Some baby-step giant-step algorithms for the low hamming
weight discrete logarithm problem

D. R. Stinson
Department of Combinatorics and Optimization
University of Waterloo
Waterloo Ontario, N2L 3G1
Canada
dstinson@cacr.math.uwaterloo.ca

February 24, 1999

Abstract

In this paper, we present several baby-step giant-step algorithms for the low ham-
ming weight discrete logarithm problem. In this version of the discrete log problem, we
are required to find a discrete logarithm in a finite group, given that the unknown log-
arithm has a specified number of 1’s in its binary representation. Heiman and Odlyzko
presented the first algorithms for this problem. Unpublished improvements by Copper-

smith include a deterministic algorithm with complexity O (m(%)), and a Las Vegas
algorithm with complexity O (\/E(?))

We perform an average-case analysis of Coppersmith’s deterministic algorithm. The
average-case complexity achieves only a constant factor speed-up over the worst-case.
Therefore, we present a generalized version of Coppersmith’s algorithm, utilizing a
combinatorial set system that we call a splitting system. Using probabilistic methods,
we prove a new existence result for these systems that yields a deterministic algorithm

with complexity O (t3/2 (logm) (?)) We also present some explicit consturctions for
2

splitting systems that make use of perfect hash families.

Keywords: discrete logarithm problem, baby-step giant-step algorithm, splitting system.

1 Introduction: the Heiman-Odlyzko algorithm

Let G be an abelian group, written multiplicatively. Let o € G, and suppose 8 € (a). The
discrete logarithm log,, B is the unique integer @ such that 0 < z < ord(a) — 1 and o® = .
The discrete logarithm problem is to compute log, 3, given a and .

Denote m = [log,(ord(a))]|. Then the binary representation of ¢ = log, requires at
most m bits, so we can write

3
AN

z = z;2,

Il
=]

?
where @; € {0,1} for 0 <4 < m—1. The hamming weight of an integer z, denoted wt(z), is
the number of 1’s in its binary representation. It is often advantageous to choose z such that
wt(z) is “small” compared to m; this makes it faster to compute o® using a typical square-
and-multiply algorithm. However, if wt(z) is too small, then this fact can be exploited by
an adversary who is trying to compute z.

Suppose t < m is a positive integer. Given a and f, the hamming weight t discrete
logarithm problem is to compute log, # whenever wt(log, #) = t. In this paper, we look at
several algorithms for the hamming weight ¢ discrete logarithm problem. The algorithms
can be thought of as “baby-step giant-step algorithms” (see, e.g., [8, §3.6.2]).

For convenience, we will assume throughout this paper that m and t are both even
integers (if this is not the case, then the algorithms we present can be altered in a straight-
forward manner).

The binary vector (2o, . .., Z;,—1) can be regarded as the characteristic vector of a subset
of Z,, in an obvious way. This correspondence is made explicit by the two mappings

set : {0,...,2™ — 1} — 2%m

and
val : 2Zm — {0,...,2™ — 1}

which are defined as follows:
set(z) = {i: 2; =1},

where (2q, ..., #,_1) is the binary representation of z; and
val(Y) = Z 2,
€Y

Clearly val and set are inverse functions, and
val(Y; UY3) = val(Y7) 4 val(Y3)

if Y1 NY; = 0. It is also clear that wt(z) = |set(z)| for 0 < 2 < m — 1.
The following lemmas are easy.

Lemma 1.1 Suppose that Y1,Ys C Z,, and o*@(1) = ﬁ(a"al(YQ))_l. Then

log, 8 = (val(Y1) + val(Y2)) mod ord(a).

Lemma 1.2 Suppose that wt(log, 8) = t, where t is an even positive integer. Then there
exist subsets Y1,Ys C Z,, such that YiNYy = 0, |Y1| = |Ys| = t/2 and avalM) — ﬁ(a"al(YQ))_l.

Lemmas 1.1 and 1.2 are the basis of the following algorithm, independently due to
Heiman and Odlyzko [4], which solves the hamming weight ¢ discrete logarithm problem.

