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tThis paper gives a survey on 
ryptographi
 primitives based on 
lass groups of imaginaryquadrati
 orders (IQ 
ryptography, IQC). We present IQC versions of several well known 
rypto-graphi
 primitives, and we explain, why these primitives are se
ure if one assumes the hardnessof the underlying problems. We give advi
e on the sele
tion of the 
ryptographi
 parameters andshow the impa
t of this advi
e on the e�
ien
y of some IQ 
ryptosystems.1 Introdu
tionThe term IQ 
ryptography (IQC) refers to 
ryptography based on 
lass groups of imaginary quadrati
orders. IQC has been invented in 1988 [6℄. Therefore, IQC is of about the same age as ECC (ellipti

urve 
ryptography) [23, 18℄, yet IQC didn't get the same attention. What was most la
king was a
omprehensive guide for using IQC. That is, there is still no formal do
ument that des
ribes how tosele
t the 
ryptographi
 parameters and whi
h 
ryptographi
 s
hemes to use. Advi
e on the sele
tionof the 
ryptographi
 parameters for IQC has been given in [14℄; a summary of some results of thatpaper has been in
luded in this work. The aim of this paper is to present IQC versions of somewell known 
ryptographi
 s
hemes, to des
ribe the algorithms that 
an be used for the underlyingarithmeti
, and to dis
uss the performan
e of IQC s
hemes using those algorithms. Thus, this paperis another step towards a standardization of IQC.Although 
lass groups are ordinary �nite abelian groups, some 
ryptographi
 s
hemes based ondis
rete logarithms 
an't be used with 
lass groups in a straight forward way. The reason is that theorder of 
lass groups (or odd divisors thereof) 
an't be 
omputed e�
iently. However, some dis
retelogarithm based 
ryptographi
 s
hemes, for example any signature s
heme of ElGamal type, requirethe knowledge of the group order. In order to use these s
hemes, it is ne
essary to modify them. Inthis paper we present su
h modi�
ations for DSA. It also turns out that 
lass groups are well suitedfor the Guillou-Quisquater signature s
heme.Finally, the performan
e of IQ 
ryptosystems has never been 
ompared to the performan
e ofestablished 
ryptosystems. Sin
e the performan
e depends on the size of the 
ryptographi
 parameter,whi
h in turn depends on the desired se
urity level, the sele
tion of the 
ryptographi
 parameter hadto be investigated �rst. This has been done in [14℄. In this paper �rst realisti
 ben
hmarks for IQ
ryptosystems are presented, where the 
ryptographi
 parameter has been 
hosen of su
h a size thatsolving the dis
rete logarithm problem in the 
lass group is about as hard as solving the integerfa
toring problem for integers of 
ertain size. The result is that IQ 
ryptosystems appear to bepra
ti
al. Sin
e 
omparably little resera
h has been spent on e�
ient IQ arithmeti
, it is reasonableto expe
t signi�
ant improvements in this area in the future.This paper is organized as follows: Se
t. 2 re
alls some relevant fa
ts and notations from thetheory of imaginary quadrati
 number �elds. In Se
t. 3 we dis
uss the 
omputational problems onwhi
h IQ 
ryptosystems are based, and we dis
uss some properties of 
lass groups that are relevantto 
ryptographi
 appli
ations. In Se
t. 4 we present IQ versions of some well known 
ryptographi
s
hemes. Finally, in Se
t. 5 we present ben
hmarks for an IQC variant of DSA and 
ompare themwith ben
hmarks of traditional 
ryptosystems.



