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1 IntroductionMatrix multiplication is a computation intensive part of many commonly used sci-enti�c computing applications. In many applications, a chain of matrices is multipliedconsecutively [1, 2]. In the evaluation of a chain of matrix products with n matricesM =M1�M2�� � ��Mn, whereMi is an mi�mi+1(mi � 1) matrix, the product sequencegreatly a�ects the total number of operations required to evaluateM, even though the �nalresult is the same for all product sequences by the associative law of matrix multiplication.An arbitrary product sequence of matrices may be as bad as 
(T 3opt) where Topt is the mini-mum number of operations required to evaluate a chain of matrix products [3]. The matrixchain ordering problem (MCOP) is the problem of �nding a product sequence for a set ofmatrices such that the total number of operations is minimized.An exhaustive search to �nd an optimal solution for MCOP is not a good strategy sincethe number of possible product sequences of a chain of matrix products with n matricesis �(4n=n3=2), which is known as the Catalan number [4]. Let us refer to the time re-quired to �nd a product sequence for a chain of matrices as the ordering time and the timerequired to execute the product sequence as the evaluation time. There are many worksreported for solving MCOP and for reducing the ordering time. MCOP was �rst reportedby Godbole [5] and solved using dynamic programming in O(n3) time. Chin [6] suggestedan approximation algorithm which runs in O(n) time for �nding a near-optimal sequence.The optimal sequential algorithm, which runs in O(n log(n)) time, was given by Hu andShing [7, 8]. This algorithm solves MCOP by solving the equivalent problem of �nding anoptimal triangulation of a convex polygon. Ramanan [9] presented a simpler algorithm andobtained the tight lower bound of the problem as 
(n log(n)).Many parallel algorithms to reduce the ordering time have been studied using the dy-namic programming method [10, 11, 12, 13] and the convex polygon triangulationmethod [14,15, 16]. Bradford et al. [13] proposed a parallel algorithm based on dynamic programmingwhich runs in O(log3(n)) time with n= log(n) processors on the CRCW PRAM model.Czumaj [14] proposed a O(log3(n)) time algorithm based on the triangulation of a convexpolygon which runs with n2= log3(n) processors on the CREW PRAM. Also in [15], he pro-posed a faster approximation algorithm which �nds a near-optimal solution in O(log(n))time on the CREW PRAM, and in O(log log(n)) time on the CRCW PRAM. Ramanan [16]gives an optimal algorithm which runs in O(log4(n)) time using n processors. Most of therecently proposed parallel algorithms run in polylog time with a linear number of processors.Now let us consider the evaluation time of a chain of matrix products. In a single pro-1



cessor system, the evaluation of a chain of matrix products by the optimal product sequenceguarantees the minimum evaluation time since the sequence guarantees the minimum num-ber of operations. However, in parallel systems, parallel computation of each matrix productwith the product sequence found for the minimum number of operations does not guaranteethe minimum evaluation time. This is because the evaluation time in parallel systems isa�ected by various factors such as dependencies among tasks, communication delays, andprocessor e�ciency.When computing a matrix product in a parallel system, having more processors doesnot always lead to a better performance. The computation time of each processor may bereduced by using a larger number of processors. However, this may cause some processorsto be stay idle, which in turn results in degraded performance of the parallel system. Tohave better performance, a proper number of processors must be allocated to the problemat hand. The proper number of processors for a given matrix product is dependent onvarious system and matrix characteristics such as the interconnection network used, thecommunication speed, the matrix size, and the computation amount. This leads us toconsider whether multiplying matrices sequentially based on the optimal product sequenceusing a parallel multiplication algorithm is a good strategy in parallel systems or not. Inmany applications, it is asserted that the performance of parallel systems decreases as moreprocessors are allocated due to the communication overhead and ine�cient use of processors.In this paper, we formally present the problem of �nding the matrix product schedulefor parallel systems (MCSP) and analyze the problem complexity of MCSP. We propose analgorithm which �nds a matrix product schedule that, while slightly increasing the numberof operations, decreases the evaluation time of a chain of matrix products by �nding sets ofmatrix products that can be executed concurrently.This paper is organized as follows. Section 2 presents the formal description of theprocessor scheduling problem for a chain of matrix products and shows that the givenproblem is NP-Hard. We present a processor allocation method for executing a numberof independent matrix products concurrently in Section 3. In Section 4, we propose amatrix chain scheduling algorithm which dramatically reduces the evaluation time of achain of matrix products by using processors e�ciently in parallel systems, and analyzethe algorithm. In Section 5, we present the performance of the proposed method andcompare with that of sequential matrix products ordered by the optimal product sequencefor MCOP using experiments on the Fujitsu AP1000 parallel system. Finally, in Section 6,we summarize and conclude the paper.
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2 Matrix Chain Scheduling Problem2.1 Notation� P : the number of processors in a parallel system.� M : a matrix chain product with n matrices, i.e., M =M1 �M2 � � � � �Mn.� Mi: an mi �mi+1 matrix (mi � 1, 1 � i � n).� L : a product sequence tree for a matrix chain M.� Li;j : the sequence subtree of L for (Mi � � � � �Mj).� C : the minimum amount of computation for evaluating M.� �C : the amount of increased computation by modifying the current sequence tree.� pi;j : the number of processors assigned for evaluating (Mi � � � � �Mj).� Ti;j(pi;j): the execution time for evaluating (Mi � � � � �Mj) on pi;j processors.� (mi;mj ;mk): single matrix product for multiplying an mi�mj matrix by an mj�mkmatrix.� �(mi;mj ;mk; p): the execution time of single matrix product (mi;mj ;mk) when pprocessors are allocated.� D(x): the set of divisors of x, i.e., D(x) = fdjd divides xg.2.2 Problem DescriptionWe consider the problem of �nding the optimal schedule with minimum evaluation timeof M =M1 �M2 � � � � �Mn on a P processor parallel system. The number of operationsfor multiplying a matrix A of size mi �mj by a matrix B of size mj �mk is mimjmk. 1Many parallel algorithms for matrix multiplication have been developed in various parallelarchitectures [20, 21]. The execution time of matrix multiplication depends on the algorithmused and the architecture on which the algorithm runs. However, for more discussion, weassume that the simple parallel algorithm [21] is used and the execution time of matrixmultiplication is proportional to the number of operations on a processor. Therefore, formultiplying A by B matrices with p processors, the execution time �(mi;mj ;mk; p) can be1Even though Strassen's algorithm [17, 18] and its variants perform fewer than n3 operations for n � nmatrix multiplication, these faster algorithms are not suitable for evaluating matrix chain products due tomore erroneous results and larger storage requirements than the usual inner-product type algorithm [19].Therefore, we assume that the simple algorithm is used so that n3 operations are required for n� n matrixmultiplication (this was also assumed in other research work on MCOP).3



