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Abstract

The problem of finding an optimal product sequence for sequential multiplication of ma-
trices (the matriz chain ordering problem, MCOP) is well-known and has been studied for
a long time. In this paper, we consider the problem of finding an optimal product schedule
for evaluating a chain of matriz products on a parallel computer (the matriz chain schedul-
ing problem, MCSP). The difference between MCSP and MCOP is that MCOP considers
a product sequence for single processor systems and MCSP considers a sequence of concur-
rent matrixz products for parallel systems. The approach of parallelizing each matriz product
after finding an optimal product sequence for single processor systems does not always guar-
antee a minimal evaluation time since each parallelized matriz product may use processors
inefficiently. We introduce a processor scheduling algorithm for MCSP which attempts to
minimize the evaluation time of a chain of matriz products on a parallel computer, even at
the expense of a slight increase in the total number of operations. Fxperiments on a Fujitsu
AP1000 multicomputer show that the proposed algorithm significantly decreases the time

required to evaluate a chain of matriz products in actual parallel systems.

Keywords — Processor scheduling, matrix chain product, dynamic programming, parallel

matrix multiplication, matrix chain scheduling problem.
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1 Introduction

Matrix multiplication is a computation intensive part of many commonly used sci-
entific computing applications. In many applications, a chain of matrices is multiplied
consecutively [1, 2]. In the evaluation of a chain of matrix products with n matrices
M = My x My X -+ x My, where M; is an m; X m;1(m; > 1) matrix, the product sequence
greatly affects the total number of operations required to evaluate M, even though the final
result is the same for all product sequences by the associative law of matrix multiplication.

An arbitrary product sequence of matrices may be as bad as Q(To?’pt

) where T, is the mini-
mum number of operations required to evaluate a chain of matrix products [3]. The matrix
chain ordering problem (MCOP) is the problem of finding a product sequence for a set of

matrices such that the total number of operations is minimized.

An exhaustive search to find an optimal solution for MCOP is not a good strategy since
the number of possible product sequences of a chain of matrix products with n matrices
is ©(4"/n3/?), which is known as the Catalan number [4]. Let us refer to the time re-
quired to find a product sequence for a chain of matrices as the ordering time and the time
required to execute the product sequence as the evaluation time. There are many works
reported for solving MCOP and for reducing the ordering time. MCOP was first reported
by Godbole [5] and solved using dynamic programming in O(n?3) time. Chin [6] suggested
an approximation algorithm which runs in O(n) time for finding a near-optimal sequence.
The optimal sequential algorithm, which runs in O(nlog(n)) time, was given by Hu and
Shing [7, 8]. This algorithm solves MCOP by solving the equivalent problem of finding an
optimal triangulation of a convex polygon. Ramanan [9] presented a simpler algorithm and
obtained the tight lower bound of the problem as Q(nlog(n)).

Many parallel algorithms to reduce the ordering time have been studied using the dy-
namic programming method [10, 11, 12, 13] and the convex polygon triangulation method [14,
15, 16]. Bradford et al. [13] proposed a parallel algorithm based on dynamic programming
which runs in O(log®(n)) time with n/log(n) processors on the CRCW PRAM model.
Czumaj [14] proposed a O(log®(n)) time algorithm based on the triangulation of a convex
polygon which runs with n?/log?(n) processors on the CREW PRAM. Also in [15], he pro-
posed a faster approximation algorithm which finds a near-optimal solution in O(log(n))
time on the CREW PRAM, and in O(loglog(n)) time on the CRCW PRAM. Ramanan [16]
gives an optimal algorithm which runs in O(log?(n)) time using n processors. Most of the

recently proposed parallel algorithms run in polylog time with a linear number of processors.

Now let us consider the evaluation time of a chain of matrix products. In a single pro-



cessor system, the evaluation of a chain of matrix products by the optimal product sequence
guarantees the minimum evaluation time since the sequence guarantees the minimum num-
ber of operations. However, in parallel systems, parallel computation of each matrix product
with the product sequence found for the minimum number of operations does not guarantee
the minimum evaluation time. This is because the evaluation time in parallel systems is
affected by various factors such as dependencies among tasks, communication delays, and

processor efficiency.

When computing a matrix product in a parallel system, having more processors does
not always lead to a better performance. The computation time of each processor may be
reduced by using a larger number of processors. However, this may cause some processors
to be stay idle, which in turn results in degraded performance of the parallel system. To
have better performance, a proper number of processors must be allocated to the problem
at hand. The proper number of processors for a given matrix product is dependent on
various system and matrix characteristics such as the interconnection network used, the
communication speed, the matrix size, and the computation amount. This leads us to
consider whether multiplying matrices sequentially based on the optimal product sequence
using a parallel multiplication algorithm is a good strategy in parallel systems or not. In
many applications, it is asserted that the performance of parallel systems decreases as more

processors are allocated due to the communication overhead and inefficient use of processors.

In this paper, we formally present the problem of finding the matrix product schedule
for parallel systems (MCSP) and analyze the problem complexity of MCSP. We propose an
algorithm which finds a matrix product schedule that, while slightly increasing the number
of operations, decreases the evaluation time of a chain of matrix products by finding sets of

matrix products that can be executed concurrently.

This paper is organized as follows. Section 2 presents the formal description of the
processor scheduling problem for a chain of matrix products and shows that the given
problem is NP-Hard. We present a processor allocation method for executing a number
of independent matrix products concurrently in Section 3. In Section 4, we propose a
matrix chain scheduling algorithm which dramatically reduces the evaluation time of a
chain of matrix products by using processors efficiently in parallel systems, and analyze
the algorithm. In Section 5, we present the performance of the proposed method and
compare with that of sequential matrix products ordered by the optimal product sequence
for MCOP using experiments on the Fujitsu AP1000 parallel system. Finally, in Section 6,

we summarize and conclude the paper.