2 A Survey On IQ Cryptography2 Basi
 notationWe shall brie�y re
all some notations that we shall use in the sequel (see [16℄ or [4℄ for full details).Let � be a negative integer su
h that � � 0; 1 (mod 4). Then the ring O� = Z+ (�+p�)=2Z isan imaginary quadrati
 order of dis
riminant �. Its �eld of fra
tions is Q(p�). The dis
riminant �is 
alled fundamental if �=4 or � is square free for � � 0 (mod 4) or � � 1 (mod 4), respe
tively.(If � is fundamental, then O� is a maximal order.)The fra
tional ideals of any imaginary quadrati
 order are of the form q(aZ+ (b+p�)=2Z) withq 2 Q , a; b 2 Z, a > 0, 4a j b2 ��, and g
d(a; b; 
) = 1 where 
 = (b2 ��)=(4a). Hen
e, they 
an berepresented by triples (q; a; b). If q = 1, then the ideal is 
alled intregral. Two ideals a1; a2 � O� are
alled equivalent if there is a non-zero number � 2 Q(p�) su
h that a2 = �a1.The set of equivalen
e 
lasses forms an abelian group under ideal multipli
ation. This group is
alled 
lass group and denoted by Cl(�). The 
lass group is always �nite. Its order is 
alled 
lassnumber and is denoted by h(�). The 
lass number is not e�
iently 
omputable, if the dis
riminantis fundamental, but the even part of h(�) 
an be e�
iently 
omputed, if the prime fa
torization of� is known. For example, if � is a negative prime, then h(�) is always odd.To 
ompute with equivalen
e 
lasses of 
lass groups, one has to sele
t representatives from ea
h
lass. From the de�nition of equivalen
e it is obvious that any non-zero fra
tional ideal is equivalentto an integral one. Thus, ea
h equivalen
e 
lass 
an be represented by an integral ideal. Additionally,the produ
t of two integral ideals is also an integral ideal. Therefore, we shall deal only with integralideals, whi
h we shall represent by pairs (a; b). Moreover, 
lass groups of imaginary quadrati
 ordershave the property that ea
h equivalen
e 
lass of ideals 
ontain exa
tly one redu
ed integral ideal. Anintegral ideal (a; b) of a quadrati
 order O� is 
alled redu
ed, if the following 
onditions are satis�ed,where 
 = (b2 ��)=(4a): 1. a � 
, 2. �a < b � a, and 3. if a = 
, then b > 0.There are e�
ient algorithms to redu
e integral ideals (i.e. �nding an equivalent redu
ed ideal), seeSe
t. 5. Thus, we shall represent ea
h equivalen
e 
lass by a unique redu
ed integral ideal. Computingwith redu
ed ideals is usually optimal in terms of e�
ien
y be
ause the bit sizes of redu
ed ideals aresmall. In parti
ular, if (a; b) is a redu
ed ideal of O�, then a � pj�j=3. Sin
e jbj � a, the bit sizeof (a; b) is at most that of �. The multipli
ation of redu
ed ideals takes O(log2 j�j) bit operations.Sin
e the produ
t of redu
ed ideals is usually not redu
ed, we shall redu
e any (intermediate) result.A 
areful analysis of the redu
tion algorithm presented in Se
t. 5 shows that this algorithm takes alsoO(log2 j�j) bit operations, and therefore, a group operation (i.e. ideal multipli
ation with subsequentredu
tion) takes O(log2 j�j) bit operations.3 Se
urity of IQCIn this se
tion we shall make some statements on the hardness of some 
omputational problems for
lass groups and on the sele
tion of IQC parameters.3.1 Some 
omputational problemsLet G be a �nite abelian group. Then we de�neDis
rete logarithm problem (DLP): given �; � 2 G, �nd the smallest positive integer x su
h that� = �x (or de
eide that no su
h x exists).Order problem (OP): given � 2 G, 
ompute jh�ij.Root problem (RP): given � 2 G and an integer x > 1, 
ompute � su
h that �x = � (or de
idethat no su
h � 2 G exists).Sin
e jh�ij = DLP(�; 1G), we have OP � DLP. Conversely, the knowledge of the group order doesapparently not help to 
ompute dis
rete logarithms. For example, the group order of multipli
ative



