MODTRAN® 5.2.1 USER’S MANUAL

A. Berk *, G.P. Anderson #, P.K. Acharya *, E.P. Shettle ^

* Spectral Sciences, Inc.
4 Fourth Avenue
Burlington, MA 01803-3304
(lex@spectral.com)

Air Force Research Laboratory
Space Vehicles Directorate
Air Force Materiel Command
Hanscom AFB, MA 01731-3010
(Gail.Anderson@noaa.gov)

^ Naval Research Laboratory
Remote Sensing Division
Washington, DC 20375-5351

May 2011
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>1.1 Changes from Mod5.2.0 to Mod5.2.1</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Original Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2. OVERVIEW OF INPUT DATA FORMAT</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Listing of MODTRAN®5 CARDS and Their Format</td>
<td>7</td>
</tr>
<tr>
<td>3. CARD 1 (REQUIRED) – MAIN Radiation Transport DRIVER</td>
<td>9</td>
</tr>
<tr>
<td>4. CARD 1A (REQUIRED) – RADIATIVE TRANSPORT DRIVER CONT’D</td>
<td>14</td>
</tr>
<tr>
<td>5. OPTIONAL CARDS 1A1, 1A2, 1A3, 1a4, 1A5, 1a6, 1A7, 1b</td>
<td>18</td>
</tr>
<tr>
<td>6. CARD 2 (REQUIRED) – MAIN aerosol and cloud options</td>
<td>20</td>
</tr>
<tr>
<td>7. OPTIONAL CARD 2A+ (FLEXIBLE AEROSOL MODEL)</td>
<td>24</td>
</tr>
<tr>
<td>8. OPTIONAL CARD 2A (CLOUD MODELS)</td>
<td>25</td>
</tr>
<tr>
<td>8.1 CARD 2A Standard Form (CIRRUS CLOUD MODELS, ICLD = 18 or 19)</td>
<td>26</td>
</tr>
<tr>
<td>8.2 CARD 2A Alternate Form (WATER/ICE CLOUD MODELS, ICLD = 1 - 10)</td>
<td>26</td>
</tr>
<tr>
<td>9. OPTIONAL CARD 2B (ARMY VERTICAL STRUCTURE ALGORITHM)</td>
<td>28</td>
</tr>
<tr>
<td>10. OPTIONAL CARDS 2C, 2CY, 2C1, 2C2, 2C2X, 2C2Y, 2C3</td>
<td>29</td>
</tr>
<tr>
<td>10.1 CARD 2C</td>
<td>29</td>
</tr>
<tr>
<td>10.2 CARDS 2C1, 2C2, 2C2X, 2C2Y</td>
<td>30</td>
</tr>
<tr>
<td>10.3 CARD 2C3</td>
<td>32</td>
</tr>
<tr>
<td>11. OPTIONAL CARDS 2D, 2D1, 2D2 (USER-DEFINED AEROSOL AND CLOUD PARAMETERS)</td>
<td>33</td>
</tr>
<tr>
<td>11.1 CARD 2D</td>
<td>33</td>
</tr>
<tr>
<td>11.2 CARD 2D1</td>
<td>33</td>
</tr>
<tr>
<td>11.3 CARD 2D2</td>
<td>34</td>
</tr>
<tr>
<td>12. OPTIONAL CARDS 2E1 AND 2E2 (USER-DEFINED CLOUD PARAMETERS)</td>
<td>35</td>
</tr>
<tr>
<td>12.1 CARD 2E1</td>
<td>35</td>
</tr>
<tr>
<td>12.2 CARD 2E2</td>
<td>35</td>
</tr>
<tr>
<td>12.3 Alternate CARD 2E2</td>
<td>36</td>
</tr>
<tr>
<td>13. CARD 3 (REQUIRED) – LINE-OF-SIGHT GEOMETRY</td>
<td>38</td>
</tr>
<tr>
<td>13.1 Standard CARD 3</td>
<td>38</td>
</tr>
<tr>
<td>13.2 Alternate CARD 3 (TRANSMITTED SOLAR/LUNAR IRRADIANCE, IEMSCT = 3)</td>
<td>39</td>
</tr>
<tr>
<td>14. OPTIONAL CARDS 3A1 AND 3A2 (SOLAR / LUNAR SCATTERING GEOMETRY)</td>
<td>40</td>
</tr>
<tr>
<td>14.1 CARD 3A1</td>
<td>40</td>
</tr>
<tr>
<td>14.2 CARD 3A2</td>
<td>40</td>
</tr>
<tr>
<td>15. OPTIONAL CARDS 3B1, 3B2, 3C1-3C6 (USER-DEFINED SCATTERING PHASE FUNCTIONS)</td>
<td>42</td>
</tr>
<tr>
<td>15.1 CARD 3B1</td>
<td>42</td>
</tr>
<tr>
<td>15.2 CARD 3B2</td>
<td>42</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Columns List Allowed Values of MODTRAN® CARD 1 Input Parameters MODTRN, SPEED, MODEL ITYPE, IEMSCT, IMULT, MDEF, NOPRNT and SURREF ... 13

Table 2. Shows the Value of IVULCN Corresponding to the Different Choices of Extinction Coefficient Model and the Vertical Distribution Profile ... 22

Table 3. MODTRAN® CARD 2 Input Parameters: IHAZE, ISEASN, IVULCN, VIS .. 23

Table 4. Default Wind Speeds for Different Model Atmospheres Used with the Navy Maritime Model (IHAZE = 3) .. 23

Table 5. MODTRAN® CARD 2 Input Parameter: ICLD ... 24

Table 6. Default Aerosol Region Boundaries .. 25

Table 7. Properties of the MODTRAN® Cumulus and Stratus Type Model Clouds .. 26

Table 8. Association of the JCHAR(J) Index (J = 1, 14) with the Variables P, T & WMOL 30

