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A Survey on IQ CryptographyJohannes Buhmann Safuat HamdyMarh 21, 2001AbstratThis paper gives a survey on ryptographi primitives based on lass groups of imaginaryquadrati orders (IQ ryptography, IQC). We present IQC versions of several well known rypto-graphi primitives, and we explain, why these primitives are seure if one assumes the hardnessof the underlying problems. We give advie on the seletion of the ryptographi parameters andshow the impat of this advie on the e�ieny of some IQ ryptosystems.1 IntrodutionThe term IQ ryptography (IQC) refers to ryptography based on lass groups of imaginary quadratiorders. IQC has been invented in 1988 [6℄. Therefore, IQC is of about the same age as ECC (elliptiurve ryptography) [23, 18℄, yet IQC didn't get the same attention. What was most laking was aomprehensive guide for using IQC. That is, there is still no formal doument that desribes how toselet the ryptographi parameters and whih ryptographi shemes to use. Advie on the seletionof the ryptographi parameters for IQC has been given in [14℄; a summary of some results of thatpaper has been inluded in this work. The aim of this paper is to present IQC versions of somewell known ryptographi shemes, to desribe the algorithms that an be used for the underlyingarithmeti, and to disuss the performane of IQC shemes using those algorithms. Thus, this paperis another step towards a standardization of IQC.Although lass groups are ordinary �nite abelian groups, some ryptographi shemes based ondisrete logarithms an't be used with lass groups in a straight forward way. The reason is that theorder of lass groups (or odd divisors thereof) an't be omputed e�iently. However, some disretelogarithm based ryptographi shemes, for example any signature sheme of ElGamal type, requirethe knowledge of the group order. In order to use these shemes, it is neessary to modify them. Inthis paper we present suh modi�ations for DSA. It also turns out that lass groups are well suitedfor the Guillou-Quisquater signature sheme.Finally, the performane of IQ ryptosystems has never been ompared to the performane ofestablished ryptosystems. Sine the performane depends on the size of the ryptographi parameter,whih in turn depends on the desired seurity level, the seletion of the ryptographi parameter hadto be investigated �rst. This has been done in [14℄. In this paper �rst realisti benhmarks for IQryptosystems are presented, where the ryptographi parameter has been hosen of suh a size thatsolving the disrete logarithm problem in the lass group is about as hard as solving the integerfatoring problem for integers of ertain size. The result is that IQ ryptosystems appear to bepratial. Sine omparably little reserah has been spent on e�ient IQ arithmeti, it is reasonableto expet signi�ant improvements in this area in the future.This paper is organized as follows: Set. 2 realls some relevant fats and notations from thetheory of imaginary quadrati number �elds. In Set. 3 we disuss the omputational problems onwhih IQ ryptosystems are based, and we disuss some properties of lass groups that are relevantto ryptographi appliations. In Set. 4 we present IQ versions of some well known ryptographishemes. Finally, in Set. 5 we present benhmarks for an IQC variant of DSA and ompare themwith benhmarks of traditional ryptosystems.