3.2 Choosing the 
ryptographi
 parameter 3groups of any �nite �eld is obviously known, yet the 
omputation of dis
rete logarithms still appearsto be intra
table. Thus, it is unlikely that OP = DLP.Finally, there are e�
ient methods to 
ompute an xth root (or to de
ide that su
h a root doesnot exist), if we know the group order. Thus, RP � OP. It is an open question, whether RP = OP ornot, and it is also unknown, whether it is possible to 
ompute roots e�
iently without knowing thegroup order.In the 
ontext of 
lass groups of imaginary quadrati
 orders we denote these three problems byIQ-DLP, IQ-OP, and IQ-RP. It is known that IQ-DLP � IFP1, so the 
omplexity to solve the IFP is alower bound for the 
omplexity to solve the IQ-DLP.IQ-DLP, IQ-OP, and IQ-RP appear to be hard problems. Despite the fa
t, that these problemsdon't appear to be equivalent (with respe
t to 
omplexity theory), the best known algorithms tosolve ea
h of these problems are variants of ea
h other with the same asymptoti
 running time. Morepre
isely, there is no better method known to 
ompute a solution to the IQ-RP than to 
ompute asolution to the IQ-OP, for whi
h in turn is no better method known than to 
ompute a solution toan instan
e of the IQ-DLP.The se
urity of the IQ 
ryptosystems are based either on the IQ-DLP, or on the IQ-RP. Sin
einstan
es of the IQ-RP are solved by invoking an algorithm for the IQ-DLP, we shall fo
us on theIQ-DLP. The following properties of 
lass groups are of major interest for 
ryptographi
 appli
ations:� The 
lass group is large, if the dis
riminant is large. It was known to Gauÿ that the average
lass number h(�) = 
1pD for all fundamental dis
riminants up to �D, where 
1 � 0:46. Infa
t, from the Brauer-Siegel Theorem [19℄ follows thatpj�j1+� � h(�) �pj�j1�� (1)For any positive real �. Moreover, if one assumes the Extended Riemann Hypothesis, then it ispossible to show [21℄ that1 + o(1)
2 ln ln j�jpj�j < h(�) < (1 + o(1))
3pj�j ln ln j�j (2)where 
2 = 12e
=� � 6:8 and 
3 = 2e
=� � 1:134.� The 
lass group of a randomly 
hosen fundamental dis
riminant 
ontains a very large 
y
li
subgroup with very high probability. This follows from [9, 
onje
ture C5℄� The probability that the 
lass number of a randomly 
hosen fundamental dis
riminant is verysmooth, is negligible. This follows from [9, 
onje
ture C2℄ and an additional assumption [7℄, see[14℄.This shows, that 
lass groups are suitable for 
ryptographi
 purposes. The above algorithms are
alled generi
, for they work in any �nite abelian group. As we shall see in the next subse
tion, thereare faster algorithms known to 
ompute dis
rete logarithms in 
lass groups that are not generi
.3.2 Choosing the 
ryptographi
 parameterSin
e the 
lass group depends only on the dis
riminant, the dis
riminant is the main 
ryptographi
parameter. In [14℄ all known strategies to 
ompute dis
rete logarithms in 
lass groups have beeninvestigated. These are:� Redu
tions to dis
rete logarithm 
omputations in multipli
ative groups of �nite �elds. Su
hredu
tion has been found for totally non-maximal orders. Conversely, there are no su
h redu
tionknown for maximal orders, hen
e the dis
riminant should be 
hosen to be fundamental. Thesimplest way to a
hieve this is to sele
t a (large) prime p and set � = �p or to sele
t two (large)primes p and q and set � = �pq (su
h that, in both 
ases, � � 1 (mod 4)).1Integer fa
torization problem