Table 9. Various Names for the Heavy Molecular Gases, (WMOLX(J), J = 1, 13) ... 31

Table 10. VARSPC Fixed (Required) Wavelength Grid for the Multiply Read CARD 2D2............................. 34

Table 11. Default Values of the Earth Radius for Different Model Atmospheres ... 38

Table 12. Allowed Combinations of Slant Path Parameters ... 39

Table 13. CARD 3A2: Options for Different Choices of IPARM .. 42

Table 14. MODTRAN® CARD 5 Input Parameter: IRPT .. 52
1. INTRODUCTION

1.1 Changes from Mod5.2.0 to Mod5.2.1

Most changes in this revision are minor, such as correcting comments or removing unused source code. The more important changes are listed below:

- Corrected error in calculation of spherical albedo term in <rootname>.acd file;
- Corrected error in <rootname>.7sc brightness temperatures for nanometer based response functions;
- Eliminated geometry problem most prevalent for line-of-sight paths that terminate near a tangent point;
- Introduced the 2009 series of band model parameter data based on HITRAN2008 with 2009 updates.
- Added the <rootname>.wrm output file which contains a duplicate listing of all warning and error messages written to the <rootname>.tp6 and <rootname>.tp8 files;
- Modified source for compatibility to GNU compilers and FORTRAN77; and
- Eliminated DISORT scaling of thermal radiance contributions.

1.2 Original Introduction

MODTRAN® [Berk et al., 1989; Berk et al., 1998; Berk et al., 2000] serves as the U.S. Air Force (USAF) standard moderate spectral resolution radiative transport model for wavelengths extending from the thermal Infrared (IR) through the visible and into the ultraviolet (0.2 to 10,000.0 µm). The spectroscopy of MODTRAN®5.2.1 is based on HITRAN2008 line compilation (Rothman et al., 1992; Rothman et al., 1998) with updates through June, 2009. The original MODTRAN® 1 cm⁻¹ statistical band model was developed collaboratively by Spectral Sciences, Inc. and the USAF Research Laboratory to provide a fast alternative to the first principles, high accuracy line-by-line (LBL) radiative transport approach. Comparisons between MODTRAN® and LBL [Clough and Kneizys, 1979; Clough et al., 1981; Clough, 1988; and Snell et al., 1995]. Comparisons between MODTRAN® and the LBL model FASE (FASCODE for the Environment) [Clough et al., 1992; Clough and. Iacono, 1995; Clough et al., 2005] spectral transmittances and radiances show agreement to within a few percent or better in the thermal IR. FASE shares its LBL line shape fitting algorithms with LBLRTM, which evolved from FASCODE; see, for instance, Clough et al., 1992; Clough and. Iacono, 1995; Clough et al., 2005. The MODTRAN® model includes flux and atmosphere-scattered solar calculations, essential components in analysis of near-IR and visible spectral region data that are not readily generated by LBL models.

Technical descriptions of the MODTRAN®5 approach are available from a variety of sources. The original MODTRAN®2 code and many of the MODTRAN®3 upgrades are described in the 1996 report "MODTRAN® 2/3 Report and LOWTRAN 7 Model" [Abreu and Anderson, 1996]. The current documentation incorporates material from that report, from Section 3 of the 1988 Users Guide to LOWTRAN7 [Kneizys et al., 1988], from the 1989 Air Force Research Laboratory (AFRL) report on the MODTRAN® band model [Berk et al., 1989], and from the 1996 Spectral Sciences, Inc. report on the cloud and rain model upgrades [Berk and Anderson, 1995]. Articles [Bernstein et al., 1995; Berk et al., 1998] discuss improvements to the band model. Please email “Gail P. Anderson” <Gail.Anderson@noaa.gov>; “Michael L. Hoke” <Michael.Hoke@hanscom.af.mil> and / or “Alexander Berk” <lex@spectral.com> for additional information on MODTRAN®5.

MODTRAN®5 upgrades and improvements take the utility and science of the code to a new level, which includes, among other features, a much finer spectroscopy – spectral resolution can now be as fine as 0.1 cm⁻¹ – and the ability to handle new species not already included in the built-in profile and molecular parameter files. A summary of new features include:

- Reformulating the band model parameters and radiation transport formalism to increase the resolution of MODTRAN® spectral calculations to 0.1 cm⁻¹;
- Increasing the TOA solar database resolution to 0.1 cm⁻¹;
- Incorporating code interface changes between MODTRAN® and DISORT to increase its speed and accuracy of multiple scattering calculations;
- Upgrading MODTRAN® to perform spectral radiance computations for auxiliary molecules (by including their concentrations and spectral parameters) that are not part of the traditional MODTRAN® database; Band models are provided for all HITRAN molecular species;
- Incorporating effect of a thin layer of water, which can either simply wet the ground or accumulate on it, on radiance computations;
- Capability to model a boundary layer aerosol whose extinction coefficient obeys the Angstrom law or to modify the extinction of a model aerosol with an Angstrom law perturbation;
- Capability to determine the spherical albedo and reflectance of the atmosphere and diffuse transmittance from a single MODTRAN® run;
- Ability to include only the solar contribution to multiple scattering and ignore the thermal component where it is not significant;
- Option to write spectral output in binary, and a utility to convert the binary output to ASCII;
- Capability to process several tape5 input files by a single execution of MODTRAN®,
- Upgrade to the MODTRAN®-DISORT interface so that only a single parameter (MXCMU in routine PARAMS.h) needs to be modified to change the maximum number of streams available for DISORT runs.
- Added dithering of the solar angle in cases where the DISORT particular solution to the solar problem was unstable.
- And more ….

These user instructions for MODTRAN®5.2.1 describe each input in the MODTRAN® input files, tape5 or rootname.tp5.

