
A Fast Method for the Cryptanalysis ofSubstitution CiphersThomas Jakobsen�yJanuary 8, 1995AbstractIt is possible to cryptanalyze simple substitution ciphers (both mono-and polyalphabetic) by using a fast algorithm based on a process wherean initial key guess is re�ned through a number of iterations. In eachstep the plaintext corresponding to the current key is evaluated andthe result used as a measure of how close we are in having discoveredthe correct key.It turns out that only knowledge of the digram distribution of theciphertext and the expected digram distribution of the plaintext isnecessary to solve the cipher. The algorithm needs to compute thedistribution matrix only once and subsequent plaintext evaluation isdone by manipulating this matrix only, and not by decrypting theciphertext and reparsing the resulting plaintext in every iteration.The paper explains the algorithm and it shows some of the resultsobtained with an implementation in Pascal. A generalized version ofthe algorithm can be used for attacking other simple ciphers as well.Keywords: Cryptanalysis, automated cryptanalysis, substitution ci-pher, monoalphabetic cipher, polyalphabetic cipher.1 IntroductionA mono-alphabetic substitution cipher is a cipher where a one-to-onemapping is used to substitute each plaintext symbol with a correspondingciphertext symbol. Often the same set of symbols are used in both plaintext�Address: Sdr. Roesevej 36 st., DK-2791 Dragoer, Denmark.yEmail: T.Jakobsen@mat.dtu.dk 1



and ciphertext. In a polyalphabetic cipher more than one such mappingis used.We assume that the plaintext is in English and thus as plaintext symbolsas well as ciphertext symbols we use the letters A to Z and space. Thus amonoalphabetic key is a permutation of these 27 ciphertext symbols. Theciphertext is obtained from the plaintext by replacing each symbol bythe corresponding ciphertext symbol in the key. We treat space just likea letter. It is substituted during the encryption/decryption and it is alsoused when calculating the digram frequencies. In this way we implicitly geta frequency count on words beginning and ending with a particular letter,namely the \space-letter" and the \letter-space" digram frequencies.2 A sketch of the algorithmThe idea behind the algorithm can be used for ciphertext-only attacks onother simple ciphers as well. The algorithm starts by making an initial guessabout what the key is. This guess can be made on basis of a simple analysisof the ciphertext, it can be based on partial knowledge of the key or it canbe purely random. The more correct symbols in the assumed key, the morequickly the algorithm will converge to a solution.The algorithm then uses this guess as a key to decrypt the ciphertext.The resulting text is probably non-readable, but its contents will have acertain similarity to the expected language of the plaintext depending onhow many correct symbols there were in the guess in the �rst place.In the iterated loop which follows we �rst alter the current key a littlebit, then this key is used to decrypt the ciphertext once again and �nallywe check if the contents of the new resulting text are closer to the expectedlanguage than those of the previously decrypted text. If they are, we keepthe new key for the next iteration, if not the old one is used but modi�ed inanother way next time the loop is run through etc.If we can construct a function which reects \how close" the contents ofa given text are to the expected language we will have a working algorithmwhich successively will �nd more and more correct symbols. We shall laterde�ne such a function.The algorithm will be explained in details only in the case of a monoal-phabetic cipher. It is straightforward to generalize to a polyalphabetic cipher- assuming that the number of alphabets used has already been determinedby some standard method, for example the Kasiski test or the index of2



