
Evolution of Genetic Programming PopulationsW. B. LangdonGenetic Programming Group,Dept. of Computer Science,University College, London,Gower Street, London WC1E 6BT, UKEmail: W.Langdon@cs.ucl.ac.ukwww: http://www.cs.ucl.ac.uk/sta�/W.Langdon/Tel: +44 (0) 171 380 7214, Fax: +44 (0) 171 387 1397Keywords: population variety, diversity, genetic programming, Price's theorem, Fisher'stheorem. AbstractWe investigate in detail what happens as genetic programming (GP) populations evolve.Since we shall use the populations which showed GP can evolve stack data structures asexamples, we start in Section 1 by brie
y describing the stack experiment [Langdon, 1995].In Section 2 we show Price's Covariance and Selection Theorem can be applied to GeneticAlgorithms (GAs) and GP to predict changes in gene frequencies. We follow the proof ofthe theorem with experimental justi�cation using the GP runs from the stack problem.Section 3 brie
y describes Fisher's Fundamental Theorem of Natural Selection and showsin its normal interpretation it does not apply to practical GAs.An analysis of the stack populations, in Section 4, explains that the di�culty of thestack problem is due to the presence of \deceptive" high scoring partial solutions in thepopulation. These cause a negative correlation between necessary primitives and �tness.As Price's Theorem predicts, the frequency of necessary primitives falls, eventually leadingto their extinction and so to the impossibility of �nding solutions like those that are evolvedin successful runs.Section 5 investigates the evolution of variety in GP populations. Detailed measure-ments of the evolution of variety in stack populations reveal loss of diversity causingcrossover to produce o�spring which are copies of their parents. Section 6 concludes withmeasurements that show in the stack population crossover readily produces improvementsin performance initially but later no improvements at all are made by crossover.Section 7 discusses the importance of these results to GP in general.
1

pop pushtopmakenull empty

Figure 1: One Individual { One Program: Five Operations { Five Trees1 Architecture of Stack IndividualsBefore going into the details of the evolution of variety in the stack populations, this sectionre-caps the basic multi-tree architecture used in [Langdon, 1995] to evolve a single programwhich implements �ve actions required of a stack data structure, initialise (makenull), readtop of the stack, pop the top of the stack and return its value, push an integer onto thestack and and test to see if the stack is empty or not.Each evolved program must implement all �ve actions. This is represented in the chro-mosome by allocating an evolvable tree per action. When the program is used, e.g. duringits �tness testing, then the tree corresponding to the desired action is called. I.e. eachindividual within the population is composed of �ve trees, see Figure 1.This multiple tree architecture was chosen so that each tree contains code which hasevolved for a single purpose. It was felt that this would ease the formation of \buildingblocks" of useful functionality and enable crossover, or other genetic operations, to assem-ble working implementations of the operations from them. Similarly complete programscould be formed whilst each of its trees improved.The genetic operations, reproduction, crossover and mutation are rede�ned to copewith this multi-tree architecture. We de�ne the genetic operations to act upon only onetree at a time. The other trees are unchanged and are copied directly from the �rst parentto the o�spring. Genetic operations are limited to a single tree at a time in the expectationthat this will reduce the extent to which they disrupts \building blocks" of useful code.Crossing like trees with like trees is similar to the crossover operator with \branch typing"used by Koza in most of his experiments involving ADFs in [Koza, 1994].In the case of reproduction, the only action on the chosen tree is also to copy it, inother words each new individual is created by copying all trees of the parent program.When crossing over, one type of tree is selected (at random, with equal probability,i.e. 1/5). This tree in the o�spring is created by crossover between the trees in eachparent of the chosen type in the normal GP way [Koza, 1992] (see Figure 2). In the stack2

Crossover

Figure 2: Crossover in One Tree at a timeTable 1: Tableau for Evolving a StackObjective To evolve a pushdown stackArchitecture Five separate treesPrimitives +, �, 0, 1, max, arg1, aux, inc aux, dec aux, read, write, write AuxFitness Case 4 test sequences, each of 40 testsFitness Scaling 1.0 for each test passedSelection Scalar tournament of 4Hits n/aWrapper makenull result ignoredtop no wrapperpop no wrapperpush result ignoredempty result > 0) TRUE, otherwise FALSEParameters Population = 1000, G=101, program size <= 250Success Predicate Fitness >= 160:0experiments, all trees have identical primitives, c.f. Table 1.1.1 Stack PrimitivesPrimitives like those a human programmer might use, were chosen. Firstly this ensures asolution is possible, i.e. a program which solves the problem can be written using only theseprimitives. (The need for the available primitives to be powerful enough so that a solutionto the problem can be express using them is called the su�ciency requirement [Koza,1992, page 86]). Secondly as some constructs are useful to human programmers it wasexpected that corresponding primitives might be useful to the GP. For example primitiveswere included that aid maintenance of a stack pointer, although their functionality couldin principle be evolved using combinations of the other primitives.The following primitives were available to the GP:� arg1, the value to be pushed on to the stack. When arg1 is used by any of the3

operations except push it has the value zero. Evolving programs can read arg1 butthey can not change it.� arithmetic operators + and �.� constants 0, 1 and the maximum depth of the stack, max (which has the value 10).� indexed memory functions read and write.� primitives to help maintain a stack pointer; aux, inc aux, dec aux and write Aux.1.2 Indexed Memory63 integer memory cells (numbered �31 : : : 31) were available.1.3 RegisterIn addition to the indexed memory [Teller, 1994] a single auxiliary variable \aux" wasprovided which, like each addressable memory cell, is capable of storing a single 32-bitsigned integer. The motivation for including it and the primitives that manipulate it wasthat it could be used as a stack pointer, holding addresses to be used with the indexmemory. However, as with all the other primitives, the GP is not forced to use it in anyparticular way or even use it at all.There are four associated primitives:1. aux, which evaluates to its current value.2. inc aux, which increases the current value by one and returns the new value.3. dec aux, which decreases the current value by one and returns the new value.4. write Aux, which evaluates its argument and sets aux to this value. It behaves likewrite in that it returns the original value of aux rather than the new one.2 Price's Selection and Covariance TheoremPrice's Covariance and Selection Theorem [Price, 1970] from population genetics relatesthe change in frequency of a gene in a population from one generation to the next, to thecovariance of the gene's frequency in the original population with the number of o�springproduced by individuals in that population (see Equation 1). The theorem holds \for asingle gene or for any linear combination of genes at any number of loci, holds for anysort of dominance or epistasis (non-linear interaction between genes), for sexual or asexual4

reproduction, for random or non-random mating, for diploid, haploid or polyploid species,and even for imaginary species with more than two sexes" [Price, 1970]. In particular itapplies to genetic algorithms (GAs) [Altenberg, 1994].�Q = Cov(z; q)z (1)Q = Frequency of given gene (or linear combinations of genes) in the population�Q = Change in Q from one generation to the next.qi = Frequency of gene in the individual i (more information is given in Section 2.1.zi = Number of o�spring produced by individual i.z = Mean number of children produced.Cov = Covariance2.1 Proof of Price's TheoremIn this section we follow the proof of Price's Theorem given in [Price, 1970] (which assumessexual reproduction) and show it applies to Genetic Algorithms (GAs) [Holland, 1992]in general and to genetic programming (GP) [Koza, 1992] in particular. In the nextsection (2.2), we extend the proof to cover asexual reproduction. This more general proofalso applies to Genetic Algorithms, including GAs with asexual reproduction (i.e. copyingand mutation). Firstly we de�ne the additional symbols we shall use.P1 = Initial populationP2 = Population at next generation (for purposes of the proof generations are assumedto be separated)N = Size of initial population.nz = \Zygotic ploidy of the species for the gene". E.g. in natural species nz may be 2,i.e. the gene can exist on two chromosomes.In traditional GAs chromosomes are not paired so nz is 1. In GP there is still onlyone chromosome but the same gene (primitive) can occur multiple times within it.For GP we de�ne nz to be unity.gi = Number of copies of gene in individual iqi = Frequency of gene in the individual i. That is the number of times the gene appearsin individual i divided by the \zygotic ploidy" of the species for the gene (i.e. 1 ifhaploid, 2 if diploid). qi = gi=nzWhen nz is unity (e.g. most GAs and GP) qi becomes the number of copies of thegene in individual i (i.e. qi = gi). So gene frequencies are de�ned to be relative tonumber of individuals in the population rather than per available loci.q = Arithmetic mean of qi in population P1
5

Q1 = Frequency of given gene (or linear combinations of genes) in the population.I.e. number of copies of gene in population divided by the number of chromo-somes it could occupy.Q2 = Frequency of gene in population P2nG = \Gamete ploidy for the gene". In natural species nG is typically 1, i.e. the genecan exist on one chromosome in the gamete (germ cell).In traditional GAs there is no separate germ cell and whether the chromosomefragment can contain the gene depends upon whether the locus of the gene ispresent in the fragment or not.In GP there is still only one chromosome but there are no �xed loci and the samegene (primitive) can occur multiple times within a crossover fragment.zi = Number of o�spring produced by individual i. Note this is the same as the numberof successful gametes it produces. (In GA terminology the number of chromosomefragments produced from i which occur in individuals in the next population).z = Mean number of children produced.g0i = Number of copies of the gene in all the successful gametes produced by individuali.In traditional linear chromosome GAs, g0i is the number of chromosome fragmentscopied from individual i that are passed to the next generation which contain thegene's location and where the location contains the gene. (NB the value at thegene's location has not been changed by mutation).If a traditional GA, with zero mutation rate, the expected value of g0i is zi=2.With mutation g0i is reduced proportionately to the gene mutation rate.In GP, g0i is the number of copies of the gene that are copied from i and passedto the next generation.q0i = Frequency of gene in the o�spring produced by individual i. De�ned byq0i = g0izinG , if zi 6= 0= qi , otherwise�qi = q0i � qiProof of Price's Theorem with Sexual ReproductionWe shall start with the frequency of the gene in the current population, Q1. Then �ndthe frequency in the subsequent generation, Q2. Subtracting them yields the change infrequency, which we shall simplify to give Price's Theorem.Q1 = P ginzN= PnzqinzN= qEach individual in the new population is created by joining one or more \gametes"(in GAs and GP by joining crossover fragments) and the number of each gene in theindividual is the sum of the number in each of the gametes from which it was formed.Thus the number of genes in the new population is equal to the number in the successfulgametes produced by the previous generation.6