2. OVERVIEW OF INPUT DATA FORMAT

MODTRAN®5 makes it easy for the users to keep track of input and output (I/O) files. A MODTRAN® input file named either 'mod5root.in' or 'MOD5ROOT.IN' contains a list of file root names. If 'mod5root.in' does not exist, MODTRAN® checks for the existence of a 'MOD5ROOT.IN' file. If neither of these files exists, MODTRAN® I/O files are the traditional ones: 'tape5', 'tape6', 'tape7', 'tape8', etc. If a root name file exists and its very first line contains a non-null string (maximum length is 80 characters), this string is treated as a prefix. If the string consists of all blanks or is a null string, the traditional I/O file names are assumed. The root name should contain no embedded blanks; leading and trailing blanks are properly ignored. If the rootname file has the extension “.tp5”, this extension is also ignored. The character string is used as a prefix for the I/O files whose names have mnemonic suffixes. As an example, if the string is Denver, the MODTRAN® I/O files will have these names:

Denver.tp5 (corresponding to tape5)
Denver.tp6 (corresponding to tape6)
Denver.tp7 (corresponding to tape7)
Denverb.tp7 (corresponding to tape7b)
Denver.tp8 (corresponding to tape8)
Denverb.tp8 (corresponding to tape8b)
Denver.7sc (corresponding to tape7.scn)
Denver.7sr (corresponding to tape7.scr)
Denver.plt (corresponding to pltout)
Denverb.plt (corresponding to pltoutb)
Denver.psc (corresponding to pltout.scn)
Denver.clr (corresponding to clrates)
Denver.chn (corresponding to channels.out)
Denver.flx (corresponding to specflux)
Denver.acd (corresponding to atmcor.dat)

A useful feature of MODTRAN®5 is the ability to process several input files in a single execution of MODTRAN®. To accomplish this, list the rootname of each input file as consecutive lines (without intervening blank lines) in 'mod5root.in' or 'MOD5ROOT.IN'. When the user executes MODTRAN®, each input ‘.tp5’ file,
Overview of Input Data Format

whose rootname is listed in 'mod5root.in' or 'MOD5ROOT.IN', is processed until the first blank line is encountered. Any '.tp5' file whose rootname is encountered after the first blank line is not processed.

As noted above, MODTRAN® is controlled by a input file, 'tape5' or 'rootname.tp5', which consists of a sequence of six or more formatted CARDS (inputs lines). The input file format is summarized below. With the exception of file names, character inputs are case insensitive. Also, blanks are read in as zeroes for numerical inputs, and as default values otherwise. Detailed descriptions of the card formats and parameters are given in the following sections.

2.1 Listing of MODTRAN®5 CARDS and Their Format

In the following, optional cards are indented. The mandatory input CARDS are CARD 1, CARD 1A, CARD 2, CARD 3, CARD 4 and CARD 5. Newer inputs are in Italics. Note that all floating point inputs are entered using a "Fn.0" format; this format will properly read any floating point entry, e.g. ‘1.234’, AND will also properly read integers as floating point real variables, (either 1234. or 1234 with no decimal).

CARD 1:
MODTRN, SPEED, BINARY, LYMOLC, MODEL, T_BEST, ITYPE, IEMSCT, IMULT, M1, M2, M3, M4, M5, M6, MDEF, I_RD2C, NOPRNT, TPTEMP, SURREF
FORMAT (4A1, I1, A1, I4, 10I5, 1X, I4, F8.0, A7)

CARD 1A:

DIS, DISAZM, DISALB, NSTR, SFWHM, CO2MX, H2OSTR, O3STR, C_PROF, LSUNFL, LBMNAM, LFLTLM, H2OAER, CDTDIR, SOLCON, CDASTM, ASTMC, ASTMX, ASTMO, AERRH, NSSALB
FORMAT(3A1, I3, F4.0, F10.0, 2A10, 2A1, 4(1X, A1), F10.0, A1, F9.0, 3F10.0, I10)

CARD 1A1:
USRSUN
FORMAT (A256) (If LSUNFL = ‘T’)

CARD 1A2:
BMNAME
FORMAT (A256) (If LBMNAM = ‘T’, ‘t’, ‘4’ or ‘2’)

CARD 1A3:
FILTNM
FORMAT (A256) (If LFLTLM = ‘T’)

CARD 1A4:
DATDIR
FORMAT (A256) (If CDTDIR = ‘T’)

CARD 1A5:
(S_UMIX(IMOL), IMOL = 4, 12)
FORMAT (9F5.0) (If C_PROF = 1, 3, 5 or 7)

CARD 1A6:
(S_XSEC(IMOL), IMOL = 1, 13)
FORMAT (13F5.0) (If C_PROF = 2, 3, 6 or 7)

CARD 1A7:
(S_TRAC(IMOL), IMOL = 1, 16)
FORMAT (16F5.0) (If C_PROF = 4, 5, 6 or 7)

CARD 1B:
(AVALVN(ISSALB), ASSALB(ISSALB), ISSALB=1, NSSALB)
FORMAT (8F10.0) (If NSSALB > 0)

Alternate CARD 1B: ACOALB, RHASYM
FORMAT(2F10.0) (If NSSALB < 0 and ASTMX > 0.)

