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Abstract - In this work an autonomous navigation 

system based in a modular neuro-fuzzy network for 
controlling mobile robots is proposed. Based on this 
system the robot is able to reach goals avoiding 
collisions against obstacles in an unknown environment. 
The system architecture belongs to the reactive 
paradigm. A reinforcement learning mechanism 
balanced with two innate behaviors, which are to avoid 
obstacles and seek to goals, guides the robot from an 
initial point to the goal. The validation of the proposal 
system has been done by using the Saphira simulator. 
The results obtained in the tests performed on Saphira 
simulator and on the Pioneer robot show the efficiency 
and learning capabilities of this system.  

 

I. INTRODUCTION 
An important issue that has gained a lot of attention in 

intelligent robotic is robot autonomous navigation. 
Autonomous navigation problem consists in a development 
of getting of decisions mechanisms for only robot and 
multiple robots navigating in known environment. In this 
context, autonomous navigation systems must be able to 
guide robots without any external interference (independent 
systems) and defining actions to the robots. 

In the literature, several works use the computational 
intelligence approach to obtain robust and efficient systems, 
such as target seeking, to avoid collisions against obstacles, 
environments exploration [1] [2]. Several applications can 
be find in this issue, such as, environment cleaning, object 
transporting, vigilance systems and high risk task for human 
[3]. 

Several intelligent autonomous systems proposed show 
interesting results considering this navigation problem. 
Neural networks are adopted to design an autonomous 
system that learns to control double navigation control 
variables: speed and steering angle [4]. The system is 
provided with two classes of sensorial fields: direction of 
the target and distance from the obstacles, respectively. A 
more complex navigation controller is based on an 
evolutionary technique (classifier system). Simulation 
results show that the system learns simultaneously to avoid 

obstacles, to reach targets, and to coordinate these behaviors 
when they are conflicting [5]. 

In [6], innovate neuron models provide the navigation 
system the capacity for learning spatial concepts. Target 
seeking and collision avoidance behaviors are incrementally 
associated with specific features of objects (e.g. color) 
during the environmental interactions.  A reactive system 
using neural-fuzzy networks that coordinate innate 
behaviors of target seeking and collision avoidance (basic 
behaviors) becomes a mobile robot able to reach a goal 
point in unknown environments. Reinforcement learning 
strategy updates parameters of networks. Results show an 
efficient navigation for reaching goal points [7]. 

Navigation systems are proposed for mobile robots with 
features of mobility and autonomy through interacting with 
several models of environment generating new applications 
[8].  In [9] a multi-layer network is designed to control a 
robot in a Shop Floor environment. Probabilistic methods of 
mapping and localization are used to navigation of Pioneer I 
mobile robot. They become the robot able to transport 
documents from specified point to other [10]. A remote 
system for controlling robots is presented in [11]. In this 
system, via web interface, a mobile robot is controlled from 
anywhere of world. In [12], a computational vision system 
based in multi-layer neural networks guides a mobile robot 
to an object of a specific color and form avoiding collisions 
against obstacles. 

This current work extends the proposal presented in [7]. 
Some changes allow the system to operate in a real robot. A 
laser sensor is attached to system and its signals are 
responsible for interacting robot with an environment. 
Initially, this system is tested in Saphira simulator, software 
that simulates exactly the actions of Pioneer I mobile robot.  
The simulation in Saphira is the previous stage of tests 
performed in the real robot. A comparative analysis between 
the system presented in [7] and the extended system 
proposed here is presented to evaluate the efficiency and 
learning capabilities of the system proposed. 

This paper is organized as follows. In section 2, the robot 
model used in [7] is described. The navigation system is 
presented in Section 3. In section 4 and 5, are briefly 
described the Pioneer I mobile robot and Saphira simulator 
system, used in real experiments, respectively. The 
simulation results are shown in Section 6, besides a 



 

comparative analysis to evaluate the performance of the 
system proposed. A brief discussion about the results and 
future work possibilities are presented in Section 7. 

II. ROBOT MODEL 
The robot model does not present internal dynamics (Fig. 

1). The robot adjusts its steering direction and moves (a 
move equals one distance unit and is constant). The steering 
direction adjustment may assume values from −15º to 15º. 