coincidence.The initial guess will be based upon the symbol frequencies of the ci-phertext. Let us say that the plaintext is in English. Average English has acertain distribution of letters (space, E, T, A, O, N as the most frequent, inthat order) and thus our initial guess is that the most common ciphertextsymbol is equivalent to space, the second most common is equivalent to Eetc.We now need a function, f(t), which maps a text, t, into a numbermeasuring \how close" the language of t is to the expected language of theplaintext, i.e., a function we can use for describing how close we are to havingrecovered the original plaintext. But �rst let us introduce some notation.Let m denote the plaintext, c the ciphertext, and ek(t) the encryptionfunction where k is the key used, so that c = ek(m). Correspondingly wehave the decryption function dk(t) = e�1k (t).We de�ne D(t) as the matrix in which the elements are the digramfrequencies of a given text t. The row headings are the �rst symbols of thedigram and the column headings are the second symbols.E denotes a matrix containing the expected digram frequencies of thelanguage in which we assume the plaintext is written. Digram frequen-cies for English can be obtained from several works, including [4] and [7].We, however, compiled our own table using 30000 characters of text fromMelville's Moby Dick [6]. Obviously it is better to have statistics which areclose to those of the plaintext but provided enough ciphertext is available,it appears that the accuracy doesn't greatly a�ect the performance of thealgorithm.Now we can de�ne the evaluation function, f(t), by the equationf(t) =Xi;j jDij(t)�Eijj: (1)In other words the function is simply the sum of the numerical di�erencesof all corresponding elements in the two digram frequency matrices. Intu-itively this measure is straightforward and easy to understand, and as weshall see later a variant of this function will in fact under some assumptionsyield the maximum likelihood key.We shall use f(d(c; k)) to measure how \good" the key, k, is, that is howclose it is to the correct key. Hopefully the more correct the key, the lowerthis value will be. Fig. 1 shows f(d(c; k)) as a function of an increasinglymore inaccurate (random) key during monoalphabetic substitution. Herewe used 1000 characters of text from Alice in Wonderland [3] as ciphertext.3



5 10 15 20 251

1.10

1.45

Number of incorrect
symbols in the key, k

f(d(c,k))

Figure 1: f(d(c; k)) as a function of an increasingly more inaccurate key.Now we can state the main parts of the algorithm more formally.Algorithm 1:1. Construct an initial key guess, k, based upon the symbolfrequencies of the expected language and the ciphertext.2. Let v = f(d(c; k)).3 Let k0 = k.4. Change k0 by swapping two elements, � and �, in k0.5. Let v0 = f(d(c; k0)).6. If v0 < v then let v = v0 and let k = k0.7. Go to step 3.Here k is the best key so far and v is the corresponding value of f(d(c; k)).The algorithm is terminated when the expression v0 < v hasn't been truefor a number of iterations, say one hundred.Remark that the exact meaning of \exchanging two elements" in step 4is not clear yet, but it will be explained later. For now just assume that weexchange two random key elements. Of course this does not prove to be avery good strategy, though it will work.Remark also that the calculation of f(d(c; k0)) is a very time-consumingoperation, because we have to compute D(d(c; k0)) each time it is evaluated- this requires the decryption of the whole ciphertext and an analysis to4



�nd the corresponding distribution matrix. This problem is solved in thefollowing section.3 A fast approachJust after step 5 in Algorithm 1 we havev0 = f(d(c; k0)) =Xi;j jDij(d(c; k0))�Eij j =Xi;j jD0ij(d(c; k)) �Eij j;where D0(t) is the distribution matrix, D(t), for t with the modi�cation thatrows � and � have been swapped after which columns � and � have beenswapped (or equivalently swapping the columns �rst, then the rows).The above fact can be used to optimize the algorithm so that we haveto parse the text only once to �nd the distribution matrix. We are now ableto give a more detailed description of the optimized algorithm.Algorithm 2:1. Construct an initial key guess, k, based upon the symbolfrequencies of the expected language and the ciphertext.2. Let D = D(d(c; k)).3. Let v =Pi;j jDij �Eijj.4. Let k0 = k.5. Let D0 = D.6. Swap two elements, � and �, in k0.7. Exchange the corresponding rows in D0.Exchange the corresponding columns in D0.8. Let v0 =Pi;j jD0ij �Eijj.9. If v0 >= v then go to step 4.10. Let v = v0.11. Let k = k0.12. Let D = D0.13. Go to step 6.Again k is the best key until now, v the corresponding value of f(d(c; k)),and D its digram distribution matrix.This algorithm is considerably faster because the text is analyzed onlyonce. Apparently the only thing we need to cryptanalyze a substitutioncipher is the digram distribution matrix.5



