Deep Learning with Denoising Autoencoders

Pascal Vincent,

Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol

Université de Montréal, LISA Lab

2008-03-25

The problem

- Building good predictors on complex domains means learning complicated functions.
- These are best represented by multiple levels of non-linear operations i.e. deep architectures.
- Learning the parameters of deep architectures proved to be challenging!

- **Solution 1**: initialize at random, and do gradient descent (Rumelhart et al., 1986).
 - \rightarrow disappointing performance. Stuck in poor solutions.
- Solution 2: Deep Belief Nets (Hinton et al., 2006): initialize by stacking Restricted Boltzmann Machines, fine-tune with Up-Down.
 → impressive performance.
 - Key seems to be good unsupervised layer-by-layer initialization
- Solution 3: initialize by stacking autoencoders, fine-tune with gradient descent. (Bengio et al., 2007; Ranzato et al., 2007)
 → Simple generic procedure, no sampling required.
 Performance almost as good as Solution 2
- ...but not quite. Can we do better?

- **Solution 1**: initialize at random, and do gradient descent (Rumelhart et al., 1986).
 - → disappointing performance. Stuck in poor solutions.
- Solution 2: Deep Belief Nets (Hinton et al., 2006): initialize by stacking Restricted Boltzmann Machines, fine-tune with Up-Down.
 → impressive performance.

Key seems to be good unsupervised layer-by-layer initialization...

- Solution 3: initialize by stacking autoencoders, fine-tune with gradient descent. (Bengio et al., 2007; Ranzato et al., 2007)
 → Simple generic procedure, no sampling required.
 Performance almost as good as Solution 2
- ...but not quite. Can we do better?

- **Solution 1**: initialize at random, and do gradient descent (Rumelhart et al., 1986).
 - \rightarrow disappointing performance. Stuck in poor solutions.
- Solution 2: Deep Belief Nets (Hinton et al., 2006): initialize by stacking Restricted Boltzmann Machines, fine-tune with Up-Down.
 → impressive performance.

Key seems to be good unsupervised layer-by-layer initialization...

Solution 3: initialize by stacking autoencoders, fine-tune with gradient descent. (Bengio et al., 2007; Ranzato et al., 2007)
 → Simple generic procedure, no sampling required.
 Performance almost as good as Solution 2

... but not quite. Can we do better?

- Solution 1: initialize at random, and do gradient descent (Rumelhart et al., 1986).
 - → disappointing performance. Stuck in poor solutions.
- Solution 2: Deep Belief Nets (Hinton et al., 2006): initialize by stacking Restricted Boltzmann Machines, fine-tune with Up-Down.
 → impressive performance.

Key seems to be good unsupervised layer-by-layer initialization...

Solution 3: initialize by stacking autoencoders, fine-tune with gradient descent. (Bengio et al., 2007; Ranzato et al., 2007)
 → Simple generic procedure, no sampling required.
 Performance almost as good as Solution 2

...but not quite. Can we do better?

Can we do better?

Open question: what would make a good unsupervised criterion for finding good initial intermediate representations?

- Inspiration: our ability to "fill-in-the-blanks" in sensory input.
 missing pixels, small occlusions, image from sound, ...
- Good fill-in-the-blanks performance ← distribution is well captured.
- → old notion of associative memory (motivated Hopfield models (Hopfield, 1982))

What we propose:

unsupervised initialization by explicit fill-in-the-blanks training.

- Clean input x ∈ [0,1]^d is partially destroyed, yielding corrupted input: x̃ ~ q_D(x̃|x).
- $\tilde{\mathbf{x}}$ is mapped to hidden representation $\mathbf{y} = f_{\theta}(\tilde{\mathbf{x}})$.
- From **y** we reconstruct a $\mathbf{z} = g_{\theta'}(\mathbf{y})$.
- Train parameters to minimize the cross-entropy "reconstruction error"

- Clean input $\mathbf{x} \in [0,1]^d$ is partially destroyed, yielding corrupted input: $\tilde{\mathbf{x}} \sim q_{\mathcal{D}}(\tilde{\mathbf{x}}|\mathbf{x})$.
- $\tilde{\mathbf{x}}$ is mapped to hidden representation $\mathbf{y} = f_{\theta}(\tilde{\mathbf{x}})$.
- From **y** we reconstruct a $\mathbf{z} = g_{\theta'}(\mathbf{y})$.
- Train parameters to minimize the cross-entropy "reconstruction error"