Different sensor types capture signals from the 
environment. There is a set of target direction sensors. The 
output of every one is proportional to the angle φ between 
the sensor direction and the target direction (φ < 180º). A set 
of target distance sensors provides information about the 
distance from the target to the robot. All target distances are 
mapped to [0, 1]. Each sensor is associated with a specific 
distance. The closer the specific distance is to the real 
distance, the greater is the sensor output. Another type of 
sensor, the obstacle sensor, the distance measures between 
the robot and the obstacle situated in front of the sensor. 
They capture an obstacle landscape for the navigation 
system. There are 50 of each type of sensor, and they are 
uniformly distributed. One hundred target sensors are all 
around the robot, but the obstacle sensors are limited to the 
front (from −90º to 90º). 
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Fig. 1: A sketch of the robot model. 

 
There are two sets of sensors to detect any collision 

against obstacles or target captures, respectively. The 
outputs of these sensors (collision and capture) are binary (1 
if an event occurs, 0 otherwise). 

III. AUTONOMOUS NAVIGATION SYSTEM 
The autonomous navigation system (autonomous 

controller) consists of three main neural modules connected 
to an output neuron. Two of them, Obstacle Avoidance 
(OA) and Target Seeking (TS) modules, generate instinctive 
behaviors. A coordination module (CM) establishes (after 
learning) suitable weights for the behaviors generated by 
OA and TS modules. The weighed behaviors are combined 
in the output neuron (Fig. 2).  

 
A. Neural Modules OA and TS 

 
The OA and TS modules are neural networks with a 

priori knowledge about the respective behavior (they do not 

learn). They are innate neural networks. If they operate 
independently the robot is able to do specific tasks. 

The OA module generates the obstacle avoidance 
behaviors. The inputs stem from the obstacle sensors and 
the outputs correspond to the adjustments for the steering 
angle. If only the OA module guides the robot, it does not 
collide. Unfortunately, it does not reach targets. The TS 
module generates the target seeking behaviors. It receives 
inputs from the direction target sensors. If the TS module 
guides the robot, it is able to reach targets. However, if there 
is an obstacle between the robot and the target, a collision 
occurs. These modules are innate, so, to keep the analogy 
with biological systems, the respective neural networks are 
configured according to an evolutionary approach [13]. 
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Fig. 2: Autonomous navigation system. 
 

B. Coordination Neural Module 
 
If the navigation system only consists of the innate 

modules, and they operate together without coordination, 
then there will be many conflicting situations and the 
navigation performance will certainly be poor. The function 
of the coordination module is to coordinate the instinctive 
behaviors generated by OA and TS innate modules. 

The coordination module consists of three neural fuzzy 
networks: the Obstacle Distance (OD), Target Direction 
(TA) and Target Distance (TD) networks. They are 
connected to different sensorial fields: Obstacle Distance, 
Target Direction (Angle) and Target Distance, respectively 
(Fig. 2). 

After a learning period, the coordination module learns 
the output weights of the innate modules, balancing each 
behavior according to the situation presented to the robot. 
Its outputs establish the weights of the output neuron. The 
reinforcement learning strategy is adopted for every three 
networks. 

The architecture of neural networks consists of two layers 
of fuzzy neurons (neurons modeled according to Fuzzy 
Theory [14]). The first layer is constructive, that is, as the 
network learns some neurons are added to the layer. Each 
neuron connects to every sensor in the obstacle distance, 
target direction and target distance sensorial field (OD, TA 
and TD network, respectively). There is only one neuron in 



 

the second layer and it is connected to every neuron in the 
first layer (Fig. 3). 

The OD network influences the behavior of robot by 
balancing the strength of each instinctive behavior (target 
seeking and obstacle avoidance) based on the obstacle 
landscape (vector of obstacle distance inputs received from 
the obstacle distance sensor field). It learns to associate 
obstacle landscape classes to their respective collision risk 
degrees. At every collision events (tc moments) the learning 
process is triggered. In addition to adjust of synaptic 
weights of neurons are adjusted, a new neuron may also be 
inserted in first layer of network. 