CARD 2:
APLUS, IHAZE, CNOVAM, ISEAEN, ARUSS, IVULCN, ICSTL, ICLD, IVSA, VIS, WSS, WHH, RAINRT, GNDALT
FORMAT (A2, I3, A1, I4, A3, I2, 3I5, 5F10.0)

CARD 2A+:
ZAER11, ZAER12, SCALE1, ZAER21, ZAER22, SCALE2, ZAER31, ZAER32, SCALE3, ZAER41, ZAER42, SCALE4
FORMAT ((3(1X, F9.0), 20X, 3(1X, F9.0))) (If APLUS = ‘A+’)

CARD 2A:
CTHIK, CALT, CEXT
FORMAT (3F8.0) (If ICLD = 18 or 19)

Alternate CARD 2A: CTHIK, CALT, CEXT, NCRALT, NCRSPC, CWAVLN, CCOLWD, CCOLIP, CHUMID, ASYMWD, ASYMIP
FORMAT (3F8.0, 2I4, 6F8.0) (If 0 < ICLD ≤ 10)

CARD 2B:
ZCVSA, ZTVSA, ZINVSA
FORMAT (3F10.0) (If IVSA = 1)
Overview of Input Data Format

CARD 2C: ML, IRD1, IRD2, HMODEL, REE, NMOLYC, E_MASS, AIRMW
FORMAT(315, A20, F10.0, I5, 2F10.0) (If MODEL = 0, 7 or 8; & I_RD2C = 1)

CARD 2CY: (YNAME(I), I=1, NMOLYC)
FORMAT ((8A10)) (If NMOLYC > 0)

CARDs 2C1, 2C2, 2C2X, 2C2Y and 2C3 (as required) are each repeated ML times.

CARD 2C1: ZM, P, T, WMOL(1), WMOL(2), WMOL(3), (JCHAR(J), J = 1, 14), JCHARX, JCHARY
FORMAT 6F10.0, 14A1, 1X, 2A1)

CARD 2C2: (WMOL(J), J = 4, 12)
FORMAT (8F10.0, /F10.0) (If IRD1 = 1)

CARD 2C2X: (WMOLX(J), J = 1, 13)
FORMAT (8F10.0, /5F10.0) (If MDEF = 2 & IRD1 = 1)

CARD 2C2Y: (WMOLY(J), J = 1, NMOLYC)
FORMAT (8F10.0, /F10.0) (If NMOLYC > 0 & IRD1 = 1)

CARD 2C3: AHAZE, EQLWCZ, RRATZ, IHA1, ICLD1, IVUL1, ISEA1, ICHR
FORMAT (10X, 3F10.0, 5I5) (If IRD2 = 1)

CARD 2D: (IREG(N), N = 1, 2, 3, 4)
FORMAT (4I5) (If IHAZE = 7, ICLD = 11 or ARUSS='USS')

CARDs 2D1 and 2D2 pairs are repeated for each N (1 to 4) for which

IREG(N) > 0 (ARUSS='USS') or
IREG(N) ≠ 0 (IHAZE=7 or ICLD=11)

CARD 2D1: AWCCON, AERNAM
FORMAT (F10.0, A70)

CARD 2D2: (VARSPC(N, I), EXTC(N, I), ABSC(N, I), ASYM(N, I), I = 1, 2, ..., I_max)
If ARUSS = 'USS' & IREG(N) > 1, then I_max = IREG(N); Else I_max = 47
FORMAT (3(F6.2, 2F7.5, F6.4))

CARD 2E1: (ZCLD(I, 0), CLD(I, 0), CLDICE(I, 0), RR(I, 0), I = 1, NCRALT)
FORMAT (4F10.5) (If ICLD = 1 - 10, NCRALT ≥ 2, MODEL < 8)

Alternate CARD 2E1: (PCLD(I, 0), CLD(I, 0), CLDICE(I, 0), RR(I, 0), I = 1, NCRALT)
FORMAT (4(F10.5)) (If ICLD = 1 - 10, NCRALT ≥ 2, MODEL = 8)

CARD 2E2: (WAVLEN(I), EXTC(6, I), ABSC(6, I), ASYM(6, I), EXTC(7, I), ABSC(7, I), ASYM(7, I), I = 1, NCRSPC)
FORMAT (7F10.5) (If ICLD = 1 - 10, NCRSPC ≥ 2)

Alternate CARD 2E2: CFILE, CLDTYP, CIRTYP
FORMAT (A256) (If ICLD = 1 - 10, NCRSPC = 1)

CARD 3: H1, H2, ANGLE, RANGE, BETA, RO, LENN, PHI
FORMAT (6F10.0, I5, 5X, 2F10.0)

Alternate CARD 3: H1, H2, ANGLE, IDAY, RO, ISOUREC, ANGLEM
FORMAT (3F10.0, I5, 5X, F10.0, I5, F10.0) (If IEMSCT = 3)

CARD 3A1: IPARM, IPH, IDAY, ISOUREC
FORMAT (4I5) (If IEMSCT = 2 or 4)

CARD 3A2: PARM1, PARM2, PARM3, PARM4, TIME, PSIPO, ANGLEM, G
FORMAT (8F10.0) (If IEMSCT = 2 or 4)

CARD 3B1: NANGLS, NWLF
FORMAT (2I5) (If IEMSCT = 2 or 4; IPH = 1)

CARD 3B2: (ANGF(I), F(I, 1, I), F(2, I, 1), F(3, I, 1), F(4, I, 1), I = 1, NANGLS)
FORMAT (5F10.0) (If IEMSCT = 2 or 4; IPH = 1; NWLF = 0)
Overview of Input Data Format

CARD 3C1: \((\text{ANGF}(I), I = 1, \text{NANGLS})\)
\text{FORMAT (8F10.0)} \quad \text{(If IEMSCT = 2 or 4; IPH = 1; NWLF > 0)}

CARD 3C2: \((\text{WLF}(J), J = 1, \text{NWLF})\)
\text{FORMAT (8F10.0)} \quad \text{(If IEMSCT = 2 or 4; IPH = 1; NWLF > 0)}

In CARDS 3C3-3C6, 'IANG' is angle index as in CARD 3C1 and 'JWAV' is the wavelength index as in CARD 3C2.