- Clean input $\mathbf{x} \in [0,1]^d$ is partially destroyed, yielding corrupted input: $\tilde{\mathbf{x}} \sim q_{\mathcal{D}}(\tilde{\mathbf{x}}|\mathbf{x})$.
- $\tilde{\mathbf{x}}$ is mapped to hidden representation $\mathbf{y} = f_{\theta}(\tilde{\mathbf{x}})$.
- From **y** we reconstruct a $\mathbf{z} = g_{\theta'}(\mathbf{y})$.
- Train parameters to minimize the cross-entropy "reconstruction error"

- Clean input $\mathbf{x} \in [0,1]^d$ is partially destroyed, yielding corrupted input: $\tilde{\mathbf{x}} \sim q_{\mathcal{D}}(\tilde{\mathbf{x}}|\mathbf{x})$.
- $\tilde{\mathbf{x}}$ is mapped to hidden representation $\mathbf{y} = f_{\theta}(\tilde{\mathbf{x}})$.
- From **y** we reconstruct a $\mathbf{z} = g_{\theta'}(\mathbf{y})$.
- Train parameters to minimize the cross-entropy "reconstruction error"

- Clean input $\mathbf{x} \in [0,1]^d$ is partially destroyed, yielding corrupted input: $\tilde{\mathbf{x}} \sim q_{\mathcal{D}}(\tilde{\mathbf{x}}|\mathbf{x})$.
- $\tilde{\mathbf{x}}$ is mapped to hidden representation $\mathbf{y} = f_{\theta}(\tilde{\mathbf{x}})$.
- From **y** we reconstruct a $\mathbf{z} = g_{\theta'}(\mathbf{y})$.
- Train parameters to minimize the cross-entropy "reconstruction error"

The input corruption process $q_{\mathcal{D}}(\tilde{\mathbf{x}}|\mathbf{x})$

- Choose a fixed proportion ν of components of **x** at random.
- Reset their values to 0.
- Can be viewed as replacing a component considered missing by a default value.

Other corruption processes could be considered.

Form of parameterized mappings

We use standard sigmoid network layers:

•
$$\mathbf{y} = f_{\theta}(\tilde{\mathbf{x}}) = \operatorname{sigmoid}(\underbrace{\mathbf{W}}_{d' \times d} \tilde{\mathbf{x}} + \underbrace{\mathbf{b}}_{d' \times 1})$$

•
$$g_{\theta'}(\mathbf{y}) = \operatorname{sigmoid}(\underbrace{\mathbf{W}'}_{d \times d'} \mathbf{y} + \underbrace{\mathbf{b}'}_{d \times 1}).$$

Denoising using autoencoders was actually introduced much earlier (LeCun, 1987; Gallinari et al., 1987), as an alternative to Hopfield networks (Hopfield, 1982).

Form of parameterized mappings

We use standard sigmoid network layers:

•
$$\mathbf{y} = f_{\theta}(\tilde{\mathbf{x}}) = \operatorname{sigmoid}(\underbrace{\mathbf{W}}_{d' \times d} \tilde{\mathbf{x}} + \underbrace{\mathbf{b}}_{d' \times 1})$$

•
$$g_{\theta'}(\mathbf{y}) = \operatorname{sigmoid}(\underbrace{\mathbf{W}'}_{d \times d'} \mathbf{y} + \underbrace{\mathbf{b}'}_{d \times 1}).$$

Denoising using autoencoders was actually introduced much earlier (LeCun, 1987; Gallinari et al., 1987), as an alternative to Hopfield networks (Hopfield, 1982).

- **1** Learn first mapping f_{θ} by training as a denoising autoencoder.
- ② Remove scaffolding. Use f_{θ} directly on input yielding higher level representation.
- Learn next level mapping $f_{\theta}^{(2)}$ by training denoising autoencoder on current level representation.
- Iterate to initialize subsequent layers.