Algorithm 1

1. INPUT: o, 8 € GG, and an even integer ¢

2. For all Y C Z,, such that |Y| = ¢/2, compute aval(¥)

3. Sort the list of ordered pairs (val(Y), a*®(¥)) by their second co-ordinates

4. For all Y C Z,, such that |Y| = /2, compute 3(a*(¥))-1

5. Sort the list of ordered pairs (val(Y), 8(a*®(¥))~1) by their second co-ordinates
6. If possible, find Y7, Ys such that av@(¥1) = g(aval(¥2))-1,

7. If the previous step is successful, output log, S = (val(Y1) + val(Y3)) mod ord(c).
Otherwise, output fail.

Here “fail” means that either 8 ¢ (a) or wt(log, 8) # t. The complexity of Algorithm 1

m
t

(neglecting logarithmic factors) is O <("£)> The space requirement is also O <())
2 2

2 The Coppersmith algorithms

2.1 Splitting families

Coppersmith’s algorithm is summarized in [8, p. 128]. We describe a generalized version of
algorithm in terms of a type of combinatorial set system that we define now. Suppose m
and t are even integers, 0 < t < m. An (m,t)-splitting system is a pair (X, B) that satisfies
the following properties:

1. |X|=m, and B is a set of T-subsets of X, called blocks
2. for every Y C X such that |Y| = ¢, there exists a block B € B such that |[BNY| = ¢/2.

We will use the notation (N;m, t)-SS to denote an (m, t)-splitting system having N blocks.
Here is a simple construction for splitting systems.

Lemma 2.1 (Coppersmith) For all even integers m and t with 0 < t < m, there ezists

Z;,m,t)-SS.

an (%5

Proof. Let X = Z,, and define
B;={i+jmodm:0<j<m/2-1}

for i € Zy,. Let B={B,;:0<1i<m/2-1}. We will show that (X, B) is an (m, t)-splitting
system.
Fix any subset Y C X such that |Y| =¢. For i € Z,,, define

v(i)=|B;NnY |- |[(Z,\B;) NY]|.

If #(0) = 0, then we are done, so assume that »(0) # 0. It is easy to see that v(7) is even
for all ¢, v(m/2) = —v(0), and |v(i + 1) — v(%)| € {—2,0, 2} for all i. Therefore there exists
some 7 such that 0 < ¢ < m/2 and v(¢) = 0. 0

Splitting systems can be used to solve the hamming weight ¢ discrete logarithm problem,
as follows.

Algorithm 2
1. INPUT: o, 8 € G, an even integer ¢, and an (N;m,t)-SS, (Z,, B), where B = {B; :
0<i<N -1}

2. Fori=0,...,N — 1, perform the following steps:

QUIT. Otherwise, proceed to the next iteration of the FOR loop.

The complexity of Algorithm 2 is O (N (%)) . The space requirement is O <(”ﬁ)> , which
5 2
does not depend on N. Using the splitting systems from Lemma 2.1 yields an algorithm
having complexity O (m(%)), this is the algorithm that was presented in [8, p. 128].
2

2.2 A randomized algorithm

A Las Vegas algorithm with good average-case complexity is easy to construct. This algo-
rithm is also due to Coppersmith [2].

Algorithm 3

1. INPUT: o, 8 € G, and an even integer t.
2. REPEAT the following steps:

(a) Let B be a random %'-subset of X

)
(b) For all Y C B such that |Y| = t/2, compute a"(¥)
(c) Sort the list of ordered pairs (val(Y'), a*®(¥)) by their second co-ordinates
(d) For all Y C Z,,\B such that |Y| = t/2, compute f(a*@(¥))~1
(e) Sort the list of ordered pairs (val(Y), 8(a*?(¥))~1) by their second co-ordinates
(f) If possible, find Y7, Ys such that ov@'(¥1) = g(ava!(¥2))-1,

(g) If the previous step is successful, output log, f = val(¥; U Y2) mod ord(a) and

QUIT. Otherwise, proceed to the next iteration of the REPEAT loop.

