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A robust method for pricing options at strikes where there isnot an observed price is a vital tool for the pricing,

hedging, and risk management of derivatives. All institutions that trade derivatives will have an approach to this

task. Typical examples might be a simple interpolation scheme across implied volatilities, or the use of a model-

based formula optimized to fit observed prices. It is our viewthat while these methods work well forinterpolation

across actively traded strikes, they often break down when used forextrapolation. We introduce in this paper

a technique for smile extrapolation that is robust, simple,fast and offers control on the form of the tails in the

distribution. Using this method allows distribution-sensitive products such as CMS rates or inverse-FX options to

be priced consistently with the smile of traded vanilla options. The resulting arbitrage-free distributions are also

key to the copula-based pricing of multi-asset products such as spread options, quantos and hybrids. Our approach

fixes several problems currently seen in today’s stressed markets, e.g. with CMS rates.

There are two distinct areas where smile extrapolations canbe a problem: when an institution has legacy trades

on its books that are struck far from today’s at-the-money strike (a common situation in the current market) and

in the pricing of more exotic products that depend on the use of an entire risk-neutral probability density function

(PDF) of the underlying. Examples of the second area include:

• Pricing derivatives with non-standard payoffs by replication with a portfolio of vanilla options over all strikes.

Calculating the convexity correction for constant maturity swap (CMS) rates is a particularly topical case.

• Pricing options that depend on multiple underlyings, such as hybrids, using copulas. This method requires

the entire marginal cumulative distributions (CDFs).

• Generating the local volatility surface from a set of observed prices. This requires inter- and extrapolation of

prices both in the strike dimension (considered in this article) as well as in the time dimension.

The most important feature of a smile extrapolation method is that it should deliver arbitrage-free prices for

the vanilla options, i.e., the option prices must be convex functions of strike, and stay within certain bounds. In

addition, the extrapolation method should ideally have thefollowing properties:

1. It should reprice allobserved vanilla options correctly.

2. The PDF, CDF and vanilla option prices should be easy to compute.

3. The method should not generate unrealistically fat tails, and if possible, it should allow us to control how fat

the tails are.

4. It should be robust and flexible enough to use with a wide variety of different implied volatility surfaces.

5. It should be easy and fast to initialize for a given smile.

The above points are not so straightforward to satisfy. Working directly with the PDF or the CDF makes it difficult

to satisfy the first property on the list above as the conditions that we impose (on option prices) are on the integral

of the CDF. Therefore the traditional method concentrates on extrapolating the price; it is common practice to do
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this via the extrapolation of implied volatility. We can name two such commonly used methods which do not satisfy

our above wish list: The first is to use a simple interpolationwithin the region of observed prices, and just set the

implied volatility to be a constant outside of this region. This method is flawed as it introduces unstable behaviour

at the boundary between the smile and the flat volatility, andwe will have unrealistically narrow tails at extreme

strikes. The second is to fit a parametric form for the impliedvolatility derived from a model, such as the SABR

formula1 (see [5]). There are two problems with this method: it gives us little control over the distribution; indeed

this approach often leads to excessively fat tails. This canlead to risk neutral distributions that have unrealistically

large probabilities of extreme movements, and have moment explosions that lead to infinite prices, even for simple

products like Libor in arrears and FX quantos (see e.g., [1]). Furthermore, in the case of the SABR formula, which

is the result of an asymptotic expansion about a simple stochastic volatility model, the expansion becomes less

accurate at strikes away from the money, and often leads to concave option prices, or equivalently negative PDFs,

even at modestly low strikes.2

We introduce a method that allows us to control the extrapolation of option prices outside of a core region of

market observability. A crucial point of our method is the use of calls/puts as the basis of our extrapolation. This

allows us to control the convexity so as to keep the set of prices over all strikes arbitrage free, while retaining some

control on the fatness of the tail at extreme strikes. In the rest of this article we describe our method in more detail,

and give examples where the method is applied to a range of different pricing problems.

The tails as parametrised option prices

It is well known that, given the prices of options on a particular random variable (such as a stock price at a given

maturity) for all strikes, we can deduce the probability distribution of this random variable by differentiating the

option prices. In particular, the cumulative distributionfunction and the density are respectively the first and second

derivatives of (undiscounted) put prices with respect to strike.

As mentioned above we do not, in practice, have this information. Only options for a finite set of strikes are

traded and therefore have observable prices. However, if wecan interpolate and extrapolate the knownprices to the

entire positive real line (for a positive random variable like a stock) we can use this to derive the full distribution.