2 A Survey On IQ Cryptography2 Basi notationWe shall brie�y reall some notations that we shall use in the sequel (see [16℄ or [4℄ for full details).Let � be a negative integer suh that � � 0; 1 (mod 4). Then the ring O� = Z+ (�+p�)=2Z isan imaginary quadrati order of disriminant �. Its �eld of frations is Q(p�). The disriminant �is alled fundamental if �=4 or � is square free for � � 0 (mod 4) or � � 1 (mod 4), respetively.(If � is fundamental, then O� is a maximal order.)The frational ideals of any imaginary quadrati order are of the form q(aZ+ (b+p�)=2Z) withq 2 Q , a; b 2 Z, a > 0, 4a j b2 ��, and gd(a; b; ) = 1 where  = (b2 ��)=(4a). Hene, they an berepresented by triples (q; a; b). If q = 1, then the ideal is alled intregral. Two ideals a1; a2 � O� arealled equivalent if there is a non-zero number � 2 Q(p�) suh that a2 = �a1.The set of equivalene lasses forms an abelian group under ideal multipliation. This group isalled lass group and denoted by Cl(�). The lass group is always �nite. Its order is alled lassnumber and is denoted by h(�). The lass number is not e�iently omputable, if the disriminantis fundamental, but the even part of h(�) an be e�iently omputed, if the prime fatorization of� is known. For example, if � is a negative prime, then h(�) is always odd.To ompute with equivalene lasses of lass groups, one has to selet representatives from eahlass. From the de�nition of equivalene it is obvious that any non-zero frational ideal is equivalentto an integral one. Thus, eah equivalene lass an be represented by an integral ideal. Additionally,the produt of two integral ideals is also an integral ideal. Therefore, we shall deal only with integralideals, whih we shall represent by pairs (a; b). Moreover, lass groups of imaginary quadrati ordershave the property that eah equivalene lass of ideals ontain exatly one redued integral ideal. Anintegral ideal (a; b) of a quadrati order O� is alled redued, if the following onditions are satis�ed,where  = (b2 ��)=(4a): 1. a � , 2. �a < b � a, and 3. if a = , then b > 0.There are e�ient algorithms to redue integral ideals (i.e. �nding an equivalent redued ideal), seeSet. 5. Thus, we shall represent eah equivalene lass by a unique redued integral ideal. Computingwith redued ideals is usually optimal in terms of e�ieny beause the bit sizes of redued ideals aresmall. In partiular, if (a; b) is a redued ideal of O�, then a � pj�j=3. Sine jbj � a, the bit sizeof (a; b) is at most that of �. The multipliation of redued ideals takes O(log2 j�j) bit operations.Sine the produt of redued ideals is usually not redued, we shall redue any (intermediate) result.A areful analysis of the redution algorithm presented in Set. 5 shows that this algorithm takes alsoO(log2 j�j) bit operations, and therefore, a group operation (i.e. ideal multipliation with subsequentredution) takes O(log2 j�j) bit operations.3 Seurity of IQCIn this setion we shall make some statements on the hardness of some omputational problems forlass groups and on the seletion of IQC parameters.3.1 Some omputational problemsLet G be a �nite abelian group. Then we de�neDisrete logarithm problem (DLP): given �; � 2 G, �nd the smallest positive integer x suh that� = �x (or deeide that no suh x exists).Order problem (OP): given � 2 G, ompute jh�ij.Root problem (RP): given � 2 G and an integer x > 1, ompute � suh that �x = � (or deidethat no suh � 2 G exists).Sine jh�ij = DLP(�; 1G), we have OP � DLP. Conversely, the knowledge of the group order doesapparently not help to ompute disrete logarithms. For example, the group order of multipliative