Similarly the number of chromosomes in an individual is the sum of the number ineach of the gametes which formed it, nG. Thus if nG is the same in all cases:Q2 = P g0iP zinG (2)= P zinGq0iP zinG= P ziq0iNz (3)= P ziqiNz + P zi�qiNz= P ((zi � z)(qi � q) + z qi + ziq � z q)Nz + P zi�qiNz= 1N P(zi � z)(qi � q) + z 1N P qi + q 1N P zi � 1N P z qz + P zi�qiNz= 1N P(zi � z)(qi � q) + z q + q z � z qz + P zi�qiNz= 1N P(zi � z)(qi � q) + q zz + P zi�qiNz= Cov(z; q)z + q + P zi�qiNz�Q = Cov(z; q)z + P zi�qiNz\If meiosis and fertilization are random with respect to the gene, the summation termat the right will be zero except for statistical sampling e�ects (`random drift'), and thesewill tend to average out to give equation 1." I.e. the expected value of P zi�qi is zero.So while survival of an individual and the number of children it has may be relatedto whether it carries the gene, it is assumed that the production of gametes (crossoverfragments) and their fusing to form o�spring is random. In GA terms selection for re-production is dependent upon �tness and in general dependent on the presence of speci�cgenes but selection of crossover points is random and so independent of genes (Section 2.4discusses this further for GPs).2.2 Proof of Price's Theorem with Asexual ReproductionThe proof of Price's theorem given in [Price, 1970] (reproduced above) assumes sexualreproduction. For it to be applied to GAs and GP it needs to be extended to cover asexualreproduction (i.e. copying and mutation). Before doing so, we de�ne further symbols weshall use.
7

g0a i = Number of copies of the gene in the o�spring created asexually by individual i.g0x i = Number of copies of the gene in all the successful gametes (n.b. sexual reproduc-tion) produced by individual i.ai = Proportion of o�spring of individual i created asexually (in GAs mutation or directcopying). ai = g0a i=g0ia = P aizi=N zxi = Proportion of o�spring of individual i created sexually, i.e. by crossover.xi = g0x i=g0ix = Pxizi=N zq0a i = Frequency of gene in the o�spring produced asexually by individual i. De�ned byq0a i = g0a iaizinz , if aizi 6= 0= qa i , otherwiseq0x i = Frequency of gene in the o�spring produced sexually by individual i. De�ned byq0x i = g0x ixizinG , if xizi 6= 0= qx i , otherwiseSo Equation 2 becomes Q2 = P g0a i + g0x iP aizinz + xizinG= P aizinzq0a i + xizinGq0x iP aizinz + xizinGIf reproduction type (sexual or asexual) is independent of the gene then the expectedvalues of the gene frequencies, q0a i and q0x i will be equal (and equal to q0i) and so in largepopulations Q2 = P aizinzq0i + xizinGq0iP aizinz + xizinG= P aizinzq0i + xizinGq0iN az nz +N xz nGIf reproduction type is independent of the gene then in large populationsQ2 = P azinzq0i + xzinGq0iN z(anz + xnG)= P ziq0iN zThe rest of the proof (i.e. from Equation 3 onwards) follows.
8

2.3 Price's Theorem for Genetic AlgorithmsWhere the population size is unchanged, as is usually the case in GAs and GP (and twoparents are required for each individual created by crossover), z = pr + pm + 2pc (wherepr = copy rate, pm = mutation rate and pc is the crossover rate. Since pr + pm + pc = 1,the mean number of children z = 1 + pc and Equation 1 becomes:�Q = Cov(z; q)1 + pc (4)2.4 Applicability of Price's Theorem to GAs and GPsThe simplicity and wide scope of Price's Theorem has lead Altenberg to suggest thatcovariance between parental �tness and o�spring �tness distribution is fundamental tothe power of evolutionary algorithms. Indeed [Altenberg, 1995] shows Holland's schematheorem [Holland, 1973; Holland, 1992] can be derived from Price's Theorem. This andother analysis, leads [Altenberg, 1995, page 43] to conclude \the Schema Theorem has noimplications for how well a GA is performing".While the proof in [Price, 1970] assumes discrete generations the result \can be appliedto species with overlapping, inter-breeding generations". Thus the theorem can be appliedto steady state GAs [Syswerda, 1989; Syswerda, 1991] such as used in [Langdon, 1995].For the theorem to hold the genetic operations (crossover and mutation in GA terms)must be independent of the gene. That is on average there must be no relationship betweenthem and the gene. In large populations random e�ects will be near zero on average butin smaller populations their e�ect may not be negligible. In GAs selection of crossover andmutation points is usually done independently of the contents of the chromosome and soPrice's theorem will hold (except in small GA populations where random
uctuations maybe signi�cant). In GP populations are normally bigger (and the number of generationssimilar) so random e�ects, \genetic drift", are less important.In standard GP it is intended that the genetic operators should also be independent,however in order to ensure the resultant o�spring are syntactically correct and not toobig, genetic operators must consider the chromosome's contents. This is normally limitedto just its structure in terms of tree branching factor (i.e. the number of arguments afunction has) and tree depth or size limits. That is, they ignore the actual meaning of anode in the tree (e.g. whether it is MUL or ADD) but do consider how many argumentsit has. Thus a function with two arguments (e.g. MUL) and a terminal (e.g. max) maybe treated di�erently. 9

It is common to bias the choice of crossover points in favour of internal nodes (e.g. inthese GP experiments internal points in program trees are deliberately chosen 30% of thetime, the other 70% are randomly chosen through the whole tree. [Koza, 1992, page 114]weights internal nodes to external nodes 9:1, while [Angeline, 1996, page 27] argues \thatno one constant value for leaf frequency is optimal for every problem"). This reduces theproportion of crossover fragments which contain only a single terminal. Once again thegenetic operators ignore the meaning of nodes within the tree.In a large diverse population these factors should have little e�ect and Price's Theoremshould hold. However when many programs are near the maximum allowed size a functionwhich has many arguments could be at a disadvantage since the potential o�spring con-taining it have a higher chance of exceeding size limits. Therefore restrictions on programsize may on average reduce the number of such functions in the next generation comparedto the number predicted by considering only �tness (i.e. by Price's Theorem). [Altenberg,1994, page 47] argues Price's theorem can be applied to genetic programming and we shallshow experimental evidence for it based on genes composed of a single GP primitive.2.5 Application of Price's Theorem to the GP Stack ProblemIn this section we experimentally test Price's Theorem by comparing its predictions withwhat actually happened using GP populations from the 60 runs of the stack problemdescribed in [Langdon, 1995]. Firstly we consider the change in numbers of a singleprimitive and then we examine the change in frequency versus �tness for all primitives ina typical and in a successful run.In GAs the expected number of children each individual has is determined by its�tness. On average the expected number is equal to the actual number of o�spring z(as used in Price's theorem, i.e. in Equations 1 and 4). For example when using roulettewheel selection the expected number of children is directly proportional to the parent's�tness. When using tournament selection (as in [Langdon, 1995]) the expected numberof children is determined by the parent's rank within the population and the tournamentsize. The remainder of this section uses the expected number of o�spring as predicted bythe parents �tness ranking within the current population in place of z.Price's theorem predicts the properties of the next generation. In a steady state popu-lation it can be used to predict the average rate of change. However in general subsequentchanges to the population will change the predicted rate of change. For simplicity weassume that during one generation equivalent (i.e. the time taken to create as many new10

-200

-100

0

100

200

300

400

500

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
o
.

1

i
n

M
a
k
e
n
u
l
l

t
r
e
e

Number of Individuals Created

Number
Predicted change

Actual change

Figure 3: Evolution of the number of the terminal \1" in the makenull tree plus predictedchange and actual change in next generation, in typical stack (51) run.individuals as there are in the population) such e�ects are small and base the predictedproperties of the new population on linear extrapolation using the predicted rate of change.The 60 runs of the stack problem use identical parameters and di�er only in theinitial seed used by the [Park and Miller, 1988] pseudo random number generator. Forconvenience individual runs are numbered (1) to (60).The solid line in Figure 3 plots the evolution of the number of a particular primitivein a particular tree in the population for a typical run. (As there is no crossover betweentrees of di�erent types, primitives of the same type but in di�erent trees are geneticallyisolated from each other and so Equation 4 can be applied independently to each tree). Thechange from one generation equivalent to the next is plotted by crosses which show goodagreement with the change predicted by linearly extrapolating the rate of change predictedby Price's theorem. Some discrepancy between the actual change and the predicted changeis expected due to \noise". That is the number of children an individual has is a stochasticfunction of its �tness (see Figure 8). However non-random deviations from the predictionare to be expected as linear extrapolation assumes the rate of change will not changeappreciably in the course of one generation equivalent (such as happens at generations 6and 8).Figures 4 to 7 plot the covariance of primitive frequency with normalised �tness againstthe change in the primitives frequency in the subsequent generation (equivalent). While11

these plots show signi�cant di�erences from the straight line predicted by Equation 4, leastsquares regression yields best �t lines which pass very close to the origin but (dependingupon run and primitive) have slopes signi�cantly less than 1 + pc = 1:9 (they lie in therange 1.18 to 1.79, see Table 2).Random deviations from the theory are expected but should have negligible e�ectwhen averaged by �tting the regression lines. The fact that regression coe�cients di�erfrom 1.9 is explained by the fact that we are recording changes over a generation, duringthis time it is possible for the population to change signi�cantly. We would expect thise�ect to be most noticeable for primitives with a high rate of change since these e�ectthe population! A high rate of change may not be sustainable for a whole generationand so the actual change will be less than predicted by extrapolating from its initial rateof change. However large changes have a large e�ect on least squares estimates so theseoutliers can be expected to reduce the slope of the regression line.Regression coe�cients can be calculated after excluding large values leaving only thesmaller changes. However this makes the calculation dependent on small values with highnoise. This may be exacerbated if the primitive quickly became extinct as there are fewdata points left. (When considering a typical run (51) of the stack problem and excludingcovariances outside the range �0:1 : : : +0:1 regression coe�cients were often e�ected bythis noise and lie in the range �0:96 : : : 6:28 for the twelve primitives in the empty tree).In conclusion Price's Theorem gives quantitative predictions of the short term evolutionof practical GP populations, however such predictions are e�ected by sampling noise in�nite populations and may be biased if predictions are extrapolated too far in rapidlyevolving populations. The theorem can also be used to explain the e�ects of �tnessselection on GP populations.