By construction, the probability distribution derived in this way will match all our observed market prices. The

interpolation of option prices is relatively straightforward. For example, we could use a cubic spline, either on call

prices or implied volatilities, but this leads to problems as the option prices computed in this way will not necessarily

be convex in strike, leading to arbitrage and negative densities. A better approach is a convexity-preserving spline.

Alternatively, we can fit a parametric form to the implied volatility smile. Popular choices for the parametric form

are the SABR formula or the SVI parametric form3 (see[4]).

Extrapolation outside the range of observable prices, however, is more difficult. We may be tempted to simply

use the same functional form used for interpolation. However, this is problematic, since there is no guarantee that

this functional form will lead to arbitrage free prices for very large and small strikes. The SABR formula discussed

above, for example, is based on an asymptotic expansion thatbreaks down for extreme strikes, violating Lee’s

bounds for the limiting implied volatility [6]. This means that the risk neutral distribution implied by the SABR

formula will not be arbitrage free and will have negative densities. Furthermore, blindly using the functional form

used for interpolation can lead to very fat tails that imply,for example, that most of the value of even a simple

vanilla product comes from extremely large movements in spot.

It is for these reasons that we propose to separate the interpolation and extrapolation methods. Briefly, the

1This is an asymptotic expansion for the implied volatility in a particular stochastic volatility model. The justification for using the SABR

formula to describe smiles is that it is derived from an arbitrage-free option-pricing model, so the interpolated option prices should also be

arbitrage free. However, this is not the case when the asymptotic expansion loses accuracy. The SABR formula is now widely used by market

participants, despite the problems that can occur because of the breakdown of the expansion far enough away from the money.
2One might argue that the use of a better description of the SABR model, or indeed another model, might solve these problems. Even so, the

tail methodology that we introduce here is a more general approach, that allows for a greater control of extrapolations.
3’Stochastic Volatility Inspired’ i.e. based on the behaviour of the smile in the Heston stochastic volatility model.
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method works as follows: We define a core region of observability, where we use any standard smile interpolation

method. Outside of this region we extrapolate by using a simple analytic formula for the option prices. In the low

strike extrapolation we use a formula for put prices that will vanish at zero strike, and that remains convex. In

the high strike extrapolation we use a formula for call prices that will approach zero at very large strikes, and that

remains convex. We parametrize each of these formulas so that we can match the option price as well as its first

two derivatives at the corresponding boundary with the coreregion. We are also able to retain a measure of control

over the form of the tails at extreme strikes. A further consequence of our method is that the first moment of the

distribution will be exactly equal to the forward value implied by put-call parity.4

Constructing the tails

We will assume that we can interpolate observed prices so that we have a parametrisation for the prices over a finite

interval [K−, K+] with 0 < K− < K+ < ∞. In practice the choice ofK− andK+ may come from specific

knowledge of the range of market quoted prices, or from a moregeneral system that defines the range where the

core region will lie, e.g. with the use of Black-Scholes deltas. The interpolation in the core region can be done

using the SABR formula as described above, or otherwise. We now need to extrapolate these prices so that we have

option prices for all positive strikes. It is more convenient to use put prices for the range(0, K−) and call prices

for the range(K+,∞). Extrapolation is by its nature relatively arbitrary; clearly there is not a unique extrapolating

function. However, our methodology depends on the following features:

• We require a functional form for our extrapolation, which iscontinuous, twice differentiable, and tends to0

as strike tends to0 or infinity.

• The functional form should have at least three parameters that we can choose to ensure that prices are twice

continuously differentiable at the boundaries.5 Ideally the boundary conditions will lead to linear equations

in these parameters.

As an example, we have found the following functional form tobe useful for the extrapolation of put prices for

a variety of underlyings. Let

P (K) = Kµ exp(a + bK + cK2). (1)

We fix µ > 1, which ensures that the price is zero at zero strike, and there is no probability for the underlying to

be zero at maturity.6 Alternatively, we can chooseµ to reflect our view of the fatness of the tail of the risk neutral

distribution. It is easy to check that this extrapolation generates a distribution where them-th negative moment is

finite for m < 1 − µ and infinite form > 1 − µ. While there is no general reason for a negative moment to exist,

there are cases such as the inverse FX option described belowwhere we do expect a certain negative moment to

remain finite.