approximated as follows.�(mi;mj;mk; p) � ( mimjmkp if 1 � p � mimkmimjmkp log( pmimk ) if mimk < p � mimjmkWhen pij processors are allocated for evaluating (Mi � � � � �Mj), the evaluation timeconsists of two parts : the partial matrix chain evaluation time and the single matrixproduct execution time. Two partial matrix chains are (Mi � � �Mk) and (Mk+1 � � �Mj) forsome k (i � k < j). The evaluation time of two matrix product chains is dependent on theevaluation method. One method is to evaluate sequentially (Mi � � �Mk) and (Mk+1 � � �Mj)using all available processors in pij. The other method is to evaluate both (Mi � � �Mk) and(Mk+1 � � �Mj) concurrently by partitioning pij into pi;k and pk+1;j such that pi;k + pk+1;j �pij . The minimum evaluation time Ti;j(pi;j) of (Mi � � �Mj) on pi;j processors is found fromthe following recurrence relation.Ti;j(pi;j) � mini�k<j8:Ti;k(pi;j) + Tk+1;j(pi;j) + �(mi;mk+1;mj+1; pi;j);max�Ti;k(pi;k); Tk+1;j(pk+1;j)�+ �(mi;mk+1;mj+1; pi;j)9;The problem of �nding the schedule which results in the minimum evaluation time T1;n(P )is a problem of �nding the best schedule ki;j for (Mi � � �Mj) with the processor allocationpij to Li;j. Therefore, the MCSP problem is de�ned as follows.MCSP: �nd the product sequence for evaluating a chain of matrix products and the pro-cessor schedule for the sequence such that the evaluation time is minimized on a parallelsystem.2.3 MCSP ComplexityConsider the case in which there are su�cient processors for multiplying any number ofmatrices concurrently. We assume that, for each matrix product which multiplies anmi�mjmatrix by an mj �mk matrix, mimjmk processors are allocated and the computation timeis log(mj). The problem can be represented as the following recurrence relation and solvedin polynomial time using dynamic programming.Ti;j = ( mini�k<j8:max(Ti;k; Tk+1;j) + log(mk+1)9; 1 � i < j � n0 i = j; 1 � i � nTherefore, in the case of in�nitely many available processors, the problem of �nding theschedule for evaluatingM with the minimum time is a polynomial time algorithm. However,4



