of spread option prices using a copula, whiatescribed below.

CMS products

Many products in the interest-rate derivative market depem the value of a swap rate at a future time. For
instance, a CMS swap will exchange a series of payments ofp sate corresponding to a fixed length of swap
for a series of floating-rate payments plus a spread. Thexsdsan active market in CMS options. The forward
value of a CMS payment (or an option) should be calculatedigusie market smiles for vanilla swaptions (which
are far more liquid than CMS products). This can be shown faomplication argument, or equivalently, through
a measure change from the swap measure. The differencedreteforward CMS rate and the present forward
value of the relevant swap rate is the CMS convexity coroactit can be shown that the convexity correction is
related to the second moment of the swap rate in the swap ne§ajsu

The use of SABR formulas to calculate CMS rates is extremadplpmatic. The problem is that for large
enough expirieshe second moment in the SABR-formula distribution appears to diverge. Any implementation of
CMS through replication using SABR will give a result thatosigly depends on the upper strike limit used for
replication. On the other hand, using a high-strike extlamn as in (2) allows us to control the value of the CMS
convexity correction through the choice of the exponentn Table 2 we show the results for the forward CMS
rate for different choices of the exponent We consider a 10-year EUR swap rate fixing in 20 years. Nate th
there is no applicable SABR price, as at this expiry the iretbig not converging. As long as > 1 we will get a
converging integral using the tail in (2), and tuningives different CMS rates over a range of about 40 bps. Where
there are observed prices for CMS, the value ofn be chosen to best match them.

Soread options

Another common exotic rates derivative is the CMS spreamnpt structured note might pay a coupon propor-
tional to (51 — S2 — K) 4, whereS; andS; are swap rates of different tenors. This allows the buyetohs note

to bet on the future shape of the yield curve. Such productdeapriced by constructing a bivariate risk-neutral
distribtion for the two rates using the marginal distrilbu extracted from the swaption smiles connected by some



choice of copula, as described in [2].

Unfortunately, it is almost impossible to follow this mettamlology with the use of SABR formulas: the cop-
ula will need well-defined monotonically increasing masgidistribution functions. On the other hand, we have
successfully implemented CMS spread option pricing withtail extrapolations (for reasons of space, we do not
show results here). The pricing will strongly depend on theameter choices for the copula, e.g., correlation in a
Gaussian copula.

A defaultable stock

To illustrate the flexibility of our method, we now considbetproblem of characterizing the smile for options on a
stock, where the market sees a high probability of defadtineethe option expiry. We can extend the lower-strike
extrapolation (1) to allow for a finite probabilityfor the stock to have zero value, using the form:

P(K) = qK + K" exp(a + bK + cK?). (3)

The value ofy could be determined by looking at the survival probab#giiiplied by the CDS market.

Another generalization could be a situation where the ntatikienot believe the stock could be at any interme-
diate value between zero ad* (e.g., if the immediate demise of the company is expectdtkistock falls below
K*). The implications of assuming such a “default corridorV/édeen discussed in [3]. In this case we could
match this expectation with the form

P(K) = qK + K" exp(a + bK + cK?), (4)

with K = (K — K*)1. In Figures 5 and 6 we show an example using this form. The plkaghows the distri-
bution implied from 9-month expiry options on RBS in NovemB608, where our extrapolation allows for a 7%
probability that the stock will be worthless before the optéxpiry, along with a vanishing probability for the stock
price to lie between 0 and 50. Therefore the CDF (Figure 5)és#y 7% over the strike rang€ < 50, while the
PDF (Figure 6) is zero in this range and hasfinction spike at zer8.We believe that this generalized form of
extrapolation is extremely relevant in the current market.

Local volatility

Finally we mention that our tail methodology is a useful tatlen pricing path-dependent derivatives with a local
volatility model. A complete description of the local valdy function requires the specification of the implied
volatility surface at all strikes. Therefore, extrapaatbeyond quoted option prices is crucial. Our extrapotatio
method enables the construction of a consistent localilibiaurface over the entire range of strikes.

Conclusions

In this article we have introduced a simple, fast and robuethigdology for the extrapolation of option prices to
strikes outside of a core region of market observabilitye Timain attraction of the method is that it ensures an
arbitrage-free set of prices, while allowing a measure aitcd on the asymptotic behaviour of the risk-neutral
distributions at extreme strikes. We have seen how we canthenprice of an exotic instrument such as the inverse
FX option, or a CMS rate, by tuning a parameter such as théifigrpower-law exponent used here. This should
allow for the consistent pricing and risk management of qarcllucts. The method is general enough to be applied
to many asset classes, as shown in the range of examples w@tesented. By choosing different tail forms, the
method is flexible enough to recover the different distiitmg expected for different underlyings.
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Figure 1: Caplet smile (EUR, 10 year expiry, forward=5%nirthe SABR formula (black), and with our extrapo-
lations at low strikes withv = 1.5 (blue),2.5 (green), and.5 (orange).
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Figure 2: Implied cumulative distribution of forward rateR, 10 year expiry, forward=5%) from the SABR
formula (black), and with our extrapolations at low strikeéith v = 1.5 (blue),2.5 (green), and..5 (orange).
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Figure 4: FX smile (USDJPY, expiry=5yr, Forward=97.4) frtme SABR formula (black) and our extrapolations
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Figure 5: Implied cumulative distribution from options odefaultable equity (black) with extrapolations (red) that
assume a 7% probability of default before expiry, and zeobability for stock to lie below 50.
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Figure 6: Implied probability density from options on a défable equity (black) with extrapolations (red) that
assume a 7% probability of default before expiry, and zeobability for stock to lie below 50.

Extrapolation| Price[yen]
SABR N/A

1=2.33 4424

u=3 2446

u=4 1900

u=5 1698

u=15 1306

Table 1: Inverse FX option price on USDJP¥=Forward,N=1 million yen.

Extrapolation| CMS rate
SABR N/A

v=1.25 3.44%

v=2 3.35%

v=3 3.24%

v=5 3.13%

v=10 3.10%

Table 2: CMS rate for 20yr expiry, 10yr tenor, underlying pwate = 2.71%, CCY=EUR.
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