2 Matrix Chain Scheduling Problem

2.1 Notation

e P : the number of processors in a parallel system.

e M : a matrix chain product with n matrices, i.e., M = My x My X --- X M,,.

e M;: an m; X m;y1 matrix (m; > 1, 1 <i < n).

e [, : a product sequence tree for a matrix chain M.

e L;; : the sequence subtree of L for (M; x -+ x Mj).

e (' : the minimum amount of computation for evaluating M.

e AC : the amount of increased computation by modifying the current sequence tree.
e p;; : the number of processors assigned for evaluating (M; x --- x M;).

e T; i(pi;): the execution time for evaluating (M; x -+ x Mj) on p; ; processors.

e (m;,mj, my): single matrix product for multiplying an m; X m; matrix by an m; x my,

matrix.

e &(m;,mj, my,p): the execution time of single matrix product (m;, m;, my) when p

processors are allocated.

e D(z): the set of divisors of z, i.e., D(z) = {d|d divides z}.

2.2 Problem Description

We consider the problem of finding the optimal schedule with minimum evaluation time
of M = My x My x --- x M, on a P processor parallel system. The number of operations
for multiplying a matrix A of size m; x m; by a matrix B of size m; x my, is m;m;my. !
Many parallel algorithms for matrix multiplication have been developed in various parallel
architectures [20, 21]. The execution time of matrix multiplication depends on the algorithm
used and the architecture on which the algorithm runs. However, for more discussion, we
assume that the simple parallel algorithm [21] is used and the execution time of matrix
multiplication is proportional to the number of operations on a processor. Therefore, for

multiplying A by B matrices with p processors, the execution time ®(m;, m;, my,p) can be

!Even though Strassen’s algorithm [17, 18] and its variants perform fewer than n® operations for n x n

matrix multiplication, these faster algorithms are not suitable for evaluating matrix chain products due to
more erroneous results and larger storage requirements than the usual inner-product type algorithm [19].
Therefore, we assume that the simple algorithm is used so that n® operations are required for n x n matrix

multiplication (this was also assumed in other research work on MCOP).



approximated as follows.

o ) % if 1 <p<mymy
m.7 m .7 mk’ p ~ P .
v U n;’m" log(mﬁﬂk) if mimy, <p < mymjmy
When p;; processors are allocated for evaluating (M; x --- x M;), the evaluation time

consists of two parts : the partial matrix chain evaluation time and the single matrix
product execution time. Two partial matrix chains are (M;--- M}) and (M4, --- M;) for
some k (i < k < 7). The evaluation time of two matrix product chains is dependent on the
evaluation method. One method is to evaluate sequentially (M;--- M) and (M --- M;)
using all available processors in p;;. The other method is to evaluate both (M; - -- Mj) and
(M1 -+ - Mj) concurrently by partitioning p;; into p; , and pg1 ; such that p; ; +pri1 ;5 <
pij- The minimum evaluation time T ;(p; ;) of (M;--- M;) on p; ; processors is found from
the following recurrence relation.

T j(pij) = Z.g}cigj [Ti,k(pi,j) + Ty1,(pij) + @(mi, mpg1, mjs1,Pi ),

max (Ti,k(pi,k)a Try1,5 (P ,j)) + ®(mj, mpp1,mjt1,pi ) ]

The problem of finding the schedule which results in the minimum evaluation time T ,,(P)
is a problem of finding the best schedule k; ; for (M;--- M;) with the processor allocation
pij to L; ;. Therefore, the MCSP problem is defined as follows.

MCSP: find the product sequence for evaluating a chain of matriz products and the pro-
cessor schedule for the sequence such that the evaluation time is minimized on a parallel

system.

2.3 MCSP Complexity

Consider the case in which there are sufficient processors for multiplying any number of
matrices concurrently. We assume that, for each matrix product which multiplies an m; xm;
matrix by an m; x my matrix, m;m;mj, processors are allocated and the computation time
is log(m;). The problem can be represented as the following recurrence relation and solved

in polynomial time using dynamic programming.

o) Minickg; (maX(Ti,kaTk+1,j) + log(mk+1)] 1<i<j<n
i 0 i=j1<i<n

Therefore, in the case of infinitely many available processors, the problem of finding the

schedule for evaluating M with the minimum time is a polynomial time algorithm. However,



in general, the number of available processors is fixed and not sufficient to allocate the

requested number of processors for each product.

Now, let us consider the case when there are P processors in a system. The complexity

of MCSP is discussed in the following theorem.

Theorem 1: MCSP is NP-hard.

Proof: The nonpreemptive scheduling for precedence-constrained parallel tasks is known
as an NP-complete problem [22]. We reduce the precedence-constrained parallel task
scheduling problem to MCSP. MCSP finds the product sequence and processor schedule
simultaneously which minimizes the evaluation time of a chain of matrix products. When a
product sequence of a chain of matrix products is fixed, the problem of finding a processor
schedule for the fixed product sequence is equivalent to the precedence-constrained parallel

task scheduling problem.

In MCSP, there are matrix chain products whose optimal product sequence is fixed. In
other words, the product sequence which minimizes the evaluation time is unique. One
obvious case is that in which the optimal sequence for MCOP is a complete binary tree.
In such a case, the optimal sequence for MCSP is also a complete binary tree. Then
the problem of finding the processor schedule is equivalent to the precedence-constrained
parallel task scheduling problem. Therefore, the MCSP includes the precedence-constrained
parallel task scheduling problem. Thus, MCSP is NP-hard. O

Since the problem of finding an optimal schedule is NP-Hard, we propose an approx-
imation algorithm in Section 4. The algorithm enhances the performance of evaluating
an n-matrix product chain on a parallel system by partitioning the parallel system and
concurrently executing several matrix products; this also enhances the overall efficiency of
the system. A processor allocation method for executing multiple matrix products with

minimum completion time is discussed in the next section.