3.2 Choosing the ryptographi parameter 3groups of any �nite �eld is obviously known, yet the omputation of disrete logarithms still appearsto be intratable. Thus, it is unlikely that OP = DLP.Finally, there are e�ient methods to ompute an xth root (or to deide that suh a root doesnot exist), if we know the group order. Thus, RP � OP. It is an open question, whether RP = OP ornot, and it is also unknown, whether it is possible to ompute roots e�iently without knowing thegroup order.In the ontext of lass groups of imaginary quadrati orders we denote these three problems byIQ-DLP, IQ-OP, and IQ-RP. It is known that IQ-DLP � IFP1, so the omplexity to solve the IFP is alower bound for the omplexity to solve the IQ-DLP.IQ-DLP, IQ-OP, and IQ-RP appear to be hard problems. Despite the fat, that these problemsdon't appear to be equivalent (with respet to omplexity theory), the best known algorithms tosolve eah of these problems are variants of eah other with the same asymptoti running time. Morepreisely, there is no better method known to ompute a solution to the IQ-RP than to ompute asolution to the IQ-OP, for whih in turn is no better method known than to ompute a solution toan instane of the IQ-DLP.The seurity of the IQ ryptosystems are based either on the IQ-DLP, or on the IQ-RP. Sineinstanes of the IQ-RP are solved by invoking an algorithm for the IQ-DLP, we shall fous on theIQ-DLP. The following properties of lass groups are of major interest for ryptographi appliations:� The lass group is large, if the disriminant is large. It was known to Gauÿ that the averagelass number h(�) = 1pD for all fundamental disriminants up to �D, where 1 � 0:46. Infat, from the Brauer-Siegel Theorem [19℄ follows thatpj�j1+� � h(�) �pj�j1�� (1)For any positive real �. Moreover, if one assumes the Extended Riemann Hypothesis, then it ispossible to show [21℄ that1 + o(1)2 ln ln j�jpj�j < h(�) < (1 + o(1))3pj�j ln ln j�j (2)where 2 = 12e=� � 6:8 and 3 = 2e=� � 1:134.� The lass group of a randomly hosen fundamental disriminant ontains a very large ylisubgroup with very high probability. This follows from [9, onjeture C5℄� The probability that the lass number of a randomly hosen fundamental disriminant is verysmooth, is negligible. This follows from [9, onjeture C2℄ and an additional assumption [7℄, see[14℄.This shows, that lass groups are suitable for ryptographi purposes. The above algorithms arealled generi, for they work in any �nite abelian group. As we shall see in the next subsetion, thereare faster algorithms known to ompute disrete logarithms in lass groups that are not generi.3.2 Choosing the ryptographi parameterSine the lass group depends only on the disriminant, the disriminant is the main ryptographiparameter. In [14℄ all known strategies to ompute disrete logarithms in lass groups have beeninvestigated. These are:� Redutions to disrete logarithm omputations in multipliative groups of �nite �elds. Suhredution has been found for totally non-maximal orders. Conversely, there are no suh redutionknown for maximal orders, hene the disriminant should be hosen to be fundamental. Thesimplest way to ahieve this is to selet a (large) prime p and set � = �p or to selet two (large)primes p and q and set � = �pq (suh that, in both ases, � � 1 (mod 4)).1Integer fatorization problem



4 A Survey On IQ Cryptography� A method similar to the (p � 1)-fatoring algorithm to ompute the lass number and thePohlig-Hellman algorithm. This (p� 1)-like method an be used to ompute the lass number,if it is very smooth (a similar algorithm has been used in an other fatoring algorithm due toShnorr and H.W. Lenstra [28℄). Then, the Pohlig-Hellman algorithm an be used for disretelogarithm omputations. The (p� 1) algorithm has exponential running time in the size of thesmoothness bound. In [14℄ it was shown that the probability that the lass number of a randomfundamental disriminant is very smooth is negligible. Hene, we expet the (p� 1) algorithmto have exponential running time on average.