The TA network learns to associate classes of target 
direction signals with a suitable target seeking robot 
behavior. The learning process is triggered at every moment 
ta when the robot captures a target (target capture sensors 
detect this kind of event). In the analogous way (considering 
the OD network) a neuron may be inserted to the TA 
network architecture at every target capture moments. 

The TA network learns to associate classes of target 
direction signals with a suitable target seeking robot 
behavior. The learning process is triggered at every moment 
ta when the robot captures a target (target capture sensors 
detect this kind of event). Following the same procedure as 
in both the OD and TA networks, a neuron may be inserted 
to the TD network architecture at every target capture 
moments. 

The details of architecture (neuron models, layers and 
connections) and neural processing are presented in [7]. 
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Fig. 3: Architecture of coordination networks. 

 

IV. PIONEER I MOBILE ROBOT 
Pioneer I mobile robot (Fig. 4) was designed by Dr. Kurt 

Konolige, researcher of Laboratory of Artificial Intelligence 
of University of Stanford. It is manufactured by Real World 
Interface and ActiveMedia. It has seven sonars for detection 
of environment information. Five of them are placed in front 
of robot. The remainder of this sensor is placed on side of 
robot. Three wheels are responsible for locomotion of robot: 
two immovable wheels are placed in front and one mobile 
dorsal that allows the robot to realize rotational movements. 
There are three ways to the robot communicates with a 
computer that controls it, such as transmission via radio, 
TCP/IP connection and via serial connection. 

Software called Saphira keeps up the robot for supporting 
the development of control system for Pioneer robot. It is 
described in Section 4. 

Because the detection of signals by sonars has high 
probability of presenting noises and low accuracy, the robot 
receives a sensor called PLS (Proximity Laser Scanner). It 
has some features that can improves the performance 
navigation, such as, range as 180º, angular resolution as 
0.5º, maximum distance as 50 meter and error as 131 
millimeters. 

The robot and sensor PLS are connected to a computer 
that controls the robot through serial ports.  A DC-DC 
converser to increment the voltage of robot battery that is 
12V to 24V, so sensor PLS operates in this tension level. 

 

 
Fig. 4: Pioneer I mobile robot of LABIC-ICMC-USP. 

V. SAPHIRA SYSTEM 
Saphira system is software that supports the development 

of applications specifically to Pioneer mobile robot control. 
Thus, this system is like architecture for controlling mobile 
robots. It was designed by Stanford Research Institute (SRI) 
International’s Artificial Intelligence Center directed by Dr. 
Kurt Konolige. 

Saphira operates in a client/server environment. The 
Saphira library is a set of routines for building clients. These 
routines perform most of the thankless work of 
communications and housekeeping for the robot server. 
Saphira library integrates a number of useful (Fig. 5) 
functions for sending commands to the server, gathering 
information from the robot’s sensors, and packaging them 
for display in a graphical window-based user interface . In 
addition, Saphira supports higher-level functions for robot 
control and sensor interpretation, including fuzzy-control 
behavior and reactive planning systems, and a map-based 
navigation and registration system. 

The Saphira client expects that the robot has the basic 
components for the robotics sensing and navigation, 
including drive motors and wheels, position encoders, and 
sensors. Saphira also expects that the robot support some, 
albeit little, onboard intelligence to handle the low-level 
details of robot sensor and drive management, and to be 
able to send that information and respond to Saphira 
commands - act as a server - through a special 
communications packet protocol. 



 

Saphira system is composed by two architectures. The 
first, System Architecture, is a set of routines for 
communication and robot controlling to define applicatives. 
The second, Robot Control Architecture, controls navigation 
problems as motors and sensors control and planning and 
objects recognition. Both the architectures are open. Users 
are allowed to rewrite and replace the existents routines or 
add news functions.  

 

 

 Fig. 5: Saphira simulation environment. 