in general, the number of available processors is �xed and not su�cient to allocate therequested number of processors for each product.Now, let us consider the case when there are P processors in a system. The complexityof MCSP is discussed in the following theorem.Theorem 1: MCSP is NP-hard.Proof: The nonpreemptive scheduling for precedence-constrained parallel tasks is knownas an NP-complete problem [22]. We reduce the precedence-constrained parallel taskscheduling problem to MCSP. MCSP �nds the product sequence and processor schedulesimultaneously which minimizes the evaluation time of a chain of matrix products. When aproduct sequence of a chain of matrix products is �xed, the problem of �nding a processorschedule for the �xed product sequence is equivalent to the precedence-constrained paralleltask scheduling problem.In MCSP, there are matrix chain products whose optimal product sequence is �xed. Inother words, the product sequence which minimizes the evaluation time is unique. Oneobvious case is that in which the optimal sequence for MCOP is a complete binary tree.In such a case, the optimal sequence for MCSP is also a complete binary tree. Thenthe problem of �nding the processor schedule is equivalent to the precedence-constrainedparallel task scheduling problem. Therefore, the MCSP includes the precedence-constrainedparallel task scheduling problem. Thus, MCSP is NP-hard. 2Since the problem of �nding an optimal schedule is NP-Hard, we propose an approx-imation algorithm in Section 4. The algorithm enhances the performance of evaluatingan n-matrix product chain on a parallel system by partitioning the parallel system andconcurrently executing several matrix products; this also enhances the overall e�ciency ofthe system. A processor allocation method for executing multiple matrix products withminimum completion time is discussed in the next section.3 Processor Allocation for Matrix ProductsIn this section, we discuss how many processors should be allocated for a single matrixproduct and what is an e�cient processor allocation for executing multiple matrix productsconcurrently.
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3.1 Processor Allocation for a Single Matrix ProductMany parallel matrix multiplication algorithms have been developed in various parallelarchitectures [18, 21]. A multiplication of two n�n matrices requires at most n3 processors.In the best case, it takes O(log(n)) time with n3 processors by using n processors to getan element of the result matrix.2 Each of n processors executes a multiply in one step andsums n elements within O(log(n)) steps. However, in this case we expect low utilization ofprocessors. While summing n data for log(n) steps, some processors stay idle. Moreover,these log(n) steps are communication steps, not computation steps. Then, how manyprocessors should be allocated to have better e�ciency when multiplying two matrices?E�ciency decreases as the number of processors allocated to a single matrix productincreases. Until the number of processors allocated reaches n2, a speedup of the single matrixproduct is obtained without much e�ciency degradation [24]. However, allocating morethan n2 processors is not cost-e�ective due to greatly increased overhead and much degradede�ciency. Therefore, we consider allocating at most n2 processors when multiplying twon� n matrices. By extension, we also allocate at most mimk processors when multiplyingan mi �mj matrix by an mj �mk matrix.The number of processors allocable to a single matrix product cannot be an arbitrarynumber for e�cient execution. When multiplying an mi�mj matrix by an mj�mk matrix,the number of maximally allocable processors ismimk, and the possible number of allocableprocessors are the divisors of mimk. For example, when multiplying a 2 � 4 matrix by a4� 3 matrix, the number of allocable processors are 1; 2; 3; and 6. In this case, the load ofeach processor is balanced such that each processor has the same amount of computation.These numbers are the divisors of 6, which is the maximal number of allocable processorsfor the given matrix product.We use the notation D(x) to denote the set of divisors of x, i.e., D(x) = fdjd divides xg.The number of processors allocable to a given matrix product (mi;mj ;mk) should be anelement in D(mimk), and these elements are not continuous numbers.2On a CRCW PRAM, the matrix multiplication runs in constant time with the assumption on the writecon
icts that, when several processors attempt to write numbers in the same location, the sum of thenumbers is written in that location [23]. Since the CRCW PRAM with arbitrary number of processors isnot realistic in practice, we are not considering that case.
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3.2 Processor Allocation for the Concurrent Computation of MultipleMatrix ProductsIn general, the performance of parallel systems is maximized by executing as many tasksas possible concurrently while using a few processors for each task [25]. This is mainly due tothe fact that the concurrent execution compensates for the performance loss that normallyresults from parallelizing a task. In this subsection, we discuss a processor allocation methodfor independently computing multiple matrix products.When executing multiple parallel tasks concurrently, one good heuristic for allocatingprocessors to each task is \proportional allocation" [26, 27]. The proportional allocationalgorithm allocates processors proportional to the computation amount of each task. Thisalgorithm tries to minimize the completion time of all tasks by balancing the execution timeof each task. However, it assumes that the execution time of a task decreases if more tasksare allocated to it and that the number of allocable processors are continuous numbers,both of which are not true for the MCSP problem.Proportional allocation can be applied to allocate processors for multiple matrix prod-ucts. However, since we cannot allocate an arbitrary number of processors to a singlematrix product, proportional allocation is not a proper processor allocation scheme for thecomputation of matrix products. For example, consider the case of computing two matrixproducts (2; 3; 8) and (4; 4; 3) on 20 processors. By proportional allocation, 10 processorsare allocated for each matrix product. Since the number of allocable processors for eachmatrix product should be numbers in D(16) and D(12), 8 and 6 processors are allocatedfor each product respectively. The completion time of two matrix products becomes 8 unittime because max(2� 3� 8=8; 4� 4� 3=6) = 8. However, if we allocate 8 processors to the�rst product and 12 processors to the second product, the completion time becomes onlymax(6; 4) = 6 unit time. Since the completion time is bounded by the longer executiontime, we can reduce the completion time by allocating unused processors to the matrixproduct which requires longer execution time.The completion time of two matrix products by proportional allocation is shown inFig. 1. Let P1 be the number of processors allocated to the �rst product. As P1 increases,the execution time T1 of the �rst product decreases, and that of second product, T2,increases. Proportional allocation allocates 10 processors to each product, but there is6 unused processors. We can reduce the completion time using the unused processors.After proportional allocation, we can �nd the number of unused processors and the productwhich has the longer execution time. In the example, the second matrix product takeslonger. Thus, the unused 6 processors are allocated to the second product so that the7
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P1Figure 2: Optimal allocation for two ma-trix products.second product runs on 12 processors. Then the completion time of the second productbecomes 4. Hence, the overall completion time becomes 6. This allocation is optimal, asshown in Fig. 2. The following algorithm describes the processor allocation algorithm fortwo independent matrix products.Discrete Processor Allocation for Two Matrix Products (DPA)Input: Two matrix products X = (mx;mx+1;mx+2) and Y = (my;my+1;my+2)and a set of P processors.Output: The number of processors allocated to the matrix products X and Y ,denoted as Px and Py, which satisfy 1 � Px; Py � P and Px + Py � P .1. Set Pprop = mxmx+1mx+2mxmx+1mx+2+mymy+1my+2P .2. Find dx;i in D(mxmx+2) which satis�es dx;i � Pprop.3. Find dy;j in D(mymy+2) which satis�es dy;j � P � Pprop.4. If �(mx;mx+1;mx+2; dx;i) < �(my;my+1;my+2; dy;j), then Px = dx;i; Py = P � dx;i.Otherwise, Px = P � dy;j; Py = dy;j.Even if we use a naive search algorithm for �nding divisors, Step 2 and Step 3 takeO(P ) time. Therefore, since the remaining steps require constant time, the time complex-ity of discrete processor allocation (DPA) is O(P ). Also, DPA guarantees the minimumcompletion time for two matrix products, as shown formally by the following lemma andtheorem. 8