4 A Survey On IQ Cryptography� A method similar to the (p � 1)-fa
toring algorithm to 
ompute the 
lass number and thePohlig-Hellman algorithm. This (p� 1)-like method 
an be used to 
ompute the 
lass number,if it is very smooth (a similar algorithm has been used in an other fa
toring algorithm due toS
hnorr and H.W. Lenstra [28℄). Then, the Pohlig-Hellman algorithm 
an be used for dis
retelogarithm 
omputations. The (p� 1) algorithm has exponential running time in the size of thesmoothness bound. In [14℄ it was shown that the probability that the 
lass number of a randomfundamental dis
riminant is very smooth is negligible. Hen
e, we expe
t the (p� 1) algorithmto have exponential running time on average.� Square-root algorithms, su
h as the Baby-Step-Giant-Step method or the � and � algorithms(see [22, Chap. 3℄ for an overview and further referen
es). The running time of these algorithmsis exponential in the size of the 
lass group, and from the previous se
tion follows, that theyare also exponential in the size of the dis
riminant� Index-
al
ulus algorithms. These algorithms have subexponential running time (and needsubexponential spa
e) in the size of the dis
riminant (see [17℄ or [8, Se
t. 5.5℄). Therefore,in order to prote
t IQ 
ryptosystems from atta
ks by index-
al
ulus algorithms, mu
h largerdis
riminants are required than for any square-root algorithm or the (p� 1)-algorithm.The fastest known algorithm to solve the IQ-DLP is a variant of the MPQS fa
toring algorithm(IQ-MPQS). It is asymptoti
ally mu
h slower than the GNFS, the fastest known algorithm to fa
torintegers (see Figure 1). If one 
ompares the expe
ted running times of the GNFS and the IQ-MPQS, one gets that fa
toring 1024-bit integers requires about as mu
h 
omputational work as the
omputation of 
lass groups with a 687-bit dis
riminant. Similar results are summarized in the Table1.4 IQC proto
olsWe shall now des
ribe some proto
ols for IQC. Sin
e 
lass groups are ordinary �nite abelian groups,we 
ould use any s
heme that is based on dis
rete logarithms. However, the 
lass number (i.e. theorder of a 
lass group) is usually not e�
iently 
omputable. Thus, 
ryptographi
 s
hemes that requirethe knowledge of the group order (su
h as DSA or the S
hnorr signature s
heme) 
an't be used in astraight forward manner. But these proto
ols 
an modi�ed in su
h a way that the knowledge of thegroup order is not required.From the above introdu
tion it is 
lear that proto
ols like the Di�e-Hellman key ex
hange or theElGamal en
ryption s
heme 
an be used in a straight forward manner with 
lass groups.4.1 The ElGamal en
ryptionThe ElGamal en
ryption s
heme 
ould be used just as des
ribed in [11℄. However, this would requirea user to embed the plain text into a group element. In [26℄ probabilisti
 methods have been presentedTable 1: Estimated expe
ted 
omputational work of the GNFS for fa
toring integers and the IQ-MPQS for 
omputing dis
rete logarithms in 
lass groups alignedmagnitude ofn j�j expe
ted no. of MIPS-years2768 2540 4:99 � 10721024 2687 6:01 � 101021536 2958 5:95 � 101522048 21208 7:05 � 101923072 21665 2:65 � 102624096 22084 5:87 � 1031



4.2 Two DSA variants 5
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Figure 1: Asymptoti
 expe
ted running times for the GNFS and the IQ-MPQS. Here we assume theexpe
ted running times to be Ln�13 ; 3p64=9� for the GNFS and Lj�j�12 ; 1� for the IQ-MPQS. Thedetails 
an be found in [14℄.to do this e�
iently, but neither of the des
ribed methods are very fast in pra
ti
e. It is also notreally ne
essary to embed a group elements. Instead, one 
an use the following modi�ed ElGamalsignature:Key Generation: A randomly sele
ts a fundamental dis
riminant � of size a