12

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4

C
h
a
n
g
e

i
n

F
r
e
q
u
e
n
c
y

p
e
r

G
e
n
e
r
a
t
i
o
n

Covariance of Frequency with Rank(i)**4 - Rank(i-1)**4

y = 1.9 x

makenull
top
pop

push
empty
1.9*x

1.79*x
1.18*x

Figure 4: Covariance of Primitive frequency and �RiN �4 � �Ri�1N �4 v. change in frequencyin next generation, in typical stack (51) run. Data collected every generation equivalent.

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-0.1 -0.05 0 0.05 0.1

C
h
a
n
g
e

i
n

F
r
e
q
u
e
n
c
y

p
e
r

G
e
n
e
r
a
t
i
o
n

Covariance of Frequency with Rank(i)**4 - Rank(i-1)**4

y = 1.9 x

Figure 5: Covariance of Primitive frequency and �RiN �4 � �Ri�1N �4 v. change in frequencyin next generation, in typical stack (51) run. Only data near the origin shown.13

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4

C
h
a
n
g
e

i
n

F
r
e
q
u
e
n
c
y

p
e
r

G
e
n
e
r
a
t
i
o
n

Covariance of Frequency with Rank(i)**4 - Rank(i-1)**4

y = 1.9 x

makenull
top
pop

push
empty
1.9*x

Figure 6: Covariance of Primitive frequency and �RiN �4 � �Ri�1N �4 v. change in frequencyin next generation, in successful stack (2) run. Data collected every generation equivalent.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.1 -0.05 0 0.05 0.1

C
h
a
n
g
e

i
n

F
r
e
q
u
e
n
c
y

p
e
r

G
e
n
e
r
a
t
i
o
n

Covariance of Frequency with Rank(i)**4 - Rank(i-1)**4

y = 1.9 x

Figure 7: Covariance of Primitive frequency and �RiN �4 � �Ri�1N �4 v. change in frequencyin next generation, in successful stack (2) run. Data near origin.14

Table 2: Least squares regression coe�cients of covariance of primitive frequency and�RiN �4 � �Ri�1N �4 with change in frequency in the next generation for a typical (51) stackrun.Primitive makenull top pop push empty� Frequency { Intercept : GradientADD -0.026 : 1.26 -0.007 : 1.39 -0.007 : 1.33 0.035 : 1.34 0.010 : 1.78SUB -0.017 : 1.21 -0.016 : 1.44 0.006 : 1.75 -0.017 : 1.30 0.006 : 1.830 -0.001 : 1.35 0.002 : 1.46 0.011 : 1.50 0.031 : 1.34 -0.002 : 1.411 -0.015 : 1.18 -0.001 : 1.34 -0.018 : 1.17 -0.003 : 1.76 -0.002 : 1.24max 0.001 : 1.52 -0.017 : 1.34 -0.008 : 1.44 0.007 : 1.73 -0.009 : 1.79arg1 0.000 : 1.50 -0.008 : 1.60 0.018 : 1.74 0.012 : 1.39 0.001 : 1.17aux -0.025 : 1.20 0.003 : 1.61 -0.004 : 1.31 0.004 : 1.37 -0.024 : 1.29inc aux 0.006 : 1.38 0.004 : 1.67 -0.002 : 1.49 -0.011 : 1.50 -0.012 : 1.19dec aux -0.002 : 1.51 -0.001 : 1.40 -0.005 : 1.72 0.004 : 1.26 -0.001 : 1.40read -0.020 : 1.21 -0.002 : 1.40 -0.015 : 1.71 0.009 : 1.38 -0.037 : 1.54write -0.003 : 1.42 -0.002 : 1.30 0.008 : 1.46 0.015 : 1.30 -0.038 : 1.54write Aux -0.001 : 1.30 -0.011 : 1.20 -0.011 : 1.58 0.011 : 1.39 0.049 : 1.33

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
a
t
e

o
f

p
r
o
d
u
c
i
n
g

o
f
f
s
p
r
i
n
g

Rank(i)**4 - Rank(i-1)**4

y = 1.9 x

Figure 8: Rate of producing o�spring v. �RiN �4 � �Ri�1N �4 in typical stack (51) run. Datacollected every generation equivalent. 15

3 Fisher's Fundamental Theorem of Natural SelectionFisher's fundamental theorem of natural selection states \The rate of increase in �tness ofany organism at any time is equal to its genetic variance in �tness at that time" [Fisher,1958, page 37]. \Under the usual interpretation the theorem is believed to say that therate of increase in the mean �tness of a population is equal to the population's additivevariance for �tness". Since the variance can never be negative \natural selection causes acontinual increase in mean �tness of a population. This interpretation of the theorem isonly true when the population mates randomly and there is no dominance or epistasis"[Frank, 1995, page 382].An example of this usage is given in [Tackett, 1995, page 289] which claims \Accordingto Fisher's fundamental theory of natural selection the ability of a population to increasein �tness is proportional to the variance in �tness of the population members."We would certainly expect epistasis (non-linear interaction between genes) to occur inmost GAs and so would not expect this interpretation of the theorem to hold. Figure 9shows the evolution of a stack population's �tness for one run. The error bars indicatea standard deviation either side of the mean population �tness. From Figure 9 we cansee the standard deviation through out the bulk of the run is consistently close to 20, i.e.the variance of the population's �tness is near 400 (20 � 20). The usual interpretation ofFisher's theorem predicts the mean �tness will continually increase but obviously this isnot the case as it remains fairly constant throughout the run and even falls occasionally.We conclude that under the usual interpretation Fisher's theorem does not normallyapply to GAs. This is important because this interpretation of Fisher's theorem has beenused as an argument in favour of GA selection schemes which produce a high variance inpopulation �tness [Tackett, 1995, pages 272 and 290]. (There may be other reasons forpreferring these selection methods. A high �tness variance may indicate a high degree ofvariation in the population, which might be bene�cial).[Price, 1972] makes the point that Fisher's publications on his fundamental theoremof natural selection \contains the most confusing published scienti�c writing I know of"[page 134] leading to \forty years of bewilderment about what he meant" [page 132]. [Price,1972] and [Ewens, 1989; Ewens, 1992b; Ewens, 1992a] argue that the usual interpretation ofFisher's theorem is incorrect and his \�tness" should be considered as just the componentof �tness which varies linearly with gene frequency. All other e�ects, such as \dominance,epistasis, population pressure, climate, and interactions with other species { he regardedas a matter of the environment" [Price, 1972, page 130]. Price and Ewens both give proofs16

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000

T
e
s
t
s

p
a
s
s
e
d

Number of Individuals Created

Mean & SD
Min

Best of Generation

Figure 9: Evolution of Fitness in a typical stack run (51)for this interpretation of Fisher's theorem but conclude that it is \mathematically correctbut less important than he thought it to be" [Price, 1972, page 140].4 Evolution of Stack Problem PopulationsIn this section we return to the stack problem of [Langdon, 1995] and investigate whymost runs failed to �nd a solution. Investigation of the evolved solutions shows whichprimitives are essential to the correct operation of all the evolved solutions and in mostruns one or more of these becomes extinct, thus preventing the evolution of a solutionlike those found. The loss of these primitive is explained using Price's Theorem by thenegative covariance of their frequency with their �tness. Similar covariances are found insuccessful runs and we conclude success requires a solution to be found quickly, beforeextinction of critical primitives occurs.Table 3 contains an entry for each of the �ve program trees (which each trial stack datastructure comprises) and the primitives that the tree can use (see Section 1 and Table 1).Where the primitive is essential to the operation of one of the four stack solutions found,the entry contains the number(s) of the solutions. If the primitive is not essential to thecorrect operation of any of the four evolved solutions (in the particular tree) the entry isblank. Primitives ADD and max are omitted as they are always blank. (The essentialprimitives are shown within shaded boxes in Figures 10, 11, 12 and 13. NB in the stack17

Table 3: Primitives Essential to the Operation of Evolved Stack ProgramsTree/Primitive Essential to Evolved Stack SolutionsTree SUB 0 1 arg1 aux inc dec read write writeaux aux Auxmakenull 4 4 1 2 3 4 1 2 3 4top 1 2 3 1 2 3 4 1 4pop 1 2 4 1 2 3 4 3 1 2 4 3push 1 2 3 4 4 1 2 3 1 2 3 4empty 4 4 1 3 4 2Table 4: Stack Primitives Essential to All Evolved SolutionsTree Primitive Lostmakenul 1 14makenul write Aux 7top read 21push arg1 6push write 29
Tree Alternative Primitives Both Losttop aux or write Aux 12pop inc aux or dec aux 27pop read or write 15push inc aux or dec aux 40empty aux or write Aux 9problem each tree can use all of the primitives).From Table 3 we can identify �ve primitives which are essential to the operation of allfour evolved solutions and �ve pairs of primitives where one or other is required. Theseare shown in the two halves of Table 4 together with the number of runs where they wereremoved from the population by 21 generation equivalents (i.e. by the point where all foursolutions had evolved).After the equivalent of 21 generations in 43 of 60 runs, the number of one or more ofthe tree-primitives shown in the left had side of Table 4 had fallen to zero. That is thepopulation no longer contained one or more primitives required to evolve a solution (likethe solutions that have been found). In 12 of the remaining 17 populations both of one ormore of the pairs of primitives shown on the right hand side of Table 4 had been removedfrom the population. Thus by generation 21 in all but 5 of 60 runs, the population nolonger contained primitives required to evolve solutions like those found. In four of these�ve cases solutions were evolved (in the remaining case one of the essential primitives wasalready at a low concentration, which fell to zero by the end of the run at generation 101).Figure 14 shows the evolution of six typical stack populations (runs 00, 10, 20, 30, 4018