- **1** Learn first mapping f_{θ} by training as a denoising autoencoder.
- **②** Remove scaffolding. Use f_{θ} directly on input yielding higher level representation.
- **1** Learn next level mapping $f_{\theta}^{(2)}$ by training denoising autoencoder on current level representation.
- Iterate to initialize subsequent layers

Learning deep networks Layer-wise initialization

- **1** Learn first mapping f_{θ} by training as a denoising autoencoder.
- **②** Remove scaffolding. Use f_{θ} directly on input yielding higher level representation.
- **②** Learn next level mapping $f_{\theta}^{(2)}$ by training denoising autoencoder on current level representation.
- Iterate to initialize subsequent layers

- **1** Learn first mapping f_{θ} by training as a denoising autoencoder.
- **②** Remove scaffolding. Use f_{θ} directly on input yielding higher level representation.
- **1** Learn next level mapping $f_{\theta}^{(2)}$ by training denoising autoencoder on current level representation.
- Iterate to initialize subsequent layers

- **1** Learn first mapping f_{θ} by training as a denoising autoencoder.
- **②** Remove scaffolding. Use f_{θ} directly on input yielding higher level representation.
- **1** Learn next level mapping $f_{\theta}^{(2)}$ by training denoising autoencoder on current level representation.
- Iterate to initialize subsequent layers.

- **1** Learn first mapping f_{θ} by training as a denoising autoencoder.
- **②** Remove scaffolding. Use f_{θ} directly on input yielding higher level representation.
- **1** Learn next level mapping $f_{\theta}^{(2)}$ by training denoising autoencoder on current level representation.
- Iterate to initialize subsequent layers.

- **1** Learn first mapping f_{θ} by training as a denoising autoencoder.
- **②** Remove scaffolding. Use f_{θ} directly on input yielding higher level representation.
- **1** Learn next level mapping $f_{\theta}^{(2)}$ by training denoising autoencoder on current level representation.
- Iterate to initialize subsequent layers.

- Initial deep mapping was learnt in an unsupervised way.
- → initialization for a supervised task.
- Output layer gets added.
- Global fine tuning by gradient descent on supervised criterion.

Supervised fine-tuning

- Initial deep mapping was learnt in an unsupervised way.
- → initialization for a supervised task.

Learning deep networks Supervised fine-tuning

 Initial deep mapping was learnt in an unsupervised way.

- → initialization for a supervised task.
- Output layer gets added.
- Global fine tuning by gradient descent on supervised criterion.

Perspectives on denoising autoencoders Manifold learning perspective

Denoising autoencoder can be seen as a way to learn a manifold:

- Suppose training data (x) concentrate near a low-dimensional manifold.
- Corrupted examples (•) are obtained by applying corruption process $q_{\mathcal{D}}(\widetilde{X}|X)$ and will lie farther from the manifold.
- The model learns with $p(X|\widetilde{X})$ to "project them back" onto the manifold.
- Intermediate representation *Y* can be interpreted as a coordinate system for points on the manifold.

Perspectives on denoising autoencoders

Information theoretic perspective

- Consider $X \sim q(X)$, q unknown. $\widetilde{X} \sim q_{\mathcal{D}}(\widetilde{X}|X)$. $Y = f_{\theta}(\widetilde{X})$.
- It can be shown that minimizing the expected reconstruction error amounts to maximizing a lower bound on mutual information I(X; Y).
- Denoising autoencoder training can thus be justified by the objective that hidden representation Y captures as much information as possible about X even as Y is a function of corrupted input.

Perspectives on denoising autoencoders

Generative model perspective

 Denoising autoencoder training can be shown to be equivalent to maximizing a variational bound on the likelihood of a generative model for the corrupted data.

Benchmark problems

Variations on MNIST digit classification

basic: subset of original MNIST digits: 10 000 training samples, 2 000 validation samples, 50 000 test samples.

rot: applied random rotation (angle between 0 and 2π radians)

bg-img: background is random patch from one of 20 images

bg-rand: background made of random pixels (value in 0...255)

rot-bg-img: combination of rotation and background image

Benchmark problems

Shape discrimination

• rect: discriminate between tall and wide rectangles on black background.

- rect-img: borderless rectangle filled with random image patch. Background is a different image patch.
- convex: discriminate between convex and non-convex shapes.

Experiments

We compared the following algorithms on the benchmark problems:

- SVM_{rbf}: suport Vector Machines with Gaussian Kernel.
- DBN-3: Deep Belief Nets with 3 hidden layers (stacked Restricted Boltzmann Machines trained with contrastive divergence).
- SAA-3: Stacked Autoassociators with 3 hidden layers (no denoising).
- SdA-3: Stacked Denoising Autoassociators with 3 hidden layers.

Hyper-parameters for all algorithms were tuned based on classification performance on validation set. (In particular hidden-layer sizes, and ν for SdA-3).