ording to the desiredse
urity level. Then A randomly sele
ts 
 2 Cl(�), a �pj�j, and 
omputes � = 
a. A's publi
key is (�; 
; �), the private key is a.En
ryption: To en
rypt the plain text m, B randomly sele
ts k �pj�j and 
omputes � = 
k and� = �k. Then the 
ipher text is C = (�; 
), where 
 = m� f(�), f is a preimage and 
ollisionresistant hash fun
tion, and � denotes bitwise xor-ing.De
ryption: A 
omputes � = �a and re
overs m by 
omputing m = 
� f(�).This s
heme a
tually resembles the Di�e-Hellman key ex
hange, where A enters the proto
ol at thekey generation stage, and B 
ompletes the proto
ol on en
rypting the plain text. The same idea hasbeen used for ellipti
 
urves in [1℄. This s
heme is deterministi
 and very e�
ient.Finally, observe that the Cramer-Shoup en
ryption s
heme [10℄ 
an be used in a straight forwardway with 
lass groups. Moreover, the same modi�
ation we have proposed for the IQ version of theElGamal en
ryption s
heme above 
an be applied to the Cramer-Shoup en
ryption s
heme.4.2 Two DSA variantsAs noted before, DSA [12℄ or the S
hnorr [27℄ signature s
heme (and similar signature s
hemes ofElGamal type) 
an't be used in a straight forward way with 
lass groups. This is be
ause the 
lassnumber, i.e. the order of the 
lass group 
an't be 
omputed e�
iently, at least if the dis
riminant isfundamental. But signing a message with a signature s
heme of ElGamal type requires a redu
tionmodulo the group order or a divisor thereof. We demonstrate this with a generalized version of DSA:Key Generation: A randomly sele
ts a group G, su
h that jGj has a 160-bit prime divisor q (thea
tual size of G depends on properties of G and the spe
i�
 se
urity requirements). Then Arandomly sele
ts 
0 2 G and 
omputes 
 = 
jGj=q0 : (3)



6 A Survey On IQ Cryptography(If 
 = 1G A sele
ts another 
0.) Finally, A randomly sele
ts a � 2160 and 
omputes � = 
a.A's publi
 key is (G; q; 
; �), the private key is a.Signature: To sign the message m, A randomly sele
ts k � 2160 and 
omputes % = 
k, an integerr = f(%), and an integer s = k�1�f(m) + ar� mod q ; (4)where f is a 
ollision and preimage resistant hash fun
tion. Then the signature for m is S =(r; s), where f is a preimage and 
ollision resistant hash fun
tion.Veri�
ation: B 
he
ks that 0 < s < q. Then B 
omputes w = s�1 mod q, u1 = wf(m) mod q,u2 = wr mod q, and v = f(
u1�u2). Finally, B 
he
ks that v = r.Without knowledge of jGj the 
omputation of (3) and (4) is impossible.In the 
ontext of 
lass groups (i.e. G = Cl(�)), (3) 
an be repla
ed by a random sele
tion of
 2 Cl(�), be
ause Cl(�) 
ontains large 
y
li
 subgroups with very high probability. Moreover,the probability that h(�) is very smooth is negligible. Hen
e, by group theoreti
 arguments, theprobability that h
i is large and jh
ij has a large prime divisor is very high. It remains to answer thequestion: what 
an we do about (4)? There are at least two possible solutions:1. Repla
e q by an integer that is not related to h(�). The main motivation for this is the fa
tthat s = x mod q is equivalent to s = x� `q for some integer `2. Omit the modular redu
tion.First, in order to simplify the matter, we modify the signature s
heme su
h that the modularinversion of (4) disappears. To do this, we pi
k DSA variant EG II.3 from [15℄, in whi
h (4) be
omess = �af(m; %) + k mod q ; (5)with appropriate modi�
ation of the signature (whi
h be
omes S = (%; s)) and the veri�
ation pro-
edure. The resulting s
heme is a
tually more similar to the S
hnorr signature s
heme than to DSA,but for te
hni
al reasons we shall 
all it DSA, too. In the following subse
tions we shall dis
uss thetwo solutions.4.2.1 Repla
ing the modulusThis variant of DSA has been des
ribed in [3℄. It is 
alled RDSA. The se
urity of the resultingproto
ol is based on the root problem (and not on the dis
rete logarithm problem), when
e the name.Key generation: A randomly sele
ts a fundamental dis
riminant �. Then A randomly sele
ts 
 2Cl(�) and a 160-bit prime q. Then A randomly sele
ts a � 2160 and 
omputes � = 
a. A'spubli
 key is (�; q; 
; �), the private key is a.Signature: To sign the message m, A randomly sele
ts k � 2160 and 
omputes % = 
k and an integerx = �af(m; %) + k. Then A divides x by q with remainder, i.e. A 
omputes integers s and `su
h that x = q`+ s and 0 � s < q. Finally, A 
omputes � = 
`. Then the signature for m isS = (s; %; �).Veri�
ation: B 
he
ks that 0 � s < q and that 
s�f(m;%)�q = %.From this des
ription it is obvious that an atta
ker, who 
an 
ompute qth roots in Cl(�), 
anforge signatures for A: He simply randomly sele
ts % 2 Cl(�) and s 2 f0; : : : q � 1g, then he sets� = �%
�s��f(m;%)�1=q. It is easily 
he
ked that (s; %; �) is a valid signature for m under A's publi
key.In [3℄ the 
onverse has been shown in the random ora
le model [2℄, i.e. an atta
ker who 
ane�
iently 
ompute existentially forged signatures in a 
hosen message atta
k, 
an e�
iently 
omputeqth roots. Therefore, under the assumption of the hardness of the root problem, RDSA is se
ureagainst existential forgeries even in a 
hosen message atta
k.