inc_aux

ADD

1

aux

write

makenull

SUB

write_Aux

1

0

top

read

write_Aux

aux

pop push

write

dec_aux arg1

empty

aux

Figure 10: Evolved Stack 1
aux

readADD

write_Aux

1

max

write

aux inc_aux

makenull top pop push

write

dec_aux arg1

write_Aux

write_Aux

0

write_Aux

write_Aux

empty

Figure 11: Evolved Stack 2
read

SUB

aux 0

read

write_Aux

inc_aux

SUB

makenull top pop push

write

write_Aux

1

1 arg1

ADD

dec_aux

write_Aux

write_Aux

SUB

1

ADD

arg1 arg1

SUB

dec_aux

write

aux

empty

aux

Figure 12: Evolved Stack 3

push empty

ADD

aux ADD

aux max

inc_aux arg1

write

SUB SUB

0 aux

read

write_Aux

write_Aux

read

arg1

topmakenull

SUB

ADD

1 write_Aux

arg1

SUB

write_Aux

SUB

0 ADD

1 aux

read

arg1

pop

write

aux 0 write_Aux

dec_aux SUB

1 arg1

SUB

1 arg1

SUB

write

SUB

Figure 13: Evolved Stack 419

and 51). For each run the �rst essential primitive (or pair or primitives) that becomesextinct is selected and its covariance of frequency with �tness in the population is plotted.Figure 14 shows the covariance is predominantly negative and thus Price's theorem predictsthe primitives' frequencies will fall. Figure 16 con�rms this. In most cases they becomeextinct by generation nine.Figure 15 shows the evolution of frequency, �tness covariance for the same primitivesin a successful run (1) (Figure 17 shows the evolution of their frequency). While two ofthe primitives (Push/arg1 and Push/dec aux) have large positive covariances for part ofthe evolution the other four are much as the runs shown in Figure 14 where they werethe �rst essential primitive to become extinct. That is, in terms of correlation betweenpopulation �tness ranking and essential primitives, successful and unsuccessful runs aresimilar. It appears there is a race between �nding high �tness partial solutions on which acomplete solution can evolve and the removal of essential primitives from the populationcaused by �tness based selection. I.e. if �nding a critical building block had been delayed,it might not have been found at all as one or more essential primitives might have becomeextinct in the meantime.In successful stack run (1) by generation �ve, a solution in which top, pop and pushe�ectively use aux, write Aux, inc aux and dec aux to maintain aux as a stack pointer hasbeen discovered (c.f. Figure 17). This is followed by the �tness of Pop/inc aux increasingand whereas its frequency had been dropping it starts to increase preventing Pop/inc auxfrom becoming extinct, which would have prevented a solution like the one found fromevolving. This maintenance of aux as a stack pointer requires code in three trees to co-operate. An upper bound on the chance of this building block being disrupted in theo�spring of the �rst program to contain it can be calculated by assuming any crossoverin any of the three trees containing part of the building block will disrupt it. This yieldsan upper bound of 3pc=5 = 54%. In other words on average at least pr + 2pc=5 = 46%of the o�spring produced by programs containing this building block will also containthe building block and so it should spread rapidly through the population. With manyindividuals in the population containing functioning top, pop and push trees, evolution ofworking makenull and empty trees rapidly followed and a complete solution was found.4.1 DiscussionThe loss of some critical primitives in so many runs can be explained in many cases by theexistence of high scoring partial solutions which achieve a relatively high score by saving20

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

C
o
v
a
r
i
a
n
c
e

o
f

F
r
e
q
u
e
n
c
y

w
i
t
h

R
a
n
k

B
a
s
e
d

F
i
t
n
e
s
s

Number of Individuals Created

 40 Push dec_aux

Push & Pop inc & dec runs 20, 40
Push arg1 runs 00, 10
Makenull 1 runs 30, 51

Figure 14: Evolution of the covariance of primitive frequency and �RiN �4��Ri�1N �4 for the�rst critical primitive (or critical pair) to become extinct. Six typical stack runs.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

C
o
v
a
r
i
a
n
c
e

o
f

F
r
e
q
u
e
n
c
y

w
i
t
h

R
a
n
k

B
a
s
e
d

F
i
t
n
e
s
s

Number of Individuals Created

 Push dec_aux

 Pop inc_aux

Push & Pop inc & dec
Push arg1
Makenull 1

Figure 15: Evolution of the covariance of primitive frequency and �RiN �4 � �Ri�1N �4 forcritical primitives. Successful stack 1 run. 21

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
u
m
b
e
r

o
f

P
r
i
m
i
t
i
v
e
s

i
n

P
o
p
u
l
a
t
i
o
n

Number of Individuals Created

Push & Pop inc & dec runs 20, 40
Push arg1 runs 00, 10

Makenull 1 runs 30, 51

Figure 16: Evolution of number of primitives in the population for �rst critical primitive(or critical pair) to become extinct. Six typical stack runs.

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
u
m
b
e
r

o
f

P
r
i
m
i
t
i
v
e
s

i
n

P
o
p
u
l
a
t
i
o
n

Number of Individuals Created

 Push dec_aux

 Pop inc_aux

Push & Pop inc & dec
Push arg1
Makenull 1

Figure 17: Evolution of number of primitives in the population for critical primitives.Successful stack 1 run. 22

only one item in aux. In such programs write Aux, inc aux and dec aux may destroy thecontents of aux and are likely to be detrimental (i.e. reduced �tness). As the number ofsuch partial solutions increases write Aux, inc aux and dec aux become more of a liabilityin the current population and are progressively removed from it. Thus trapping thepopulation at the partial solution. This highlights the importance of the �tness functionthroughout the whole of the GP run. I.e. it must guide the evolution of the populationtoward the solution in the initial population, as well as later, when recognisable partialsolutions have evolved.[Langdon, 1996b] described a similar loss of primitives in the list problem and discussedpotential solutions such as mutation, demes and �tness niches to allow multiple diversepartial solutions within the population and potentially slow down the impact of �tnessselection on the population. Other approaches include: improving the �tness function (soit is no longer deceptive) e.g. by better design or using a dynamic �tness function whichchanges as the population evolves. A dynamic �tness function would aim to continuallystretch the population, keeping a carrot dangling in front of it. (This is also known asthe \Red Queen" [Carroll, 1871] approach where the population must continually improveitself). A dynamic �tness function could be pre-de�ned but dynamic GP �tness functionsare often produced by co-evolution [Hillis, 1992; Angeline and Pollack, 1993; Angeline,1993; Angeline and Pollack, 1994; Koza, 1991; Jannink, 1994; Reynolds, 1994; Ryan,1995]. Where it is felt certain characters will be required in the problem's solution theinitial population and crossover can be controlled in order to ensure individuals within thepopulation have these properties ([Langdon, 1995] and [Langdon, 1996b] have describedways in which this can be implemented).An alternative approach is to avoid specialist high level primitives (particularly wherethey interlock, so one requires another) and use only a small number of general purposeprimitives. Any partial solutions are likely to require all of them and so none will becomeextinct. This is contrary to established GP wisdom [Kinnear, Jr., 1994, page 12], howeverrecently (at the fall 1995 AAAI GP symposium) Koza advocated the use of small functionsets containing only �ve functions (+;�;�;� and a conditional branch).5 Lost of VarietyWe de�ne variety as the number of unique individuals within the population. For exampleif a population contains three individuals A, B and C but A and B are identical (butdi�erent from C) then the variety of the population is 2 (A and B counting as one unique23

individual). ([Koza, 1992, page 93] de�nes variety as a ratio of the number of uniqueindividuals to population size). These de�nitions have the advantage of simplicity butignore several important issues:� Individuals which are not identical may still be similar.� Individuals which are not identical may be total di�erent, but variety makes nodistinction between this and the �rst case.� The di�erences between individuals may occur in \introns". That is in parts of theprogram tree which have no e�ect upon the program's behaviour, either becausethat part of the tree is never executed or because its e�ects are always overriddenby other code in the program. For example, the value of a particular subtree mayalways be multiplied by zero which yields a result that is always zero no matterwhat value the subtree had calculated. Two such di�erent programs have identicalbehaviour and �tness (but their o�spring may not be the same, even on average).� Behaviour of di�erent program trees may be identical, either in general or in thespeci�c test cases used to assign �tness. That is genetically diverse individuals maybehave similarly, or even identically.As [Rocsa, 1996] points out, in the absence of side e�ects, diverse programs withidentical behaviour can be readily constructed if the function set contains functionsthat are associative or commutative by simple reordering of function arguments.� Even if programs behave di�erently, in general or when evaluating the given testcases, the �tness function may assign them the same �tness value. E.g. the �tnessfunction may be based upon the number of correct answers a program returns sotwo programs which pass di�erent tests but the same number of tests will have thesame �tness.Faced with the above complexity we argue that variety has the advantage of simplicityand forms a useful upper bound to the diversity of the population. That is if the varietyis low then any other measures of genetic, phenotypic or �tness diversity must also below. The opposite does not hold when it is high. (Other de�nitions include �tness basedpopulation entropy [Rosca and Ballard, 1996, Section 9.5] and using the ratio of sum ofthe sizes of every program in the population to the number of distinct subtrees within thepopulation [Keijzer, 1996]). 24