3 Processor Allocation for Matrix Products

In this section, we discuss how many processors should be allocated for a single matrix
product and what is an efficient processor allocation for executing multiple matrix products

concurrently.



3.1 Processor Allocation for a Single Matrix Product

Many parallel matrix multiplication algorithms have been developed in various parallel
architectures [18, 21]. A multiplication of two n x n matrices requires at most n® processors.
In the best case, it takes O(log(n)) time with n3 processors by using n processors to get
an element of the result matrix.? Each of n processors executes a multiply in one step and
sums n elements within O(log(n)) steps. However, in this case we expect low utilization of
processors. While summing n data for log(n) steps, some processors stay idle. Moreover,
these log(n) steps are communication steps, not computation steps. Then, how many

processors should be allocated to have better efficiency when multiplying two matrices?

Efficiency decreases as the number of processors allocated to a single matrix product
increases. Until the number of processors allocated reaches n?, a speedup of the single matrix
product is obtained without much efficiency degradation [24]. However, allocating more
than n? processors is not cost-effective due to greatly increased overhead and much degraded
efficiency. Therefore, we consider allocating at most n? processors when multiplying two
n X n matrices. By extension, we also allocate at most m;m; processors when multiplying

an m; X m; matrix by an m; x mj, matrix.

The number of processors allocable to a single matrix product cannot be an arbitrary
number for efficient execution. When multiplying an m; X m; matrix by an m; x m;, matrix,
the number of maximally allocable processors is m;m;,, and the possible number of allocable
processors are the divisors of m;my. For example, when multiplying a 2 x 4 matrix by a
4 x 3 matrix, the number of allocable processors are 1,2, 3, and 6. In this case, the load of
each processor is balanced such that each processor has the same amount of computation.
These numbers are the divisors of 6, which is the maximal number of allocable processors

for the given matrix product.

We use the notation D(z) to denote the set of divisors of z, i.e., D(z) = {d|d divides z}.
The number of processors allocable to a given matrix product (m;, m;, my) should be an

element in D(m;my), and these elements are not continuous numbers.

20n a CRCW PRAM, the matrix multiplication runs in constant time with the assumption on the write
conflicts that, when several processors attempt to write numbers in the same location, the sum of the

numbers is written in that location [23]. Since the CRCW PRAM with arbitrary number of processors is

not realistic in practice, we are not considering that case.



3.2 Processor Allocation for the Concurrent Computation of Multiple
Matrix Products

In general, the performance of parallel systems is maximized by executing as many tasks
as possible concurrently while using a few processors for each task [25]. This is mainly due to
the fact that the concurrent execution compensates for the performance loss that normally
results from parallelizing a task. In this subsection, we discuss a processor allocation method

for independently computing multiple matrix products.

When executing multiple parallel tasks concurrently, one good heuristic for allocating
processors to each task is “proportional allocation” [26, 27]. The proportional allocation
algorithm allocates processors proportional to the computation amount of each task. This
algorithm tries to minimize the completion time of all tasks by balancing the execution time
of each task. However, it assumes that the execution time of a task decreases if more tasks
are allocated to it and that the number of allocable processors are continuous numbers,
both of which are not true for the MCSP problem.

Proportional allocation can be applied to allocate processors for multiple matrix prod-
ucts. However, since we cannot allocate an arbitrary number of processors to a single
matrix product, proportional allocation is not a proper processor allocation scheme for the
computation of matrix products. For example, consider the case of computing two matrix
products (2,3,8) and (4,4,3) on 20 processors. By proportional allocation, 10 processors
are allocated for each matrix product. Since the number of allocable processors for each
matrix product should be numbers in D(16) and D(12), 8 and 6 processors are allocated
for each product respectively. The completion time of two matrix products becomes 8 unit
time because max(2 x 3 x 8/8,4 x 4 x 3/6) = 8. However, if we allocate 8 processors to the
first product and 12 processors to the second product, the completion time becomes only
max(6,4) = 6 unit time. Since the completion time is bounded by the longer execution
time, we can reduce the completion time by allocating unused processors to the matrix

product which requires longer execution time.

The completion time of two matrix products by proportional allocation is shown in
Fig. 1. Let P1 be the number of processors allocated to the first product. As P1 increases,
the execution time T'1 of the first product decreases, and that of second product, 72,
increases. Proportional allocation allocates 10 processors to each product, but there is
6 unused processors. We can reduce the completion time using the unused processors.
After proportional allocation, we can find the number of unused processors and the product
which has the longer execution time. In the example, the second matrix product takes

longer. Thus, the unused 6 processors are allocated to the second product so that the
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Figure 1: Proportional allocation for two Figure 2: Optimal allocation for two ma-
maftrix products. trix products.

second product runs on 12 processors. Then the completion time of the second product
becomes 4. Hence, the overall completion time becomes 6. This allocation is optimal, as
shown in Fig. 2. The following algorithm describes the processor allocation algorithm for

two independent matrix products.

Discrete Processor Allocation for Two Matrix Products (DPA)

Input: Two matrix products X = (my, mgy1,Mapq2) and Y = (my, my1, my42)
and a set of P processors.

Output: The number of processors allocated to the matrix products X and Y,
denoted as P, and P, which satisfy 1 < P, P, < P and P, + P, < P.

1. Set Pyyop = Mg Mgt 1Mt 2
PTOP ™" mgpmg 1My to+mymyy1my 42

2. Find d,; in D(mgmy.y2) which satisfies d,; < Ppyop.
3. Find d, ; in D(mymy o) which satisfies dy j < P — Pprop.

4. If Q)(mw, M1, Myt2, dwﬂ) < @(my, My41, My+2, dy,]‘), then P, = dm,ia Py =P — dm,i-
Otherwise, P, = P —d, ;, P, = dy ;.