� Square-root algorithms, suh as the Baby-Step-Giant-Step method or the � and � algorithms(see [22, Chap. 3℄ for an overview and further referenes). The running time of these algorithmsis exponential in the size of the lass group, and from the previous setion follows, that theyare also exponential in the size of the disriminant� Index-alulus algorithms. These algorithms have subexponential running time (and needsubexponential spae) in the size of the disriminant (see [17℄ or [8, Set. 5.5℄). Therefore,in order to protet IQ ryptosystems from attaks by index-alulus algorithms, muh largerdisriminants are required than for any square-root algorithm or the (p� 1)-algorithm.The fastest known algorithm to solve the IQ-DLP is a variant of the MPQS fatoring algorithm(IQ-MPQS). It is asymptotially muh slower than the GNFS, the fastest known algorithm to fatorintegers (see Figure 1). If one ompares the expeted running times of the GNFS and the IQ-MPQS, one gets that fatoring 1024-bit integers requires about as muh omputational work as theomputation of lass groups with a 687-bit disriminant. Similar results are summarized in the Table1.4 IQC protoolsWe shall now desribe some protools for IQC. Sine lass groups are ordinary �nite abelian groups,we ould use any sheme that is based on disrete logarithms. However, the lass number (i.e. theorder of a lass group) is usually not e�iently omputable. Thus, ryptographi shemes that requirethe knowledge of the group order (suh as DSA or the Shnorr signature sheme) an't be used in astraight forward manner. But these protools an modi�ed in suh a way that the knowledge of thegroup order is not required.From the above introdution it is lear that protools like the Di�e-Hellman key exhange or theElGamal enryption sheme an be used in a straight forward manner with lass groups.4.1 The ElGamal enryptionThe ElGamal enryption sheme ould be used just as desribed in [11℄. However, this would requirea user to embed the plain text into a group element. In [26℄ probabilisti methods have been presentedTable 1: Estimated expeted omputational work of the GNFS for fatoring integers and the IQ-MPQS for omputing disrete logarithms in lass groups alignedmagnitude ofn j�j expeted no. of MIPS-years2768 2540 4:99 � 10721024 2687 6:01 � 101021536 2958 5:95 � 101522048 21208 7:05 � 101923072 21665 2:65 � 102624096 22084 5:87 � 1031



4.2 Two DSA variants 5
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Figure 1: Asymptoti expeted running times for the GNFS and the IQ-MPQS. Here we assume theexpeted running times to be Ln�13 ; 3p64=9� for the GNFS and Lj�j�12 ; 1� for the IQ-MPQS. Thedetails an be found in [14℄.to do this e�iently, but neither of the desribed methods are very fast in pratie. It is also notreally neessary to embed a group elements. Instead, one an use the following modi�ed ElGamalsignature:Key Generation: A randomly selets a fundamental disriminant � of size aording to the desiredseurity level. Then A randomly selets  2 Cl(�), a �pj�j, and omputes � = a. A's publikey is (�; ; �), the private key is a.Enryption: To enrypt the plain text m, B randomly selets k �pj�j and omputes � = k and� = �k. Then the ipher text is C = (�; ), where  = m� f(�), f is a preimage and ollisionresistant hash funtion, and � denotes bitwise xor-ing.Deryption: A omputes � = �a and reovers m by omputing m = � f(�).This sheme atually resembles the Di�e-Hellman key exhange, where A enters the protool at thekey generation stage, and B ompletes the protool on enrypting the plain text. The same idea hasbeen used for ellipti urves in [1℄. This sheme is deterministi and very e�ient.Finally, observe that the Cramer-Shoup enryption sheme [10℄ an be used in a straight forwardway with lass groups. Moreover, the same modi�ation we have proposed for the IQ version of theElGamal enryption sheme above an be applied to the Cramer-Shoup enryption sheme.4.2 Two DSA variantsAs noted before, DSA [12℄ or the Shnorr [27℄ signature sheme (and similar signature shemes ofElGamal type) an't be used in a straight forward way with lass groups. This is beause the lassnumber, i.e. the order of the lass group an't be omputed e�iently, at least if the disriminant isfundamental. But signing a message with a signature sheme of ElGamal type requires a redutionmodulo the group order or a divisor thereof. We demonstrate this with a generalized version of DSA:Key Generation: A randomly selets a group G, suh that jGj has a 160-bit prime divisor q (theatual size of G depends on properties of G and the spei� seurity requirements). Then Arandomly selets 0 2 G and omputes  = jGj=q0 : (3)