VI. RESULTS 
In this section, a performance comparison between the 

navigation system described in [7] and the extended 
navigation system proposed in this paper is shown. They are 
called RS and SS from now on, respectively. In RS system, 
the environment is ideal and the sensors are simulated, 
hence there are not noises like ones found in real 
environment. Saphira system provides two devices to detect 
the environment signals, such as SICK laser and sonars. 
They are used to detect distance from obstacles. Therefore, 
they correspond to the sensors simulated in RS. Both the 
devices are compared to classes of sensors in RS. Since in 
SS the resolution of SICK laser as 0.5º (as mentioned in 
Section IV), then it has been considered that RS system 
should have 360 obstacle distance sensors. In similar way, 
as SS provides only 7 sonars, the experiments have been 
accomplished, in RS system, using 7 obstacle distance 
sensors. 

A mobile robot simulator is conceived to evaluate the 
approach presented in [7], called RS simulator. There are 
not difficulties in a simulator that are found in real 
environment. On that score RS is implanted in environments 
where there are difficulties of real world. Then it is 
accomplished in SS simulator. The simulation in Saphira is 
the previous stage of tests performed in real time with 
Pioneer robot. 

Some changes are done in signals as they are detected by 
sensors, because the differences between the sensor in RS 
and SS simulators are too significant. The model of robot in 
SS simulator just has sonar and Sick laser sensors. 
However, target direction and target distance sensor are 
similar to robot model in RS. 

In Fig. 6 are shown the environments models in RS and 
RS simulators. Obstacles are represented by dark and clear 
(RS and SS simulators, respectively) rectangles. Targets are 
represented by dark ellipses. The robot is represented by a 
dark triangle. 

The experiments are organized as follow. First, the innate 
modules experiments are presented. After, the coordinate 
neural module is validated. Each experiment is divided in 
four phases. They identify what the simulator and the sensor 
field are used during them. Experiments realized in mobile 
robot simulator and Saphira simulator are referenced as RS 
and SS, respectively. Simulations in RS that use 360 
obstacle sensors and in SS simulator use the Sick laser is 
mentioned as Sick laser. In the same way, the simulations in 
RS and SS simulators using a small amount of obstacle 
sensors (7 sensors) and sonar device is mentioned as sonars. 

Initially, OA and TS modules experiments are presented. 
In OA module, the robot guides avoiding collision, but it is 
not able to reach target. OA module simulations in RS and 
SS, (Fig. 6a and 6b, respectively), use Sick laser as obstacle 
distance sensor. In Fig. 6c and 6d is presented OA module 
simulations in RS and SS, respectively, using sonar sensors 
as obstacle distance sensor. During the simulation, the robot 
explores environments avoiding collisions against obstacles. 
This is observed in Table 1. 
 

    
(a)           (b) 

    
(c)           (d) 

Fig. 6: OA module simulations: (a) RS simulator with Sick 
laser, (b) SS simulator with Sick laser, (c) RS simulator with 

sonars and (d) SS simulator with sonars. 
 

TABLE I 
OA INNATE MODULE PERFORMANCE. 

Simulator environments Collisions 
RS / Sick laser 0 
SS / Sick laser 0 

RS / sonars 0 
SS / sonars 0 

 
In the second experiment is realized TS module 

simulations. In this case, the only robot task is target 
seeking. The obstacles are not considered, then a collision 



 

occurs if there is an obstacle between the robot and the 
target. 

Simulations in the TS module are shown in Fig. 7. Fig. 7a 
and Fig. 7b present TS module simulations in RS and SS, 
respectively, using Sick laser as obstacle distance sensor. TS 
module simulations in RS and SS are seen in Fig. 7c and Fig 
7d, respectively, using sonar sensors as obstacle distance 
sensor. The target seeking task fails, because there is an 
obstacle between the robot and the target. Therefore 
successive collisions occur as is observed in Table 2. 

    
(a)           (b) 

    
(c)           (d) 

Fig. 7: TS module simulations: (a) RS simulator with Sick 
laser, (b) SS simulator with Sick laser, (c) RS simulator with 

sonars and (d) SS simulator with sonars. 
 

TABLE II 
OA INNATE MODULE PERFORMANCE. 

