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Abstract

This paper gives a survey on cryptographic primitives based on class groups of imaginary
quadratic orders (IQ cryptography, IQC). We present IQC versions of several well known crypto-
graphic primitives, and we explain, why these primitives are secure if one assumes the hardness
of the underlying problems. We give advice on the selection of the cryptographic parameters and
show the impact of this advice on the efficiency of some I1Q cryptosystems.

1 Introduction

The term IQ cryptography (IQC) refers to cryptography based on class groups of imaginary quadratic
orders. IQC has been invented in 1988 [6]. Therefore, IQC is of about the same age as ECC (elliptic
curve cryptography) [23, 18], yet IQC didn’t get the same attention. What was most lacking was a
comprehensive guide for using IQC. That is, there is still no formal document that describes how to
select the cryptographic parameters and which cryptographic schemes to use. Advice on the selection
of the cryptographic parameters for IQC has been given in [14]; a summary of some results of that
paper has been included in this work. The aim of this paper is to present IQC versions of some
well known cryptographic schemes, to describe the algorithms that can be used for the underlying
arithmetic, and to discuss the performance of IQC schemes using those algorithms. Thus, this paper
is another step towards a standardization of IQC.

Although class groups are ordinary finite abelian groups, some cryptographic schemes based on
discrete logarithms can’t be used with class groups in a straight forward way. The reason is that the
order of class groups (or odd divisors thereof) can’t be computed efficiently. However, some discrete
logarithm based cryptographic schemes, for example any signature scheme of ElGamal type, require
the knowledge of the group order. In order to use these schemes, it is necessary to modify them. In
this paper we present such modifications for DSA. It also turns out that class groups are well suited
for the Guillou-Quisquater signature scheme.

Finally, the performance of IQ cryptosystems has never been compared to the performance of
established cryptosystems. Since the performance depends on the size of the cryptographic parameter,
which in turn depends on the desired security level, the selection of the cryptographic parameter had
to be investigated first. This has been done in [14]. In this paper first realistic benchmarks for 1Q
cryptosystems are presented, where the cryptographic parameter has been chosen of such a size that
solving the discrete logarithm problem in the class group is about as hard as solving the integer
factoring problem for integers of certain size. The result is that 1Q cryptosystems appear to be
practical. Since comparably little reserach has been spent on efficient 1Q arithmetic, it is reasonable
to expect significant improvements in this area in the future.

This paper is organized as follows: Sect. 2 recalls some relevant facts and notations from the
theory of imaginary quadratic number fields. In Sect. 3 we discuss the computational problems on
which IQ cryptosystems are based, and we discuss some properties of class groups that are relevant
to cryptographic applications. In Sect. 4 we present 1Q versions of some well known cryptographic
schemes. Finally, in Sect. 5 we present benchmarks for an 1QC variant of DSA and compare them
with benchmarks of traditional cryptosystems.
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2 Basic notation

We shall briefly recall some notations that we shall use in the sequel (see [16] or [4] for full details).
Let A be a negative integer such that A = 0,1 (mod 4). Then the ring Op = Z + (A + VA) /27 is
an imaginary quadratic order of discriminant A. Its field of fractions is Q(v/A). The discriminant A
is called fundamental if A/4 or A is square free for A =0 (mod 4) or A =1 (mod 4), respectively.
(If A is fundamental, then O is a mazimal order.)

The fractional ideals of any imaginary quadratic order are of the form g(aZ + (b+ v/ A)/27) with
q€Q a,b€Z,a>0,4al|b>— A, and ged(a,b,c) = 1 where ¢ = (b> — A)/(4a). Hence, they can be
represented by triples (gq,a,b). If ¢ = 1, then the ideal is called intregral. Two ideals a;, a2 C O are
called equivalent if there is a non-zero number o € Q(v/A) such that ay = aay.