6 A Survey On IQ Cryptography(If  = 1G A selets another 0.) Finally, A randomly selets a � 2160 and omputes � = a.A's publi key is (G; q; ; �), the private key is a.Signature: To sign the message m, A randomly selets k � 2160 and omputes % = k, an integerr = f(%), and an integer s = k�1�f(m) + ar� mod q ; (4)where f is a ollision and preimage resistant hash funtion. Then the signature for m is S =(r; s), where f is a preimage and ollision resistant hash funtion.Veri�ation: B heks that 0 < s < q. Then B omputes w = s�1 mod q, u1 = wf(m) mod q,u2 = wr mod q, and v = f(u1�u2). Finally, B heks that v = r.Without knowledge of jGj the omputation of (3) and (4) is impossible.In the ontext of lass groups (i.e. G = Cl(�)), (3) an be replaed by a random seletion of 2 Cl(�), beause Cl(�) ontains large yli subgroups with very high probability. Moreover,the probability that h(�) is very smooth is negligible. Hene, by group theoreti arguments, theprobability that hi is large and jhij has a large prime divisor is very high. It remains to answer thequestion: what an we do about (4)? There are at least two possible solutions:1. Replae q by an integer that is not related to h(�). The main motivation for this is the fatthat s = x mod q is equivalent to s = x� `q for some integer `2. Omit the modular redution.First, in order to simplify the matter, we modify the signature sheme suh that the modularinversion of (4) disappears. To do this, we pik DSA variant EG II.3 from [15℄, in whih (4) beomess = �af(m; %) + k mod q ; (5)with appropriate modi�ation of the signature (whih beomes S = (%; s)) and the veri�ation pro-edure. The resulting sheme is atually more similar to the Shnorr signature sheme than to DSA,but for tehnial reasons we shall all it DSA, too. In the following subsetions we shall disuss thetwo solutions.4.2.1 Replaing the modulusThis variant of DSA has been desribed in [3℄. It is alled RDSA. The seurity of the resultingprotool is based on the root problem (and not on the disrete logarithm problem), whene the name.Key generation: A randomly selets a fundamental disriminant �. Then A randomly selets  2Cl(�) and a 160-bit prime q. Then A randomly selets a � 2160 and omputes � = a. A'spubli key is (�; q; ; �), the private key is a.Signature: To sign the message m, A randomly selets k � 2160 and omputes % = k and an integerx = �af(m; %) + k. Then A divides x by q with remainder, i.e. A omputes integers s and `suh that x = q`+ s and 0 � s < q. Finally, A omputes � = `. Then the signature for m isS = (s; %; �).Veri�ation: B heks that 0 � s < q and that s�f(m;%)�q = %.From this desription it is obvious that an attaker, who an ompute qth roots in Cl(�), anforge signatures for A: He simply randomly selets % 2 Cl(�) and s 2 f0; : : : q � 1g, then he sets� = �%�s��f(m;%)�1=q. It is easily heked that (s; %; �) is a valid signature for m under A's publikey.In [3℄ the onverse has been shown in the random orale model [2℄, i.e. an attaker who ane�iently ompute existentially forged signatures in a hosen message attak, an e�iently omputeqth roots. Therefore, under the assumption of the hardness of the root problem, RDSA is seureagainst existential forgeries even in a hosen message attak.



4.3 The Guillou-Quisquater signature sheme 74.2.2 Omitting the modular redutionThis variant of DSA is due to an idea in [25℄. Unlike the DSA variant in the previous subsetion, thisvariant is based on the disrete logarithm problem.Key generation: A randomly selets a fundamental disriminant �. Then A randomly selets  2Cl(�), an integer a � 2160, and omputes � = a. A's publi key is (�; ; �), the private key isa.Signature: To sign the message m, A randomly selets k � 2160 and omputes % = k and an integers = �af(m; %) + k. Then the signature for m is S = (s; %).Veri�ation: B heks that 0 � s < q and that s�f(m;%) = %.This surprisingly