Even if we use a naive search algorithm for finding divisors, Step 2 and Step 3 take
O(P) time. Therefore, since the remaining steps require constant time, the time complex-
ity of discrete processor allocation (DPA) is O(P). Also, DPA guarantees the minimum
completion time for two matrix products, as shown formally by the following lemma and

theorem.



Lemma 1: The completion time of two matrix products when processors are allocated by

the DPA algorithm is shorter than or equal to that by the proportional allocation.

Proof: The proportional allocation algorithm allocates P,y processors to the prod-
uct X, and P — P,,,, processors to the product Y. When d,; is the largest divisor in
D(mymgy9) which is less than Pp,.,,, the product X utilizes d,; processors. And when
d,; is the largest divisor in D(mym,2) which is less than P — Pp,,,, the product Y
utilizes d, ;. Therefore, the completion time by proportional allocation is bounded by

max (®(mg, Myi1, Mayo, dm,i)a (I)(mya My41, My4-2, dy,j))-

In the case of ®(mgy, Myi1, Mayo,de;) < P(my, myy1,myy2,dy ), the DPA allocates
dy; and P — d,; respectively. Let d;m- be the largest divisor in D(m,m, o) which is less

than P —dy;. Since P — Py < P —dy; and d; ; > d,, ;, the completion time by the

j
DPA, i.e., max(®(my, myi1, Myt2,dy i), @(my,myg,myﬂ,d;’j)), is shorter than or equal
to the completion time by the proportional allocation, i.e., max(®(my, myi1, Myr2,ds i),

D (1my, Myt1, Myt2,dy ).

Also in the case of ®(my, Mgy, Mayo,dyi) > P(my, myy1,Myy2,dy ;), the DPA allo-
cates P —d, ;j and d, ; respectively. In the same manner, the completion time by the DPA
is less than or equal to the completion time by proportional allocation. Thus the lemma is
satisfied. O

Theorem 2: DPA guarantees the minimum completion time for two matrix products.

Proof: Given two matrix products X = (mg, mgq1,mgy2) and Y = (my, my1,myq2)
on P processors, let Pp.,, be the number of processors allocated to the product X by

proportional allocation.

i) Pyrop > mamyiz or P Pyrgy > mymy .o
In the case of Pyrop > mgymygio, the completion time of two matrix products is bounded
by the execution time of the matrix product X. Since DPA allocates mgmg 9 processors to
the product X, the completion time becomes m;41 which is the minimum execution time
of the product X. Therefore, DPA guarantees the minimum completion time of two matrix
products. In the case of P — P,.,, > mymy 2, the completion time is bounded by the
execution time of the product Y, and again the DPA guarantees the minimum completion

time.

i1) Pprop < Mmamaio and Pprop < mymy o
Let d; be the largest divisor in D(mymg492) where dy ; < Ppop, and dy.; the largest divisor

in D(mymyo) where dy, ; < P — Pp.,. Then the number of unused processors, denoted

as Pr,is P —d,; —d, ;. Let dy;.1 denote the next divisor of d,; in D(mgm42) such
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c) The case of dy;y1 — dy; > Pr and d) The case of dy;t1 — dy; > Pr and
dyj+1 — dyj < Pr. dyj+1 —dyj > Pr.

Figure 3: Four cases in the relation of d; ;, dy ;11,dy j,dy j+1, and Py.

that dy; < Pyrop < dyiv1, and dy 41 the next divisor of dy, ; in D(mym,2). There are
four cases in the relation of d;;, dgiy1, dyj, dy i1, Pr as shown in Fig. 3. They are a)
dyiv1 — dpi < Ppand dyj1 —dy;j < Pryb)dgivr —dyi < Ppanddy g —dy; > Prp,c)
dyit1 — dgi > Prand dy 1 —dyj < Pr,and d) dyip1 — dpi > Prand dy ji1 —dy; > Pr.

Without loss of generality, let wus assume that &(mg, myy1,myio,dyi) >
O (my, my41,myy2,dy ;). In cases a) and b) of Fig. 3, the minimum completion time is
O (my, my41,myy2,d, ;) by allocating d, ;11 for X and d,, ; for Y. In these cases, DPA allo-
cates P—d, ; for X and d, ; for Y. Since P —d,, ; > d; ;11 and d; ;11 is the largest divisor in
D(mymg.9) which is less than P —d,, ;, the DPA guarantees the minimum completion time.
In cases of ¢) and d) in Fig. 3, since we cannot allocate d ;4 processors to X, the minimum
completion time is bounded by ®(my, mayi1, myyo,ds ;). Since P — dy ; and d, ; are allo-
cated by DPA and d,; is the largest divisor in D(mgmgy2) which satisfies d,; < P — dy ;,
the completion time by DPA is the same as the minimum. Therefore, DPA guarantees the

minimum completion time of two matrix products in all cases. ad

10



DPA can be easily extended for k independent matrix products. After allocating by pro-
portional allocation, the unused processors are allocated to the product with the maximum
execution time to reduce the completion time of all products. However, if there are still
unused processors, this reallocation is continued until the maximum execution time cannot
be reduced. We present the processor allocation algorithm DPA-E for k independent matrix

products as follows.

Discrete Processor Allocation for & Matrix Products (DPA-k)

Input: k& matrix products X; = (m;1,miz2,m;3) for 1 <i <k are given
on P processors (k < P).

Output: The number of allocated processors P; for each matrix product X;
which satisfies Y% | P, < P.
1. Fori =1 to k do

— m;i,1M;,2M; 3
(a) Pprop,i = m P.
Zj:] My, 1M, 2153

(b) Find the maximum d; ; in D(m;1m;3) which satisfies d; j < Pprop.i.