Lemma 1: The completion time of two matrix products when processors are allocated bythe DPA algorithm is shorter than or equal to that by the proportional allocation.Proof: The proportional allocation algorithm allocates Pprop processors to the prod-uct X, and P � Pprop processors to the product Y. When dx;i is the largest divisor inD(mxmx+2) which is less than Pprop, the product X utilizes dx;i processors. And whendy;j is the largest divisor in D(mymy+2) which is less than P � Pprop, the product Yutilizes dy;j. Therefore, the completion time by proportional allocation is bounded bymax(�(mx;mx+1;mx+2; dx;i);�(my;my+1;my+2; dy;j)).In the case of �(mx;mx+1;mx+2; dx;i) < �(my;my+1;my+2; dy;j), the DPA allocatesdx;i and P � dx;i respectively. Let d0y;j be the largest divisor in D(mymy+2) which is lessthan P � dx;i. Since P � Pprop � P � dx;i and d0y;j � dy;j, the completion time by theDPA, i.e., max(�(mx;mx+1;mx+2; dx;i), �(my;my+1;my+2; d0y;j)), is shorter than or equalto the completion time by the proportional allocation, i.e., max(�(mx;mx+1;mx+2; dx;i),�(my;my+1;my+2; dy;j)).Also in the case of �(mx;mx+1;mx+2; dx;i) � �(my;my+1;my+2; dy;j), the DPA allo-cates P � dy;j and dy;j respectively. In the same manner, the completion time by the DPAis less than or equal to the completion time by proportional allocation. Thus the lemma issatis�ed. 2Theorem 2: DPA guarantees the minimum completion time for two matrix products.Proof: Given two matrix products X = (mx;mx+1;mx+2) and Y = (my;my+1;my+2)on P processors, let Pprop be the number of processors allocated to the product X byproportional allocation.i) Pprop � mxmx+2 or P � Pprop � mymy+2In the case of Pprop � mxmx+2, the completion time of two matrix products is boundedby the execution time of the matrix product X. Since DPA allocates mxmx+2 processors tothe product X, the completion time becomes mx+1 which is the minimum execution timeof the product X. Therefore, DPA guarantees the minimum completion time of two matrixproducts. In the case of P � Pprop � mymy+2, the completion time is bounded by theexecution time of the product Y, and again the DPA guarantees the minimum completiontime.ii) Pprop < mxmx+2 and Pprop < mymy+2Let dx;i be the largest divisor in D(mxmx+2) where dx;i � Pprop, and dy;j the largest divisorin D(mymy+2) where dy;j � P � Pprop. Then the number of unused processors, denotedas PI , is P � dx;i � dy;j . Let dx;i+1 denote the next divisor of dx;i in D(mxmx+2) such9
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DPA can be easily extended for k independent matrix products. After allocating by pro-portional allocation, the unused processors are allocated to the product with the maximumexecution time to reduce the completion time of all products. However, if there are stillunused processors, this reallocation is continued until the maximum execution time cannotbe reduced. We present the processor allocation algorithm DPA-k for k independent matrixproducts as follows.Discrete Processor Allocation for k Matrix Products (DPA-k)Input: k matrix products Xi = (mi;1;mi;2;mi;3) for 1 � i � k are givenon P processors (k � P ).Output: The number of allocated processors Pi for each matrix product Xiwhich satis�es Pki=1 Pi � P .1. For i = 1 to k do(a) Pprop;i = mi;1mi;2mi;3Pkj=1mj;1mj;2mj;3P .(b) Find the maximum di;j in D(mi;1mi;3) which satis�es di;j � Pprop;i.(c) Let Pi = di;j .2. While (P �Pki=1 Pi > 0) do(a) Find the product Xi with the maximum �(mi;1;mi;2;mi;3; Pi).(b) If (Pi < mi;1mi;3) theni. Find the minimum di;j in D(mi;1mi;3) which satis�es di;j > Pi.ii. If (P �Pki=1 Pi � (di;j � Pi) > 0) thenPi = di;j. Otherwise, stop the algorithm.else stop the algorithm.Corollary 1: DPA-k guarantees the minimum completion time of k independent matrixproducts.
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4 Matrix Chain Scheduling AlgorithmThe proposed scheduling algorithm consists of three stages. First, the algorithm �nds theoptimal product sequence for MCOP. Next is the top-down processor assignment stage. Inthis stage, processors are partitioned and assigned to each subtree proportionally accordingto their computation amount to balance the evaluation time of both left and right partialmatrix product chains. The third stage is the bottom-up execution stage that executesproducts independently from the leaf and tries to modify the product sequence to enhanceconcurrency so as to reduce the evaluation time of M. This is done by �nding the pointsthat change the product sequence but do not excessively increase the number of operations.4.1 Optimal Product Sequence by MCOPThe product sequence of M determines the number of operations to be executed in sin-gle processor systems. In parallel systems, the number of operations is not the sole decidingfactor of the evaluation time, but a�ects it greatly nonetheless. Hence, our scheduling algo-rithm begins with the optimal product sequence found for MCOP. There were many worksreported for �nding the optimal product sequence which guarantee the minimum numberof operations for any chain of matrix products. The optimal product sequence can be foundin O(n log(n)) time using a sequential algorithm [7, 8]. Many parallel algorithms have beenstudied [13, 14] which run in polylog time. Therefore, using these parallel algorithms, it ispossible to �nd the optimal product sequence within polylog time on P processor systems.Let us assume that the sequence and the computation amount found by MCOP isstored in two tables, S[n][n] and W [n][n], respectively. W [i][j] has the minimum number ofoperations for evaluating Li;j and S[i][j] the matrix index for partitioning the matrix chain(Mi � � � � �Mj).4.2 Top-Down Processor AssignmentIn the top-down processor assignment stage, a number of processors proportional to thecomputation amount of a subtree is assigned to minimize the completion time of two partialmatrix chains. If pi;j processors were assigned to Li;j, then pi;j � W [i][S[i][j]](W [i][S[i][j]]+W [S[i][j]+1][j])processors are assigned to the subtree Li;S[i][j] and pi;j� W [S[i][j]+1][j](W [i][S[i][j]]+W [S[i][j]+1][j]) processorsare assigned to the subtree LS[i][j]+1;j.For example, given a chain of 8 matrices with dimensions f3; 8; 9; 5; 8; 3; 3; 3; 4g on a 6412