An advantage of this form of tail is that the condition for matching the price and its first two derivatives atK−

is a set oflinear equations in the parametersa, b andc. We can then solve rather than optimize fora, b, andc to

give an exact match at the boundary. The setting up of the tailis therefore fast and stable. We should be clear at

this stage that the tail form (1) isnot guaranteed always to be convex, and thus arbitrage free. In extreme cases we

sometimes find a region in the tail with negative density. We therefore note the following points:

• The convexity of the tails always needs to be checked.

• If extrapolating the SABR formula, it may be legitimate to move K− closer to the forward to recover an

arbitrage-free tail.

4One can easilty prove that the distribution is correctly normalized,
∫

p(x)dx = 1. Less obviously, one can also show that we have
∫

xp(x)dx = F whereF = [C(K) − P (K)]/D − K is the forward satisfying put-call parity (D is the discount factor).
5This is so that the CDF,D−1dP/dK, and the PDF,D−1d2P/dK2, are both continuous. Strictly speaking, we only need the option price

to be continuously differentiable, as the density may have steps and still be arbitrage free.
6A “natural” choice of the exponent isµ = d ln P/d lnK|K=K− . This makes sense from a theoretical point of view as this derivative

should converge toµ as strike goes to zero.
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• Alternatively, in the rare cases where the tail extrapolation has a negative density we can simply change the

functional form, either by choosing a different value ofµ in (1), or by exploring other forms. For example,

the problem may be solved by choosing a tail form where the CDFapproaches a finite value asK → 0, which

corresponds to a delta function in the density at zero, this is described below in the example on a defaultable

stock.

• We have not found an example that we couldn’t fix.

For the extrapolation of call prices for large strikes, we might use the functional form

C(K) = K−ν exp(a + b/K + c/K2). (2)

We fix ν > 0 to ensure that the call price approaches zero at large enoughstrikes. Our choice ofν controls the

fatness of the tail; them-th moment will be finite ifm < ν − 1 and infinite ifm > ν − 1.

Because these functional forms are relatively simple, we can differentiate them analytically and so we can

efficiently compute the distribution and density functions. We can of course use other functional forms, with lighter

tails, say, instead of the ones above, using the same ideas.7

In Figures 1–3 we illustrate our extrapolation method at lowstrikes. We take our example from the rates

markets, where the use of SABR formulas for smiles is ubiquitous. Figure 1 shows the smile for a 10-year expiry

EUR caplet with a forward of5%. The smile is characterized by a SABR formula, with different extrapolations

belowK− = 3.5%; we plot the original SABR extrapolation, as well as three examples of formula (1) withµ = 1.5,

2.5 and4.5. Note the large range of implied volatilities that can result from our choice of tail exponent. This should

be an explicit input in a pricing system.

Figure 2 shows that the SABR extrapolation clearly leads to an aribtrageable smile: the negative slope in the

CDF below 0.4% means that option prices are concave at these low strikes. The three cases that use (1) are arbitrage-

free extrapolations. This figure also illustrates a constraint on the form of the tails: the integral of the CDF from

zero toK− is fixed by the put price at this strike. Figure 3 shows the negative density at low strikes for the SABR

formula. For the three tail extrapolations we always have a “bimodal” distribution, which is related to the skew in

the original smile.8 Whether or not the density goes to zero atK → 0 or diverges in this limit depends on the value

of µ. However, our earlier requirement thatµ > 1 ensures that integration over the density will be finite.

Example pricing problems
In the rest of this paper we use the above described methods inimportant examples over a range of asset classes.

The low-strike digital option

For our first application, consider Figure 2. This figure represents the (undiscounted) price of a digital floorlet, that

pays a notional amount only if the Euribor fixes below a certain strike. If we were to use the SABR formula (the

black curve) to price such a digital option, we might end up buying a digital floorlet at a strikeK = 0.25% and

selling a digital floorlet at a lower price with a strikeK = 0.5%. The net payoff for us will be always negative (i.e.,

we pay) or zero, but we have paid a positive amount for the privilege. We can remove this channel for throwing

away money by using a controlled tail, as shown in the same figure.

While the digital gives a very graphic example of how the use of SABR formulas can lead to arbitrageable

prices, the same is true for plain vanilla options at low strikes. When there is a region of concavity in the vanilla

option prices as a function of strike, it is easy to constructportfolios of options with payoffs that are positive or zero

in all future scenarios, but which will have a negative valuetoday using this smile. Again, using a controlled tail

extrapolation removes this arbitrage.