(C) Let Pi = di,j-

2. While (P — ¥ P, > 0) do
(a) Find the product X; with the maximum ®(m; 1, m; 2, m; 3, P;).
(b) If (P; < mj1m;3) then

i. Find the minimum d; ; in D(m;1m;3) which satisfies d; ; > P;.

ii. If (P—YF P, —(dij — P) >0) then
P; = d; ;. Otherwise, stop the algorithm.

else stop the algorithm.

Corollary 1: DPA-k guarantees the minimum completion time of k£ independent matrix

products.

11



4 Matrix Chain Scheduling Algorithm

The proposed scheduling algorithm consists of three stages. First, the algorithm finds the
optimal product sequence for MCOP. Next is the top-down processor assignment stage. In
this stage, processors are partitioned and assigned to each subtree proportionally according
to their computation amount to balance the evaluation time of both left and right partial
matrix product chains. The third stage is the bottom-up execution stage that executes
products independently from the leaf and tries to modify the product sequence to enhance
concurrency so as to reduce the evaluation time of M. This is done by finding the points

that change the product sequence but do not excessively increase the number of operations.

4.1 Optimal Product Sequence by MCOP

The product sequence of M determines the number of operations to be executed in sin-
gle processor systems. In parallel systems, the number of operations is not the sole deciding
factor of the evaluation time, but affects it greatly nonetheless. Hence, our scheduling algo-
rithm begins with the optimal product sequence found for MCOP. There were many works
reported for finding the optimal product sequence which guarantee the minimum number
of operations for any chain of matrix products. The optimal product sequence can be found
in O(nlog(n)) time using a sequential algorithm [7, 8]. Many parallel algorithms have been
studied [13, 14] which run in polylog time. Therefore, using these parallel algorithms, it is

possible to find the optimal product sequence within polylog time on P processor systems.

Let us assume that the sequence and the computation amount found by MCOP is
stored in two tables, S[n][n] and W n|[n], respectively. W[i][j] has the minimum number of

operations for evaluating L; ; and S[i][j] the matrix index for partitioning the matrix chain
(M; x -+ x Mj).

4.2 Top-Down Processor Assignment

In the top-down processor assignment stage, a number of processors proportional to the

computation amount of a subtree is assigned to minimize the completion time of two partial

W i[STi][4]]
SEGN+WIS[51+1]15])

al
processors are assigned to the subtree L; g1, and p; ; X W] [Agﬁ[f[g?}[ﬁ%iql[}i%]+l][jD Processors

matrix chains. If p; ; processors were assigned to L; j, then p; ; x W

are assigned to the subtree Lg;(j)41,;-

For example, given a chain of 8 matrices with dimensions {3,8,9,5,8,3,3,3,4} on a 64

12
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Figure 4: Top-down processor assignment.

(M1 (M2 (M3 (M4 M5) M6) M7)))) M8) M9)

Candidate
Products

Candidate Products

Figure 5: Candidate products on a sequence tree.

processor system, processors are assigned as in Fig. 4.

4.3 Bottom-Up Concurrent Execution

After assigning processors to each subtree, the matrix products are executed concur-
rently and independently from the leaf products. Thus, the performance is improved by
more concurrent execution, which results in improved processor efficiency. However, there
are cases in which some processors stay idle. When there are idle processors in the execution

of L; j, we try to modify the product sequence to use these idle processors.

When there are idle processors in the execution of L; ;, ancestors of the leaf node of

13
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Figure 6: A sequence modification.

= (Mz = (M Mxs) = My) My+)
! P

Matched Parentheses

Figure 7: A snapshot of product sequence.

L; ; are traced in order to find a candidate for concurrent execution. This upward trace
continues until a suitable candidate or a sibling which is not a leaf node is found. For exam-
ple, let us consider the executing sequence tree L; g shown in Fig. 5. The figure represents
(M (Mo(M3(((MsMs)Mg)M7))))Ms)My). In the execution of (MyMs5), the possible can-
didates for concurrent execution are (MyMy), (MsMs), (MgMz), (MgMy). There are other
types of candidate products which are not considered in this paper like (M7 Mg). Since such
cases result in more modifications to the optimal sequence with no obvious benefit over

other candidates, we do not consider these kinds of products.

When we modify the product sequence to execute candidate products concurrently in
the current execution phase, then there is some loss due to an increase in the number of

operations. Therefore, we have to check whether the modification is beneficial or not.

Consider a matrix chain with four matrices which needs three matrix products to get the
final result. Assume that the optimal product sequence of this matrix chain for MCOP is
(((MyMy)Msz)My), as shown in Fig. 6. When the sequence is modified to ((M;Ms)(MsMy)),
the number of computations required changes from C' = mymoms + mimsmy + mimgms

to C' = mymamg + mgmyms + mymsms. Therefore, the amount of increased computation
AC is as follows:

AC = m3mams + mimsms — M1 Mm3my — M1 1M4Ms5

In general, when we have a product sequence such as Fig. 7, the amount of increased

computation for multiplying M, x M, concurrently with M, x M, is as follows:

AC = my1myio(my —m) + mamy(my4o —myi) .

14



In this equation, m, represents the row of the intermediate matrix (or matrix M, itself)
that is going to be multiplied with the result of M, x M,,. In other words, there is a left
parenthesis to the left of matrix M, that matches the right parenthesis on the right side of

matrix M, 1. In the case of y < 2z, the amount of increased computation is as follows:
AC = mys1myia(my — maq1) + mepimy(my2 — my)

Finding m, (or m,y1), which is very important for the analysis of AC, can be done by
traversing the sequence tree L. If both M, and M, are right children, then M, is searched
by traversing the left child recursively from the parent node of M,. Similarly, if both are
left children, then M, is searched by traversing the right child from the parent node of M,.