The set of equivalence classes forms an abelian group under ideal multiplication. This group is
called class group and denoted by CI(A). The class group is always finite. Its order is called class
number and is denoted by h(A). The class number is not efficiently computable, if the discriminant
is fundamental, but the even part of h(A) can be efficiently computed, if the prime factorization of
A is known. For example, if A is a negative prime, then h(A) is always odd.

To compute with equivalence classes of class groups, one has to select representatives from each
class. From the definition of equivalence it is obvious that any non-zero fractional ideal is equivalent
to an integral one. Thus, each equivalence class can be represented by an integral ideal. Additionally,
the product of two integral ideals is also an integral ideal. Therefore, we shall deal only with integral
ideals, which we shall represent by pairs (a,b). Moreover, class groups of imaginary quadratic orders
have the property that each equivalence class of ideals contain exactly one reduced integral ideal. An
integral ideal (a,b) of a quadratic order O 4 is called reduced, if the following conditions are satisfied,
where ¢ = (b2 — A)/(4a): 1. a <¢, 2. —a < b<a,and 3. if a = ¢, then b > 0.

There are efficient algorithms to reduce integral ideals (i.e. finding an equivalent reduced ideal), see
Sect. 5. Thus, we shall represent each equivalence class by a unique reduced integral ideal. Computing
with reduced ideals is usually optimal in terms of efficiency because the bit sizes of reduced ideals are
small. In particular, if (a,b) is a reduced ideal of O, then a < /|A|/3. Since |b| < a, the bit size
of (a,b) is at most that of A. The multiplication of reduced ideals takes O(log? |A|) bit operations.
Since the product of reduced ideals is usually not reduced, we shall reduce any (intermediate) result.
A careful analysis of the reduction algorithm presented in Sect. 5 shows that this algorithm takes also
O(log? |A|) bit operations, and therefore, a group operation (i.e. ideal multiplication with subsequent
reduction) takes O(log? |A|) bit operations.

3 Security of 1QC

In this section we shall make some statements on the hardness of some computational problems for
class groups and on the selection of IQC parameters.

3.1 Some computational problems

Let G be a finite abelian group. Then we define

Discrete logarithm problem (DLP): given o, 8 € G, find the smallest positive integer = such that
B = a” (or deceide that no such z exists).

Order problem (OP): given a € G, compute |{(a)].

Root problem (RP): given a € G and an integer x > 1, compute 3 such that 3% = « (or decide
that no such 8 € G exists).

Since |(a)| = DLP(a, 1¢), we have OP < DLP. Conversely, the knowledge of the group order does
apparently not help to compute discrete logarithms. For example, the group order of multiplicative
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groups of any finite field is obviously known, yet the computation of discrete logarithms still appears
to be intractable. Thus, it is unlikely that OP = DLP.

Finally, there are efficient methods to compute an zth root (or to decide that such a root does
not exist), if we know the group order. Thus, RP < OP. It is an open question, whether RP = OP or
not, and it is also unknown, whether it is possible to compute roots efficiently without knowing the
group order.

In the context of class groups of imaginary quadratic orders we denote these three problems by
IQ-DLP, 1Q-OP, and IQ-RP. It is known that IQ-DLP < IFP!, so the complexity to solve the IFP is a
lower bound for the complexity to solve the 1Q-DLP.

IQ-DLP, 1Q-OP, and IQ-RP appear to be hard problems. Despite the fact, that these problems
don’t appear to be equivalent (with respect to complexity theory), the best known algorithms to
solve each of these problems are variants of each other with the same asymptotic running time. More
precisely, there is no better method known to compute a solution to the IQ-RP than to compute a
solution to the IQ-OP, for which in turn is no better method known than to compute a solution to
an instance of the IQ-DLP.

