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ABSTRACT

We consider in this chapter a class of two-player nonzerstochastic games with
incomplete information, which is inspired by recent apgiicns of game theory in
network security. We develop fully distributed reinforoemh learning algorithms,
which require for each player a minimal amount of informatiegarding the other

player. At each time, each player can be in an active mode arsieep mode. If
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2 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

a player is in an active mode, she updates her strategy aintbéss of unknown
quantities using a specific pure or hybrid learning pattéire players’ intelligence
and rationality are captured by the weighted linear continaf different learning
patterns. We use stochastic approximation techniquesaw $at, under appro-
priate conditions, the pure or hybrid learning schemes wétidom updates can be
studied using their deterministic ordinary differentiguation (ODE) counterparts.
Convergence to state-independent equilibria is analyaespiecial classes of games,
namely, games with two actions, and potential games. Restdtapplied to network
security games between an intruder and an administrat@rerthe noncooperative

behaviors are well characterized by the features of digeibhybrid learning.

14.1 INTRODUCTION

In recent years, game-theoretic methods have been appligtdidy resource allo-
cation problems in communication networks [2], securitychenisms for network
security and privacy [1, 17], and economic pricing in powetworks [9]. Most
frameworks have assumed the rationality of the agents odétésion-makers as
well as the complete information about their payoffs andtsetries. However, in
practice, due to the noise and the uncertainties in the @mvient, agents often have
information limitations in their knowledge not only of othplayers’ payoffs and
strategies, but also of their own. For this reason, we mussider the learning
aspects of the decision-makers and address their estimatid assessment of the
payoff and strategy based on the information accessibleeim t

In this chapter, we consider a class of two-player nonzaro-stochastic games
with incomplete information. We develop fully distributeayoff and strategy re-
inforcement learning (CODIPAS-RL) algorithms, which r@gufor each player a
minimal amount of information regarding the other playereach time, each player
can be in an active mode or in a sleep mode. If a player is in tweanode, she up-
dates her strategy and estimates of unknown quantitieg aspecific pure or hybrid
learning pattern. In contrast to the standard reinforceiteanning algorithms which

focus only on either strategy or payoff reinforcement fa #guilibrium learning,
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INTRODUCTION 3

the algorithm that couples the payoff reinforcement leagribgether with strategy-
reinforcement learning allows an immediate prediction apdates the strategies by
updated estimations based on recent experiences. Thef paiydbrcement learn-
ing in our proposed algorithms bears a connection with thHeapaing algorithms
in [23, 26], which have been commonly applied to learn theu@efions of Markov
decision processes (MDPs).

We specifically discuss five pure CODIPAS-RL algorithms asel stochastic ap-
proximation techniques to show that, under appropriatéitioms, the pure or hybrid
learning schemes with random updates can be studied usirgdterministic or-
dinary differential equation (ODE) counterparts. Conegrge to state-independent
equilibria is analyzed under specific payoff functions sashthose in games with
two actions, and Lyapunov games.

We apply the learning algorithms to a class of security gamfesre an attacker
and an intrusion detection system (IDS) strategically sledbeir actions to optimize
their payoffs. Many forms of security games have been foatedl to provide quanti-
tative security and dependability analysis of networkesdeys [1,17,32]. However,
technical difficulties in quantifying appropriate secyrinhetrics or payoff functions
render it difficult to specify the utility functions for thdtacker and the defender. In
addition, the inevitable false positive and false negativers in the detection of-
ten lead to incomplete information in a dynamic network emwinent. Our hybrid
learning framework for the two-person game with incompiefermation provides
an appropriate theoretical basis for the on-line implemigor of game-theoretic al-

gorithms.

14.1.1 Related Work

Learning in games has been investigated in several paptrs necent literature. In
[10, 22], a fictitious-play algorithm is used to find Nash ditpuium in a nonzero-
sum game. Players observe opponents’ actions and updatstthgegies in reaction
to others’ actions in a best-response fashion. The authd&sj propose a modi-
fied version of the fictitious play called joint fictitious plavith inertia for potential

games, in which players alternate their updates at diftamere slots. In all these
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4 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

learning schemes, players have to monitor the actions oy @tker player and need
to know their own payoff so as to find their optimal actionsthis chapter, we are
interested in fully distributed learning procedures, vehplayers do not need any
information about the actions or payoffs of the other playand, moreover, they do
not need to have complete information of their own payoficture.

Young proposes in [29] such a completely uncoupled learnifey called inter-
active trial and error learning. Players occasionally tuy wew actions and accept
them if they lead to higher payoffs. If a player experiencdeerease in payoff due
to strategy changes by some other players, he initiatesdonasearch for a new
strategy and settles on one with a probability that increasenotonically with its
realized payoff. When used by all players, the learning sehgields pure-strategy
Nash equilibrium behavior under an interdependency cmmditHHowever, in games
without pure-strategy Nash equilibrium, it fails to yieldsh equilibrium strategies.

In [25, 28], strategy reinforcement learning in finite ganies been studied.
The ordinary differential equation (ODE) approximatiortloé learning algorithm is
shown to be equivalent to an adjusted replicator dynami¢k |2 [15], a multiple-
time scale model-free algorithm is introduced and it is shéavbe asymptotically
equivalent to the smooth fictitious play algorithm. In [32],3ve introduce a class of
combined distributed payoff and strategy reinforcemeaartilng schemes (CODIPAS-
RL), and propose a heterogeneous learning algorithm fot@rson zero-sum stochas-
tic games with incomplete information, where differenty@es can adopt different
learning schemes and learning rates. In [30], we proposdeaiing algorithm
for zero-sum stochastic games and apply it to dynamic cordigun problems of

intrusion detection systems.