Lemma 2: In the case that p; ; processors are allocated to the matrix product (M, M, 1)
but all p; ; processors cannot be utilized by the matrix product (i.e., mymyi0 < p;;), we
try to modify the product sequence L. If the candidate product (M,M, ) is found, and
the DPA allocates p, and p, processors to two matrix products (M, M, 1) and (M, M, )
respectively, then the evaluation time is reduced by modifying the sequence tree L when

the candidate product (My M, ) satisfies AC' < min(®(my, May1, Mat2, MeMgy2) X (pgp+

Py — mfr,mm+2)a mymy+1my+2)-

Proof: There are two necessary conditions for modifying a product sequence to have
better performance. The first condition is that the utilization of idle processors (i.e., p, +
Dy — MgMy42) should be more than the computation increase resulting from modifying the
product sequence tree. The work of idle processors can be estimated as the product of
the number of utilized processors and the available time for these processors. Hence, the

following condition should be satisfied.
AC < q)(m'ra Myy1,My42, mmmm+2) X (pfr, +py - mmmm+2)

Also, the amount of computation given to idle processors, which is the time for multiplying
(MyM,1), should be more than AC. Therefore, another condition to be satisfied is

AC < mymyp1my4o.

Thus, the lemma is satisfied. O

If a candidate product (M,M, 1) satisfies Lemma 2, then it would be better to change
the product sequence L; j to multiply the candidate product concurrently with (M, M, 1).
This means that the unallocated idle processors can do more work than the increased

computation required by the change in the product sequence.

15



When the candidate product is found, the subtree L; ; is modified and the processors
pi,; are redistributed among the products in L; ; (including the candidate product). Also,
processors are allocated proportionally to each product. This results in an enhancement of

the overall system performance due to an increase in processor efficiency.

4.4 The Proposed Scheduling Algorithm

The proposed scheduling algorithm for evaluating a matrix chain product is formulated

as follows.

Two-Pass Matrix Chain Scheduling Algorithm

Stage-1 MCOP

1. Find the optimal product sequence by a parallel algorithm for MCOP.

2. Generate the sequence tree L.
Stage—2 Top-Down Processor Assignment

1. Initialize 1 =1, j = n, p; ; = P.

2. If i is not S[i][j], then allocate p; j x Wil [S[il[51]/ (W i][S[a][5]] + W [STel [5] + 1][4])
processors to L; gp;)(j-

3. If j is not S[i][j]+1, then allocate p; ; x W [S[4][j]+1][4]/ (W [¢][S[z] [5]] + W [S[3][5] +
1][5]) to Ligijfj)+1,5-

4. If 4 is 7 + 1 or j, then finish this stage, else call this algorithm recursively for
both i =4,j = S[i][j] and 7 = S[i][j] + 1,5 = j.

Stage—3 Bottom-Up Concurrent Execution

For all leaf products, execute the following steps until there are no more unscheduled

leaf products.

1. Let MyMj; be a leaf product and pj, ;41 be the number of processors allocated
to the leaf product. If py 111 < mpmy42 then go to 5.

2. Find a candidate product by tracing ancestors of the leaf product. If there is no

such candidate product, go to 5.

3. Let the product M;M;,1 be a candidate product found by tracing ancestors of

the leaf product. Check whether the candidate satisfies Lemma 2. If not, go to
2.

16



4. Modify the sequence tree such that the candidate can run concurrently with
M}, My 1. Reallocate processors py, 41 using the DPA algorithm and go to 1 for

each leaf product of the two split subtrees.

5. Schedule the leaf product on min(p; ;, mgmyy1miy2) processors. Set the parent

of the leaf product as a new leaf product.

The scheduling algorithm starts from the MCOP sequence, and tries to modify the se-
quence by increasing the concurrency level. The evaluation time of a matrix chain product
is affected by the amount of computations and the concurrency level. The amount of com-
putations is minimized at the MCOP sequence, and the concurrency level is maximized at
the sequence of the complete binary tree. The optimal product sequence with the minimum
evaluation time may be formed in the middle of the MCOP sequence and the complete
binary tree. This also means that when the MCOP sequence is a complete binary tree,
the MCOP sequence is the optimal product sequence. The proposed scheduling algorithm

moves from the MCOP sequence to the near-optimal sequence.

For purposes of efficiency, the scheduling algorithm modifies the current product se-
quence when the candidate product satisfies Lemma 2. Even though we can select the most
suitable candidate among a number of candidates satisfying Lemma 2 by traversing the
sequence tree, the scheduling algorithm uses the first satisfying candidate for the purpose

of minimizing the schedule time.

4.5 Algorithm Complexity

The time complexity of the proposed algorithm is analyzed as follows. Stage-1 and Stage-
2 can be done within O(n) time. In Stage-3, to reduce the time for checking Lemma 2, we
pass the information of the skewed point (M, for AC) to the next parent product when we
are tracing the ancestors from a leaf product as shown in Fig. 8. Then we do not need to
traverse down the children of a candidate product to find M, since M, is passed from the
traced child. This allows Step 3 of Stage-3 to be done in constant time. The number of
products being traced to check concurrent execution is (n—3) at the most. The total number
of products that may be traced in Stage-3is (n—3)+(n—4)+---+1=(n—2)(n—3)/2 =
O(n?). Also, in Step 4 of Stage-3, the number of sequence modifications is at most (n — 4).
Since the DPA algorithm for two matrix products takes O(P), the time complexity for Step
4 of Stage-3 is O((n — 4)P). Therefore, the time complexity of the proposed algorithm is
O(n? + nP).
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Candidate Searching Path

M4 M5

Figure 8: Candidate searching and passing the information of the skewed point M,.

M2 M3 M2 M3 M4 M5
(ML((M2 M3)M4)M5)) —= (ML((M2 M3)(M4 M5)))

Figure 9: The sequence trees for MCOP sequence and the proposed scheduling algorithm.