The security of the 1Q cryptosystems are based either on the IQ-DLP, or on the IQ-RP. Since
instances of the IQ-RP are solved by invoking an algorithm for the IQ-DLP, we shall focus on the
IQ-DLP. The following properties of class groups are of major interest for cryptographic applications:

e The class group is large, if the discriminant is large. It was known to Gaufl that the average
class number h(A) = ¢;v/D for all fundamental discriminants up to —D, where ¢; ~ 0.46. In
fact, from the Brauer-Siegel Theorem [19] follows that

VA < hay< VIA] " (1)

For any positive real e. Moreover, if one assumes the Extended Riemann Hypothesis, then it is
possible to show [21] that

1+o0(1
Al < h(A (1 Allnln|A 2
VAl < (1+0(1)es /Al Intn |4 2)

where ¢y = 12¢7 /7 ~ 6.8 and c3 = 2¢"?/m ~ 1.134.

e The class group of a randomly chosen fundamental discriminant contains a very large cyclic
subgroup with very high probability. This follows from [9, conjecture C5]

e The probability that the class number of a randomly chosen fundamental discriminant is very
smooth, is negligible. This follows from [9, conjecture C2] and an additional assumption [7], see
[14].

This shows, that class groups are suitable for cryptographic purposes. The above algorithms are
called generic, for they work in any finite abelian group. As we shall see in the next subsection, there
are faster algorithms known to compute discrete logarithms in class groups that are not generic.

3.2 Choosing the cryptographic parameter

Since the class group depends only on the discriminant, the discriminant is the main cryptographic
parameter. In [14] all known strategies to compute discrete logarithms in class groups have been
investigated. These are:

e Reductions to discrete logarithm computations in multiplicative groups of finite fields. Such
reduction has been found for totally non-maximal orders. Conversely, there are no such reduction
known for maximal orders, hence the discriminant should be chosen to be fundamental. The
simplest way to achieve this is to select a (large) prime p and set A = —p or to select two (large)
primes p and ¢ and set A = —pgq (such that, in both cases, A =1 (mod 4)).

'Integer factorization problem
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e A method similar to the (p — 1)-factoring algorithm to compute the class number and the
Pohlig-Hellman algorithm. This (p — 1)-like method can be used to compute the class number,
if it is very smooth (a similar algorithm has been used in an other factoring algorithm due to
Schnorr and H.-W. Lenstra [28]). Then, the Pohlig-Hellman algorithm can be used for discrete
logarithm computations. The (p — 1) algorithm has exponential running time in the size of the
smoothness bound. In [14] it was shown that the probability that the class number of a random
fundamental discriminant is very smooth is negligible. Hence, we expect the (p — 1) algorithm
to have exponential running time on average.

e Square-root algorithms, such as the Baby-Step-Giant-Step method or the p and A algorithms
(see [22, Chap. 3] for an overview and further references). The running time of these algorithms
is exponential in the size of the class group, and from the previous section follows, that they
are also exponential in the size of the discriminant

e Index-calculus algorithms. These algorithms have subexponential running time (and need
subexponential space) in the size of the discriminant (see [17] or [8, Sect. 5.5]). Therefore,
in order to protect IQ cryptosystems from attacks by index-calculus algorithms, much larger
discriminants are required than for any square-root algorithm or the (p — 1)-algorithm.

The fastest known algorithm to solve the IQ-DLP is a variant of the MPQS factoring algorithm
(IQ-MPQS). It is asymptotically much slower than the GNFS, the fastest known algorithm to factor
integers (see Figure 1). If one compares the expected running times of the GNFS and the 1Q-
MPQS, one gets that factoring 1024-bit integers requires about as much computational work as the
computation of class groups with a 687-bit discriminant. Similar results are summarized in the Table
1.

4 1QC protocols

We shall now describe some protocols for IQC. Since class groups are ordinary finite abelian groups,
we could use any scheme that is based on discrete logarithms. However, the class number (i.e. the
order of a class group) is usually not efficiently computable. Thus, cryptographic schemes that require
the knowledge of the group order (such as DSA or the Schnorr signature scheme) can’t be used in a
straight forward manner. But these protocols can modified in such a way that the knowledge of the
group order is not required.