Simulator environments Captures 
RS / Sick laser 0 
SS / Sick laser 0 

RS / sonars 0 
SS / sonars 0 

 
The third component of autonomous navigation system 

(Fig. 2) to validate is the coordination neural module. This 
module is assigned for balancing two innate behaviors: 
obstacle avoidance and target seeking. As the navigation 
proceeds, environment interactions provide the basis for a 
reinforcement learning strategy (described in [7]). After 
learning process period, the robot is able to reach targets 
without collision. Fig. 8 illustrates the environments where 
the coordination neural module simulations are 
accomplished.  There are fifteen targets in each 
environment. During simulation, there is only one target in 
the environment. At capture moments, the target (reached) 
is eliminated and other one is inserted in the environment. 

 

    
             (a)                               (b) 

Fig. 8: Architecture of coordination networks. 
 

     
             (a)                               (b) 

    
             (c)                               (d) 

Fig. 9: Coordination neural module simulations: (a) RS 
simulator with Sick laser, (b) SS simulator with Sick laser, 

(c) RS simulator with sonars and (d) SS simulator with 
sonars. 

 
TABLE III 

COORDINATION NEURAL MODULE PERFORMANCE. 
Simulator environments Captures Collisions 

RS / Sick laser 15 9 
SS / Sick laser 15 11 

RS / sonars 15 10 
SS / sonars 15 12 

   

     
(a) (b) 

 

     
             (c)                               (d) 

Fig. 10: Coordination neural module simulations: (a) RS 
simulator with Sick laser, (b) SS simulator with Sick laser, 

(c) RS simulator with sonars and (d) SS simulator with 
sonars. 



 

 
TABLE IV 

COORDINATION NEURAL MODULE PERFORMANCE. 
Simulator environments Captures Collisions 

RS / Sick laser 15 12 
SS / Sick laser 15 12 

RS / sonars 15 11 
SS / sonars 15 12 

 
In the validation experiments of coordination neural 

module shown in the Fig. 9 and Fig 10, both the RS and SS 
simulators have navigation system performance similar 
(Table 3 and 4). During environment adaptation, the robot 
suffers several collisions and reaching targets stimulates its 
seeking targets behavior. This is fundamental to validate the 
learning strategy adopted in [7]. It means that navigation 
system in [7] is robust and it is ready to be implanted in real 
time system as Pioneer I mobile robot. 

During experiments, there are some difficulties to treat 
sonars signals because they present no accuracy and much 
noise. Repeating the sonars reading process instead of once 
is a solution for this problem. After that, the final reading is 
obtained through the reading arithmetic average. This 
process does not prejudice the extended navigation system 
(proposed in this paper) performance. It also improves 
sonars accuracy. 

Attaching Sick laser to robot provides great performance, 
because this, there are, in the extended system navigation, 
360 reading signals for distance obstacle sensor. The high 
amount of sensorial signals allows real environment to be 
transferred to system navigation. 

This is beginning of simulation results. However, a 
reduction of number of collision when Sick laser is attached 
to robot is expected, so the laser signals have high accuracy. 

VII. CONCLUSIONS AND FUTURE WORKS 
The expectation is very intense for mobile robot 

applications where the environment is unknown. In these 
cases, autonomy is an essential characteristic for robot 
navigation systems. This work describes an autonomous 
navigation system based on a modular neural-fuzzy 
network. The system has two innate behaviors, namely, 
target seeking and obstacle avoidance, but initially it does 
not have ability to balance them. It learns, adopting a 
reinforcement strategy, to coordinate these behaviors from a 
continuous interaction with unknown environment. 
Computer simulations show that as the robot experiences 
some collisions and captures, the system improves its 
navigation strategy and efficiently guides the robot to target. 
This system is applied to Saphira simulator using sonar and 
Sick laser sensors to treat distance obstacle signals. 
Simulation results show that the performance of extended 
navigation system is similar to system in [7]. As innate 
modules presented satisfactory results in SS simulator, the 
learning strategy adopted in [7] is the responsible by the 

good performance obtained by coordination neural module. 
The simulations realized in Saphira simulator is the previous 
stage of tests performed in Pioneer robot. It consolidates the 
approach proposed in [7]. Therefore, as future work, the 
extended navigation system will accomplish in Pioneer 
mobile robot. 
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