The complexity of Algorithim 3 is analyzed as follows. In any iteration, the algorithm
is successful if | B N set(log, 8)| = t/2. This happens with probability

(60

2

p - m
()
We can compute a lower bound on p using the following lemma.

Lemma 2.2 [6, p. 309] Suppose that n and An are positive integers, where 0 < A < 1.
Define
H(A) = —Alogy A — (1 — A)log, (1 — A).

Then
S -5V (”) e 1 oM
8nA(l —) T\ T 2mnA (1 -)
Now, applying Lemma 2.2, it is easy to see that
T m
> =0 o > et™Y2 1
P2VeVim—-1 ¢ (1)

Hence, the complexity Algorithm 3 is O (\/Z(

[SEIS R

).

3 Average-case analysis of the deterministic algorithm

Suppose we use Algorithm 2 with the splitting systems from Lemma 2.1. We consider
the average-case complexity of this algorithm, where the average is computed over all (T)
possible exponents having hamming weight . For any integer z with 0 < 2 < 2™ — 1,

wt(z) = t, let ¥(2) denote the minimum integer ¢ > 0 such that |B; Nset(z)| = t/2. It
follows from Lemma 2.1 that 0 < ¢(2) < m/2 — 1 for all . Next, define

§(m,t) = > ¥(z).

{z:0<z<2m —1,wt(x)=t}

S(m,t)(
Then the average-case complexity of the algorithm is in fact O

ol 1|3

)
)]
We proceed to develop a formula for §(m, t). For any integer h such that 0 < h < m/2-1,
we determine the value

n(h)=[{z:0<e<2™—1,wt(z) =t,¥(z) = h}|
Then it is clear that

m/2—1

§(m,t)y= Y hn(h).
h=1
First, it is easy to see that

n(0) = (
Next, we have that ¢(z) = 1 if and only if
g = 0

{1,...,m/2—1}Nset(z)|=1¢/2 -1
Ty 2 = 1,and

[{m/2+4+1,...,m— 1} Nset(z)| =t/2;
or vo— 1
{1,...,m/2 -1} Nset(z)| =¢/2

T2 = 0,and

[{m/2+4+1,...,m—1} Nset(z)| =t/2 - 1.
From this it follows that

n(1) = 2(?__ 1) (% N 1).
and [2,,/3,

t
2
Now, let’s look at computing 7(h) for general h. Suppose the bit-sequences [z,
conditions hold for 0 < k < h — 1:

n/2+h—1) are fixed. Then it is clearly necessary that the following sum

]
h—1 m/2+h—1
>, mA D,
Denote

j=m/2+h—1—k

(2)

h—1

§1 = E L4

J=0

6

and
m/2+h—1

SS9 = E Lj.
j=m/2

Then s; # sq, and ¢ (2) = h if and only if
I{h,...,m/2 -1} Nset(z)| =t/2 — 51

and
[{m/2+ h,...,m— 1} Nset(z)| =t/2 — ss.

Let ((h, s1, 52) denote the number of ways of choosing o, . .., 2,1 and @, /3, . . ., & /2 +h—1
such that the inequality (2) holds for 0 < k < h — 1. Then, by the discussion above, we

have that -
=Y Y s (7 1) (7)),

5 — S8 5 — S
81 =032=0 2 1 2 2

Thus, it remains to find a formula for (A, s1, s2). We do this using the familiar “reflection”
technique that can be used to determine a formula for the Catalan numbers (see, e.g., [5,
§3.4]).

For 0 <i < h—1, define z;,_; = @; — &,,,/24,- Then z; € {0,1, -1} for all 4. Inequality
(2) can then be rewritten as follows:

sz #0 (3)

for 1 <¢<h.

Given the sequence [z1,.. ., 23], we define a path P = [(0, y0), (1,¥1), - - ., (h, yn)], where
yo =0 and y; — y;—1 = 2 for 1 < ¢ < h. Observe that y, = s; — s2. Also, inequality (3) can
be interpreted as saying that the path P never hits the z-axis, except for the initial point,
(0,0).