14.1.2 Contribution

In this chapter, we consider a class of general-sum twospegames and introduce
the new paradigm dfiybrid learningunder the frameworks of combined distributed
payoff and strategy reinforcement learning (CODIPAS-Rihere in order to render
the learning algorithm practical to implement in the cohtEbnetwork security, we

introduce the following features of the game.
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TWO-PERSON GAME 5

(F1) Inadditionto exogenous environmentuncertaintiesinfroduce inherent mode
uncertainties in players. Each player can be imaative mode or asleeping
mode. Players learn their strategies and average paydffsubien they are in

anactivemode.

(F2) We allow the interaction between the players to occraradom times unknown

to the players.

We use stochastic approximation techniques to show that/ted learning schemes
with random updates can be studied using their deterng@IE counterparts. The
ODE obtained for hybrid learning is a linear combination &&% from pure learn-
ing schemes. We show the convergence properties of theingaaigorithms for
special classes of games, namely, games with two actiod@tential games, and

demonstrate their applications in a network security @mirent.

14.1.3 Organization of the Chapter

The chapter is structured as follows. In Section 14.2, wetdate the two-player
nonzero-sum stochastic game with incomplete informatimh iatroduce the solu-
tion concept of state-independent Nash equilibrium. IntiBecl4.3, we present a
number of distinct learning schemes and discuss their ptiepeln Section 14.4, we
present main results on learning for general-sum gamesedtidh 14.5, we apply
the learning algorithms to a network security applicati®action 14.6 concludes the
chapter. In Table 14.1, we summarize the notation used ichiapter for reader’s

convenience.

14.2 TWO-PERSON GAME

In this section, we consider a finite two-person nonzero-game (NZSG) in which
each player has stochastic payoffs and the interactiomgleetthe players are ran-
dom. Let= := (N, {Si}tien, {Qitiens {Aitien, {Ui(s, B?,.) }ses.veB.ien) be

the stochastic NZSG, wherg = {1,2} is the set of playersPand P who max-
imize their payoffs, and4;, A, are the finite sets of actions available to players P1

and P2, respectively. The s8f := [s;1,8i2, ,si_,Né] comprises all possibl&/?,
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6 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

Table 14.1 Table of Notations
Symbol Meaning
air € A; Action of playeri (Pi) at timet
Xit € X; Mixed strategy of Patt
B; € {0,1} Active or sleep mode of P
s5: €S External state of P
u;r € R Observed payoff by Pat¢
0, € R Estimated payoff vector ofifatt
U; eR Mixed extension of the payoff;.
Bi(i) C A; Best response

Bi,e(ﬁi,t) e R
Bl (%0, 0,0) € R

B (%ie,05,0) € RIA

Boltzmann-Gibbs (B-G) strategy
Imitative B-G strategy
Weighted imitative B-G strategy

BF (w; ;) € RIA Weakened fictitious-play strategy
vit € Ry Payoff learning rates offatt

Aijt € Ry Strategy learning rates of Rt ¢

ea;, € RIA The unit vector withl at the position

of a; and0 otherwise

external states of:Pwhich describes the environment wherea&sides. We assume

that the state spac® := [[,_ - S: and the probability transition on the states are

both unknown to the players. A statgis randomly and independently chosen at

each time from the se$;. We assume that the action spaces are the same in each

state.

In addition, players do not interact at all times. A playen ¢ in one of the

two modes:active modeor sleep modedenoted by modé?; = 1 andB; = 0,

respectively. LetB;,i € N, be an i.i.d. random variable d; := {0, 1} whose

probability mass function is given by

; 7 Bi:la
p=4 P _ GeN. (14.1)
l—pi, Bi=0
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TWO-PERSON GAME 7

The player modes can be viewed as internal states that aegrga/by the inherent
randomness of the player. The system mdgfe € Q := Q; x € is a set of
independent modes of the players and we denot8by_ N as the set of active
players corresponding tB2.

The NZSG is characterized by utility functiobs : S x ; x A; x Ay -+ R. P
collects a payoft/;(s, B2, a1, az) when P1 choosas, € A; and P2 uses, € A,
at states € S and modeB?.

The preceding game model can be viewed as a special clagsbéstic games in
which the state transitions are independent of the playterexas well as the current
state.

We have slotted timg, € {0, 1, ...}, when players pick their mixed strategies as
functions of what has transpired in the past, to the extenirttormation available to
them allows. Toward this end, we lef,(a;) denote the probabilities ofiRhoosing
a; € A; attimet, and letx; ; = [x;¢(a:)]a,c.4, De the mixed strategies of Bt time

t, where more precisely,

Xt € Xj = {xi e RMl: z(a;) € [0,1], Z zi(a;) = 1} .
ai€A;

In particular, we define,, € Rl with a; € A;, as unit vectors of sizels4;| ,
whose entry that correspondsdpis 1 while others are zeros. We assume that the
mixed strategies of the players are independent of the mustates and the player
modeB;. For any given pair of mixed strategids,, x2) € A} x X», and for a fixed

s; € S;, B? € Q, we define the expected utility (as expected payoffifoa
U’i(sv BQv X1, XQ) = ]Exl-,X2U’L'(Sv B25 ai, a2)7

whereEy, «,U; denotes expectation &f; over the action sets of the players under
the given mixed strategies. A further expectation of thiarmgity over the states
andB?, denoted, p-, yields the performance index of teepected gaméVe now
define the equilibrium concept of interest for this game, iéhe equilibrium of the

expected game.
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8 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

Definition 14.1 (State-independent equilibrium) A strategy profiléxj, x%) € X x
X is a state-independent equilibrium of the gaméf it is equilibrium of the ex-

pected game, i.eVx; € X, Xs € Xa,

ES,B2U1(S7BQ7XT1X;) 2 ES,B2U1(S7B21X17X§)1

2 2
ES,B2U2(SvB 7XT5X;) > ES,B2U2(SvB aXTaXQ)'

Since the expected game is a two-player game with finiteraefiar each player, we
can show the existence of the equilibrium using Nash'’s erist theorem [20] and

state the following lemma.