CARD 3C3: \((\text{F}(1, \text{IANG}, \text{JWAV}), \text{JWAV} = 1, \text{NWLF})\)
\text{FORMAT (8F10.0)} \quad \text{(If IEMSCT = 2 or 4; IPH = 1; NWLF > 0)}

CARD 3C4: \((\text{F}(2, \text{IANG}, \text{JWAV}), \text{JWAV} = 1, \text{NWLF})\)
\text{FORMAT (8F10.0)} \quad \text{(If IEMSCT = 2 or 4; IPH = 1; NWLF > 0)}

CARD 3C5: \((\text{F}(3, \text{IANG}, \text{JWAV}), \text{JWAV} = 1, \text{NWLF})\)
\text{FORMAT (8F10.0)} \quad \text{(If IEMSCT = 2 or 4; IPH = 1; NWLF > 0)}

CARD 3C6: \((\text{F}(4, \text{IANG}, \text{JWAV}), \text{JWAV} = 1, \text{NWLF})\)
\text{FORMAT (8F10.0)} \quad \text{(If IEMSCT = 2 or 4; IPH = 1; NWLF > 0)}

CARD 4: V1, V2, DV, FWHM, YFLAG, XFLAG, DLIMIT, FLAGS, MLFLX, VRFRAC
\text{FORMAT (4F10.0, 2A1, A8, A7, I3, F10.0)}

CARD 4A: NSURF, AATEMP, DH2O, MLTRFL
\text{FORMAT (I1, 2F9.0, A1)} \quad \text{(If SURREF = 'BRDF' or 'LAMBER')}

The set of CARD 4B1, 4B2, and 4B3 inputs is repeated NSURF times.

CARD 4B1: CBRDF
\text{FORMAT (A80)} \quad \text{(If SURREF = 'BRDF')}

CARD 4B2: NWVSRF, SURFZN, SURFAZ
\text{FORMAT (*)} \quad \text{(If SURREF = 'BRDF')}

CARD 4B3 is repeated NWVSRF times.

CARD 4B3: WVSURF, \((\text{PARAMS}(I), I = 1, \text{NPARAM})\)
\text{FORMAT (*)} \quad \text{(If SURREF = 'BRDF')}

CARD 4L1: SALBFL
\text{FORMAT (A256)} \quad \text{(If SURREF = 'LAMBER')}

CARD 4L2 is repeated NSURF times.

CARD 4L2: CSALB
\text{FORMAT (A80)} \quad \text{(If SURREF = 'LAMBER')}

CARD 5: IRPT
\text{FORMAT (I5)}

3. CARD 1 (REQUIRED) – MAIN RADIATION TRANSPORT DRIVER

Although CARD 1 format has been modified over the years, the format is backward compatible if inputs are right justified.

CARD 1: MODTRN, SPEED, BINARY, LYMOLC, MODEL, T_BEST, ITYPE, IEMSCT, IMULT, M1, M2, M3, M4, M5, M6, MDEF, I_RD2C, NOPRNT, TPTEMP, SURREF
\text{FORMAT (4A1, I1, I1I5, I1, I4, F8.0, A7)}

MODTRN selects the band model algorithm used for the radiative transport, either the moderate spectral resolution MODTRAN® band model or the low spectral resolution LOWTRAN band model. LOWTRAN spectroscopy is obsolete and is retained only for backward compatibility. The MODTRAN® band model may be selected either with or without the Correlated-\(k\) treatment.
CARD I (Required)

<table>
<thead>
<tr>
<th>MODTRN = 'T', 'M' or blank</th>
<th>MODTRAN® band model.</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 'C' or 'K'</td>
<td>MODTRAN® correlated-k option (IEMSCT radiance modes only; most accurate but slower run time).</td>
</tr>
<tr>
<td>= 'F' or 'L'</td>
<td>20 cm(^{-1}) LOWTRAN band model (not recommended except for quick historic comparisons).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPEED = 'S' or blank</th>
<th>'slow' speed Correlated-k option using 33 absorption coefficients (k values) per spectral bin (1 cm(^{-1}) or 15 cm(^{-1})). This option is recommended for upper altitude (> 40 km) cooling-rate and weighting-function calculations only.</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 'M'</td>
<td>'medium' speed Correlated-k option (17 k values).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BINARY = 'F' or blank</th>
<th>All outputs are in ASCII (normal situation).</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 'T'</td>
<td>The tape7 (.tp7), tape8 (.tp8), plot (.plt), flux (.flx) and atmospheric correction data (.acd) files are all generated by MODTRAN® in binary format. The ASCII versions are retrieved by running the auxiliary program M5_bn2as.f. See Appendix E for details.</td>
</tr>
</tbody>
</table>

| LYMOLC = '+' | Include 16 auxiliary trace species when either a model atmosphere is selected (MODEL = 1 to 6) or a user-defined atmosphere is selected (MODEL = 0, 7 or 8) AND input NMOLYC (CARD 2C) is zero. In the latter case, NMOLYC is reset to 16 requiring that both JCHARY (CARD 2C1) and CARDS 2C2Y be read in. The 16 auxiliary trace species are referred to as “Y” species within the source code. The specific 16 species, in order, are OH, HF, HCl, HBr, HI, ClO, OCS, H\(_2\)CO, HOCl, N\(_2\), HCN, CH\(_3\)Cl, H\(_2\)O\(_2\), C\(_2\)H\(_2\), C\(_2\)H\(_6\), and PH\(_3\). |
| = blank | Do not include auxiliary species with model atmosphere. |

MODEL selects one of the six geographical-seasonal model atmospheres or specifies that user-defined meteorological or radiosonde data are to be used.