3 8 9 4335 8 3

M2

M3 M4 M5

M6 M7

M8

W[6][7]=27
W[1][3]=351

P  = 44

W[1][5]=516
1,5

1,3

6,7

4,5

(((((M1 M2)M3)(M4 M5))(M6 M7))M8)

W[4][5]=120
P  = 16

W[1][8]=606

M1

P   = 641,8

P  = 60

P  = 4

Figure 4: Top-down processor assignment.
M1

M2

M3

M4 M5

M9

M8

M7

M6
Candidate Products

Candidate
Products

(((M1 (M2 (M3 (((M4 M5) M6) M7)))) M8) M9)

Figure 5: Candidate products on a sequence tree.processor system, processors are assigned as in Fig. 4.4.3 Bottom-Up Concurrent ExecutionAfter assigning processors to each subtree, the matrix products are executed concur-rently and independently from the leaf products. Thus, the performance is improved bymore concurrent execution, which results in improved processor e�ciency. However, thereare cases in which some processors stay idle. When there are idle processors in the executionof Li;j, we try to modify the product sequence to use these idle processors.When there are idle processors in the execution of Li;j, ancestors of the leaf node of13
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Matched ParenthesesFigure 7: A snapshot of product sequence.Li;j are traced in order to �nd a candidate for concurrent execution. This upward tracecontinues until a suitable candidate or a sibling which is not a leaf node is found. For exam-ple, let us consider the executing sequence tree L1;9 shown in Fig. 5. The �gure represents(((M1(M2(M3(((M4M5)M6)M7))))M8)M9). In the execution of (M4M5), the possible can-didates for concurrent execution are (M1M2); (M2M3); (M6M7); (M8M9). There are othertypes of candidate products which are not considered in this paper like (M7M8). Since suchcases result in more modi�cations to the optimal sequence with no obvious bene�t overother candidates, we do not consider these kinds of products.When we modify the product sequence to execute candidate products concurrently inthe current execution phase, then there is some loss due to an increase in the number ofoperations. Therefore, we have to check whether the modi�cation is bene�cial or not.Consider a matrix chain with four matrices which needs three matrix products to get the�nal result. Assume that the optimal product sequence of this matrix chain for MCOP is(((M1M2)M3)M4), as shown in Fig. 6. When the sequence is modi�ed to ((M1M2)(M3M4)),the number of computations required changes from C = m1m2m3 +m1m3m4 +m1m4m5to C 0 = m1m2m3 +m3m4m5 +m1m3m5. Therefore, the amount of increased computation�C is as follows: �C = m3m4m5 +m1m3m5 �m1m3m4 �m1m4m5 :In general, when we have a product sequence such as Fig. 7, the amount of increasedcomputation for multiplying My �My+1 concurrently with Mx �Mx+1 is as follows:�C = my+1my+2(my �mz) +mzmy(my+2 �my+1) :14