Lemma 14.1 (Existence)The stochastic NSZG with unknown states and chang-

ing modes admits a state-independent equilibrium.

14.3 LEARNING IN NZSGS

In this section, we introduce different learning schemesilie stochastic NZSGs
introduced in Section 14.2 and discuss the stochastic appation of the learning

schemes with ODEs.

14.3.1 Learning Procedures

In many practical applications, the players in the two-parBlZSGs do not have
the complete knowledge of their payoff functions and theest# their environ-

ment. Moreover, they do not know whether they interact whih dther player or
not. Hence, the equilibrium strategy has to be learned eidinobserving the pay-
offs at each time slot. A general learning procedure is nedlias follows. At each
time slott € Z,, each player generates an internal méjeo determine whether
to participate in the game or not. If both players are activey interact and receive
a payoff after the play. If only one of the players is activegnt the active player
receives his payoff as an outcome of his action@tly without the interaction with
the other player. If players do not have the knowledge ofrtheiive mode proba-

bility p,, then each player keeps count of its interaction with otbgrapdating its
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LEARNING IN NZSGS 9
vectorst;; ; € R?,4,5 € {1,2}, as follows.
Oijt = Oiji—1 + Ui, =1y,

whered;; ; is Pi’s count of B’s number of activities sincé > 0 and the initial
condition is given by;; = 0,Vi,j € {1,2}. The active players choose an action
a;; € A; at timet and observe or measure an outpyt € R as an outcome of
their actions. Players estimate their payoffs by updatiregentry of the estimated
payoff vectora,; ;1 € R4 that corresponds to the chosen actigp. In a similar
way, players update their strategy vecters,, based on a specific learning scheme
(to be introduced later). The update of the strategy veaarnsexploit the payoff
information, ; from the previous time step. In this case, we say the learising
coupled; otherwise, we say that it is uncoupled.

The general coupled learning updates on the strategy alitgt uéictors take the
following form:

Xipp1 = Xig + 1 (Nie, ipy Wie, Qip, Xit), (14.2)

Wipp1 = W+ 2 (Vig, Qit, Uit Wig, Xit),
wherell; ;, ¥ ,,7 € N, are properly chosen functions for strategy and utility up-
dates, respectively. The parametas, v; » are learning rates indicating players’
capabilities of information retrieval and update. The vesk;; € A; are mixed
strategies of the players at timet; ;,7 € N, are estimated average payoffs updated
at each iteration, andu;;,7 € N, are the observed payoffs received by players at

timet. The learning rates; +, v; € R4 need to satisfy the conditions
(C1) tho [Xii]? < oo, tho |vie]* < 0.

(CZ) ZtZO |/\i,t| = 400, ZtZO |Vi,t| = +00.

The learning rate of Pis relative to its frequency of activity. In general, the
learning rates are functions @f;,i € \V, and can be written as; ,. (1), v;.0,,(1)- We
need to adopt a time reference for the game using maximumitgarates among
the active players, i.eN; := max;cp2(1) i, (1), Vi = MaX;ep2(1) Vi, (1) It can
be verified that the reference learning rat¢sy; satisfy (C1) and (C2) i\ ;, i+
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10 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

satisfy the conditions for eveiiye . The learning rate&;, v/, as we will see later,
affect the ODE approximation.

We call the learning in (14.2) a COmbined Dlstributed PAyafid Strategy Re-
inforcement Learning (CODIPAS-RL) [31]. The players canédifferent learning
rates for their utility and strategy updates. The payoffii@s rate is on a faster time
scale than strategy learning rate\if; /v; ; — 0 ast — oo; it is on a slower time
scale ifv; . /\i+ — 0 ast — oo. In the former case, the payoff learning can be seen

as quasi-static compared to the strategy learningvazedversdor the latter.

14.3.2 Learning Schemes

We introduce different learning schemes in the form of (142 the stochastic
NZSG. LetL = {Ly,k = 1,2,---,5} be a set of five pure learning schemes.
A player B chooses a learning schenfésfrom the setC. We call the learnindpo-
mogeneous both players use the same pure learning schemeseteiogeneouié

players use different learning schemes, iRg. # Ps.

14.3.2.1 Bush-Mosteller-based CODIPAS-RL L, LetI; € R be a reference

level of P and
= uie — I
Fi = . . 14.3
! Sups,B2,a|Ui(57327a) _F’L| ( )

The learning patters; is given by

Tigpr(a) = wip(a) + N lgesz ey Die (Uas,—ary — Tie(as))
Uipr1(ai) = Uie(ai) + viglia, ,—aieB2t)) (Wi — Ui(ai)).