In this section we consider the variety of GP populations using the 60 runs on the stackproblem as examples. Firstly (Section 5.1) we show how the number of unique individualsevolves. Simple but general models of the evolution of variety were devised. While thesegave some explanation but they failed to predict some important features. Instead detailedmeasurements of the stack population are presented in Section 5.2. These are used to givebetter, but more problem speci�c, explanations of the populations' behaviour. The lowvariety of stack populations is shown to be primarily due to the high number of \clones"(i.e. o�spring which are identical to their parents) produced by crossover, which is itselfa re
ection of the low variety. Thus low variety reinforces itself. In one run (23) varietycollapses to near zero but in most cases it eventually hovers near 60% of the populationsize. This is low compared to reports of 80% to 95% in [Koza, 1992, pages 159, 609 and614] and [Keijzer, 1996].5.1 Lost of Variety in Stack PopulationsMeasurements show variety starts in the initial population at its maximum value withevery member of the population being di�erent. This is despite the fact there is nouniqueness check to guarantee this. Once evolution of the population starts variety fallsrapidly, but in most cases rises later to oscillate chaotically near a mean value of about60% (see Figures 18 to 21). However in one run (23) variety does not increase and thepopulation eventually converges to a single genotype and four of its o�spring (i.e. of the1000 individuals in the population there are only �ve di�erent chromosomes, with about970 copies of the �ttest of these �ve).The number of duplicate individuals created by reproduction rises rapidly initially butthen hovers in the region of 8.5% of the population size (see Figure 22). This means initiallymost duplicate individuals are created by reproduction but this fraction falls rapidly asmore duplicates are produced by crossover so after the seventh generation only about aquarter of duplicate individuals in the population were created by reproduction and theremaining three quarters are created by crossover (see Figure 18). In stack populations,crossover produces more duplicates shortly after each new improved solution is found (seeFigure 23).5.2 Measurements of GP Crossover's E�ect on VarietyThis section examines in detail the role of crossover in reducing variety in the stack pop-ulations. We discover there are two main causes; crossover which just involves swappingterminals and crossover which entails replacing whole trees. Where variety is low both25

0

200

400

600

800

1000

0 20000 40000 60000 80000 100000

N
o
.

d
i
f
f
e
r
e
n
t

i
n
d
i
v
i
d
u
a
l
s

i
n

p
o
p
u
l
a
t
i
o
n

Number of Individuals Created

 stack 2

 stack 3

 stack 1

 stack 4

 Mean of 60 runs

 Run 23 (5)

 Mean % xover * 10

 Typical (51) run

mean
solutions

typical runs
run 23

Mean % xover * 10

Figure 18: Number of di�erent individuals in stack populations and proportion of subse-quent duplicates produced by crossover in stack selected runs.

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000

N
o
.

d
i
f
f
e
r
e
n
t

i
n
d
i
v
i
d
u
a
l
s

i
n

p
o
p
u
l
a
t
i
o
n

Number of Individuals Created

 stack 2

 stack 3

 stack 1

 stack 4

 Mean of 60 runs

 Run 23 (9)

 Mean % xover * 10

 Typical (51) run

 Exp(-0.1 G)

Figure 19: Detail of above
26

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

0 20000 40000 60000 80000 100000

C
h
a
n
g
e

i
n

N
o
.

d
i
f
f
e
r
e
n
t

i
n
d
i
v
i
d
u
a
l
s

i
n

p
o
p
u
l
a
t
i
o
n

Number of Individuals Created

mean
solutions

typical runs
run 23

Figure 20: Change in number of di�erent individuals in stack populations.

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

0 2000 4000 6000 8000 10000 12000 14000

C
h
a
n
g
e

i
n

N
o
.

d
i
f
f
e
r
e
n
t

i
n
d
i
v
i
d
u
a
l
s

i
n

p
o
p
u
l
a
t
i
o
n

Number of Individuals Created

mean
solutions

typical runs
run 23

Figure 21: Detail of above
27

0

20

40

60

80

100

120

140

160

180

200

0 20000 40000 60000 80000 100000N
o
.

d
u
p
l
i
c
a
t
e
s

i
n

p
o
p
u
l
a
t
i
o
n

p
r
o
d
u
c
e
d

b
y

r
e
p
r
o
d
u
c
t
i
o
n

Number of Individuals Created

 stack 2

 stack 3

 stack 1

 stack 4

mean
solutions

typical runs
run 23
pr N

Figure 22: Number of duplicate individuals in stack populations that were produced byreproduction in selected runs.

0

200

400

600

800

1000

0 20000 40000 60000 80000 100000

V
a
r
i
e
t
y
,

C
h
a
n
g
e

i
n

M
a
x

F
i
t
n
e
s
s

Number of Individuals Created

Variety
Increase in Max fitness * 100

Figure 23: Number of di�erent individuals in stack populations and change in maximum�tness in a typical stack run (51). 28

lead to further production of clones of the �rst parent. Quantitative models of these twoe�ects are in close agreement with measurements.Figure 24 shows the proportion of cases where the o�spring produced by crossover areidentical to one or other of its parents. (In a typical stack run all o�spring which areduplicates of other members of the population are identical to one or other parent). Ina typical run of the stack problem about one third of crossovers produce o�spring whichare identical to their �rst parent. Table 5 gives the total number of o�spring produced bycrossover during the run that are clones for various size of crossover fragments.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20000 40000 60000 80000 100000

P
r
o
p
o
r
t
i
o
n

o
f

t
o
t
a
l

c
r
o
s
s
o
v
e
r
s

Number of Individuals Created

Offspring = mum
Offspring = dad

mum = dad

Figure 24: Proportion of crossovers that yield o�spring identical to one or other parents,typical stack (51) run (Also shows proportion where the two parents are identical).For crossover to produce a clone of the �rst parent the fragment of code that is lostmuch be identical to that copied from the second parent. As crossover fragments whichare taller are generally larger we would expect the chance of this happening to reducerapidly with fragment height. Whilst Table 5 shows this is generally true, it is de�nitelynot the case for fragment height 2.In stack run 51 18,644 individuals are produced by crossover which are identical to their�rst parent and where the inserted subtree had a height of 2, i.e. fragments consisting ofone function and its arguments which are all terminals. Of these 18,644, there were 16,536individuals where the tree in which crossover occurred contained only one function andso crossover entailed replacing the whole tree with another from the other parent, whichturned out to be identical to the �rst. In this regard the stack problem is atypical, normally29

Table 5: Number of crossovers of each height of subtree inserted in a typical stack run(51) and number of these crossovers which produced a non-unique o�spring.Fragment height Identical toTotal % mum dad both either %1 28,783 32 9,513 38 128 9,679 322 28,277 31 18,644 60 305 19,009 623 15,360 17 1,060 79 28 1,167 44 3,884 4 303 42 6 351 15+ 13,784 15 202 33 10 245 .8Totals 90,088 100 29,722 252 477 30,451 100Percent 33 .3 .5 34trees or ADFs will have multiple functions and we would expect few clones to be producedby crossover of trees with a of height 2. In this run of the stack problem most of theclones are produced by crossover in trees which are short (height of 2) and identical inboth parents. Thus we see clones (which reduce variety) being caused by lack of diversityin the population.5.2.1 Production of Clones by Crossover in Full Binary TreesIn a full binary tree of height h there are 2h � 1 nodes of which 2h�1 are terminals and2h�1 � 1 are internal nodes. Consider crossover between two identical trees where eachnode is distinct. For crossover to produce an individual which is identical to its parents thecrossover points selected in both parents must be the same. The chance of this happeningwould simply be (2h � 1)�1 if nodes were chosen at random. However the parameterpUnRestrictWt (cf. Section 2.4) means only 70% of crossover points are chosen totally atrandom. In the remaining 30% of cases the chosen point must be an internal tree node.From Equation 6 we see for large trees pUnRestrictWt's e�ect is to increase the chance ofproducing a clone by 9%. The probabilities for smaller trees are tabulated in Table 6.p(clone) = p(Tree1 internal)� p(Tree2 same internal) +p(Tree1 external)� p(Tree2 same external)= (1� pany) + pany 2h � 1� 2h�12h � 1 !� p(Tree2 same internal) +pany 2h�12h � 1 � p(Tree2 same external)30

= (1� pany) + pany 2h�1 � 12h � 1 !� p(Tree2 same internal) +pany 2h�12h � 1 � p(Tree2 same external)= (1� pany) + pany 2h�1 � 12h � 1 !� (1� pany) + pany 2h�1 � 12h � 1 ! =(2h�1 � 1) +pany 2h�12h � 1 � pany 2h�12h � 1=2h�1= �(1� pany) + pany 2h�1�12h�1 �2(2h�1 � 1) + �pany 2h�12h�1�22h�1 (5)As h increases p(clone) � (1� pany=2)2(2h�1 � 1) + p2any=42h�1� (1� pany=2)22h�1 + p2any=42h�1= (1� pany=2)2 + p2any=42h�1= 1� pany + p2any=4 + p2any=42h�1= 1� pany + p2any=22h�1Since pany = 0:7 for large h = 1:09 2�hp(clone) � 1:09 (2h � 1)�1 (6)Table 6: Chance of o�spring being identical to parents when crossing two identical fullbinary treesTree height Chance of clone pany = 11 1 1.000 1.0002 �(1� pany) + pany 13�2 + (pany 23)22 0.393 .3333 ((1�pany)+pany 37)23 + (pany 47)24 .160 .1434 ((1�pany)+pany 715)27 + (pany 815)28 .074 .0675 ((1�pany)+pany 1531)215 + (pany 1631)216 .035 .032
The chance of producing a clone from two identical trees in a real GP population maynot be exactly as given by Equation 5. This is because: the trees may not be full binarytrees, i.e. they will be smaller if there are terminals closer to the root than the maximum31

0

50

100

150

200

250

0 20000 40000 60000 80000 100000

P
r
o
g
r
a
m

S
i
z
e

Number of Individuals Created

Max
Min
Mean

Solutions

Figure 25: Evolution of program size, means of 60 stack runs. The lengths of the foursolutions to the stack problem are also shown.height of the tree, or if functions have one argument rather than two. Conversely trees canbe also be larger if functions have three or more arguments. Also the chance of producinga clone is increased if actual trees contain repeated subtrees.In the case of two identical trees of height two and crossover fragments of height twothe chance of producing a clone is equal to the chance of selecting the root in the �rst treewhich depends upon the number of arguments the tree has. For n arguments, the chanceof producing a clone is (1� pany) + pany=(n+1) = 1� n pany=(n+1) which is 65%, 53%,48% and 44% for n = 1; 2; 3 and 4. In other words given a population where the bestsolution found has a height of two and the inserted crossover fragment is also of heighttwo and there is a high chance of selecting (copies of) the individual to be both parents weexpect the o�spring to be a clone between 53% and 65% of the time, which is consistentwith the �gure of 16,536 such clones produced in a typical stack run (cf. page 29).Thus one of the major causes of the fall in variety in the stack populations can betraced to �nding partial solutions early in the evolution of the population with relativelyhigh �tness where trees within it are short. As the whole individual is composed of �vetrees, its total size need not be very small. Figure 25 provides additional evidence for thisas it shows on average stack individuals shrink early in the run to 23.3 at generation six.I.e. on average each tree contains 4.7 primitives and as there must be many trees shorterthan this, many trees must have a height of two or less.32