In this equation, mz represents the row of the intermediate matrix (or matrix Mz itself)that is going to be multiplied with the result of My �My+1. In other words, there is a leftparenthesis to the left of matrix Mz that matches the right parenthesis on the right side ofmatrix My+1. In the case of y < z, the amount of increased computation is as follows:�C = my+1my+2(my �mz+1) +mz+1my(my+2 �my+1) :Finding mz (or mz+1), which is very important for the analysis of �C, can be done bytraversing the sequence tree L. If bothMy andMy+1 are right children, thenMz is searchedby traversing the left child recursively from the parent node of My. Similarly, if both areleft children, then Mz is searched by traversing the right child from the parent node of My.Lemma 2: In the case that pi;j processors are allocated to the matrix product (MxMx+1)but all pi;j processors cannot be utilized by the matrix product (i.e., mxmx+2 < pi;j), wetry to modify the product sequence L. If the candidate product (MyMy+1) is found, andthe DPA allocates px and py processors to two matrix products (MxMx+1) and (MyMy+1)respectively, then the evaluation time is reduced by modifying the sequence tree L whenthe candidate product (MyMy+1) satis�es �C < min(�(mx;mx+1;mx+2; mxmx+2) � (px+py �mxmx+2); mymy+1my+2):Proof: There are two necessary conditions for modifying a product sequence to havebetter performance. The �rst condition is that the utilization of idle processors (i.e., px +py �mxmx+2) should be more than the computation increase resulting from modifying theproduct sequence tree. The work of idle processors can be estimated as the product ofthe number of utilized processors and the available time for these processors. Hence, thefollowing condition should be satis�ed.�C < �(mx;mx+1;mx+2;mxmx+2)� (px + py �mxmx+2)Also, the amount of computation given to idle processors, which is the time for multiplying(MyMy+1), should be more than �C. Therefore, another condition to be satis�ed is�C < mymy+1my+2:Thus, the lemma is satis�ed. 2If a candidate product (MyMy+1) satis�es Lemma 2, then it would be better to changethe product sequence Li;j to multiply the candidate product concurrently with (MxMx+1).This means that the unallocated idle processors can do more work than the increasedcomputation required by the change in the product sequence.15



When the candidate product is found, the subtree Li;j is modi�ed and the processorspi;j are redistributed among the products in Li;j (including the candidate product). Also,processors are allocated proportionally to each product. This results in an enhancement ofthe overall system performance due to an increase in processor e�ciency.4.4 The Proposed Scheduling AlgorithmThe proposed scheduling algorithm for evaluating a matrix chain product is formulatedas follows. Two-Pass Matrix Chain Scheduling AlgorithmStage{1 MCOP1. Find the optimal product sequence by a parallel algorithm for MCOP.2. Generate the sequence tree L.Stage{2 Top-Down Processor Assignment1. Initialize i = 1, j = n, pi;j = P .2. If i is not S[i][j], then allocate pi;j�W [i][S[i][j]]=(W [i][S[i][j]]+W [S[i][j]+1][j])processors to Li;S[i][j].3. If j is not S[i][j]+1, then allocate pi;j�W [S[i][j]+1][j]=(W [i][S[i][j]]+W [S[i][j]+1][j]) to LS[i][j]+1;j.4. If i is j + 1 or j, then �nish this stage, else call this algorithm recursively forboth i = i; j = S[i][j] and i = S[i][j] + 1; j = j.Stage{3 Bottom-Up Concurrent ExecutionFor all leaf products, execute the following steps until there are no more unscheduledleaf products.1. Let MkMk+1 be a leaf product and pk;k+1 be the number of processors allocatedto the leaf product. If pk;k+1 < mkmk+2 then go to 5.2. Find a candidate product by tracing ancestors of the leaf product. If there is nosuch candidate product, go to 5.3. Let the product MlMl+1 be a candidate product found by tracing ancestors ofthe leaf product. Check whether the candidate satis�es Lemma 2. If not, go to2. 16



4. Modify the sequence tree such that the candidate can run concurrently withMkMk+1. Reallocate processors pk;k+1 using the DPA algorithm and go to 1 foreach leaf product of the two split subtrees.5. Schedule the leaf product on min(pi;j; mkmk+1mk+2) processors. Set the parentof the leaf product as a new leaf product.The scheduling algorithm starts from the MCOP sequence, and tries to modify the se-quence by increasing the concurrency level. The evaluation time of a matrix chain productis a�ected by the amount of computations and the concurrency level. The amount of com-putations is minimized at the MCOP sequence, and the concurrency level is maximized atthe sequence of the complete binary tree. The optimal product sequence with the minimumevaluation time may be formed in the middle of the MCOP sequence and the completebinary tree. This also means that when the MCOP sequence is a complete binary tree,the MCOP sequence is the optimal product sequence. The proposed scheduling algorithmmoves from the MCOP sequence to the near-optimal sequence.For purposes of e�ciency, the scheduling algorithm modi�es the current product se-quence when the candidate product satis�es Lemma 2. Even though we can select the mostsuitable candidate among a number of candidates satisfying Lemma 2 by traversing thesequence tree, the scheduling algorithm uses the �rst satisfying candidate for the purposeof minimizing the schedule time.4.5 Algorithm ComplexityThe time complexity of the proposed algorithm is analyzed as follows. Stage-1 and Stage-2 can be done within O(n) time. In Stage-3, to reduce the time for checking Lemma 2, wepass the information of the skewed point (Mz for �C) to the next parent product when weare tracing the ancestors from a leaf product as shown in Fig. 8. Then we do not need totraverse down the children of a candidate product to �nd Mz since Mz is passed from thetraced child. This allows Step 3 of Stage-3 to be done in constant time. The number ofproducts being traced to check concurrent execution is (n�3) at the most. The total numberof products that may be traced in Stage-3 is (n� 3)+ (n� 4)+ � � �+1 = (n� 2)(n� 3)=2 =O(n2). Also, in Step 4 of Stage-3, the number of sequence modi�cations is at most (n� 4).Since the DPA algorithm for two matrix products takes O(P ), the time complexity for Step4 of Stage-3 is O((n � 4)P ). Therefore, the time complexity of the proposed algorithm isO(n2 + nP ). 17
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M2Figure 9: The sequence trees for MCOP sequence and the proposed scheduling algorithm.4.6 ExampleThe following simple example illustrates the proposed scheduling algorithm. We alsocompare the expected evaluation time of the product sequence by the proposed algorithmwith that of the product sequence for MCOP.In a system with 50 processors, let us consider a case of evaluating a chain of matrix prod-ucts with 5 matrices. Given 5 matricesM1:6�2;M2:2�7;M3:7�5;M4:5�7;M5:7�8, Stage-1�nds the product sequence with minimum operations for MCOP as (M1(((M2M3)M4)M5)).The MCOP sequence tree is represented as the left tree of Fig. 9. In Stage-2, we assign 50processors to each matrix product.In Stage-3, since the leaf product (M2M3) cannot utilize the 50 allocated processors,we try to modify the product sequence. The product (M4M5) is found as a candidateproduct. By checking Lemma 2, we get px = 10, py = 40 using the DPA algorithm,18