The updates on the strategy and the estimated payoff araipleco The strategy
update does not exploit the knowledge of estimated paydfobly relies on the
observed payoffs at each time slot. The strategy updat® @$ widely studied in
machine learning and has been initially proposed by Bustveosdeller in [8]. Com-
bined with the payoff update, we obtain a COPIDAS-RL base@osh-Mosteller

learning. Wherl'; = 0, we obtain the learning schemes in [3, 6].
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LEARNING IN NZSGS 11

14.3.2.2  Boltzmann-Gibbs-based CODIPAS-RL Ly Let f; . : R4l — R
be the Boltzmann-Gibbs (B-G) strategy mapping given by

et li(a)
15 AN
<i,e(aj)
ZaéGAi e ‘

It is also known as the soft-max function. When- 0, the B-G strategy yields a

Bise (i) (a;) = a; € A;. (14.4)

(pure) strategy that picks the maximum entry of the payoftoei, .. The learning
pattern’, is given by
Tigp1(ai) = @igla) + Nielgepe e (Bi,e(ﬁi,t)(ai,t) - Ii,t(ai)) ;
Uipr1(ai) = Uie(a;) + Vi,tﬂ{ai,t:ai,iezs%t)} (i — Ui(aq)) .

The strategy and the estimated payoff are updated in a abdiahion. The
numerical value of experiment is used in the estimation,taedestimated payoffs
are used to built the strategy (here the estimations argatiioce a player does not
know the numerical value of the payoff corresponding to ttreepactions that he
did not use). The strategy update is a B-G based reinforceleaming. Combined
together one gets the B-G based CODIPAS-RL. The rest goican be seen as the

equilibrium for a modified game with the perturbed pay®ffz-U; + €; H;, where

H, is the extra entropy term as discussed in [22].

14.3.2.3 Imitative B-G CODIPAS-RL L3 Letf! , : X; x R — R4 be the
imitative B-G strategy mapping given by

1

—_— i)t e)

ﬂz’l,e,t(xi-,tv ui7t)(ai) = — o La i (al)’
Za;eAi ;¢ (af)e= it

The learning pattergs is given by

Tigp1(a) = @igla) + Niellgepe ) (31{57,5(&1',16)(@1‘) - wi,t(ai)) ,
ﬁi,t+1(ai) = ﬁi,t(ai) + Vi,tﬂ{ai,t:ai,iezs%t)} (Ui,t - ﬁi,t(ai)) .

The imitative B-G learning weights the B-G strategy with tugrent strategy vector
x;,¢ and the strategy mappirfg’_re_’t is time-dependent. It allows the learning strate-

gies to be attained at the boundary of the simptex
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12 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

14.3.2.4 Weighted Imitative B-G CODIPAS-RL L4 Letfl} : X;xRxRMA:| —
R4 be the imitative weighted B-G strategy mapping given by

xiyt(ai)(l + )\iﬂt)m’t(ai)

- A
P (Xiot, Aiye, W) (aq) = . 14.6
ﬁz,t( ,t ,t ,t)( ) ZaéeAi xi,t(aé)(l + )\i,t)ui't(ai) ( )
for every a; € A;. The learning patterd, is given by
Tipp1(ai) = xid(ai) + Ve (B%(Xi,t, it i p)(ai) — wi,t(ai)) :

Gi1(ai) = Git(a;) + viglia, ,=a;ieB2(t)y (Wit — Uie(ai)) .

Note that the exploitation function Iearnirzﬁﬂ is time dependent i, and is in-
dependent of parameter If the learning yields an interior point as the equilibrium
then it is the exact equilibrium of the expected game, wiiteaquilibrium inL, is

an approximated one for the-perturbed game.

14.3.2.5 Weakened Fictitious-Play L5 Let BZFt R 5 9B pe g point-to-
set mapping (correspondence)

€

1, 14.7
o (14.7)

BlFt (ﬁlt) = (1 - 6)5@1’({”%) +

wherel € RM:l is a vector with all its entries being 3; : R4l — 24 is the best

response correspondence:

ﬂ1(ﬁ1t) € arg maj‘( ﬂlt(a;) (148)
ajeA;

anddz, Z C A;, denotes a set of unit vectofs,,, a; € Z}.
The learning patterd; is given by
Tipr1(ai)) = wig(a;) € Ugiepe(r)) (Bft(ﬁi,t) - fcz‘,t(ai)) ,
Uirr1(ai) = Gie(as) + Vi,tﬂ{ai,t:ai,iesm)} (i — Wi(aq)) .

The weakened fictitious plags; has been discussed in [15, 18]. Different from
the classical fictitious play, a player does not observe ttieraplayed by the other
player at the previous step and the payoff function is unkndsach player estimates

its payoff by updatingi; ; using perceived payoffs. The strategy update equation is
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MAIN RESULTS 13

composed of two parts. A player chooses one of his optimadrevith probability
(1—e¢) by optimizing the up-to-date payoff estimaig;, and plays an arbitrary action
with equal probability.

Remark 14.1 We note that the average payoff-learning in the five purenieay
schemes can be seen as the reinforcement learning of Qidnadh MDPs, which
have been introduced in [23, 26]. Since we have considereédchastic game with
state transitions that are independent of the actions optagers, the Q-function in

MDPs is reduced to the average-payoff function.

14.4 MAIN RESULTS

In this section, we introduce the new paradigm of hybridrié@ay, present the main
results on learning in two-person general-sum games, a&odss their convergence

properties for some special classes of games.