The strategy used to choose the two elements, � and �, is described inthe following. Let s denote the vector of ciphertext symbols ranked in orderof descending frequency. Then s1 will most likely represent space, s2 theletter E etc. Now add the following steps to algorithm 2:Before step 10. Let a = b = 1.Instead of step 6 we use6a. Let � = sa and � = sa+b. Swap the symbols � and � in k0.6b. Let a = a+ 1.6c. If a+ b <= 27 then go to step 7.6d. Let a = 1.6e. Let b = b+ 1.6f. If b = 27 then terminate algorithm.After step 9 the following step is added9b. Let a = b = 1.In this way the frequencies of the key elements �rst swapped in k willbe close to each other; �rst we try to exchange s1=s2, s2=s3, s3=s4, ...,s26=s27, then s1=s3, s2=s4, s3=s5, ..., s25=s27, then s1=s4, s2=s5, s3=s6, ...,s24=s27 etc., and �nally s1=s27 - the pair with the largest di�erence regardingsymbol frequency.4 Polyalphabetic ciphersFor polyalphabetic ciphers with n alphabets the above algorithm is extendedso that instead of one alphabet we have several. The algorithm is roughlythe same. The n alphabets are treated cyclically one at a time, so thatonly one alphabet is \active" at a given moment. We proceed in the sameway as described for monoalphabetic ciphers, the di�erence being that eachalphabet is now assigned its own individual set of the variables a, b, k, k0, v,and s, and we have to use n distributionmatrices, D(1),..., D(n), each keepingtrack of the digrams beginning at the positions in the text encrypted by therespective alphabet.Also to update the frequencies properly, instead of step 7, we exchangethe rows � and � of the distribution matrix of the current active alphabet,6



and the columns � and � of the distribution matrix of the previous activealphabet.The evaluation function becomesf(t) = nXh=1Xi;j jD(h)ij (t)�Eij j;and instead of terminating in step 6f if b = 27, we let b = 1. We terminatethe algorithm when all the symbol pairs of all the alphabets are exhaustedwithout �nding any two symbols to swap and at the same time lowering theevaluation value.5 Maximum likelihoodIf we make the assumption that the digram frequencies of a language areindependent and that each one follows a Gaussian distribution with mean�ij = Eij and variance �2ij for all i, j, and if the algorithm does not getstuck in local minima (that is, if it actually does minimize the evaluationfunction) then we can �nd an evaluation function that results in a maximumlikelihood key with respect to the digram distribution.For a maximum likelihood attack our job will be to maximizeq =Yi;j 1�ijp2�e� (Dij��ij )22�2ij = rYi;j e� (Dij�Eij )22�2ij ;r being a constant. Here the optimization is done by permuting pairs ofcorresponding rows and columns in D. Maximizing the above expression isequivalent to minimizing the following� ln q = � ln r + 12Xi;j (Dij �Eij)2�2ij ;which in turn is the same as minimizingXi;j (Dij �Eij)2�2ij : (2)When we did in fact not choose the above function as evaluation func-tion it was because we were not in possession of the �ij-values of English7



language. However, if the above mentioned assumptions hold, then using(2) should result in a more accurate algorithm (albeit perhaps slower due tothe extra multiplications.)It should be mentioned that the general problem of minimizing (1) or(2) given D and E can easily be shown to be at least as hard as the graphisomorphism problem (consider the incidence matrices of the two graphs)but apparently when the plaintext is human language, cryptanalysis is quitefeasible.As evaluation functions we also tried to use f(t) = Pi;jqjDij(t)�Eij jand the obvious candidate f(t) =Pi;j(Dij(t)�Eij)2 but it showed up thatgenerally these perform much worse than (1).6 ResultsFig. 2 shows how successful the algorithm was in attacking texts of variouslengths encrypted using both mono- and polyalphabetic substitution and arandom key. Again as reference text (used to create the expected digramfrequency matrix) we used 30000 characters of text from Moby Dick [6] andas ciphertext ten excerpts from Alice in Wonderland [3]. The graph depictsthe average percentage of ciphertext correctly solved as a function of thetext length.For monoalphabetic substitution the number of iterations executed be-fore the algorithm terminates ranges from about 150 to about 1500, depend-ing on how much ciphertext is available. With �ve alphabets the number ofiterations seldom exceeds 15000.The algorithm seems to do better than the Carroll-Robbins algorithm [2]both regarding speed and accuracy in spite of its simplicity. In one instancethe Carroll-Robbins implementation which was made in C running underXenix on an IBM-PC/AT, used 20 minutes to decrypt a polyalphabeticcipher with three alphabets. The King-Bahler implementation [5] whichuses probabilistic relaxation to cryptanalyze monoalphabetic ciphers had anaverage run-time of 13 CPU minutes on a HP3000 series 960.The strength of the presented algorithm regarding speed lies in that welook through the text just once. In fact on an IBM-compatible PC (486, 33MHz) the time used to cryptanalyze a monoalphabetic cipher ranges fromonly half a second to no more than a couple of seconds.Using a 400 character long ciphertext encrypted by monoalphabetic sub-stitution the Carroll-Robbins approach succeeds in correctly recovering 24%8