�C = 7� 8(5� 2) + 2� 5(8� 7) = 178, and �(2; 7; 5; 10) = 7. Since �C = 178 < min(7�(10+40�10); 5�7�8) = 280, the product sequence is modi�ed to (M1((M2M3)(M4M5)))as shown in the right tree of Fig. 9.Let us compare the evaluation time of the MCOP sequence with that of the productsequence found by the proposed scheduling algorithm. When we evaluate the matrix chainby the MCOP sequence, it takes (2�7�5)=min(50; 2�5)+(2�5�7)=min(50; 2�7)+(2�7�8)=min(50; 2�8)+(6�2�8)=min(50; 6�8) = 21 units of time. The evaluation time of theproduct sequence by the proposed scheduling algorithm is max(2�7�5=min(10; 2�5); 5�7� 8=min(40; 5� 8)) + 2� 5� 8=min(50; 2� 8)+6� 2� 8=min(50; 6� 8) = 7+5+2 = 14units of time. The product sequence by the proposed scheduling algorithm requires 526operations, which is 178 operations more than the MCOP sequence with the minimumnumber of operations (348). However, the proposed algorithm requires less time than theMCOP sequence with the minimum number of computations. This is due to the concurrentexecution of multiple matrix products which increases system e�ciency and reduces thetotal evaluation time.5 Performance AnalysisIn this section, we compare the performance of the proposed scheduling algorithm withvarious evaluation methods.� Linear: evaluate from the �rst product (M1M2) to the last one sequentially.� MCOP-Seq: evaluate by the MCOP sequence sequentially.� MCOP-Con: evaluate by the MCOP sequence, but execute independent matrixproducts concurrently by allocating the maximum number of processors.� MCSP-BT: evaluate by the MCOP sequence with concurrent execution, but whenthere are idle processors during execution, try to modify the sequence by checkingLemma 2.� MCSP-TP: evaluate by the proposed scheduling algorithm.We experimented on the Fujitsu AP1000 parallel system, which is a distributed-memoryMIMD machine with 512 cells. Each cell processor is a SPARC processor with 16MB. TheAP1000 system has three independent networks: B-net for broadcasting, T-net for torusinterconnection, and S-net for synchronization. The processors are connected as a twodimensional torus and the T-net link speed between processors is 25Mbytes/sec/port. Thehost computer and the processors are connected by the broadcasting network (B-net) with50Mbyte/sec and by the S-net for synchronization.19
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Figure 11: Evaluation time comparison byvarying the number of matrices when thematrix sizes distributed from 1 � 50.The evaluation times of randomly generated matrix product chains are measured foreach scheduling method. Since the initial matrix loading times are highly dependent on thesystem characteristics such as the communication link speed and interconnection network,the loading times are excluded in the statistics of the evaluation time. In fact, the proposedalgorithm can spend less time than the sequential evaluation methods for distributing ma-trices to processors by allowing several matrices to be loaded together.3 The results shownin this section is the average of 100 experiments.Fig. 10 and Fig. 11 show the evaluation time as a function of the number of matricesbeing multiplied. In Fig. 10, a chain of matrix products is generated with size varyingrandomly from 1 to 10, and executed on a system with 512 processors. The upper twolines represent the evaluation times of the sequential evaluation by Linear and MCOP-Seq, and the lower three lines represent the evaluation times of the scheduling sequencefound by MCOP-Con, MCSP-BT, and MCSP-TP. From the comparison of the executiontime of MCOP-Seq with that of Linear, it can be seen that only reducing the amount ofcomputation does not greatly decrease the evaluation time. But when we allow concurrentexecution, we can get further performance improvement. Therefore, we con�rm that theevaluation time of a chain of matrix products is greatly a�ected by task scheduling. InFig. 11, we experimented with larger matrices whose sizes varied from 1 to 50. The upperline is the evaluation by MCOP-Con, the middle line is by MCSP-BT, and the lower lineis by MCSP-TP. As the number of matrices in a matrix chain increases, the proposedMCSP-TP algorithm shows a larger performance gain.3Since some parallel computers such as Fujitsu AP1000 support the collective communication schemesincluding scatter and gather, we can reduce the matrix loading time by using those schemes.20
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Figure 12: Evaluation time comparison fordi�erent number of processors when thematrix sizes distributed from 1 � 20.
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Figure 14: Evaluation time comparison byvarying the matrix size distribution for achain with 100 matrices.
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Figure 15: Evaluation time comparison byvarying the matrix size distribution for achain with 200 matrices.Table 1: Comparison with respect to computation amounts, system utilization, and evalu-ation time when P = 512; n = 100; and the matrix size is varied from 1 � 10.Scheduling Computation System EvaluationAlgorithm Amount Utilization TimeLinear 6136 3.20 6.27MCOP-Seq 1430 0.62 5.59MCOP-Con 1430 1.63 2.15MCSP-BT 1618 2.32 1.89MCSP-TP 2253 3.07 1.81the MCOP sequence, and there are small numbers of idle processors during their executionwhen evaluating a chain of large matrices. However, we notice that the proposed MCSP-TP outperforms all other methods. These experiments imply that the proposed MCSP-TPis still e�ective for larger matrices due to performance improvement through concurrentexecution (with more concurrency than the other methods), even though there are rareexceptions.In Table 1 and Table 2, we measured the computation amount, system utilization, andevaluation time for each evaluation method. In Table 1, we evaluated a chain of 100 matriceswhose sizes varied from 1 to 10. Even though the computation amount of MCOP-Seq isjust a quarter of that of Linear, the evaluation time is similar (such as 6.27 and 5.59). Weobserve that the system utilization of MCOP-Seq (0.62) is signi�cantly lower than that ofLinear (3.20). Evaluation by MCSP-BT and MCSP-TP requires more computation thanthat by MCOP-Con; the evaluation time decreases due to the e�cient use of processors. In22