4.6 Example

The following simple example illustrates the proposed scheduling algorithm. We also
compare the expected evaluation time of the product sequence by the proposed algorithm
with that of the product sequence for MCOP.

In a system with 50 processors, let us consider a case of evaluating a chain of matrix prod-
ucts with b matrices. Given b matrices M1:6 X2, Mo:2x 7, M3:7x5, M4:5x 7, M5:7x8, Stage-1
finds the product sequence with minimum operations for MCOP as (M (((MaMs3)My)Ms)).
The MCOP sequence tree is represented as the left tree of Fig. 9. In Stage-2, we assign 50

processors to each matrix product.

In Stage-3, since the leaf product (M;Ms3) cannot utilize the 50 allocated processors,
we try to modify the product sequence. The product (MyMs) is found as a candidate
product. By checking Lemma 2, we get p, = 10, p, = 40 using the DPA algorithm,
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AC=Tx80b5—-2)+2x58—7) =178, and ®(2,7,5,10) = 7. Since AC = 178 < min(7 x
(10440 —10),5 x 7 x 8) = 280, the product sequence is modified to (M;((MaMs3)(MyMs5)))
as shown in the right tree of Fig. 9.

Let us compare the evaluation time of the MCOP sequence with that of the product
sequence found by the proposed scheduling algorithm. When we evaluate the matrix chain
by the MCOP sequence, it takes (2x7x5)/ min(50,2x5)+(2x5x7)/ min(50,2x7)+(2x 7 x
8)/ min(50,2 x 8) + (6 x 2 x 8)/ min(50, 6 x 8) = 21 units of time. The evaluation time of the
product sequence by the proposed scheduling algorithm is max(2 x 7 x 5/ min(10,2 x 5),5 x
7x 8/ min(40,5 x 8)) +2 x 5 x 8/ min(50,2 x 8) +6 x 2 x 8/ min(50,6 x8) =7+5+2 =14
units of time. The product sequence by the proposed scheduling algorithm requires 526
operations, which is 178 operations more than the MCOP sequence with the minimum
number of operations (348). However, the proposed algorithm requires less time than the
MCOP sequence with the minimum number of computations. This is due to the concurrent
execution of multiple matrix products which increases system efficiency and reduces the

total evaluation time.

5 Performance Analysis

In this section, we compare the performance of the proposed scheduling algorithm with
various evaluation methods.

e Linear: evaluate from the first product (M;Ms) to the last one sequentially.
e MCOP-Seq: evaluate by the MCOP sequence sequentially.
e MCOP-Con: evaluate by the MCOP sequence, but execute independent matrix

products concurrently by allocating the maximum number of processors.

e MCSP-BT: evaluate by the MCOP sequence with concurrent execution, but when
there are idle processors during execution, try to modify the sequence by checking

Lemma 2.

e MCSP-TP: evaluate by the proposed scheduling algorithm.

We experimented on the Fujitsu AP1000 parallel system, which is a distributed-memory
MIMD machine with 512 cells. Each cell processor is a SPARC processor with 16MB. The
AP1000 system has three independent networks: B-net for broadcasting, T-net for torus
interconnection, and S-net for synchronization. The processors are connected as a two
dimensional torus and the T-net link speed between processors is 25Mbytes/sec/port. The
host computer and the processors are connected by the broadcasting network (B-net) with

50Mbyte/sec and by the S-net for synchronization.
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Figure 10: Evaluation time comparison by Figure 11: Evaluation time comparison by
varying the number of matrices when the varying the number of matrices when the
matrix sizes distributed from 1 ~ 10. matrix sizes distributed from 1 ~ 50.

The evaluation times of randomly generated matrix product chains are measured for
each scheduling method. Since the initial matrix loading times are highly dependent on the
system characteristics such as the communication link speed and interconnection network,
the loading times are excluded in the statistics of the evaluation time. In fact, the proposed
algorithm can spend less time than the sequential evaluation methods for distributing ma-
trices to processors by allowing several matrices to be loaded together.? The results shown

in this section is the average of 100 experiments.

Fig. 10 and Fig. 11 show the evaluation time as a function of the number of matrices
being multiplied. In Fig. 10, a chain of matrix products is generated with size varying
randomly from 1 to 10, and executed on a system with 512 processors. The upper two
lines represent the evaluation times of the sequential evaluation by Linear and MCOP-
Seq, and the lower three lines represent the evaluation times of the scheduling sequence
found by MCOP-Con, MCSP-BT, and MCSP-TP. From the comparison of the execution
time of MCOP-Seq with that of Linear, it can be seen that only reducing the amount of
computation does not greatly decrease the evaluation time. But when we allow concurrent
execution, we can get further performance improvement. Therefore, we confirm that the
evaluation time of a chain of matrix products is greatly affected by task scheduling. In
Fig. 11, we experimented with larger matrices whose sizes varied from 1 to 50. The upper
line is the evaluation by MCOP-Con, the middle line is by MCSP-BT, and the lower line
is by MCSP-TP. As the number of matrices in a matrix chain increases, the proposed

MCSP-TP algorithm shows a larger performance gain.

#Since some parallel computers such as Fujitsu AP1000 support the collective communication schemes

including scatter and gather, we can reduce the matrix loading time by using those schemes.
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Figure 12: Evaluation time comparison for Figure 13: Evaluation time comparison for
different number of processors when the different number of processors when the
matrix sizes distributed from 1 ~ 20. matrix sizes distributed from 1 ~ 50.