Table 7: Chance of selecting a terminal as a crossover fragment in a full binary treeHeight Both parents1 100 % 100 %2 47 % 22 %3 40 % 16 %4 37 % 14 %1 35 % 12.25 %5.2.2 Production of Clones by Crossover Swapping TerminalsThe other major reason for crossover to produce clones in the stack runs is crossoverfragments which contain a single terminal (cf. Table 5). The proportion of clones thesecrossovers produce can be readily related to lack of diversity. The proportion of crossoverfragments which are a single terminal depends upon the depth and bushiness of the treeswithin the population, which in turn depends upon the number of arguments requiredby each function in the function set and how the distribution of functions evolves. Theproportion of crossover fragments which are a single terminal is clearly problem dependentand changes with run and generation within the run, however as a �rst approximation inthe stack problem it can be treated as a constant for each type of tree (cf. Figure 27).For a full binary tree of height h the chance of selecting a terminal as a crossoverfragment is pany2h�1=(2h � 1) and the chance of crossover swapping two terminals is�pany2h�1=(2h � 1)�2. Table 7 gives the numerical values for trees of di�erent heights.Note the chance of selecting a terminal converges rapidly to 35% for large trees.If parents were chosen at random the chance of selecting the same terminal in twotrees would be simply the sum of the squares of their proportions in the population. Thusif the terminals are equally likely (as would be expected in the initial population) thechance of selecting two the same is just the reciprocal of the number of terminals and thisrises as variety falls eventually reaching unity if all but one terminal are removed fromthe population. Figure 26 shows how this measure evolves for each tree in a sample ofstack runs. Note in run (23) all �ve trees quickly converge on a single terminal. In manyof the other runs the population concentrates on one or two terminals, so the chance ofan o�spring produced by changing a single terminal being a clone of one of its parents ismuch increased.Typically 15.8% of crossovers replace one terminal with another terminal (cf. Table 8).This is near the proportion expected for full binary trees with a height of three or more.33

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

C
o
n
v
e
r
g
e
n
c
e

o
f

T
e
r
m
i
n
a
l
s

Number of Individuals Created

1/7

run 00

run 20

run 30
40

run 10 51

run 23

overall
makenull

top
pop
push

empty

Figure 26: Evolution of (Terminal Concentration)2 in each operation tree, for six typicalstack runs and run (23).Table 8 shows reasonable agreement between the predicted number of clones produced bycrossover inserting a single terminal and the actual number averaged over a typical run ofthe stack problem.The second major source of crossover produced reduction in variety (cf. Table 5) isthus explained by the fall in terminal diversity, itself a product of the fall in variety. Soagain we see low variety being reinforced by crossover, i.e. the reversal of its expected roleof creating new individuals.Table 8: Number of clones produced by changing a terminal in run (51) of the stackproblemTree No. Crossovers Terminal Only P(term conc)2 Predicted Actualmakenull 18,020 3,326 .924424 3,074.6 3,075top 17,914 3,022 .798273 2,412.4 2,684pop 18,013 4,895 .565901 2,770.1 2,819push 18,021 2,306 .318201 733.8 740empty 18,120 668 .511968 342.0 339Totals 90,088 14,217 9,334.9 9,657
34

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

P
r
o
p
o
r
t
i
o
n

o
f

t
o
t
a
l

c
r
o
s
s
o
v
e
r
s

Number of Individuals Created

 h=1

 h=2

 h=3
 h=4

Typical runs
Run 23

47%
40%
37%
35%

Figure 27: Proportion of crossovers where a terminal is inserted for six typical stack runsand run (23) (averaged across all �ve trees within each individual).6 Measurements of GP Crossover's E�ectsIn this section we analyse how successful crossover is at �nding new solutions with higher�tness and conclude in the case of the stack problem, crossover quickly tires and the rateof �nding improvements slows rapidly so after generation eight very few are found andtypically no improvements are found after generation 16. Note this includes all crossoversnot just those that produce o�spring that are better than anyone else in the population.Table 9 gives the number of crossovers which produced an o�spring �tter than bothits parents, for run (23), six typical runs and the four successful runs. The successfulruns produce about 50% more successful runs than typical runs. The parents of successfulcrossovers and their o�spring are plotted in Figures 28 and 29 for a typical and a successfulrun respectively. However the number of successful crossovers is more than the numberof di�erent �tness values, that is there are �tness values which have been \discovered"by multiple successful crossovers. Clusters of particularly popular �tness values that were\rediscovered" many times can be seen in Figures 28 and 29. E.g. �tness value 128 isdiscovered 22 times in run (51) (22 is 13% of all the successful crossovers).The proportion of successful crossovers in six selected stack runs is shown in Figure 30.Note the number of crossovers that produce improved o�spring is small and quickly fallsso after generation 16 there are almost no crossovers that improve on both parents (or35

Table 9: No. of Successful Crossovers, in Typical and Successful Stack RunsRun Crossover point in Tree Total Best FitnessMakenull Top Pop Push Empty23 33 32 54 18 46 183 13000 22 34 57 43 20 176 10810 27 34 85 29 24 199 10820 36 41 31 13 59 180 12830 22 25 44 21 44 156 13151 38 31 48 16 30 163 13940 63 75 50 26 90 304 15027 72 67 47 18 53 257 16032 69 56 42 25 77 269 16009 42 63 54 22 75 256 16053 33 55 44 38 25 195 160indeed improve on either).Figure 31 shows the �tness of individuals selected to be crossover parents. This showsthe convergence of the population with almost all parents having the maximum �tnessvalue. (The asymmetry of the �tness function makes the mean �tness of the populationlower than the �tness of the median individual).7 DiscussionNatural evolution of species requires variation within a population of individuals as well asselection for survival and reproduction. In the previous sections we have seen how, even onthe most basic measure, variety in the stack populations falls to low levels primarily dueto crossover producing copies of the �rst parent at high rates. Initially this is caused bythe discovery of relatively high �tness partial solutions containing very small trees whichdominate the population, reducing variety which causes feedback via crossover producedclones so keeping variety low, in one case causing it to collapse entirely. As we argued inSection (4) in most stack runs lack of variety with corresponding extinctions of primitivesprevents solutions like those found from evolving.In any genetic search a balance between searching the whole search space for an opti-mum and concentrating the search in particular regions is required. Some convergence ofthe population is expected as the GA concentrates on particularly fruitful areas. In moststack runs partial solutions are found which act similarly to a stack of one item and so36

80

90

100

110

120

130

140

150

160

0 2000 4000 6000 8000 10000 12000 14000 16000

F
i
t
n
e
s
s

Number of Individuals Created

Improve on both
Mean fitness

Figure 28: All crossovers that produced o�spring �tter than both parents, typical stackrun (51).

80

90

100

110

120

130

140

150

160

0 2000 4000 6000 8000 10000 12000 14000 16000

F
i
t
n
e
s
s

Number of Individuals Created

Improve on both
Mean fitness

Figure 29: All crossovers that produced o�spring �tter than both parents, successful run(09). 37

0.001

0.01

0.1

1

0 20000 40000 60000 80000 100000

P
r
o
p
o
r
t
i
o
n

o
f

t
o
t
a
l

c
r
o
s
s
o
v
e
r
s

Number of Individuals Created

Run 40

 Run 51

 Run 51

Improve on both parents
Worse than either

Within range of parents’ fitness

Figure 30: Proportion of crossovers that produced o�spring �tter than both parents, worsethan both or neither. Six typical stack runs.

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000

F
i
t
n
e
s
s

Number of Individuals Created

First parent in Crossover
Mean fitness

Figure 31: Fitness of parents selected for crossover in typical stack (51) run. (Extremaand 1% of data for �rst parent only are plotted).38

receive a high relative �tness and the population begins to converge to them. This wouldbe �ne apart from two problems: �rstly the solutions contain short trees which causesrapid production of clones but more seriously there is no straightforward path from theirimplementation of a stack of one item to a general stack of many items. These two prob-lems are to some extent speci�c to the stack problem, the �ve tree architecture and theterminal/function set used. A smaller terminal/function set without special primitives tomanipulate \aux", having only general primitives and indexed memory, might avoid thetrapping by \deceptive solutions" but partial solutions of any sort might then not evolvein a reasonable time. In the stack problem each terminal and function can appear in eachof the �ve trees but crossover acts only between like trees so each tree is genetically iso-lated from each other. (This is known as branch typing and is commonly used with ADFs[Koza, 1994, page 86]. An alternative point typing allows crossover to move genetic mate-rial between trees). Branch typing means there are e�ectively 5 � 12 = 60 primitives inthe stack problem. [Andre, 1996] also reports GP runs with similar numbers of primitiveswhere one or more functions either evolved out of the population (i.e. became extinct) orbecame rare and suggests it was a factor in the decision to use mutation (albeit at a lowrate). However he cautions that further experiments are required for con�rmation.The impact of deceptive partial solutions within the population might be reduced bypartitioning the population into \demes" [Stender, 1993; Collins, 1992; Tackett, 1994;Koza and Andre, 1995; Juille and Pollack, 1995], using �tness niches to ensure diversesolutions are retained [Goldberg, 1989]or perhaps using co-evolution to reward solutionsto parts of the test case which most of the population is unable to solve.Mutation could also be used to increase population diversity but a high mutationrate might be required to escape from a deceptive local optimum. This would increasethe degree of randomness in the search but might introduce a bene�cial element of \hillclimbing", see [O'Reilly and Oppacher, 1996] and [Iba et al., 1994b]).While other GPs may not su�er from lack of variety, convergence of some sort is re-quired if the GP is not to be random search. For example [Keijzer, 1996] shows convergencein terms of subtrees with GP populations reusing subtrees in many individuals. (GP maytake advantage of this by reducing the space taken to store the population in memory[Keijzer, 1996] and on disk (by using �le compression) Where side-e�ects are controlled,retaining information on the evaluation of common subtrees within the population canalso considerably reduce program execution time, c.f. [Handley, 1994]).Existing GP systems could be modi�ed to:39