From the above introduction it is clear that protocols like the Diffie-Hellman key exchange or the
ElGamal encryption scheme can be used in a straight forward manner with class groups.

4.1 The ElGamal encryption

The ElGamal encryption scheme could be used just as described in [11]. However, this would require
a user to embed the plain text into a group element. In [26] probabilistic methods have been presented

Table 1: Estimated expected computational work of the GNFS for factoring integers and the 1Q-
MPQS for computing discrete logarithms in class groups aligned

magnitude of
A expected no. of MIPS-years
n

2768 || 2540 4.99 x 107
21024 2687 6.01 x 1010
21536 2958 5.95 x 1015
22048 21208 7.05 % 1019
23072 21665 2.65 x 1026
24096 22084 587 x 1031
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A expected runtime (MIPS-years)

1Q-MPQS
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size of input (bits)

T >

T T T
1000 2000 3000 4000
Figure 1: Asymptotic expected running times for the GNFS and the IQ-MPQS. Here we assume the
expected running times to be Ly[3, {/64/9] for the GNFS and Lja|[3,1] for the IQ-MPQS. The

details can be found in [14].

to do this efficiently, but neither of the described methods are very fast in practice. It is also not
really necessary to embed a group elements. Instead, one can use the following modified ElGamal
signature:

Key Generation: A randomly selects a fundamental discriminant A of size according to the desired
security level. Then A randomly selects v € Cl(A), a < /|A|, and computes a = v*. A’s public
key is (4,7, a), the private key is a.

Encryption: To encrypt the plain text m, B randomly selects k < 1/|A| and computes x = v* and
3 = aF. Then the cipher text is C = (k,c), where ¢ = m @ f(3), f is a preimage and collision
resistant hash function, and @ denotes bitwise xor-ing.

Decryption: A computes 3 = k% and recovers m by computing m = ¢ ® f(3).

This scheme actually resembles the Diffie-Hellman key exchange, where A enters the protocol at the
key generation stage, and B completes the protocol on encrypting the plain text. The same idea has
been used for elliptic curves in [1]. This scheme is deterministic and very efficient.

Finally, observe that the Cramer-Shoup encryption scheme [10] can be used in a straight forward
way with class groups. Moreover, the same modification we have proposed for the IQ version of the
ElGamal encryption scheme above can be applied to the Cramer-Shoup encryption scheme.

4.2 Two DSA variants

As noted before, DSA [12] or the Schnorr [27] signature scheme (and similar signature schemes of
ElGamal type) can’t be used in a straight forward way with class groups. This is because the class
number, i.e. the order of the class group can’t be computed efficiently, at least if the discriminant is
fundamental. But signing a message with a signature scheme of ElGamal type requires a reduction
modulo the group order or a divisor thereof. We demonstrate this with a generalized version of DSA:

Key Generation: A randomly selects a group G, such that |G| has a 160-bit prime divisor g (the
actual size of G depends on properties of G and the specific security requirements). Then A
randomly selects 79 € G and computes

r=" 3)
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(If ¥ = 1g A selects another 7y.) Finally, A randomly selects a < 2160

A’s public key is (G, q,7, @), the private key is a.

and computes a = %

2160 and computes o = v*, an integer

Signature: To sign the message m, A randomly selects k <
r = f(p), and an integer
s=k '(f(m)+ar) modgq , (4)

where f is a collision and preimage resistant hash function. Then the signature for m is § =
(r,s), where f is a preimage and collision resistant hash function.

Verification: B checks that 0 < s < g. Then B computes w = s~ ! mod q, u1 = wf(m) mod g,
uz = wr mod ¢, and v = f(y**a%?). Finally, B checks that v = r.

Without knowledge of |G| the computation of (3) and (4) is impossible.