14.4.1 Stochastic approximation of the pure learning schemes

The pure learning schemes introduced in Section 14.3 shagaime learning struc-
ture for average utility but differ in their strategy leargi Denote b)HElZ the strat-
egy learning function fof € £ in the general form (14.2). Following the multiple
time-scale stochastic approximation framework develdpd8, 7, 14, 16], one can

write the pure learning schemes into the form

Xit+1 —Xit € Qg (fi(l)(xi,ta ;) + JVfi(,lt)H)

Wipr1 —Wie € Qg (IES,x,iwt,zs‘2 Ui — ¢ + Mi,t+1)

wherefi(l) = E[Hgfzﬂu‘t], l € L, is a learning pattern in the form of stochastic
approximation.y;  is a time-scaling factor which is a function of the learniages
\;.+ and the probability of Pin active mode at time, denoted byP(i € B2(t)); i«

is the time-scaling factor fai; ;. To use ODE approximation, we check first the con-
ditions given in the Appendix. The terMi(ft)H is a bounded martingale difference
because the strategies are in the product of simplices velnebonvex and compact,

and the conditional expectation 81; ;1 given the sigma-algebra generated by the
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14 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

random variables,, x;/, us, 0, t' < t, is zero. Similar properties hold foi/; , ;.
The functionf is a regular function, and hence Lipschitz over a compagtgath
implies linear growth. Note that the case of constant lemynates can be analyzed
under the same setting but the convergence result is we@kens, the asymptotic
pseudo-trajectories for the non-vanishing time-scal® rae., \; ; /v;: — 7, for

somey; € R, are

! .
%Xi,t € Gt (fi( )(Xz‘,t, ui,t))
L80 = git (Box_,,52Ui — Qi)

)

whereg; ; (resp.g; ;) are the asymptotic functions of ;, A\;, p; (resp.gi., , Vi, pi)-
If the learning rates have the vanishing ratio, ifg.,—> 0, the asymptotic pseudo-

trajectories are

%Xi,t € Jit (fi(l)(xi,ta Es,x,i,tUi))

fliﬂg — E57x7i732Ui.

14.4.2 Stochastic approximation of the hybrid learning scheme

Players can choose different patterns at different times s@onsider the hybrid and

switching learning

Xit+1 —Xit € iy (Zleﬂ ]l{li,t:l}fi(l)(xi,ta ;) + Ml-(_?ﬂ)

W1 — Wi € Gig (Es,x,i,tUz‘ — ;¢ + Mi,t+1)

wherel; ; € L is the learning pattern chosen byd& timet.

Theorem 14.1 Assume that each playeriP € A, adopts one of the CODIPAS-
RLs in £ with probability w; = [w;r]res € A(L) and the learning rates satisfy
conditions (C1) and (C2). Then, the asymptotic pseud@ttayies of the hybrid

and switching learning can be written into the form

l .
%Xi,t € Git (Zlegwi,lfi()(Xi,taui,t))

d ~ _ .\
Wit = Gig (Es,x,i,tUz‘ — ui,t)
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MAIN RESULTS 15

Table 14.2 Asymptotic pseudo-trajectories of pure learning

Learning Patterns  Class of ODE

L1 Adjusted replicator dynamics

Lo Smooth best response dynamics
L3 Imitative BG dynamics

Ly Time-scaled replicator dynamics
Ls Perturbed best response dynamics

for the non-vanishing time-scale learning ratiQ; /v; +; and,

dtxzt S 9i,t (Zlengl,f (Xz ¢ K 5, X “,BzU))
ui,t — Es,x,i,BZUi

for the vanishing learning ratio\; ; /v; ;.

Proof: We first examine the strategy learning given by

Xi 41 — Xip € ]l{ieB2(t)})\i,t <Z ﬂ{li,t:l}fi(l)(xt) + M(t)+1>
lel

By taking \; as the reference learning rate, the drift (expected changeé step)

can be computed via

. Xit+1 — Xit o 2 (1)
A11:£OE<T|]:) PG e B7( <Zw”f xt>

leL

where we used the fact thEt(M(lt)+1 | ]—"t) = 0. The drift has the form
Git Zwi,lfi(l)(xt)-
lec

We check that the assumptions A1-A4 given in the Appendialiraet. The asymp-

totic pseudo-trajectory reduces to

d
txz,t = Git Z wi,lfi(l) (%)

leL

For two time-scales CODIPAS-RL, we use the same lines as Bi[7 m
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16 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

In Table 14.2, we give the asymptotic pseudo-trajectorpefiure learning when
the rate of payoff learning is faster than that of strategyreng. LetU;(x) :=
E, p2U;(s, B%,x), j € N. In Table 14.2, the replicator dynamics are given by

i5(a;) = qja;(a;) |Ujleay, x5) = Y Uj(ear, x—5)z;(a))
a;EAj

The smooth best response dynamics are given by

. egﬁj (eaj 7x*j)
j(aj) = g Ty i)
J

Za'. e
J

The best response dynamics are given by

%; € ¢;(B(x—5) —x;),

and the payoff dynamics are

d . _ — R
5 tiag) = 425(a;)(Uj(eq;, x—5) = 5(a;)).

The imitative Boltzman-Gibbs dynamics are given by

14.4.3 Connection with equilibria of the expected game

We study the convergence properties of the dynamics anddabenection with the

state-independent Nash equilibrium for three speciabelasf games.

14.4.3.1 Games with two actions For two-player games with two actions, i.e,
A1 = {a},a}}, A2 = {a}, a3}, one can transform the system of ODEs of the

strategy-learning into a planar system under the form

a1 = Qi(ar, a2), do = Q2(a1, a2), (14.9)
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MAIN RESULTS 17

where we lety; = z;(a}). The dynamics for Pcan be expressed in termsaf, az
only aszq(a?) = 1 — x1(a?), andwzz(a3) = 1 — z2(a3).
We use the Poincaré-Bendixson theorem and the Dulacioritgl1] to establish

a convergence result for (14.9).

Theorem 14.2 ( [11]) For an autonomous planar vector field as in (14.9), the Du-
lac’s criterion states as follows: Lef(.) be a scalar function defined on the unit

square[0,1]% . If ah(aa))o“ﬂ + 8h(§3)2d2] is not identically zero and does not change

a1

sign in[0, 1], then there are no cycles lying entirely|in 1]2.