1. Increase variety by disabling the production of clones by the reproduction operator,e.g. by setting pr to zero.2. Detect when an o�spring is identical to one of its parents. This information can bereadily gathered and can be used either to:(a) reduce GP run time or(b) Increase variety.In many problems (a) can be readily achieved by avoiding the �tness evaluationof the o�spring and instead just copying the �tness value of its (identical) parent.Variety can be kept high (b) by preventing the duplicate o�spring from entering thepopulation. Typically this would prevent all duplicates produced by crossover. (Itwould also be feasible to guarantee every member of the population is unique byforbidding duplicates from entering the population. Using hashing techniques thiscan be done e�ciently).Given current GP populations sizes it would appear to be sensible to ensure varietyremains high so the compromise between converging on good search location and exploringuntried areas retains a high degree of exploration. Thus both changes 1. and 2.b) shouldbe tried.The use of pr = 0:1 stems from the decision to use parameters as similar to [Koza,1992] as possible. It is also the supplied default value with GP-QUICK [Singleton, 1994].However the use of reproduction is not universal, for example the CGPS [Nordin, 1994;Nordin and Banzhaf, 1995; Francone et al., 1996] does not implement it. As far as is known,GP systems do not currently detect that crossover has produced a child which is identicalto one of its parents for the purposes of either reducing run time (2.a) or increasing variety(2.b). [Koza, 1992, page 93] ensures every member of the initial population is unique butallows duplicates in subsequent generations. While hashing allows detection of duplicatesin the whole population to be done quickly, in these experiments most duplicates weredirectly related to each other and so could be readily detected without comparison withthe whole population.It appears to be common practice for GP to \run out of steam" so after 20{30 gen-erations no further improvement in the best �tness value in the population occurs orimprovement occurs at a very low rate. Accordingly few GP runs are continued beyondgeneration 50. ([Iba et al., 1994a]'s STROGANOFF system provides a counter examplewith runs of 400 generations). It is suggested that failure of crossover to improve on the40

best individual in the population may, as we saw in Section 6, be accompanied by a generalfailure of crossover to make any improvement. This \death of crossover" means furtherevolution of the population is due to unequal production of individuals with the same (orworse) �tness as their parents, in �tness terms (and possible also phenotypically) at bestthey are copies of their parents. Typically this serves only to increase the convergence ofthe population.An number of attempts to \scale up" GP have been made based upon imposing func-tional abstraction on individuals in the population [Koza, 1994; Angeline, 1993; Rosca,1995]. These have had a degree of success. Another approach is to accept that complexproblems will require many generations to solve and look to the various mechanisms de-scribed above and new techniques to allow long periods of GP evolution with controlledconvergence of the GP population and means to retain and reuse (partial) solutions.8 SummaryEarlier we discussed Price's selection and covariance theorem and showed it can be appliedto genetic algorithms and applied it to genetic programming, where we used it to explainthe evolution of the frequency of various critical primitives in stack populations includingtheir rapid extinction in many cases. These extinctions are seen as the main reason whymany runs of the stack problem (described in [Langdon, 1995]) failed. In Section 5 itwas shown that the loss of these primitives was accompanied by a general loss in variety.While general models have been developed to try and explain this they were only partiallysuccessful and quantitatively successful models based upon full binary trees of particularheights were developed. Section 6 concludes by looking at just the successful crossovers inthe stack runs and concludes they are small in number, in many cases they \rediscover"solutions that have already been found and convergence of the population is accompaniedby absence of crossovers that produce o�spring �tter than their parents as well as nonethat are �tter than the best existing individuals in the population.To some extent these problems are fundamental. Viewing GP as a search process thereis necessarily a trade-o� between concentrating the search in promising parts of the searchspace which increases the chance of �nding local optima versus a wider ranging searchwhich may therefore be unsuccessful but may also �nd a more remote but better globaloptimum. In GA terms a local search corresponds to a more converged population. Thestack experiments indicate, after the fact, that the search was too focused too early andso the global optima were missed in many runs. There are many techniques that can be41

used to ensure population diversity remains high (and so the search is defocused) such assplitting the population into demes, �tness niches and mutation, some of which were usedin [Langdon, 1995; Langdon, 1996b; Langdon, 1996a]. Techniques based on biased mateselection to preserve diversity are discussed in [Ryan, 1994].Defocusing the search means the search is more random and will take longer, if indeed itsucceeds. Other approaches to avoid getting trapped at local optima (\premature conver-gence") change the search space, for example by changing the representation by changingthe primitives from which solutions are composed or changing the �tness function.Changing the primitives can easily be done by hand. It would be interesting to dis-cover to what extend the problems are due to provision of the auxiliary register (scalarvariable, cf. Section 1.3) primitives which allow the evolution of stacks but also allow readyformation of deceptive partial solutions. If these were not used, would stacks still evolve?Alternatively perhaps cleverer genetic operations could avoid the trap by changing pro-grams from using one type of memory to another in a consistent manner so new programscontinue to work as before. While strongly typed GP can reduce the size of the searchspace [Montana, 1995], it may also transform it so that it is easier to search.There are a number of techniques which automatically change the representation. Thefollowing three techniques co-evolve the representation as the population itself evolves;The Genetic Library Builder (GLiB) [Angeline, 1994], Automatically De�ned Functions(ADFs) [Koza, 1994] and Adaptive Representations [Rosca, 1995]. [Koza, 1994, page 619]argues ADFs and other representations provide a di�erent lens with which to view thesolution space and that ADFs may help solve a problem by providing a better lens.The �tness function may be readily changed by hand. For example provision of anadditional test case may \plug a gap" which GP populations are exploiting to achieve high�tness on the test case but at the expense of not generalising to the problem as a whole.Co-evolution can provide an automatic means of dynamically changing the �tness function[Siegel, 1994]. There is increasing interest in using co-evolution [Sen, 1996; Reynolds, 1994;Ryan, 1995] and improved performance has been claimed [Hillis, 1992]. However a moredynamic framework makes analysis of population behaviour harder.In GP runs the concentration of primitives and variety within the population shouldbe monitored (both can be done with little overhead). Should a primitive fall to low con-centration (such as close to the background level provided by mutation) or total extinctionthis should be taken as an indication of possible problems and so worthy of further inves-tigation. Similarly if the number of unique individuals in the population falls below 90%42

this should also be investigated. [Keijzer, 1996] provides a means to measure the concen-tration of groups of primitives (sub trees) but the implementation is not straightforwardfor most existing GP systems and the interpretation of the results is more complex.AcknowledgmentsW. B. Langdon is funded by the EPSRC and The National Grid Company plc.I would like to thank my supervisors M. Levene and P. C. Treleaven, for their critisimsand ideas, Lee Altenberg for helpful comments on this work and Andy Singleton for GP-QUICK.References[Altenberg, 1994] Lee Altenberg. The evolution of evolvability in genetic programming.In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming, pages 47{74.MIT Press, 1994.[Altenberg, 1995] Lee Altenberg. The Schema Theorem and Price's Theorem. In L. DarrellWhitley and Michael D. Vose, editors, Foundations of Genetic Algorithms 3, pages 23{49, Estes Park, Colorado, USA, 31 July{2 August 1994 1995. Morgan Kaufmann.[Andre, 1996] David Andre. Personal communication, 15 Jul 1996.[Angeline and Pollack, 1993] Peter J. Angeline and Jordan B. Pollack. Competitive en-vironments evolve better solutions for complex tasks. In Proceedings of the 5th In-ternational Conference on Genetic Algorithms, ICGA-93, pages 264{270, University ofIllinois at Urbana-Champaign, 17-21 July 1993. Morgan Kaufmann.[Angeline and Pollack, 1994] P. J. Angeline and J. B. Pollack. Coevolving high-level rep-resentations. In C. G. Langton, editor, Arti�cial Life III, volume XVII of SFI Studiesin the Sciences of Complexity, pages 55{71. Addison-Wesley, 1994.[Angeline, 1993] Peter John Angeline. Evolutionary Algorithms and Emergent Intelli-gence. PhD thesis, Ohio State University, 1993.[Angeline, 1994] Peter John Angeline. Genetic programming and emergent intelligence.In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 4, pages75{98. MIT Press, 1994. 43

[Angeline, 1996] Peter J. Angeline. An investigation into the sensitivity of genetic pro-gramming to the frequency of leaf selection during subtree crossover. In John R. Koza,David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic Programming1996: Proceedings of the First Annual Conference, pages 21{29, Stanford University,CA, USA, 28{31 July 1996. MIT Press.[Carroll, 1871] Lewis Carroll. Through the Looking-Glass, and What Alice Found There.Macmillan, 1871.[Collins, 1992] Robert J. Collins. Studies in Arti�cial Evolution. PhD thesis, UCLA,Arti�cial Life Laboratory, Department of Computer Science, University of California,Los Angeles, LA CA 90024, USA, 1992.[Ewens, 1989] W. J. Ewens. An interpretation and proof of the fundamental theorem ofnatural selection. Theoretical Population Biology, 36(2):167{180, 1989.[Ewens, 1992a] W. J. Ewens. Addendum to \The fundamental theorem of natural selectionin Ewens' sense (case of many loci)" by Catilloux and Lessard. Theoretical PopulationBiology, 48(3):316{317, 1992.[Ewens, 1992b] W. J. Ewens. An optimizing principle of natural selection in evolutionarypopulation genetics. Theoretical Population Biology, 42(3):333{346, 1992.[Fisher, 1958] Ronald A. Fisher. The Genetical Theory of Natural Selection. Dover, 1958.Revision of �rst edition published 1930, OUP.[Francone et al., 1996] Frank D. Francone, Peter Nordin, and Wolfgang Banzhaf. Bench-marking the generalization capabilities of A compiling genetic programming systemusing sparse data sets. In John R. Koza, David E. Goldberg, David B. Fogel, andRick L. Riolo, editors, Genetic Programming 1996: Proceedings of the First AnnualConference, pages 72{80, Stanford University, CA, USA, 28{31 July 1996. MIT Press.[Frank, 1995] S. A. Frank. George Price's contributions to evolutionary genetics. Journalof Theoretical Biology, 175:373{388, 1995.[Goldberg, 1989] David E. Goldberg. Genetic Algorithms in Search Optimization andMachine Learning. Addison-Wesley, 1989.[Handley, 1994] S. Handley. On the use of a directed acyclic graph to represent a pop-ulation of computer programs. In Proceedings of the 1994 IEEE World Congress on44