In the context of class groups (i.e. G = Cl(4)), (3) can be replaced by a random selection of
v € Cl(A), because Cl(A) contains large cyclic subgroups with very high probability. Moreover,
the probability that h(A) is very smooth is negligible. Hence, by group theoretic arguments, the
probability that (v) is large and |(y)| has a large prime divisor is very high. It remains to answer the
question: what can we do about (4)7 There are at least two possible solutions:

1. Replace ¢ by an integer that is not related to h(A). The main motivation for this is the fact
that s = x mod q is equivalent to s = z — £q for some integer ¢

2. Omit the modular reduction.

First, in order to simplify the matter, we modify the signature scheme such that the modular
inversion of (4) disappears. To do this, we pick DSA variant EG I1.3 from [15], in which (4) becomes

S:_a‘f(mag)+km0dq 3 (5)

with appropriate modification of the signature (which becomes S = (g, s)) and the verification pro-
cedure. The resulting scheme is actually more similar to the Schnorr signature scheme than to DSA,
but for technical reasons we shall call it DSA, too. In the following subsections we shall discuss the
two solutions.

4.2.1 Replacing the modulus

This variant of DSA has been described in [3]. It is called RDSA. The security of the resulting
protocol is based on the root problem (and not on the discrete logarithm problem), whence the name.

Key generation: A randomly selects a fundamental discriminant A. Then A randomly selects v €
CI(A) and a 160-bit prime g. Then A randomly selects a < 2'%0 and computes a = 7. A’s
public key is (A4, q,v, a), the private key is a.

Signature: To sign the message m, A randomly selects k& < 2'% and computes p = v* and an integer
x = —af(m, o) + k. Then A divides x by ¢ with remainder, i.e. A computes integers s and £
such that z = g/ + s and 0 < s < ¢. Finally, A computes A = 4¢. Then the signature for m is
S =(s,0,M).

Verification: B checks that 0 < s < ¢ and that y%af (M@ X1 = o,

From this description it is obvious that an attacker, who can compute gth roots in Cl(A), can
forge signatures for A: He simply randomly selects p € Cl(A) and s € {0,...q — 1}, then he sets
A= (g'yfsa*f(m’g))l/q. It is easily checked that (s, o, \) is a valid signature for m under A’s public
key.

In [3] the converse has been shown in the random oracle model [2], i.e. an attacker who can
efficiently compute existentially forged signatures in a chosen message attack, can efficiently compute
gth roots. Therefore, under the assumption of the hardness of the root problem, RDSA is secure
against existential forgeries even in a chosen message attack.
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4.2.2 Omitting the modular reduction

This variant of DSA is due to an idea in [25]. Unlike the DSA variant in the previous subsection, this
variant is based on the discrete logarithm problem.

Key generation: A randomly selects a fundamental discriminant A. Then A randomly selects v €
Cl(A), an integer a < 2'%° and computes a = 2. A’s public key is (4,7, @), the private key is
a.

Signature: To sign the message m, A randomly selects k& < 2'% and computes p = ¥ and an integer
s = —af(m, o) + k. Then the signature for m is S = (s, o).

Verification: B checks that 0 < s < ¢ and that y3af(™0) = 4,

This surprisingly simple DSA variant appears to be superior to RDSA, for it requires apparently less
computation and is based on an allegedly harder problem. However, as in [25], this scheme is secure
against existential forgery in a chosen message attack only if af /k is negligible. For example, if a and
the output of f are 160 bits wide, and if 1/280 is negligible, then k has to be selected 400 bits large
(note that s will also have 400 bits). Thus, this DSA variant is considerably less efficient than RDSA.

4.3 The Guillou-Quisquater signature scheme

The Guillou-Quisquater signature scheme [13] works unmodified in our context. For convenience, we
present a stripped down version:

Key generation: A randomly selects a fundamental discriminant A. Then A randomly selects a €
Cl(A) and an integer ¢ < 2'6%. Then A computes § = o~ %. A’s public key is (4, q,6), the
private key is a.

Signature: To sign the message m, A randomly selects k € Cl(A) and computes ¢ = k2. Then A
computes £ = f(m, 0) and o = rkat. The signature for m is S = (£, o).