Results

Dataset	SVM _{rbf}			SdA-3 (ν)
basic	3.03±0.15	3.11±0.15	3.46±0.16	2.80±0.14 (10%)
rot	11.11±0.28			10.29 _{±0.27} (10%)
bg-rand	14.58±0.31	6.73±0.22	11.28±0.28	10.38±0.27 (40%)
bg-img	22.61±0.37			16.68±0.33 (25%)
rot-bg-img	55.18±0.44	47.39±0.44	51.93±0.44	44.49 _{±0.44} (25%)
rect	2.15±0.13	2.60±0.14	2.41±0.13	$1.99_{\pm 0.12} \; (10\%)$
rect-img	24.04±0.37	22.50±0.37	24.05±0.37	21.59±0.36 (25%)
convex	19.13±0.34	18.63±0.34	18.41±0.34	19.06±0.34 (10%)

Results

Dataset	SVM _{rbf}	DBN-3	SAA-3	SdA-3 (u)
basic	3.03±0.15	3.11±0.15	3.46±0.16	2.80±0.14 (10%)
rot	$11.11{\scriptstyle\pm0.28}$			$10.29_{\pm0.27} \ (10\%)$
bg-rand	14.58±0.31	6.73±0.22	11.28±0.28	10.38±0.27 (40%)
bg-img	22.61±0.37	16.31±0.32	23.00±0.37	16.68±0.33 (25%)
rot-bg-img	55.18±0.44	47.39 _{±0.44}	51.93±0.44	44.49 _{±0.44} (25%)
	2.15±0.13			
	24.04±0.37			
convex	19.13±0.34	18.63±0.34	18.41±0.34	19.06±0.34 (10%)

Results

Dataset	SVM _{rbf}			SdA-3 (ν)
basic	3.03±0.15	3.11±0.15	3.46±0.16	2.80±0.14 (10%)
rot	11.11±0.28			10.29 _{±0.27} (10%)
bg-rand	14.58±0.31			10.38±0.27 (40%)
bg-img	22.61±0.37			16.68±0.33 (25%)
rot-bg-img	55.18±0.44	47.39±0.44	51.93±0.44	44.49 _{±0.44} (25%)
rect	2.15±0.13	2.60±0.14	2.41±0.13	$1.99_{\pm 0.12} \; (10\%)$
rect-img	24.04±0.37	22.50±0.37	24.05±0.37	21.59±0.36 (25%)
convex	19.13±0.34	18.63±0.34	18.41±0.34	19.06±0.34 (10%)

Performance comparison Results

Dataset	SVM _{rbf}	DBN-3	SAA-3	SdA-3 (ν)
basic	3.03±0.15			2.80 _{±0.14} (10%)
rot	11.11±0.28			10.29 _{±0.27} (10%)
bg-rand	14.58±0.31			10.38±0.27 (40%)
bg-img	22.61±0.37			16.68±0.33 (25%)
rot-bg-img	55.18±0.44	47.39±0.44	51.93±0.44	44.49 _{±0.44} (25%)
rect	2.15±0.13	2.60±0.14	2.41±0.13	$1.99_{\pm0.12}\;(10\%)$
rect-img	24.04 _{±0.37}	22.50±0.37	24.05±0.37	21.59±0.36 (25%)
convex	19.13±0.34	18.63±0.34	18.41±0.34	19.06±0.34 (10%)

Performance comparison Results

Dataset	SVM _{rbf}	DBN-3	SAA-3	SdA-3 (u)
basic	3.03±0.15	$3.11{\scriptstyle \pm 0.15}$	3.46±0.16	2.80±0.14 (10%)
rot	11.11±0.28	10.30±0.27	10.30±0.27	10.29 _{±0.27} (10%)
bg-rand	14.58±0.31	6.73±0.22	11.28±0.28	10.38±0.27 (40%)
bg-img	22.61±0.37	16.31±0.32	23.00±0.37	16.68±0.33 (25%)
rot-bg-img	55.18±0.44	47.39 _{±0.44}	51.93±0.44	44.49 _{±0.44} (25%)
rect	2.15±0.13	2.60 _{±0.14}	2.41±0.13	$1.99_{\pm0.12}\;(10\%)$
rect-img	24.04±0.37	22.50±0.37	24.05±0.37	21.59 _{±0.36} (25%)
convex	19.13±0.34	18.63±0.34	18.41±0.34	19.06±0.34 (10%)