4.3 The Guillou-Quisquater signature s
heme 74.2.2 Omitting the modular redu
tionThis variant of DSA is due to an idea in [25℄. Unlike the DSA variant in the previous subse
tion, thisvariant is based on the dis
rete logarithm problem.Key generation: A randomly sele
ts a fundamental dis
riminant �. Then A randomly sele
ts 
 2Cl(�), an integer a � 2160, and 
omputes � = 
a. A's publi
 key is (�; 
; �), the private key isa.Signature: To sign the message m, A randomly sele
ts k � 2160 and 
omputes % = 
k and an integers = �af(m; %) + k. Then the signature for m is S = (s; %).Veri�
ation: B 
he
ks that 0 � s < q and that 
s�f(m;%) = %.This surprisingly simple DSA variant appears to be superior to RDSA, for it requires apparently less
omputation and is based on an allegedly harder problem. However, as in [25℄, this s
heme is se
ureagainst existential forgery in a 
hosen message atta
k only if af=k is negligible. For example, if a andthe output of f are 160 bits wide, and if 1=280 is negligible, then k has to be sele
ted 400 bits large(note that s will also have 400 bits). Thus, this DSA variant is 
onsiderably less e�
ient than RDSA.4.3 The Guillou-Quisquater signature s
hemeThe Guillou-Quisquater signature s
heme [13℄ works unmodi�ed in our 
ontext. For 
onvenien
e, wepresent a stripped down version:Key generation: A randomly sele
ts a fundamental dis
riminant �. Then A randomly sele
ts � 2Cl(�) and an integer q � 2160. Then A 
omputes � = ��q. A's publi
 key is (�; q; �), theprivate key is �.Signature: To sign the message m, A randomly sele
ts � 2 Cl(�) and 
omputes % = �q. Then A
omputes ` = f(m; %) and � = ��`. The signature for m is S = (`; �).Veri�
ation: B 
omputes v = f(m;�q�`) and 
he
ks that v = `.It is obvious that this signature s
heme is based on the intra
tability to 
ompute roots in Cl(�).A