Verification: B computes v = f(m,096%) and checks that v = .

It is obvious that this signature scheme is based on the intractability to compute roots in Cl(A).
According to [24], the Guillou-Quisquater signature scheme also can be proven to be secure against
existential forgery in a chosen message attack.

5 Efficiency of IQ protocols

In this section, we shall review some algorithms to perform IQ arithmetic, then we shall present
some benchmarks for the IQ-RDSA siganture scheme and compare these to benchmarks of the RSA
signature scheme.

5.1 1IQ arithmetic

IQ arithmetic is essentially the same as the composition of binary quadratic forms [8, Sect. 5.2]. The
algorithms here are taken from [17]. Recall that integral ideals are represented by pairs (a, b), where
a and b are integers, a is positive, and 4a | b> — A. For any ideal (a,b) set ¢ = (b> — A)/(4a).

First, we present the algorithms for ideal multiplication and ideal squaring. For integers a and b
we denote by (d, z,y) + xgcd(a, b) the computation of integers d, x, and y such that d is the greatest
common divisor of a and b, and d = ax + by.

The hard part of Algorithms 1 and 2 is the extended Euclidean algorithm (line 1 in both algo-
rithms). Therefore, both algorithms have the best performance, if their input ideals are reduced.
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Note that the second extended Euclidean algorithm in Algorithm 1 (line 5) takes on average only a
few steps, because d; is very small on average.

Next, we present a reduction algorithm, since it is essential to reduce any (intermediate) result.
The reduction is performed by Algorithms 3. Algorithm 3 is similar to the extended Euclidean
algorithm, and it can be shown that the loop (lines 13 to 22) is executed at most 2 + [logy(a//]A])]
times [8, Proposition 5.4.3]. A run time analysis of Algorithm 3 similar to the analysis of the extended
Euclidean algorithm shows that Algorithm 3 performs O(log? |A|) steps [5, Sect. 5.6], if the input to
this algorithm is the output of either algorithm 1 or 2.

Finally, we note that if (a, b) represents an ideal class, then (a, —b) represents the inverse. If (a, b)
is reduced, then so is (a, —b), unless a = b, which happens with negligible probability. For instance,
if A is a negative odd prime, then there is only one such reduced ideal, and that is (1,1). Therefore,
the inversion of a group element takes almost always constant time. This can be utilized for fast
exponentiations of ideals, because one could use a signed-digit exponent recoding [22, Sect. 14.7],
which reduces the number of ideal multiplications.

Algorithms 1, 2, and 3 have been implemented using the GNU multiprecision arithmetic library
(GMP, version 3.1.1, see http://www.swox.com/gmp/). On a SUN machine with Sparc Ultra II
processor (333 MHz), we get the benchmarks in Table 2. From this table, one can conclude that
on average an ideal squaring is only slightly faster than an ideal multiplication. Furthermore, the
greatest amount of work has to be spent for the reduction, thus any optimization efforts should start
here. This could be done by replacing Algorithm 3 by Schénhage’s reduction algorithm [29, 33].
Another idea is to use the NUCOMP and NUDUPL algorithms of Shanks [32] for ideal multiplication
and squaring. Shanks’ Algorithms have the advantage, that most intermediate results are of size
O(m) Moreover, their outputs are already reduced. This is achieved to the expense of more
multiprecision multiplications. But if these algorithms are implemented carelessly, they are still
slower than multiplication or squaring with subsequent reduction.