For j1,72 € {0,1}, define

Aj1 .52 — |{Z : (miamm/2+i) = (]1a]2)}|

Note that a type (1, 0) pair correpsonds to an “up” edge in P, a type (0, 1) pair correpsonds
to a “down” edge in P, and type (0,0) and (1, 1) pairs correpsond to “horizontal” edges in
P. We will think of each edge of P as being labelled with an ordered pair in this manner;

this will allow the sequences [zo,...,2x_1] and [2,,/s, ..., @m/24h—1] to be recovered from
P.
It is easy to see that the following equations hold:
apo+ a1 +aiota = b,
aj1+ap1 = 82, and
a11+a10 = S81-

Then
(@0,0,a1,1,010,001) = (h+ 3 — 81— $2,5,81 — J, 82 — J),

where j is an integer.

Let us now assume that s; > s2 (the case s3 > s; can be analyzed in a similar fashion).
Then the first edge of P must be labelled (1,0), otherwise (3) will be violated for ¢ = 1.
The total number of such paths P is given by the multinomial coefficient

(e)
h+j—s1—s2,5,81—5—1,85—37/

Of course, this total includes paths that do not satisfy (3). Now, suppose that (3) is violated
for some ¢ > 1; let 4y be the smallest such 7. Form a path P* by reflecting the initial portion
of P (from (0,0) to (%0,0)) in the z-axis. P* is a path from (0,0) to (h,s; — s2) in which
the initial edge is labelled (0,1). Also, the values (a0, @11, @10, @0,1) are the same in P* as
they are in P. The total number of such paths P* is given by the multinomial coeflicient

(o)
h+j—s1—82,5,81—4,82—3—1)°

Therefore, it follows that the number of paths P that satisfy all the inequalities (3) is

(h—1) (h—-1)
h+j—s1—52,4,s1—j—1,82—] h+j—s1—82,5,81—j,82—j—1)’
which simplifies to give

81 — 89 (h)
h h+j—s1—82,5,81—j,s2—j/)
Thus, for h # 0, it holds that

RPWEELEL N Sl (") @
51,82 —-
b x(oianoy \PHI—SL—sn g1 -G8 =]

The sum in (4) can be simplified, as follows:

> ') = =06 06E)
Z h+j—5s —82,5,81—7,82—] ~\s1—j/\h—58)\h—j

L)

- ()=C6)
- ()0

Combining everything, we get the following formula:

m/2—1min{h,t/2} sy —1

-3 X Y-))(

81 = 1 820 2

G e

(NI ng

We are unable to simplify (5) any further. However, computational evidence show that
the speed-up is, at best, only a constant factor. In order to compare the average-case to
the worst-case complexity, we compute the ratio

26(m,t)

m (%)
for various values of m and ¢. It is clear from the definition of the function é that §(m,t) =
d(m, m — t), so it suffices to restrict ¢ so that 2 < ¢ < m/2. We computed all these ratios
r(m, t) for even values of m and ¢ such that 2 <t <m/2 and 4 < m < 80. We found that
the values 7(m, 2) decrease as m increases; the values r(m, m/2) increase as m increases;
and, for any fixed value of m, the values r(m,) increase as ¢ increases from 2 to m/2.

The following table lists values of §(m, ¢) and r(m,t) for m < 16 and ¢ < m/2; and for
m € {24, 32,40,48,56,64,72,80} when t = m/2 .

r(m,t) =

m d(m,t) r(m,t)
4 2 2 .166667
6 2 8 177778
8 2 20 .178571
8 4 56 .200000

10 2 40 177778

10 4 216 .205714

12 2 70 .176768

12 4 616 .207407

12 6 1188 .214286

14 2 112 175824

14 4 1456 .207792

14 6 4576 .217687

16 2 168 .175000

16 4 3024 .207692

16 6 14040 .219156

16 8 22880 .222222

24 12 7488432 .230769

32 16 2262890880 .235294

40 20 656412042000 .238095

48 24 185746197214656 .240000

56 28 51694598543070560 .241379

64 32 14216720608524338688 .242424

72 36 3874974677018786931408 .243243
80 40 1048850816910596843528000 .243902

It is easy to see from equation (5) that §(m,2) = (m® — 4m)/24. Hence r(m,2) — 1/6
as m — oo. It is an interesting open problem to compute lim,,_, ., 7(m, m/2).