7Other choices of tails includeP (K) = aKµ/(K − b)c andC(K) = ea−bK+c/Kν

. The crucial point is that there should be simple

solutions to matching at the boundary; this can be ensured with a quasilinear form in the parameters.
8The bimodal distribution with a second peak in the density atlow strikes seems to be neccessary to fit the market smile in anarbitrage-free

manner. Note that the CEV model that underlies the SABR modelhas this bimodality for all values ofβ between 0 and 1.
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The Inverse FX option

Consider an FX market where options are actively traded on the rateX between a foreign and a domestic currency.

Say we want to price an inverse FX option, which is defined by the payoff in the domestic curency of(X−1

T −K−1)+

at an expiryT . A possible pricing method would be to replicate this payoffusing standard option payoffs over

different strikes. This is equivalent to integrating the payoff multiplied by the risk-neutral probability density ofthe

FX rate.

Clearly the relevant integral will be dominated by low strikes, and so the smile extrapolation used is crucial to

the pricing. In fact, the use of SABR formulas is extremely dangerous here: negative densities at low strikes can

give completely nonsensical results. Even when the densities remain positive, the form of the densityp(x) can be

such that the integral ofp(x)/x diverges as the lower integration limit approaches zero.

We have priced inverse FX options with our tail methodology.We take the USDJPY market, and characterize

the smiles over a core region with SABR formulas. We can then take different values of the lower tail exponentµ,

for which we show the smiles in Figure 4. Note that, while these smiles are identical down to a strike of 50, which

covers 96% of the distribution, there is a significant range of prices for an inverse FX option struck at the forward,

see Table 1. Note also that the SABR formula cannot be used to price this product as it has negative densities at

small strikes. The important point is that we are now able to tune the lower tail, to which the inverse option is so

sensitive, with the choice ofµ, thereby giving control of the pricing to the trader.

This example product can be described as a regular FX option in the foreign market, quantoed into the domestic

currency. If we want to generalize to FX options between two different foreign currencies, quantoed into the domes-

tic currency, we can do this in a smile-consistent manner with the use of a copula on two risk-neutral distributions

(because the cross FX can be written in terms of the two other FX rates,X23 = X21/X31). This is another case

where our tail methodology is extremely useful. We do not describe this in detail here, as it is rather similar to the

calculation of spread option prices using a copula, which isdescribed below.

CMS products

Many products in the interest-rate derivative market depend on the value of a swap rate at a future time. For

instance, a CMS swap will exchange a series of payments of a swap rate corresponding to a fixed length of swap

for a series of floating-rate payments plus a spread. There isalso an active market in CMS options. The forward

value of a CMS payment (or an option) should be calculated using the market smiles for vanilla swaptions (which

are far more liquid than CMS products). This can be shown froma replication argument, or equivalently, through

a measure change from the swap measure. The difference between the forward CMS rate and the present forward

value of the relevant swap rate is the CMS convexity correction. It can be shown that the convexity correction is

related to the second moment of the swap rate in the swap measure[7].

The use of SABR formulas to calculate CMS rates is extremely problematic. The problem is that for large

enough expiriesthe second moment in the SABR-formula distribution appears to diverge. Any implementation of

CMS through replication using SABR will give a result that strongly depends on the upper strike limit used for

replication. On the other hand, using a high-strike extrapolation as in (2) allows us to control the value of the CMS

convexity correction through the choice of the exponentν. In Table 2 we show the results for the forward CMS

rate for different choices of the exponentν. We consider a 10-year EUR swap rate fixing in 20 years. Note that

there is no applicable SABR price, as at this expiry the integral is not converging. As long asν > 1 we will get a

converging integral using the tail in (2), and tuningν gives different CMS rates over a range of about 40 bps. Where

there are observed prices for CMS, the value ofν can be chosen to best match them.

Spread options

Another common exotic rates derivative is the CMS spread option. A structured note might pay a coupon propor-

tional to(S1 − S2 −K)+, whereS1 andS2 are swap rates of different tenors. This allows the buyer of such a note

to bet on the future shape of the yield curve. Such products can be priced by constructing a bivariate risk-neutral

distribtion for the two rates using the marginal distributions extracted from the swaption smiles connected by some
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choice of copula, as described in [2].