Algorithm 1 Compute ag < a; X as
Input: Reduced ideals a; = (a1,b1) and as = (az,b2), a,b C Oxp
Output: the ideal a3 = (a3, b3)

1: dy,v,w < xgcd(aq, az)

2: ag < ai1as

3: bg — ’Ual(b2 — bl)

4 if dy # 1 then

5: da,v,w + Xng(dl, (b1 + bg)/2)
6 asg < ag/d%

7: by + (b31)+w(A—b%)/2)/d2
8: end if

9: b3 < b1 + b3 mod 2as

Algorithm 2 Compute a3 + a2

Input: A reduced ideal a; = (a1,b1), a1 € Op
Output: the ideal a3 = (a3, b3)

1: d,v,w + xged(ay, by)

2: ag < (al/d)2

3: by + w(A —b?)/(2d)

4: bz < by + bz mod 2a3
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Algorithm 3 Reduce a

Input: An ideal a = (a,b), a C Ox

Output: A reduced ideal equivalent to a
1: if b < 0 then
2 s+ —1
3: else

4 s+ 1

5: end if

6: b < |b], 7 < bmod 2a

7. if a < r then

8 b+ a

9: else

10 b4 1r, s —s

11: end if

12: ¢+ (b> — A)/4a

13: while a > c do

14: tg+a,a+c

15: g < |b/2a], r < bmod 2a

16:  c+ty—q(r+b)/2

17:  if a < r then

18: b«—2a—r,ce—c+a—r
19: else

20: b1, s+ —s

21:  end if

22: end while

23: if s < 0 then

24: b+ —b

25: end if

26: if b > a then

27 b+ b—2a,c<c—b+a
28: else if b < —qa then

29: b+ b+2a,c<—c+b+a
30: end if

31: if a = c and b < 0 then

32: b+ —b

33: end if

Table 2: Performance of IQ arithmetic (in milliseconds)

size of A | multiply square reduce
512 0.1570  0.1550  0.4455
724 0.2390 0.2295 0.7035
1024 0.3570  0.3380 1.1400
1448 0.5635  0.5230 1.9130
2048 0.9145 0.8340 3.3165
2896 1.4855  1.3475  6.0395
4096 2.4590  2.2270 10.8880
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Table 3: Some IQ-RDSA timings (in milliseconds)

Size of IQ-RDSA
A Sig Ver
687 82.4 2454
1208 | 191.4 554.5
2084 | 411.3 1248.8

Table 4: Some RSA timings (in milliseconds)

Size of RSA
n Sig Ver
1024 50.7 3.0
2048 342.7  10.7
4096 | 24475 39.8

5.2 Efficiency of some I1Q cryptosystems

In this subsection we present benchmarks for the IQ-RDSA signature scheme. This have been imple-
mented using the arithmetic modules that were described in the previous subsection. We have used
the following optimizations: For the exponentiation we have used signed-digit exponent recoding. For
a signature, we have also used Gordon-Brickell precomputation [22, Sect. 14.6.3] (generated in the
key generation step). For the verification we have used simultaneous multiple exponentiation. Some
averaged timings are given in Table 3.

For a comparison, we present some benchmarks of the RSA signature scheme in Table 4. We
have used the openssl implementation of RSA (openssl version 0.9.6, see http://www.openssl.org/).
This implementation makes use of Montgomery exponentiations and Chinese remaindering. As public
exponent we have selected the Fermat prime 65537. Note that the parameter size for IQ-RDSA and
for RSA has been selected according to Table 1.

The key observation is that an IQ-RDSA signature is eventually faster than a RSA signature.
The cross over is at a security level that is rather moderate (according to [20]). Since the efficiency
of 1Q arithmetic received comparably little attention in the past, it is reasonable to expect significant
improvements in the future. These improvements will make 1Q cryptosystems even more competitive
to traditional cryptosystems.

6 Conclusion

We have given a summary over the selection of the cryptographic parameter for IQ cryptosystems. We
have presented 1Q versions of some well known protocols, and we have presented efficient algorithms
to implement IQ cryptosystems. Finally we have seen that they are efficient and practical. The next
steps are: Apply the optimizations to IQ arithmetic as outlined at the end of Sect. 5.1, investigate more
protocols (for example, blind signatures, undeniable signatures, signatures with message recovery, and
key exchange protocols), and finally, a formal description of IQC similar to [30, 31].
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