4 Improved results concerning splitting systems

4.1 Probabilistic Methods

We can improve Algorithm 2 by constructing smaller splitting systems. We first provide
a bound using probabilistic methods. Let m and ¢ be even integers such that 0 < t < m.
Suppose that B a set of %'-subsets of an m-set, X, and |B| = N. For a subset Y C X with
|Y| = t, define Zy (B) = 0 if there exists a block B € B such that |[BNY| =¢/2, and define
Zy (B) = 1, otherwise. Let Zy denote the random variable obtained by letting B a set of
N randomly chosen “Z-subsets of X. Clearly, the expected value of Zy, denoted E[Zy], is
(1 — p)V, where

If we define the random variable

{(YCX:|Y|=t}

then we have E[Z] = (7)(1 — p)¥. It is clear that there exists an (N;m,t)-SS if E[Z] < 1.
Since (7}') < m!, this will be true if

tlogm + Nlog(1 — p) < 0,

which is equivalent to
tlogm

—log(1 - p)’
Using elementary calculus, we have that —log(l — p) > p; and p > ct™
Equation (1). Hence, an (N;m,t)-SS exists if

N >

1/2 was shown in

1
N > —t3/2logm.
c
Thus we have proven the following result.

Theorem 4.1 For any even integers t and m with 0 < t < m, there exists an (N;m,t)-SS
with N a2 co t3/2 log, m, where ¢y is a constant.

).

Thus, Theorem 4.1 yields a deterministic algorithm having complexity O (t3/2 (logm) (

[SIEANTEY

4.2 Explicit Constructions

In this section, we present a recursive construction for splitting families that uses perfect
hash families. Perfect hash families were introduced by Mehlhorn (see, e.g., [7]) and have
been studied extensively since then (for a recent survey, see [3]).

We require some definitions. Let n > m be positive integers. An (n, m)-hash function
is a function h : A — B, where |A| = n and |B| = m. The hash function A is said to be
balanced provided that |k~ (y)| = n/m for all y € B.

10

Let n, m and w be integers such that n > m > w > 2. An (n, m, w)-perfect hash family
is a finite set # of (n, m)-hash functions such that h : A — B for each h € H, where |[A| =n
and |B| = m, with the property that for any X C A with |X| = w, there exists at least
one h € H such that h|x is one-to-one. H is said to be an (n, m, w)-balanced perfect hash
family if H is an (n, m, w)-perfect hash family and h is balanced for every h € H.

We will use the notation BPHF(N; n, m, w) to denote an (n, m, w)-balanced perfect hash
family with |H| = N. We can depict a BPHF(N;n, m,w) as an N x n array on m symbols,
say A, where each row of A corresponds to one of the functions in the family. This array has
the property that, for any subset of w columns, there exists at least one row such that the
entries in the w given columns of that row are distinct; and any row of A contains exactly
n/m occurrences of each symbol.

Here is a recursive construction for splitting families.

Theorem 4.2 Suppose there exist a BPHF(Ng;n, m,t) and an SS(Ni;m,t). Then there
exists an SS(NoNy;n,t).

Proof. Let M be the N; x m incidence matrix of an SS(N7;m,t), and denote the columns of
M by ci1,...,¢m. Let A be the array representation of the BPHF(Ny; n, m, t), and replace
each entry y = A(¢, j) by the column vector ¢,. Call the resulting matrix M.