Performance comparison Results

Dataset	SVM _{rbf}	DBN-3	SAA-3	SdA-3 (u)	
basic	3.03±0.15	$3.11{\scriptstyle \pm 0.15}$	$3.46{\scriptstyle \pm 0.16}$	$2.80_{\pm 0.14} \ (10\%)$	
rot	11.11±0.28	10.30±0.27	10.30±0.27	10.29 _{±0.27} (10%)	
bg-rand	14.58±0.31	6.73±0.22	11.28±0.28	10.38±0.27 (40%)	
bg-img	22.61±0.37	16.31±0.32	23.00±0.37	16.68±0.33 (25%)	
rot-bg-img	55.18±0.44	47.39 _{±0.44}	51.93 _{±0.44}	44.49 _{±0.44} (25%)	
rect	2.15±0.13	2.60 _{±0.14}	2.41 _{±0.13}	$1.99_{\pm0.12}~(10\%)$	
rect-img	24.04±0.37	22.50±0.37	24.05±0.37	21.59 _{±0.36} (25%)	
convex	19.13±0.34	18.63±0.34	18.41±0.34	19.06±0.34 (10%)	

Dataset	SVM _{rbf}	DBN-3	SAA-3	SdA-3 (ν)
basic	3.03±0.15	$3.11{\scriptstyle \pm 0.15}$	$3.46{\scriptstyle \pm 0.16}$	2.80 _{±0.14} (10%)
rot	11.11±0.28	10.30±0.27	10.30 _{±0.27}	10.29 _{±0.27} (10%)
bg-rand	14.58±0.31	6.73±0.22	11.28±0.28	10.38±0.27 (40%)
bg-img	22.61±0.37	16.31±0.32	23.00±0.37	16.68±0.33 (25%)
rot-bg-img	55.18±0.44	47.39 _{±0.44}	51.93 _{±0.44}	44.49 _{±0.44} (25%)
rect	2.15±0.13	2.60 _{±0.14}	2.41 _{±0.13}	1.99 _{±0.12} (10%)
rect-img	24.04±0.37	22.50±0.37	24.05±0.37	21.59 _{±0.36} (25%)
convex	19.13±0.34	18.63±0.34	18.41 _{±0.34}	19.06±0.34 (10%)

Conclusion and future work

- Unsupervised initialization of layers with an explicit denoising criterion appears to help capture interesting structure in the input distribution.
- This leads to intermediate representations much better suited for subsequent learning tasks such as supervised classification.
- Resulting algorithm for learning deep networks is simple and improves on state-of-the-art on benchmark problems.
- Future work will investigate the effect of different types of corruption process.

THANK YOU!

Dataset	SVM _{rbf}	SVM _{poly}	DBN-1	DBN-3	SAA-3	SdA-3 (u)
basic	3.03±0.15	3.69±0.17	3.94±0.17	3.11±0.15	3.46±0.16	2.80±0.14 (10%)
rot	11.11±0.28	15.42±0.32	14.69±0.31	10.30±0.27	10.30±0.27	10.29±0.27 (10%)
bg-rand	14.58±0.31	16.62±0.33	9.80±0.26	6.73±0.22	11.28±0.28	10.38±0.27 (40%)
bg-img	22.61±0.37	24.01±0.37	16.15±0.32	16.31±0.32	23.00±0.37	16.68±0.33 (25%)
rot-bg-img	55.18±0.44	56.41±0.43	52.21±0.44	47.39±0.44	51.93±0.44	44.49±0.44 (25%)
rect	2.15±0.13	2.15±0.13	4.71±0.19	2.60±0.14	2.41±0.13	1.99±0.12 (10%)
rect-img	24.04±0.37	24.05±0.37	23.69±0.37	22.50±0.37	24.05±0.37	21.59±0.36 (25%)
convex	19.13±0.34	19.82±0.35	19.92±0.35	18.63±0.34	18.41±0.34	19.06±0.34 (10%)

red when confidence intervals overlap.

References

- Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. *Advances in Neural Information Processing Systems* 19 (pp. 153–160). MIT Press.
- Gallinari, P., LeCun, Y., Thiria, S., & Fogelman-Soulie, F. (1987). Memoires associatives distribuees. *Proceedings of COGNITIVA 87*. Paris, La Villette.
- Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. *Neural Computation*, 18, 1527–1554.
- Hopfield, J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, USA, 79.
- LeCun, Y. (1987). *Modèles connexionistes de l'apprentissage*. Doctoral dissertation, Université de Paris VI.
- Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2007). Efficient learning of sparse representations with an energy-based model. Advances in Neural Information Processing Systems (NIPS 2006). MIT Press.
- Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by back-propagating errors. *Nature*, 323, 533–536.