ording to [24℄, the Guillou-Quisquater signature s
heme also 
an be proven to be se
ure againstexistential forgery in a 
hosen message atta
k.5 E�
ien
y of IQ proto
olsIn this se
tion, we shall review some algorithms to perform IQ arithmeti
, then we shall presentsome ben
hmarks for the IQ-RDSA siganture s
heme and 
ompare these to ben
hmarks of the RSAsignature s
heme.5.1 IQ arithmeti
IQ arithmeti
 is essentially the same as the 
omposition of binary quadrati
 forms [8, Se
t. 5.2℄. Thealgorithms here are taken from [17℄. Re
all that integral ideals are represented by pairs (a; b), wherea and b are integers, a is positive, and 4a j b2 ��. For any ideal (a; b) set 
 = (b2 ��)=(4a).First, we present the algorithms for ideal multipli
ation and ideal squaring. For integers a and bwe denote by (d; x; y) xg
d(a; b) the 
omputation of integers d, x, and y su
h that d is the greatest
ommon divisor of a and b, and d = ax+ by.The hard part of Algorithms 1 and 2 is the extended Eu
lidean algorithm (line 1 in both algo-rithms). Therefore, both algorithms have the best performan
e, if their input ideals are redu
ed.



8 A Survey On IQ CryptographyNote that the se
ond extended Eu
lidean algorithm in Algorithm 1 (line 5) takes on average only afew steps, be
ause d1 is very small on average.Next, we present a redu
tion algorithm, sin
e it is essential to redu
e any (intermediate) result.The redu
tion is performed by Algorithms 3. Algorithm 3 is similar to the extended Eu
lideanalgorithm, and it 
an be shown that the loop (lines 13 to 22) is exe
uted at most 2+ �log2(a=pj�j)�times [8, Proposition 5.4.3℄. A run time analysis of Algorithm 3 similar to the analysis of the extendedEu
lidean algorithm shows that Algorithm 3 performs O(log2 j�j) steps [5, Se
t. 5.6℄, if the input tothis algorithm is the output of either algorithm 1 or 2.Finally, we note that if (a; b) represents an ideal 
lass, then (a;�b) represents the inverse. If (a; b)is redu
ed, then so is (a;�b), unless a = b, whi
h happens with negligible probability. For instan
e,if � is a negative odd prime, then there is only one su
h redu
ed ideal, and that is (1; 1). Therefore,the inversion of a group element takes almost always 
onstant time. This 
an be utilized for fastexponentiations of ideals, be
ause one 
ould use a signed-digit exponent re
oding [22, Se
t. 14.7℄,whi
h redu
es the number of ideal multipli
ations.Algorithms 1, 2, and 3 have been implemented using the GNU multipre
ision arithmeti
 library(GMP, version 3.1.1, see http://www.swox.
om/gmp/). On a SUN ma
hine with Spar
 Ultra IIpro
essor (333MHz), we get the ben
hmarks in Table 2. From this table, one 
an 
on
lude thaton average an ideal squaring is only slightly faster than an ideal multipli
ation. Furthermore, thegreatest amount of work has to be spent for the redu
tion, thus any optimization e�orts should starthere. This 
ould be done by repla
ing Algorithm 3 by S
hönhage's redu
tion algorithm [29, 33℄.Another idea is to use the NUCOMP and NUDUPL algorithms of Shanks [32℄ for ideal multipli
ationand squaring. Shanks' Algorithms have the advantage, that most intermediate results are of sizeO(pj�j). Moreover, their outputs are already redu
ed. This is a
hieved to the expense of moremultipre
ision multipli
ations. But if these algorithms are implemented 
arelessly, they are stillslower than multipli
ation or squaring with subsequent redu
tion.Algorithm 1 Compute a3  a1 � a2Input: Redu
ed ideals a1 = (a1; b1) and a2 = (a2; b2), a; b � O�Output: the ideal a3 = (a3; b3)1: d1; v; w  xg
d(a1; a2)2: a3  a1a23: b3  va1(b2 � b1)4: if d1 6= 1 then5: d2; v; w  xg
d(d1; (b1 + b2)=2)6: a3  a3=d227: b3  (b3v + w(�� b21)=2)=d28: end if9: b3  b1 + b3 mod 2a3Algorithm 2 Compute a3  a21Input: A redu
ed ideal a1 = (a1; b1), a1 � O�Output: the ideal a3 = (a3; b3)1: d; v; w  xg
d(a1; b1)2: a3  (a1=d)23: b3  w(�� b21)=(2d)4: b3  b1 + b3 mod 2a3
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 9Algorithm 3 Redu
e aInput: An ideal a = (a; b), a � O�Output: A redu
ed ideal equivalent to a1: if b < 0 then2: s �13: else4: s 15: end if6: b jbj, r  b mod 2a7: if a < r then8: b a9: else10: b r, s �s11: end if12: 
 (b2 ��)=4a13: while a > 
 do14: ta  a, a 
15: q  bb=2a
, r  b mod 2a16: 
 ta � q(r + b)=217: if a < r then18: b 2a� r, 
 