In Fig. 12 and Fig. 13, the evaluation time is compared for different numbers of processors
in a system. In Fig. 12, a matrix chain consists of 100 matrices (n = 100) whose sizes are
varied from 1 to 20. The upper two lines represent Linear and MCOP-Seq, which are the
sequential evaluation methods. The lower three lines represent MCOP-Con, MCSP-BT, and
MCSP-TP respectively, which are the concurrent evaluation methods. As the number of
processors increases, the evaluation time by Linear decreases and becomes close to MCOP-
Seq. This implies that the reduction of computation amount has a limitation in reducing the
evaluation time. In Fig. 13, we measured the evaluation times of three concurrent execution
methods for the matrices whose sizes are varied from 1 to 50. The upper line represents
the evaluation by MCOP-Con, the middle line represents the evaluation by MCSP-BT,
and the lower line represents the evaluation by MCSP-TP. As the number of processors
increases, the evaluation times of MCSP-BT and MCSP-TP decrease more than that of
MCOP-Con. This implies that the sequence modification to increase the concurrency level
improves the performance by utilizing processors efficiently. Another aspect we can see from
this result is that the number of processors does not affect the performance significantly,
but the processor scheduling policy is much more important in improving the performance

of evaluating a chain of matrix products than computation reduction.

The result of experiments with varying the distribution of matrix sizes is shown in Fig. 14
and Fig. 15. The evaluation times are measured on 512 processors for a chain of 100 or
200 matrices respectively. When the maximum matrix size is set at a value such as M AX,
the size of matrices is distributed randomly from 1 to M AX. As shown in the figures,
when the variance in matrix size gets larger, MCOP-Seq has more of a performance gain

than Linear. This is caused by the fact that the computation amount is reduced greatly by
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Table 1: Comparison with respect to computation amounts, system utilization, and evalu-

ation time when P = 512,n = 100, and the matrix size is varied from 1 ~ 10.

Scheduling | Computation System Evaluation
Algorithm Amount Utilization Time

Linear 6136 3.20 6.27
MCOP-Seq 1430 0.62 5.59
MCOP-Con 1430 1.63 2.15
MCSP-BT 1618 2.32 1.89
MCSP-TP 2253 3.07 1.81

the MCOP sequence, and there are small numbers of idle processors during their execution
when evaluating a chain of large matrices. However, we notice that the proposed MCSP-
TP outperforms all other methods. These experiments imply that the proposed MCSP-TP
is still effective for larger matrices due to performance improvement through concurrent
execution (with more concurrency than the other methods), even though there are rare

exceptions.

In Table 1 and Table 2, we measured the computation amount, system utilization, and
evaluation time for each evaluation method. In Table 1, we evaluated a chain of 100 matrices
whose sizes varied from 1 to 10. Even though the computation amount of MCOP-Seq is
just a quarter of that of Linear, the evaluation time is similar (such as 6.27 and 5.59). We
observe that the system utilization of MCOP-Seq (0.62) is significantly lower than that of
Linear (3.20). Evaluation by MCSP-BT and MCSP-TP requires more computation than

that by MCOP-Con; the evaluation time decreases due to the efficient use of processors. In
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Table 2: Comparison with respect to computation amounts, system utilization, and evalu-

ation time when P = 512,n = 100, and the matrix size is varied from 1 ~ 50.

Scheduling | Computation System Evaluation
Algorithm Amount Utilization Time

Linear 1235145 58.16 50.03
MCOP-Seq 57239 5.59 28.07
MCOP-Con 57239 11.16 14.96
MCSP-BT 124506 27.75 11.39
MCSP-TP 83083 21.46 10.12

Table 2, we measured the execution time for a chain with 100 matrices whose sizes varied
from 1 to 50. We observed behavior similar to that in Table 1. But note that MCSP-
BT utilizes even more processors than MCSP-TP, and the evaluation time of MCSP-BT is
larger than that of MCSP-TP. This result implies that the proposed MCSP-TP algorithm
uses processors more efficiently and effectively than MCSP-BT.

From the above experiments, we get the following results.

e When evaluating a chain of matrices on a parallel system, reducing the amount of

computations does not greatly decrease the evaluation time.

e Concurrent execution of independent multiple matrix products compensates the per-
formance loss by parallel processing and increases the system efficiency so that the

performance improves greatly.

e When the number of processors becomes larger or when the number of matrices in a
matrix chain increases, evaluation by the proposed scheduling algorithm MCSP-TP
progressively outperforms other methods such as Linear, MCOP-Seq, MCOP-Con,
MCSP-BT.

e Even when the size of matrices is quite large so that there are no idle processors during
their evaluation, the proposed scheduling algorithm MCSP-TP is still effective due to

execution using the maximum level of concurrency.

e When evaluating a chain with small matrices on many processors, sequence modifica-

tion to increase system efficiency greatly reduces the evaluation time.

e In matrix chain products, efficient scheduling is better than increasing the number of

Processors.
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6 Summary and Conclusion

In this paper, we introduced the matrix chain scheduling problem (MCSP) and proposed
a heuristic scheduling algorithm for MCSP. The proposed algorithm schedules processors to
matrix products to increase concurrency at the expense of a slight increase in the required
amount of computation when compared to the optimal product sequence found for the
matrix chain ordering problem (MCOP). We have shown that performance is significantly
enhanced by the proposed algorithm using experiments on the Fujitsu AP1000 parallel
system. As a result, we can confirm that the processor scheduling is much more important
than reducing the amount of computation for evaluating a matrix chain product in parallel
systems. In a system with a large number of processors or a matrix product chain with many
matrices, evaluation by the proposed method greatly outperforms the sequential evaluation
method using the optimal product sequence found for MCOP. The main contribution of
this work is the introduction of MCSP and the proposal of a scheduling algorithm which
results in a significant performance improvement when evaluating matrix chain products in
parallel systems. We are currently working on applying this algorithm to evaluate a chain
of square matrices with the form of sparse matrices or band matrices. Also, we plan to

study generalizing MCSP to scalable task scheduling on parallel systems.
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