Corollary 14.1 Consider a two-player two-action game. Assume that eacheof t
players adopts the Boltzmann-Gibbs CODIPAS-RL \&kp = ﬁ—tf — 0. Then, the

asymptotic pseudo-trajectory reduces to a planar systetinariorm

a1 = Bre(ui(ea,, 2)) —a1; o = Ba c(uz(ai, €q,)) — o
Moreover, the system satisfies the Dulac’s criterion.

Proof: We apply Theorem 14.2 with(-) = 1 and find the divergence to be equal

to —2, which is strictly negative. Hence, the result follows. m

Note that for the replicator dynamics, the Dulac criterieduces to
(1 —2a1)(U1(eq1; @2) = Ui(eqz; @2)) + (1 = 2a2)(Ua(a, €01) — Ua(u1, €43)),

which vanishes fofas, as) = (1/2,1/2). Itis possible to have limit cycles in repli-
cator dynamics and hence the Dulac criterion does not apigiyever, the stability
of the replicator dynamics can be directly studied in the-bgtion case by iden-
tifying the game as one of four types: coordination, antfdination, prisoner’'s
dilemma, hawk-and-dove [21, 27].

The following corollary now follows from Corollary 14.1.
Corollary 14.2 Consider a two-player two-action game.

(CR1) Heterogeneous learning: If P1 is with Boltzmann-GiBI®DIPAS-RL and
P2’s learning leads to replicator dynamics, then the cogeerce condition reduces

to (1 — 2az)(u2(ar, e,1) — uz(ai, e43)) < 1forall (ar, as).

DRAFT Cctober 2, 2011, 1:59am DRAFT



18 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

(CR2) Hybrid learning: If the players use hybrid learningtained by combining
Boltzmann-Gibbs CODIPAS-RL with weight; and the replicator dynamics with
weightl — w; ; then the Dulac criterion reduces to

w 1—2a7)(u €ql,Q2) — UL (€42,
1,2[( D(u1(eqy, 02) —ur(eqz; a2))] < winHwap

+ wa2[(1 = 2a2)(uz(on, e41) — ua(an, €,2))]

forall (a1, as).

Remark 14.2 (Symmetric games with three actions)f the expected game is a sym-
metric game with three actions per player, then, the symmgame dynamics re-
duce to the two-dimensional dynamical system. This allav® wpply the Dulac

criterion.

14.4.3.2 Lyapunov games We say that a gamg is a Lyapunov gameinder a
given hybrid dynamics if the resulting dynamics has an @ased Lyapunov function
V(x) : A € RX: Al — R,. Note that a Lyapunov functioif (x) is positive
definite onR: |4l for everyx # x* € A, and its time-derivative is negative,
‘3—‘{ < 0, for all x # x*, wherex* is a stationary point of the dynamics [13]. The
Lyapunov function can also defined to be negative definite1g%2]; in this case,

the time derivative will need to be positive.

Theorem 14.3 Consider a Lyapunov game under the learning schefpes,. Then,
the learning procedure has convergence to the set of eqailith the expected robust

game for all interior initial conditions.

Proof: Lyapunov functionl provides the stability of the set of rest points. Since
the dynamics are positively correlated for adjusted repdicdynamics [21, 27], the
state-independent equilibria are rest points of the dyosmbtained fromZ; and

L,. The stability of any convex combination of these dynamidieves. L]

Note that Theorem 14.3 says that starting from interiofighipoints, the hybrid
dynamics lead to one of the equilibria, which we do not knovicllone in advance.
The set can have either a finite number or a continuum of éxiaili This result holds

also forn—player stochastic games with random updates.
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14.4.3.3 Potential games We say that the stochastic garBds anexpected ro-
bust potential gamiéthe expected payoff derives from a potential functionteéPdial
games are a special class of games where the payoff functitims players are gov-
erned by a potential functioh : RZien il R, i.e., U;(eq,, x_;) = 685—83),2' €
N,a; € A;. We use a Lyapunov approach to show the global convergerigeoid

learning for potential games.

Lemma 14.2 Assume that the stochastic NZ&®as a potential functio®. Then,
there exists a Lyapunov functidf®(x;, x,) : RI41l+1421 5 R for learning schemes
L1, L,-associated replicator dynamics and it is given by its ptogni/? = &.
Hence, the replicator dynamics converge to a rest point.dditon, if starting from
an interior point of the simplex, the dynamics converge oNash equilibrium of

the gamez.

Proof: Since the payoff matrix is bounded, we can study its stradlyi equiva-
lent game [4], [19] by subtracting a certain offset from gveratrix entries so that
Ui(a) is negative for every strategy pair and hencé, z>U;(e,,, ;) IS nega-
tive. Without loss of generality, we can assume the gamefpmgairix or its strate-
gically equivalent game payoff matrix is negative entryseviThereforel * = @ is
negative. We take the time derivative of the Lyapunov fuoneti # as follows:

%VR(th,Xz,t) = > > (dmiéiaj)) <3€vai,‘j(zj))7

ieN aj€A;

which leads to the following set of inequalities

d
EVR(XLMXZt) = Z git { Z :ri’t(aj) (ES’Bzwi(eaj,xiiyt))2

ieN a;€A;

— ( Z xi’t(aj)Es,BzUi(eaj,xi,t)> }

a; €EA;

Y

D gi { Y wiilay) By p2Uilea,, x-i0))°

ieN a;€A;

- Z x?,t(aj) (ES,BQUi(eaj7xi,t))2} > 0.

a; cA;
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20 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

The last two inequalities result from Jensen’s inequalityl the positivity and the
range ofx; ;. We haved;’—f > 0 with equality only at the equilibrium. Hence,

convergence to equilibria holds for all initial conditianghe interior of the simplax.