Unfortunately, it is almost impossible to follow this methododology with the use of SABR formulas: the cop-

ula will need well-defined monotonically increasing marginal distribution functions. On the other hand, we have

successfully implemented CMS spread option pricing with our tail extrapolations (for reasons of space, we do not

show results here). The pricing will strongly depend on the parameter choices for the copula, e.g., correlation in a

Gaussian copula.

A defaultable stock

To illustrate the flexibility of our method, we now consider the problem of characterizing the smile for options on a

stock, where the market sees a high probability of default before the option expiry. We can extend the lower-strike

extrapolation (1) to allow for a finite probabilityq for the stock to have zero value, using the form:

P (K) = qK + Kµ exp(a + bK + cK2). (3)

The value ofq could be determined by looking at the survival probabilities implied by the CDS market.

Another generalization could be a situation where the market did not believe the stock could be at any interme-

diate value between zero andK∗ (e.g., if the immediate demise of the company is expected if the stock falls below

K∗). The implications of assuming such a “default corridor” have been discussed in [3]. In this case we could

match this expectation with the form

P (K) = qK + K̃µ exp(a + bK̃ + cK̃2), (4)

with K̃ = (K − K∗)+. In Figures 5 and 6 we show an example using this form. The example shows the distri-

bution implied from 9-month expiry options on RBS in November 2008, where our extrapolation allows for a 7%

probability that the stock will be worthless before the option expiry, along with a vanishing probability for the stock

price to lie between 0 and 50. Therefore the CDF (Figure 5) is exactly 7% over the strike rangeK < 50, while the

PDF (Figure 6) is zero in this range and has aδ-function spike at zero.9 We believe that this generalized form of

extrapolation is extremely relevant in the current market.

Local volatility

Finally we mention that our tail methodology is a useful toolwhen pricing path-dependent derivatives with a local

volatility model. A complete description of the local volatility function requires the specification of the implied

volatility surface at all strikes. Therefore, extrapolation beyond quoted option prices is crucial. Our extrapolation

method enables the construction of a consistent local volatility surface over the entire range of strikes.

Conclusions

In this article we have introduced a simple, fast and robust methodology for the extrapolation of option prices to

strikes outside of a core region of market observability. The main attraction of the method is that it ensures an

arbitrage-free set of prices, while allowing a measure of control on the asymptotic behaviour of the risk-neutral

distributions at extreme strikes. We have seen how we can tune the price of an exotic instrument such as the inverse

FX option, or a CMS rate, by tuning a parameter such as the limiting power-law exponent used here. This should

allow for the consistent pricing and risk management of suchproducts. The method is general enough to be applied

to many asset classes, as shown in the range of examples we have presented. By choosing different tail forms, the

method is flexible enough to recover the different distributions expected for different underlyings.
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Figure 1: Caplet smile (EUR, 10 year expiry, forward=5%) from the SABR formula (black), and with our extrapo-

lations at low strikes withν = 1.5 (blue),2.5 (green), and4.5 (orange).
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Figure 2: Implied cumulative distribution of forward rate (EUR, 10 year expiry, forward=5%) from the SABR

formula (black), and with our extrapolations at low strikeswith ν = 1.5 (blue),2.5 (green), and4.5 (orange).
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Figure 3: Implied probability density of forward rate (EUR,10 year expiry, forward=5%) from the SABR formula

(black), and with our extrapolations at low strikes withν = 1.5 (blue),2.5 (green), and4.5 (orange).
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Figure 4: FX smile (USDJPY, expiry=5yr, Forward=97.4) fromthe SABR formula (black) and our extrapolations

with ν = 2.33 (blue),5 (green), and15 (orange). with the SABR formula .
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Figure 5: Implied cumulative distribution from options on adefaultable equity (black) with extrapolations (red) that

assume a 7% probability of default before expiry, and zero probability for stock to lie below 50.
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Figure 6: Implied probability density from options on a defaultable equity (black) with extrapolations (red) that

assume a 7% probability of default before expiry, and zero probability for stock to lie below 50.

Extrapolation Price[yen]

SABR N/A

µ=2.33 4424

µ=3 2446

µ=4 1900

µ=5 1698

µ=15 1306

Table 1: Inverse FX option price on USDJPY,K=Forward,N=1 million yen.

Extrapolation CMS rate

SABR N/A

ν=1.25 3.44%

ν=2 3.35%

ν=3 3.24%

ν=5 3.13%

ν=10 3.10%

Table 2: CMS rate for 20yr expiry, 10yr tenor, underlying swap rate = 2.71%, CCY=EUR.
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