Table 2: Comparison with respect to computation amounts, system utilization, and evalu-ation time when P = 512; n = 100; and the matrix size is varied from 1 � 50.Scheduling Computation System EvaluationAlgorithm Amount Utilization TimeLinear 1235145 58.16 50.03MCOP-Seq 57239 5.59 28.07MCOP-Con 57239 11.16 14.96MCSP-BT 124506 27.75 11.39MCSP-TP 83083 21.46 10.12Table 2, we measured the execution time for a chain with 100 matrices whose sizes variedfrom 1 to 50. We observed behavior similar to that in Table 1. But note that MCSP-BT utilizes even more processors than MCSP-TP, and the evaluation time of MCSP-BT islarger than that of MCSP-TP. This result implies that the proposed MCSP-TP algorithmuses processors more e�ciently and e�ectively than MCSP-BT.From the above experiments, we get the following results.� When evaluating a chain of matrices on a parallel system, reducing the amount ofcomputations does not greatly decrease the evaluation time.� Concurrent execution of independent multiple matrix products compensates the per-formance loss by parallel processing and increases the system e�ciency so that theperformance improves greatly.� When the number of processors becomes larger or when the number of matrices in amatrix chain increases, evaluation by the proposed scheduling algorithm MCSP-TPprogressively outperforms other methods such as Linear, MCOP-Seq, MCOP-Con,MCSP-BT.� Even when the size of matrices is quite large so that there are no idle processors duringtheir evaluation, the proposed scheduling algorithm MCSP-TP is still e�ective due toexecution using the maximum level of concurrency.� When evaluating a chain with small matrices on many processors, sequence modi�ca-tion to increase system e�ciency greatly reduces the evaluation time.� In matrix chain products, e�cient scheduling is better than increasing the number ofprocessors. 23



6 Summary and ConclusionIn this paper, we introduced the matrix chain scheduling problem (MCSP) and proposeda heuristic scheduling algorithm for MCSP. The proposed algorithm schedules processors tomatrix products to increase concurrency at the expense of a slight increase in the requiredamount of computation when compared to the optimal product sequence found for thematrix chain ordering problem (MCOP). We have shown that performance is signi�cantlyenhanced by the proposed algorithm using experiments on the Fujitsu AP1000 parallelsystem. As a result, we can con�rm that the processor scheduling is much more importantthan reducing the amount of computation for evaluating a matrix chain product in parallelsystems. In a system with a large number of processors or a matrix product chain with manymatrices, evaluation by the proposed method greatly outperforms the sequential evaluationmethod using the optimal product sequence found for MCOP. The main contribution ofthis work is the introduction of MCSP and the proposal of a scheduling algorithm whichresults in a signi�cant performance improvement when evaluating matrix chain products inparallel systems. We are currently working on applying this algorithm to evaluate a chainof square matrices with the form of sparse matrices or band matrices. Also, we plan tostudy generalizing MCSP to scalable task scheduling on parallel systems.AcknowledgmentWe would like to thank Prof. Chul E. Kim for many fruitful suggestions on the complex-ity analysis. Also we give special thanks to Mr. Min-Ho Kyung for very helpful discussionson this work. Also we give special thanks to FUJITSU Laboratories Ltd. for allowing us touse their facilities, and especially to Takao Saito for arranging our urgent requests for use.References[1] S.-T. Yau and Y. Y. Lu, \Reducing the symmetric matrix eigenvalue problem to matrixmultiplications," SIAM J. Sci. Comput., vol. 14, no. 1, pp. 121{136, 1993.[2] S.-S. Lin, \A chained-matrices approach for parallel computation of continued fractionsand its applications," Journal of Scienti�c Computing, vol. 9, no. 1, pp. 65{80, 1994.[3] A. Chandra, \Computing matrix chain products in near-optimal time," tech. rep.,IBM T.J. Watson Res. Ctr., Yorktown Heights, N.Y., 1975. IBM Research Report RC5625(#24393). 24
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