<table>
<thead>
<tr>
<th>MODEL = 0</th>
<th>If single-altitude meteorological data are specified (constant pressure, horizontal path only; see instructions for CARDS 2C, 2C1, 2C2, 2C2X, 2C2Y and 2C3).</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 1</td>
<td>Tropical Atmosphere (15° North Latitude).</td>
</tr>
<tr>
<td>= 2</td>
<td>Mid-Latitude Summer (45° North Latitude).</td>
</tr>
<tr>
<td>= 3</td>
<td>Mid-Latitude Winter (45° North Latitude).</td>
</tr>
<tr>
<td>= 4</td>
<td>Sub-Arctic Summer (60° North Latitude).</td>
</tr>
<tr>
<td>= 5</td>
<td>Sub-Arctic Winter (60° North Latitude).</td>
</tr>
<tr>
<td>= 7</td>
<td>If a user-specified model atmosphere (e.g. radiosonde data) is to be read in; see instructions for CARDS 2C, 2C1, 2C2, 2C2X, 2C2Y and 2C3.</td>
</tr>
<tr>
<td>= 8</td>
<td>Pressure-dependent atmospheric profiles. A user-specified model atmosphere (e.g. radiosonde data) is to be read in with altitudes determined from the pressure profile by solving the hydrostatic equation. See instructions for I_RD2C on CARD 1 and for CARDS 2C, 2C1, 2C2, 2C2X, 2C2Y and 2C3 for further details.</td>
</tr>
</tbody>
</table>

T_BEST provides a debug option for the Voigt single line finite bin transmittance calculation. This option is very slow and requires a FORTRAN90 executable. The results should be in very good agreement with MODTRAN® run in normal mode, i.e. with the standard Voigt single line finite bin transmittance algorithm. This option should only be used if one has reasons to suspect that MODTRAN® transmittances are in error, and one wishes to verify that the problem is not caused that the MODTRAN® Voigt transmittance algorithm.

<table>
<thead>
<tr>
<th>T_BEST = "T" or "t"</th>
<th>Use benchmark Voigt single line finite bin transmittance algorithm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otherwise</td>
<td>Use MODTRAN® standard Voigt single line finite bin transmittance algorithm.</td>
</tr>
</tbody>
</table>
CARD 1 (Required)

ITYPE indicates a geometric type for the atmospheric line-of-sight (LOS) path.

ITYPE

1. Horizontal (constant-pressure) path, i.e., flat Earth constant altitude path.
2. Vertical or slant path between two altitudes.
3. Vertical or slant path to space or ground.

IEMSCT determines the radiation transport mode of execution of the program.

IEMSCT

0. Program executes in spectral transmittance only mode.
1. Program executes in spectral thermal radiance (no sun / moon) mode.
2. Program executes in spectral thermal plus solar / lunar radiance mode (if IMULT = 0, only single scatter solar radiance is included).
3. Program calculates directly transmitted spectral solar / lunar irradiance.
4. Program executes in spectral solar / lunar radiance mode with no thermal scatter. Thermal path and surface emission is included.

IMULT determines inclusion of multiple scattering (MS).

IMULT

0. Program executes without multiple scattering.
±1. Program executes with multiple scattering.

IEMSCT must equal 1, 2 or 4 to execute with multiple scattering. MS contributions are calculated using plane parallel geometry (the solar illumination impinging upon each atmospheric level (altitude) is determined with spherical refractive geometry, important for low sun angles, when the ISAACS MS model is selected on CARD 1A but not with DISORT MS). If IMULT = 1, the solar geometry at the location of H1 (latitude and longitude) is used in the MS calculation; if IMULT = -1, the MS calculation is instead referenced to H2. The quantity H2 is the final path altitude unless ITYPE = 3 and H2 ≥ 0; in that case, the MS plane parallel atmosphere is defined near the tangent point of the limb path. (The path zenith of 90° at the tangent point is a forbidden input to the plane-parallel MS models because it leads to a mathematical singularity.) For simulation of sensors on satellite platforms, IMULT should generally be set to -1 since MS will only be significant nearer to H2 (the surface or tangent height).

M1, M2, M3, M4, M5, M6, and MDEF are used to modify or supplement user-specified altitude profiles for temperature, pressure, and default molecular gases: H2O, O3, CH4, N2O, CO, CO2, O2, NO, SO2, NO2, NH3, HNO3, and 13 “heavy molecules.” For operation of the program using the standard model atmospheres (MODEL 1 to 6), the CARD1 profile inputs M1, M2, M3, M4, M5, M6 and MDEF are all overwritten with values appropriate for the standard models.

If MODEL equals 0 (horizontal path) or equals 7 or 8 (radiosonde data) and if M1 through M6 are set to zero or left blank and MDEF is set to -1, then the JCHAR parameter on each CARD 2C1 must be defined to supply the necessary profiles. If M1 through M6 are non-zero and MDEF not equal to -1, then the chosen default profiles will be utilized only if a specific JCHAR input is blank:

M1

1 to 6. Default temperature and pressure to specified model atmosphere.

M2

1 to 6. Default H2O to specified model atmosphere volume mixing ratio.

M3

1 to 6. Default O3 to specified model atmosphere.

M4

1 to 6. Default CH4 to specified model atmosphere.

M5

1 to 6. Default N2O to specified model atmosphere.

M6

1 to 6. Default CO to specified model atmosphere.

MDEF

0 or 1. Default CO2, O2, NO, SO2, NO2, NH3, HNO3, and species profiles.

Note that for H2O there are 2 options. With a positive value of M2, the H2O concentration is only a function of altitude and model profile. When a negative value of M2 is selected, the model atmosphere relative humidity is held constant. Thus, with this later option, a change in the temperature profile will result in a change in the water concentration. The positive M2 option is preferred when one desires an H2O profile that is independent of the temperature profile; the negative M2 option can be used to insure that over saturation (RH > 100%) is avoided.
If MDEF = 1, default heavy species profiles are used. If MDEF = 2, the user must input the profiles for the heavy species, which include nine chlorofluorocarbons (CFCs) plus ClONO\textsubscript{2}, HNO\textsubscript{4}, CCl\textsubscript{4}, and N\textsubscript{2}O\textsubscript{5}. The 1 cm-1 absorption cross-sections are stored in "DATA/CFC99_01.ASC"; "DATA/CFC99_15.ASC" is the 15 cm-1 version of the file. The specification of user-defined profiles is modeled after the MODEL = 7 option in LOWTRAN, but only one unit definition (see JCHARX definition in CARD 2C1) can be used for the whole set of heavy species. The "default" profiles for these species are stored in BLOCK DATA /XMLATM/ and are based on 1990 photochemical predictions (after M. Allen, JPL). Since some of the CFCs have increased by as much as 8% per year, the user might well wish to redefine these values. Note that both CFC11 and CFC12 are now as much as 80% larger than the default profiles.