simple DSA variant appears to be superior to RDSA, for it requires apparently lessomputation and is based on an allegedly harder problem. However, as in [25℄, this sheme is seureagainst existential forgery in a hosen message attak only if af=k is negligible. For example, if a andthe output of f are 160 bits wide, and if 1=280 is negligible, then k has to be seleted 400 bits large(note that s will also have 400 bits). Thus, this DSA variant is onsiderably less e�ient than RDSA.4.3 The Guillou-Quisquater signature shemeThe Guillou-Quisquater signature sheme [13℄ works unmodi�ed in our ontext. For onveniene, wepresent a stripped down version:Key generation: A randomly selets a fundamental disriminant �. Then A randomly selets � 2Cl(�) and an integer q � 2160. Then A omputes � = ��q. A's publi key is (�; q; �), theprivate key is �.Signature: To sign the message m, A randomly selets � 2 Cl(�) and omputes % = �q. Then Aomputes ` = f(m; %) and � = ��`. The signature for m is S = (`; �).Veri�ation: B omputes v = f(m;�q�`) and heks that v = `.It is obvious that this signature sheme is based on the intratability to ompute roots in Cl(�).Aording to [24℄, the Guillou-Quisquater signature sheme also an be proven to be seure againstexistential forgery in a hosen message attak.5 E�ieny of IQ protoolsIn this setion, we shall review some algorithms to perform IQ arithmeti, then we shall presentsome benhmarks for the IQ-RDSA siganture sheme and ompare these to benhmarks of the RSAsignature sheme.5.1 IQ arithmetiIQ arithmeti is essentially the same as the omposition of binary quadrati forms [8, Set. 5.2℄. Thealgorithms here are taken from [17℄. Reall that integral ideals are represented by pairs (a; b), wherea and b are integers, a is positive, and 4a j b2 ��. For any ideal (a; b) set  = (b2 ��)=(4a).First, we present the algorithms for ideal multipliation and ideal squaring. For integers a and bwe denote by (d; x; y) xgd(a; b) the omputation of integers d, x, and y suh that d is the greatestommon divisor of a and b, and d = ax+ by.The hard part of Algorithms 1 and 2 is the extended Eulidean algorithm (line 1 in both algo-rithms). Therefore, both algorithms have the best performane, if their input ideals are redued.



8 A Survey On IQ CryptographyNote that the seond extended Eulidean algorithm in Algorithm 1 (line 5) takes on average only afew steps, beause d1 is very small on average.Next, we present a redution algorithm, sine it is essential to redue any (intermediate) result.The redution is performed by Algorithms 3. Algorithm 3 is similar to the extended Eulideanalgorithm, and it an be shown that the loop (lines 13 to 22) is exeuted at most 2+ �log2(a=pj�j)�times [8, Proposition 5.4.3℄. A run time analysis of Algorithm 3 similar to the analysis of the extendedEulidean algorithm shows that Algorithm 3 performs O(log2 j�j) steps [5, Set. 5.6℄, if the input tothis algorithm is the output of either algorithm 1 or 2.Finally, we note that if (a; b) represents an ideal lass, then (a;�b) represents the inverse. If (a; b)is redued, then so is (a;�b), unless a = b, whih happens with negligible probability. For instane,if � is a negative odd prime, then there is only one suh redued ideal, and that is (1; 1). Therefore,the inversion of a group element takes almost always onstant time. This an be utilized for fastexponentiations of ideals, beause one ould use a signed-digit exponent reoding [22, Set. 14.7℄,whih redues the number of ideal multipliations.Algorithms 1, 2, and 3 have been implemented using the GNU multipreision arithmeti library(GMP, version 3.1.1, see http://www.swox.om/gmp/). On a SUN mahine with Spar Ultra IIproessor (333MHz), we get the benhmarks in Table 2. From this table, one an onlude thaton average an ideal squaring is only slightly faster than an ideal multipliation. Furthermore, thegreatest amount of work has to be spent for the redution, thus any optimization e�orts should starthere. This ould be done by replaing Algorithm 3 by Shönhage's redution