+ a� r19: else20: b r, s �s21: end if22: end while23: if s < 0 then24: b �b25: end if26: if b > a then27: b b� 2a, 
 
� b+ a28: else if b � �a then29: b b+ 2a, 
 
+ b+ a30: end if31: if a = 
 and b < 0 then32: b �b33: end if Table 2: Performan
e of IQ arithmeti
 (in millise
onds)size of � multiply square redu
e512 0.1570 0.1550 0.4455724 0.2390 0.2295 0.70351024 0.3570 0.3380 1.14001448 0.5635 0.5230 1.91302048 0.9145 0.8340 3.31652896 1.4855 1.3475 6.03954096 2.4590 2.2270 10.8880



10 A Survey On IQ CryptographyTable 3: Some IQ-RDSA timings (in millise
onds)Size of IQ-RDSA� Sig Ver687 82.4 245.41208 191.4 554.52084 411.3 1248.8Table 4: Some RSA timings (in millise
onds)Size of RSAn Sig Ver1024 50.7 3.02048 342.7 10.74096 2447.5 39.85.2 E�
ien
y of some IQ 
ryptosystemsIn this subse
tion we present ben
hmarks for the IQ-RDSA signature s
heme. This have been imple-mented using the arithmeti
 modules that were des
ribed in the previous subse
tion. We have usedthe following optimizations: For the exponentiation we have used signed-digit exponent re
oding. Fora signature, we have also used Gordon-Bri
kell pre
omputation [22, Se
t. 14.6.3℄ (generated in thekey generation step). For the veri�
ation we have used simultaneous multiple exponentiation. Someaveraged timings are given in Table 3.For a 
omparison, we present some ben
hmarks of the RSA signature s
heme in Table 4. Wehave used the openssl implementation of RSA (openssl version 0.9.6, see http://www.openssl.org/).This implementation makes use of Montgomery exponentiations and Chinese remaindering. As publi
exponent we have sele
ted the Fermat prime 65537. Note that the parameter size for IQ-RDSA andfor RSA has been sele
ted a

ording to Table 1.The key observation is that an IQ-RDSA signature is eventually faster than a RSA signature.The 
ross over is at a se
urity level that is rather moderate (a

ording to [20℄). Sin
e the e�
ien
yof IQ arithmeti
 re
eived 
omparably little attention in the past, it is reasonable to expe
t signi�
antimprovements in the future. These improvements will make IQ 
ryptosystems even more 
ompetitiveto traditional 
ryptosystems.6 Con
lusionWe have given a summary over the sele
tion of the 
ryptographi
 parameter for IQ 
ryptosystems. Wehave presented IQ versions of some well known proto
ols, and we have presented e�
ient algorithmsto implement IQ 
ryptosystems. Finally we have seen that they are e�
ient and pra
ti
al. The nextsteps are: Apply the optimizations to IQ arithmeti
 as outlined at the end of Se
t. 5.1, investigate moreproto
ols (for example, blind signatures, undeniable signatures, signatures with message re
overy, andkey ex
hange proto
ols), and �nally, a formal des
ription of IQC similar to [30, 31℄.
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