If MODEL = 0, 7 or 8, MODTRAN® expects to read user-supplied atmospheric profiles. Set I_RD2C = 1 for the first run. To sequentially rerun the same atmosphere for a series of cases, set I_RD2C to 0 in subsequent runs; MODTRAN® will then reuse the previously read data and not read in CARD 2C, 2C1, … inputs.

\begin{itemize}
 \item I_RD2C = 0 For normal operation of program or when calculations are to be run with the atmosphere MODEL last read in.
 \item I_RD2C = 1 When user input data are to be read.
\end{itemize}

If NOPRNT is set to -1 for multiple scattering calculations, spectral diffuse and total flux values along the lines of sight will be written to tape8. These values are 1 cm-1 spectral resolution results (0.1, 5 or 15 cm-1 results if the 0.1, 5 or 15 cm-1 band model data file is used, respectively). Spectral flux values convolved with the instrument slit function are output to the 'specflux' or 'rootname.flx' file if FLAGS(7:7) is not left blank (CARD 4). Be warned that setting NOPRNT to -1 for long paths (e.g., ground to space) over a large spectral range (e.g., 0.4 to 0.7 µm) will generate large tape8 files.

TPTEMP \(> 0\). Boundary temperature [K] of 'image pixel' (i.e., at H2), used in the radiation mode (if IEMSCT = 1, 2 or 4) for slant paths that intersect the earth OR terminate at a gray boundary (for example, cloud, target). If the 'area-average' temperature (AATEMP, CARD 4A) is not entered and the line-of-sight intersects the earth, TPTEMP is also used as the lower boundary temperature in the multiple scattering models.

\(\leq 0\). No surface emission if H2 is above ground. If the path intersects the Earth and TPTEMP is either not positive or left blank, MODTRAN® uses the temperature of the first atmospheric level as the boundary temperature. If the 'area-average' temperature (AATEMP, CARD 4A) is not entered and the line-of-sight intersects the earth, the temperature of the first atmospheric level is also used as the lower boundary temperature in the multiple scattering models.

SURREF = 'BRDF' (or the first non-blank character is 'B' or 'b') Surface spectral BRDFs (Bidirectional Reflectance Distribution Functions) are specified by CARD 4A, 4B1, 4B2 and 4B3 inputs.

SURREF = 'LAMBER' (or the first non-blank character is 'L' or 'l') Spectral Lambertian surface(s) is (are) specified by CARD 4A, 4L1 and 4L2 inputs.

\(\geq 0\). Albedo of the earth (and at H2 if TPTEMP > 0), equal to one minus the surface emissivity and spectrally independent (constant). If the value exceeds one, the albedo is set to 1; if SURREF is blank, the albedo is set to 0.
CARD 1 (Required)

< 0 Negative integer values allow the user to access pre-stored spectrally variable surface albedos from the 'DATA/spec_alb.dat' file.

The file 'DATA/spec_alb.dat' is a replacement for the 'DATA/refbkg' file used in MODTRAN®3.7 and earlier versions of the model. The current version contains 46 surfaces. A complete list is provided in Sec. 17.6. These are only meant to be representative of the types of options available; the user is encouraged to add to the set or replace the existing ones. Instructions for adding surfaces to the 'spec_alb.dat' file are provided directly within the file. It is recommended that the wavelength limits on the surface properties match or exceed the spectral range specified for the MODTRAN® run. MODTRAN® will use the endpoint values at any wavelength outside this range (no extrapolations). Table 1 summarizes the use of selected CARD 1 parameters: MODTRAN, SPEED, MODEL, ITYPE, IEMSCT, IMULT, MDEF, NOPRNT and SURREF.

Table 1. Columns List Allowed Values of MODTRAN® CARD 1 Input Parameters MODTRAN, SPEED, MODEL, ITYPE, IEMSCT, IMULT, MDEF, NOPRNT and SURREF.

<table>
<thead>
<tr>
<th>CARD 1 FORMAT</th>
<th>MODTRAN, SPEED, BINARY, LYMOLC, MODEL, ITYPE, IEMSCT, IMULT, M1, M2, M3, M4, M5, M6, MDEF, I_RD2C, NOPRNT, TPTEMP, SURREF</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODTRAN (COL. 1)</td>
<td>S P E E D 0 or M Model run 1 Horizontal Path 0 Transmittance 0 No Multiple Scattering 0 For MODEL = 1-6: Default Minor Species** + Tape Short Output -1 snow</td>
</tr>
<tr>
<td>MODEL (COL. 5)</td>
<td>M1, M2, M3, M4, M5, M6, MDEF, IM_RD2C TPTEMP, and SURREF are left blank for standard cases.</td>
</tr>
<tr>
<td>ITYPE (COL. 6-10)</td>
<td>M1, M2, M3, M4, M5, M6, MDEF, I_RD2C TPTEMP, and SURREF are left blank for standard cases.</td>
</tr>
<tr>
<td>IEMSCT (COLA 11-15)</td>
<td>M1, M2, M3, M4, M5, M6, MDEF, IM_RD2C TPTEMP, and SURREF are left blank for standard cases.</td>
</tr>
<tr>
<td>IMULT (COL. 16-20)</td>
<td>M1, M2, M3, M4, M5, M6, MDEF, IM_RD2C TPTEMP, and SURREF are left blank for standard cases.</td>
</tr>
<tr>
<td>MDEF (COL. 51-55)</td>
<td>M1, M2, M3, M4, M5, M6, MDEF, IM_RD2C TPTEMP, and SURREF are left blank for standard cases.</td>
</tr>
<tr>
<td>NOPRNT (COL. 61-65)</td>
<td>M1, M2, M3, M4, M5, M6, MDEF, IM_RD2C TPTEMP, and SURREF are left blank for standard cases.</td>
</tr>
<tr>
<td>SURREF (COL. 74-80)</td>
<td>M1, M2, M3, M4, M5, M6, MDEF, IM_RD2C TPTEMP, and SURREF are left blank for standard cases.</td>
</tr>
</tbody>
</table>