Lemma 14.3 Let V5 (x, x,) : RI41I+142l _ R be a Lyapunov function for learn-

ing pattern.;-associated replicator dynamigd, ! = 2, such that
VE(x1,%2) = ®(x1,%2) + e1H1(x1) + €2 Ha(x2),

whereH; : R4l — R are strictly concave perturbation functions which can take
different forms depending on the pure learning schéniéhe ODEs corresponding

to the learning schemes converge to a set of perturbed bgailbf the game=.

Proof: Using the same argument as in the proof of Lemma 14.2, we camre
or its strategic equivalent form is positive without losgieherality, and hendé” is
nonnegative. The Lyapunov functidi® has its critical points given by, V? =
Vx,VE=0,ie,

Vi, ® + €V, Hy = 0,0 = 1,2. (14.10)

The first-order condition (14.10) yields the perturbed &loia of the B-G type of

learning schemes. By taking the time derivativé/df, we arrive at

dVB Z Z 8wi(aj) 0P + .Bxi(aj) 8HZ

_ . |
dt iEN a;€A; ot Oxi(ay) ot Oz;(ay)

Denote the perturbed payoff function ﬁy(xl,xQ) = B p2U;(s, B3, x1,%x2) +
€;H;(x;). The first-order condition for a maximum satisfies, for evene A;,

OH;(Bi(x_))

IEs U; ’BQ’ ajrd—1 i
B2Ui(s €a;, X_i) € d:(a;)

=0 (14.11)

whereg;(+) is a type of B-G strategy that corresponds to the learning.tince the

game is assumed to be a potential game, we have

Ozi(ay) b Owi(ay)

(14.12)
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SECURITY APPLICATION 21

Hence, we obtain from (14.11) and (14.12),

avh OH;(B(x—i))(a;)  OHi(wi(ay))
7 o Z Z Eigii< 8$i(aj) N (“)xl(aj) )

iEN a; cA;

(Bi (xi)(az) — wi(ay)). (14.13)

Due to the strict concavity of the perturbation functidhs we conclude thaig—f <
0, with equality only at the equilibrium. Hence, the pure teag dynamics converge

to the set of perturbed equilibria. L]

Theorem 14.4 Assume that the stochastic NZSGas a potential functio®. The
hybrid learning with£,; and £s converges locally to a perturbed state-independent

Nash equilibriumx;, x3 of the potential gamg for sufficiently smalk; .

Proof: The Lyapunov functions for replicator and G-B dynamics shthe same
term®. For hybrid learning between these two dynamics, we can giels a Lya-
punov function. For smad; close to zero, the Lyapunov functidnfor pure learning
Lo yields a strictly positive time derivative for non-equilibm points due to conti-
nuity. Letx,. be a maximizer of/ (x) = ®(x) + >, €;H;(x;). Then, there exists
e, > 0 suchthat/ (x) = ®(x) + Y, €;H,(x;) is strictly positive in a neighborhood
of the considered non-equilibrium point with = min(e, A}—ii), where M; is the
maximum of H; over X;. Since the maximizer of’ is ane’— equilibrium where
€/ = max; €}, there exists a subsequencexgfconverging tax* which is an equi-
librium andx* maximizes® and this holds for any convergent subsequence. This
means the time derivative f is strictly positive in all the neighborhood &f and
vanishes only ak*. Thus, when’ = max €, goes to zero, one gets an equilibrium.
Hence, in view of Lemma 14.3, we can conclude that for sufiityesmalle; > 0,

we have local convergence of the hybrid learning. m

Note that the equilibriunxj, x5 in Theorem 14.4 may not be unique, which de-

pends on the rest point of the nonlinear hybrid dynamics.

DRAFT Cctober 2, 2011, 1:59am DRAFT



22 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

- - v—<

Firewall
--% ul

Administrator Workstation Server

Attacker Internet

Figure 14.1  An illustration of the network security game scenario where an attacker
attempts to breach the network security by compromising the servers and workstations
whereas the network administrator monitors the network activity to prevent possible
intrusions.

14.5 SECURITY APPLICATION

In this section, we use the learning algorithm to study a p@cson security game
in a network between an intruder and an administrator. lufeidl4.1, we show
a local network connected to the Internet where an attadkemats to launch an
internal denial-of-service attack to bring down a netwagkver capture important
data from a workstation. Let P1 and P2 denote the administeatd the intruder,
respectively. An administratoriRtan use different levels of protection. The intruder
P2 can launch an attack that can be of high or low intensity. hettction sets for P
and R beA; := {H, L} andA; := {S, W}, respectively. The network administra-
tor is assumed to be always on alert while the intruder astadgth a probabilityp.
Hence, the seB?(t) can be of two types, i.e., (CIP1, P2 or (C2){P1}. The for-
mer case (C1) corresponds to the scenario where the intamdiethe administrator
attack and defend, respectively, whereas the latter (GR)esis that the administra-
tor faces no threat. We represent the payoff under these ¢demasios byM; and

M., respectively:

s W
H 1
My:=| H 1,-1 1,0 |, My:= : (14.14)
L 2
L -2,1 2,0
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In (C1), a successful defense against attack yields a pajaffor P1 while a failure
results in a payoff of -2. A successful attack yieldsd@payoff of 1 while a failed
attack yields a zero payoff. The employment of strong def€hl§ or strong attack
(S) costs an extra unit of effort as compared to the low def¢hy and the weak
attack (W) for R and P, respectively. In (C2), Pstays secure without the threat
from the intruder, and hence yields a payoff of 2. Howeves,Hfgh security level
costs an extra unit of energy from the player.