It is easy to see that M is the incidence matrix of an SS(NoNi;n,t): The “balance”
property of the hash family ensures that each block of the resulting splitting system has
cardinality n/2. Also, given a t-subset of points, say B, there exists a hash function h
such that h|p, is injective. Restricting to the N; corresponding rows of Mj, property 2. of
splitting families is inherited from M. 0

The following corollary is an immediate application of Lemma 1.1 and Theorem 4.2.
Corollary 4.3 If there exists a BPHF(Ny;n,m,t), then there exists an SS(Nom/2;n,t).

In order to apply Theorem 4.2 or Corollary 4.3. we need balanced perfect hash families.
It is not difficult to verify that certain direct constructions for perfect hash families in the
literature yield BPHF. We illustrate with an example.

Let ¢ be a prime power. An (N, K, D, q)-code is a set C of K vectors in (F,)" such that
the Hamming distance between any two distinct vectors in C is at least D. The code C is
linear if it is a subspace of (F,)"; in this case K = ¢*, where k = dim(C).

Theorem 4.4 If a linear (N, K, D, q)-code ezists, then there exists « BPHF(N; K, q,w),

provided that

2>1_L
N)

Proof. Construct an N X K array whose columns are the codewords in C. It is shown in [1]
that this array is a PHF(N; K, ¢, w) provided that D/N > 1 — (1/(1;’)) Since C is linear, it
follows that each hash function in the family is balanced, and the result follows. 0

Using Reed-Solomon codes, we obtain the following corollary of Theorem 4.4.

11

Corollary 4.5 Suppose that q is a prime power, 0 < £ < ¢ is an integer, and ¢ > ({—1) (g’)
Then there exists a BPHF(q; ¢*, ¢, w).

Proof. A g-ary dimension £ extended Reed-Solomon code of length g exists. This is a linear
(¢,4°,q¢ — £+ 1, q)-code. Apply Theorem 4.4. 0

Combining Corollaries 4.3 and 4.5 allows us to prove an interesting asymptotic existence
theorem. Suppose m and ¢ are given, and we want to construct an SS(N;m,t). Choose
g ~ t?logm and £ ~ logm/ logq. Then all necessary conditions are satisfied, and we obtain

an SS(N;m,t) in which N is O(t*(logm)?).

5 Conclusion

We have described several varaints of baby-step giant-step algorithms for the low hamming
weight discrete logarithm problem. For practical use, Coppersmith’s Las Vegas algorithm
(Algorithm 3) would be preferred. If a deteminisitic algorithm is desired, then an algorithm
based on the idea of splitting systems can be used. This is a generalization of another
algorithm due to Coppersmith. We performed an average case analysis of the simplest of
these algorithms and found that only a constant factor speedup is acheived, as compared
to the worst case. Several alternative methods of constructing splitting systems were inves-
tigated. These permit construction of smaller splitting systems, and hence more efficient
determinstic algorithms, at least asymptotically.

Acknowledgements

The author’s research is supported by the Natural Sciences and Engineering Research Coun-
cil of Canada through the following grants: NSERC-IRC #216431-96 and NSERC-RGPIN
#203114-98.

I would like to thank Ruizhong Wei for his help with computations and for his useful
comments, and Alfred Menezes for his assistance with references.

References

[1] N. Alon. Explicit construction of exponential sized families of k-independent sets,
Discrete Math. 58 (1986), 191-193.

[2] D. Coppersmith. Private communcation to Scott Vanstone, December 1997.

[3] Z. J. Czech, G. Havas and B. S. Majewski. Perfect hashing, Theoretical Computer
Science 182 (1997), 1-143.

[4] R. Heiman. A note on discrete logarithms with special structure. Lecture Notes in
Computer Science 658, 454-457 (Advances in Cryptology - EUROCRYPT ’92).

[65] D. L. Kreher and D. R. Stinson. Combinatorial Algorithms: Generation, Enumeration

and Search, CRC Press, 1999.

12

[6] F.J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes, North-
Holland, 1977.

[7] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching, Springer-
Verlag, Berlin, 1984.

[8] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone. Handbook of Applied Cryp-
tography, CRC Press, 1996.

13