Length of

ciphertext

Percentage of ciphertext

correctly solved

80

70

60

50

40

30

20

10

90

100

100 200 400 500 600 700 800 900300 1000

4 alphabets
5 alphabets

1 alphabet

2 alphabets

3 alphabets

Figure 2: The percentage of text correctly solved as a function of the length.of the ciphertext symbols whereas 93% of the text was correctly resolved us-ing the King-Bahler algorithm (according to [2] and [5]). Using the methoddescribed in this paper resolved 98% of the text.The software implementation was made using Turbo Pascal from Bor-land. The source code can be obtained on request from the author. It isalso available in C.7 ConclusionThe algorithm is quite fast compared to earlier results and it succeeds incryptanalyzing relatively small texts though the lengths of solved texts arealways much larger than the unicity distance of the ciphers we are dealingwith.As mentioned, the generalized version of the algorithm (Algorithm 1)can be applied to other simple ciphers although it is probably not possibleto optimize it so that one can avoid reparsing the text in each iteration (likein Algorithm 2). Algorithm 1, however, is applicable whenever it is possibleto construct a \closeness"-function. Normally this is obtainable only forciphers where a small change in the key produces a small change in theciphertext. Therefore this approach is not immediately useful for attacking9



the more modern type of encryption algorithms (IDEA, DES, etc.)Finally it should be noted, that there is room for other small improve-ments as well, such as using a better method for deciding which pairs toswap. Also we might improve the evaluation function so that it not onlydepends on digrams, but perhaps also on trigrams, probable words and soon.References[1] Carroll, J. M. and S. Martin. 1986. The Automated Cryptanalysis ofSubstitution Ciphers. Cryptologia. 10(4): 193-209.[2] Carroll, J. M. and L. Robbins. 1987. The Automated Cryptanalysis ofPolyalphabetic Ciphers. Cryptologia. 11(4): 193-205.[3] Carroll, L. 1991. Alice in Wonderland. Project Gutenberg1.[4] Gaines, H. F. 1956. Cryptanalysis. New York: Dover Publications.[5] King, J. C. and D. R. Bahler. 1992. Probabilistic Relaxation in Crypt-analysis. Cryptologia. 16(3): 215-225.[6] Melville, H. 1991. Moby Dick. Project Gutenberg (converted to etext byProfessor Eugene F. Irey at the University of Colorado).[7] Sinkov, A. 1966. Elementary Cryptanalysis. The Mathematical Associa-tion of America.8 AcknowledgementsThanks must go to Frank Nielsen from the Mathematical Institute at TheTechnical University of Denmark for commenting on this text and to BrianJ. Winkel for being so patient.9 Biographical sketchThomas Jakobsen, 23, is currently an undergraduate at The Technical Uni-versity of Denmark. His main interests are computer science, cryptology1The Project Gutenberg �les are available on the Internet via anonymous ftp tomrcnext.cso.uiuc.edu. 10



and mathematics. This term he studies at the Institute of Signal Processingat the Swiss Federal Institute of Technology, Zurich. He hopes to do hismaster's thesis in cryptology.

11