The payoffs inM; and M, are subject to exogenous noise which varies in dif-
ferent environmental states The state-independent equilibrium of the game is
found to be atx} = [3,3]7,x3 = [3,3]” and the optimal average payoffs are
af = [3,2]7,a5 = [0,0]”. In Figures 14.2 and 14.3, we show the payoffs and
mixed strategies of both players when both players use #Hraileg patternC,. We
can see that the replicator dynamics frémdo not converge. However the time av-
erage strategidamr . % fOT x; ¢dt converge takj, x5, respectively, and, the time
average payoffimy_, o, % fOT 1, ;dt converge taij, i, respectively.

In Figures 14.4 and 14.5, we show the payoffs and mixed gieg®f the players
when they both adopt the learning patt&tn We choose = 1/50 and observe that
the mixed strategies convergeste = [0.5277,0.4723]7, %; = [0.3333,0.6667]7
and the payoffs converge fo = [0.6667,0.6667]7, Gz = [~0.027,0]”, which are
in the close neighborhood &f;, G5.

In Figures 14.6 and 14.7, we show the convergence of thedggtrous learning
scheme where P1 usé€s and P2 useg£,. With ¢ = 1/50, we find the converging
strategies ak;,x; and the payoffs afi;, i;. We can see that the adoption 6§
by P2 in the heterogenous learning facilitates the convegef the algorithm even
though the learning exhibits high magnitude of oscillasiat the beginning, which
is mainly due taZ, learning pattern adopted by P1.

In Figures 14.8 and 14.9, we show the convergence of thedhigaining scheme
where P1 and P2 adogt; and £, with equal weights. The strategies converge to
[0.5145,0.4855]7,[0.3334, 0.6666]7 for P1 and P2, respectively, whereas the pay-
offs converge td0.6666, 0.6666]%, [—0.01459,0]% for P1 and P2, respectively. We

can see that the hybrid mixture 6f andZ, learning patterns leads to convergence
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24 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

with smaller magnitude of oscillations in comparison to ¢imes shown in Figures

14.6 and 14.7.

Average Payoffs

2
P1 Avg. Payoff of Choosing ar: i (a1)
sl — — P1 Avg. Payoff of Choosing ay: i (az) | |
P2 Avg. Payoff of Choosing a;: dz(a1)
—— P2 Avg. Payoff of Choosing as: i (az)
n
S
E A A A A A A A A A A A
o
A | h !
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“05 . .
5000 10000 15000

Time

Figure 14.2  The payoffs to the players

with both players using L.

Average Payoffs

o5l P1 Avg. Payoff of Choosing ar: i

(a1)

— -~ Pl Avg. Payoff of Choosing az: i (az)
P2 Avg. Payoff of Choosing ar: iiz(ar)

(az)

Payoff

— — P2 Avg. Payoff of Choosing as: da(az

05 . .
0 5000 10000 15000
Time

Figure 14.4  The payoffs to the players

with both players using Lo.
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Figure 14.3  The mixed strategies of the

players with both players using £;.

Mixed Strategies

Prob. of P1 Choosing ar: @1 (a1)
09t — - — Prob. of P2 Choosing ar: @(a1)

. .
0 5000 10000 15000
Time

Figure 14.5 The mixed strategies of the

players with both players using La.

14.6 CONCLUSIONS AND FUTURE WORKS

We have presented distributed hybrid strategic learniggréghms for a class of two-

person nonzero-sum stochastic games along with their glsevergence and non-
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Figure 14.6 The payoffs to the
heterogeneous players with P1 using £

and P2 using Lo.
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Figure 14.8  The payoffs to the players
with both players using hybrid learning

scheme with equal weights on £; and Ls.
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Figure 14.7 The mixed strategies of
the heterogeneous players with P1 using £,

and P2 using Lo.
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Figure 14.9 The mixed strategies of
the players with both players using hybrid
learning scheme with equal weights on £;

and L.

convergence properties. The players are assumed to hawenaiion limitations

in their knowledge not only of other players’ payoff funct®and strategies but

also of their own. In addition, the interactions among theypts occur at random

times according to their modes. We have applied the frameteosecurity games

where the noncooperative behaviors between an attackea alefender are well
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characterized by the features of distributed hybrid learninteresting work that we
leave for the future is to extend this learning frameworkhte tase of an arbitrary
(but still fixed) number of players, each of them adoptingi/tearning with a

diffusion term leading testochastic differential equationdt is also of our interest
to capture the evolution of the players’ rationality thrbugtime-varying ordinary
differential equation of the learning weights, which sltbloé analyzed together with

the hybrid learning dynamics.

Appendix: Assumptions for Stochastic Approximation

Consider the difference equation,; = x; + A\(f(x¢) + My1) in RZ: il and

assume that
(A1) fis Lipschitz.
(A2) A\t 20,3550\ = +00, 2550 A7 < 00.

(A3) M;,, is a martingale difference sequence with respect to theasing family
of sigma-fields7F; = o(x¢, 0y, My, t' <t)i.e.,E (Mg | Ft) = 0.

(A4) M, is square integrable and there is a constant0 such that

E (| Mg |12 | Fe) < (14| % |I?)

almost surely, for alt > 0.

(A5) sup, || x¢ ||< co almost surely.

Then, the asymptotic pseudo-trajectory of the differergpeation is given by the
ordinary differential equation (ODE) [7, 14}, = f(x:), with x, fixed.
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