algorithm [29, 33℄.Another idea is to use the NUCOMP and NUDUPL algorithms of Shanks [32℄ for ideal multipliationand squaring. Shanks' Algorithms have the advantage, that most intermediate results are of sizeO(pj�j). Moreover, their outputs are already redued. This is ahieved to the expense of moremultipreision multipliations. But if these algorithms are implemented arelessly, they are stillslower than multipliation or squaring with subsequent redution.Algorithm 1 Compute a3  a1 � a2Input: Redued ideals a1 = (a1; b1) and a2 = (a2; b2), a; b � O�Output: the ideal a3 = (a3; b3)1: d1; v; w  xgd(a1; a2)2: a3  a1a23: b3  va1(b2 � b1)4: if d1 6= 1 then5: d2; v; w  xgd(d1; (b1 + b2)=2)6: a3  a3=d227: b3  (b3v + w(�� b21)=2)=d28: end if9: b3  b1 + b3 mod 2a3Algorithm 2 Compute a3  a21Input: A redued ideal a1 = (a1; b1), a1 � O�Output: the ideal a3 = (a3; b3)1: d; v; w  xgd(a1; b1)2: a3  (a1=d)23: b3  w(�� b21)=(2d)4: b3  b1 + b3 mod 2a3



5.1 IQ arithmeti 9Algorithm 3 Redue aInput: An ideal a = (a; b), a � O�Output: A redued ideal equivalent to a1: if b < 0 then2: s �13: else4: s 15: end if6: b jbj, r  b mod 2a7: if a < r then8: b a9: else10: b r, s �s11: end if12:  (b2 ��)=4a13: while a >  do14: ta  a, a 15: q  bb=2a, r  b mod 2a16:  ta � q(r + b)=217: if a < r then18: b 2a� r,  + a� r19: else20: b r, s �s21: end if22: end while23: if s < 0 then24: b �b25: end if26: if b > a then27: b b� 2a,  � b+ a28: else if b � �a then29: b b+ 2a,  + b+ a30: end if31: if a =  and b < 0 then32: b �b33: end if Table 2: Performane of IQ arithmeti (in milliseonds)size of � multiply square redue512 0.1570 0.1550 0.4455724 0.2390 0.2295 0.70351024 0.3570 0.3380 1.14001448 0.5635 0.5230 1.91302048 0.9145 0.8340 3.31652896 1.4855 1.3475 6.03954096 2.4590 2.2270 10.8880



10 A Survey On IQ CryptographyTable 3: Some IQ-RDSA timings (in milliseonds)Size of IQ-RDSA� Sig Ver687 82.4 245.41208 191.4 554.52084 411.3 1248.8Table 4: Some RSA timings (in milliseonds)Size of RSAn Sig Ver1024 50.7 3.02048 342.7 10.74096 2447.5 39.85.2 E�ieny of some IQ ryptosystemsIn this subsetion we present benhmarks for the IQ-RDSA signature sheme. This have been imple-mented using the arithmeti modules that were desribed in the previous subsetion. We have usedthe following optimizations: For the exponentiation we have used signed-digit exponent reoding. Fora signature, we have also used Gordon-Brikell preomputation [22, Set. 14.6.3℄ (generated in thekey generation step). For the veri�ation we have used simultaneous multiple exponentiation. Someaveraged timings are given in Table 3.For a omparison, we present some benhmarks of the RSA signature sheme in Table 4. Wehave used the openssl implementation of RSA (openssl version 0.9.6, see http://www.openssl.org/).This implementation makes use of Montgomery exponentiations and Chinese remaindering. As publiexponent we have seleted the Fermat prime 65537. Note that the parameter size for IQ-RDSA andfor RSA has been seleted aording to Table 1.The key observation is that an IQ-RDSA signature is eventually faster than a RSA signature.The ross over is at a seurity level that is rather moderate (aording to [20℄). Sine the e�ienyof IQ arithmeti reeived omparably little attention in the past, it is reasonable to expet signi�antimprovements in the future. These improvements will make IQ ryptosystems even more ompetitiveto traditional ryptosystems.6 ConlusionWe have given a summary over the seletion of the ryptographi parameter for IQ ryptosystems. Wehave presented IQ versions of some well known protools, and we have presented e�ient algorithmsto implement IQ ryptosystems. Finally we have seen that they are e�ient and pratial. The nextsteps are: Apply the optimizations to IQ arithmeti as outlined at the end of Set. 5.1, investigate moreprotools (for example, blind signatures, undeniable signatures, signatures with message reovery, andkey exhange protools), and �nally, a formal desription of IQC similar to [30, 31℄.
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