Computational Intelligence, pages 154{159, Orlando, Florida, USA, 27-29 June 1994.IEEE Press.[Hillis, 1992] W. Daniel Hillis. Co-evolving parasites improve simulated evolution as anoptimization procedure. In Christopher G. Langton, Charles Taylor, J. Doyne Farmer,and Steen Rasmussen, editors, Arti�cial Life II, volume X of Sante Fe Institute Studiesin the Sciences of Complexity. Addison-Wesley, 1992.[Holland, 1973] John H. Holland. Genetic algorithms and the optimal allocation of trials.SIAM Journal on Computation, 2:88{105, 1973.[Holland, 1992] John H. Holland. Adaptation in Natural and Arti�cial Systems: An Intro-ductory Analysis with Applications to Biology, Control and Arti�cial Intelligence. MITPress, 1992. First Published by University of Michigan Press 1975.[Iba et al., 1994a] H. Iba, T. Sato, and H. de Garis. System identi�cation approach togenetic programming. In Proceedings of the 1994 IEEE World Congress on Computa-tional Intelligence, volume 1, pages 401{406, Orlando, Florida, USA, 27-29 June 1994.IEEE Press.[Iba et al., 1994b] Hitoshi Iba, Hugo de Garis, and Taisuke Sato. Genetic programmingwith local hill-climbing. In Yuval Davidor, Hans-Paul Schwefel, and Reinhard M�anner,editors, Parallel Problem Solving from Nature III, pages 334{343, Jerusalem, 9-14 Oc-tober 1994. Springer-Verlag.[Jannink, 1994] Jan Jannink. Cracking and co-evolving randomizers. In Kenneth E. Kin-near, Jr., editor, Advances in Genetic Programming, chapter 20, pages 425{443. MITPress, 1994.[Juille and Pollack, 1995] Hugues Juille and Jordan B. Pollack. Parallel genetic program-ming and �ne-grained SIMD architecture. In E. S. Siegel and J. R. Koza, editors,Working Notes for the AAAI Symposium on Genetic Programming, pages 31{37, MIT,Cambridge, MA, USA, 10{12 November 1995. AAAI.[Keijzer, 1996] Maarten Keijzer. E�ciently representing populations in genetic program-ming. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Pro-gramming 2, chapter 13, pages 259{278. MIT Press, Cambridge, MA, USA, 1996.
45

[Kinnear, Jr., 1994] Kenneth E. Kinnear, Jr. A perspective on the work in this book. InKenneth E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 1, pages3{19. MIT Press, 1994.[Koza and Andre, 1995] John R. Koza and David Andre. Parallel genetic programmingon a network of transputers. Technical Report CS-TR-95-1542, Stanford University,Department of Computer Science, January 1995.[Koza, 1991] John R. Koza. Genetic evolution and co-evolution of computer programs. InChristopher Taylor Charles Langton, J. Doyne Farmer, and Steen Rasmussen, editors,Arti�cial Life II, volume X of SFI Studies in the Sciences of Complexity, pages 603{629.Addison-Wesley, Redwood City, CA, USA, 1991.[Koza, 1992] John R. Koza. Genetic Programming: On the Programming of Computersby Natural Selection. MIT Press, Cambridge, MA, USA, 1992.[Koza, 1994] John R. Koza. Genetic Programming II: Automatic Discovery of ReusablePrograms. MIT Press, Cambridge Massachusetts, May 1994.[Langdon, 1995] W. B. Langdon. Evolving data structures using genetic programming.In L. Eshelman, editor, Genetic Algorithms: Proceedings of the Sixth InternationalConference (ICGA95), pages 295{302, Pittsburgh, PA, USA, 15-19 July 1995. MorganKaufmann.[Langdon, 1996a] W. B. Langdon. Scheduling maintenance of electrical power transmis-sion networks using genetic programming. In John Koza, editor, Late Breaking Papersat the GP-96 Conference, pages 107{116, Stanford, CA, USA, 28{31 July 1996. StanfordBookstore.[Langdon, 1996b] William B. Langdon. Data structures and genetic programming. InPeter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2,chapter 20, pages 395{414. MIT Press, Cambridge, MA, USA, 1996.[Montana, 1995] David J. Montana. Strongly typed genetic programming. EvolutionaryComputation, 3(2):199{230, 1995.[Nordin and Banzhaf, 1995] Peter Nordin and Wolfgang Banzhaf. Evolving turing-complete programs for a register machine with self-modifying code. In L. Eshelman, ed-itor, Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA95),pages 318{325, Pittsburgh, PA, USA, 15-19 July 1995. Morgan Kaufmann.46

[Nordin, 1994] Peter Nordin. A compiling genetic programming system that directly ma-nipulates the machine code. In Kenneth E. Kinnear, Jr., editor, Advances in GeneticProgramming, chapter 14, pages 311{331. MIT Press, 1994.[O'Reilly and Oppacher, 1996] Una-May O'Reilly and Franz Oppacher. A comparativeanalysis of GP. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances inGenetic Programming 2, chapter 2, pages 23{44. MIT Press, Cambridge, MA, USA,1996.[Park and Miller, 1988] Stephen K. Park and Keith W. Miller. Random number genera-tors: Good ones are hard to �nd. Communications of the ACM, 32(10):1192{1201, Oct1988.[Price, 1970] George R. Price. Selection and covariance. Nature, 227, August 1:520{521,1970.[Price, 1972] George R. Price. Fisher's `fundamental theorem' made clear. Annals ofHuman Genetics, 36:129{140, 1972.[Reynolds, 1994] Craig W. Reynolds. Competition, coevolution and the game of tag. InRodney A. Brooks and Pattie Maes, editors, Proceedings of the Fourth InternationalWorkshop on the Synthesis and Simulation of Living Systems, pages 59{69, MIT, Cam-bridge, MA, USA, 6-8 July 1994. MIT Press.[Rocsa, 1996] Justinain Rocsa. GP population variety. GP electronic mailing list, 21 Jun1996.[Rosca and Ballard, 1996] Justinian P. Rosca and Dana H. Ballard. Discovery of subrou-tines in genetic programming. In Peter J. Angeline and K. E. Kinnear, Jr., editors,Advances in Genetic Programming 2, chapter 9, pages 177{202. MIT Press, Cambridge,MA, USA, 1996.[Rosca, 1995] Justinian P. Rosca. Genetic programming exploratory power and the dis-covery of functions. In John Robert McDonnell, Robert G. Reynolds, and David B.Fogel, editors, Evolutionary Programming IV Proceedings of the Fourth Annual Confer-ence on Evolutionary Programming, pages 719{736, San Diego, CA, USA, 1-3 March1995. MIT Press.[Ryan, 1994] Conor Ryan. Pygmies and civil servants. In Kenneth E. Kinnear, Jr., editor,Advances in Genetic Programming, chapter 11, pages 243{263. MIT Press, 1994.47

[Ryan, 1995] Conor Ryan. GPRobots and GPTeams - competition, co-evolution and co-operation in genetic programming. In E. S. Siegel and J. R. Koza, editors,Working Notesfor the AAAI Symposium on Genetic Programming, pages 86{93, MIT, Cambridge, MA,USA, 10{12 November 1995. AAAI.[Sen, 1996] Sandip Sen. Adaptation, coevolution and learning in multiagent systems.Technical Report SS-96-01, AAAI Press, Stanford, CA, March 1996.[Siegel, 1994] Eric V. Siegel. Competitively evolving decision trees against �xed trainingcases for natural language processing. In Kenneth E. Kinnear, Jr., editor, Advances inGenetic Programming, chapter 19, pages 409{423. MIT Press, 1994.[Singleton, 1994] Andy Singleton. Genetic programming with C++. BYTE, pages 171{176, February 1994.[Stender, 1993] Joachim Stender, editor. Parallel Genetic Algorithms: Theory and Appli-cations. IOS press, 1993.[Syswerda, 1989] Gilbert Syswerda. Uniform crossover in genetic algorithms. In J. DavidScha�er, editor, Proceedings of the third international confernece on Genetic Algorithms,pages 2{9, 10 Moulton Street, Cambridge, MA 02238, USA, Jun 1989. Morgan Kauf-mann, San Mateo, California.[Syswerda, 1991] Gilbert Syswerda. A study of reproduction in generational and steadystate genetic algorithms. In Gregory J. E. Rawlings, editor, Foundations of geneticalgorithms, pages 94{101. Morgan Kaufmann, San Mateo, 1991.[Tackett, 1994] Walter Alden Tackett. Recombination, Selection, and the Genetic Con-struction of Computer Programs. PhD thesis, University of Southern California, De-partment of Electrical Engineering Systems, 1994.[Tackett, 1995] Walter Alden Tackett. Greedy recombination and genetic search on thespace of computer programs. In L. Darrell Whitley and Michael D. Vose, editors,Foundations of Genetic Algorithms 3, pages 271{297, Estes Park, Colorado, USA, 31July{2 August 1994 1995. Morgan Kaufmann.[Teller, 1994] Astro Teller. The evolution of mental models. In Kenneth E. Kinnear, Jr.,editor, Advances in Genetic Programming, chapter 9, pages 199{219. MIT Press, 1994.
48