* Options for non-standard models.
** CO₂, O₃, NO, SO₂, NO₂, NH₃, HNO₃
*** CFC’s plus ClONO₂, NH₂O₄, CCl₄, and N₂O₅.
* S stands for slow and M stands for medium speed of execution of the code.
4. CARD 1A (REQUIRED) – RADIATIVE TRANSPORT DRIVER CONT’D

CARD 1A inputs enable selection of scattering options, scaling of molecular profiles, customizing of the top-of-atmosphere (TOA) solar irradiance, specification of data files, and Angstrom Law perturbations of aerosol optical properties:

CARD 1A: DIS, DISAZM, DISALB, NSTR, SFWHM, CO2MX, H2OSTR, O3STR, C_PROF, LSUNFL, LBMNAM, LFlTNM, H2OAER, CDTDIR, SOLCON, CDASTM, ASTMC, ASTMX, ASTMO, AERRH, NSSALB

FORMAT(3A1, I3, F4.0, F10.0, 2A10, 2A1, 4(1X, A1), F10.0, A1, F9.0, 3F10.0, I10)

DIS = t, f (blank), s
used if IMULT = ±1 in CARD 1. Set DIS to TRUE (T or t) to activate the DISORT discrete ordinate multiple scattering algorithm. If DIS is FALSE (F, f or blank), the less accurate but faster Isaac’s two-stream algorithm is used.

New to MODTRAN® 5 is another value for DIS, S (or s). If S is chosen, DISORT calculations are performed at selected spectral points in the atmospheric window regions. These handfuls of DISORT radiances are then used to scale Isaac’s values for the entire wavelength region.

DISAZM = t, f or blank
Azimuth dependence flag used with DISORT. Set DISAZM to TRUE (T or t) to include azimuth dependence in the line-of-sight multiple scatter solar. Since this option increases computation time, DISAZM should be set to FALSE (F, f or blank) if only vertical fluxes are needed, if solar or viewing zenith angle is near vertical, or if solar multiple scattering is a small radiance component (e.g. for LWIR calculations).

DISALB = t, f or blank
If DISALB is set to TRUE (T or t) with DISORT multiple scattering AND solar scatter is on (IEMSCT=2 or IEMSCT=4), MODTRAN® will calculate the spectral spherical albedo of the atmosphere and diffuse transmittance for the line-of-sight and sun-to-ground paths, as described in Appendix F.

NSTR = 2, 4, 8, 16, 32, 64, 128, 256, or 512
Number of streams to be used by DISORT. Using high NSTR values generally improves accuracy but slows computation. NSTR = 8 is although more streams may be desirable if modeling highly forward peaked scatterers. Currently, MODTRAN is delivered with the maximum allowed number of streams (MXCMU in file PARAMS.h) set to 32. MXCMU must be increased and the source recompiled to use more than this value (see the DISORT documentation at ftp://climate.gsfc.nasa.gov/pub/wiscombe/Discr_ord/ for further details).

SFWHM
The FWHM (Full Width at Half Maximum) of the triangular scanning function used to smooth Top-Of-Airmosphere (TOA) solar irradiance data [wavenumbers].

= 0.
Use default TOA solar data:

DATA/SUNp1kurucz2005.bin for the 0.1 cm⁻¹ band model;
DATA/SUN01kurucz2005.dat for the 1.0 cm⁻¹ band model;
DATA/SUN01kurucz2005.dat degraded with a 5 cm⁻¹ FWHM triangular slit for the 5.0 cm⁻¹ band model; and
DATA/SUN01kurucz2005.dat degraded with a 15 cm⁻¹ FWHM triangular slit for the 15.0 cm⁻¹ band model.

> 0.
Spectral resolution in wavenumbers used to degrade data from a TOA solar irradiance data file utilizing a triangular slit spectral response function.

< 0.
Spectral resolution set to [SFWHM] with spectrally convolved data written to an output file. The output data file is given the name “<rootname>_S_Y_XXXX.dat”. If input LSUNFL equals ‘1’, ‘2’, ‘3’, ‘4’ or ‘5’, then character Y is set to LSUNFL; otherwise Y is set to ‘0’. The character string XXXX equals int(|SFWHM|) unless a 0.1 cm⁻¹ band model calculation is
performed; in that case, XXXX equals $|SFWHM|$ with the decimal replaced by a “p”, e.g., XXXX = 01p0.

CO2MX

CO$_2$ mixing ratio in ppmv. The default value (used when CO2MX = blank or 0.) is 330 ppmv; the current (1999) recommended value is closer to 365 ppmv (Dutton, 1999).

H2OSTR

Vertical water vapor column character string. If blank or 0., the default water vapor column is used. If the first non-blank character is 'g', the water vapor column in g / cm2 follows 'g' (e.g., g 2.0). If the first non-blank character is an 'a', the water column in ATM-cm follows 'a' (e.g., a 3000.). Otherwise, a positive value is interpreted as a scaling factor for the water column (e.g., 2.0 doubles the default water vapor column). If H2OSTR is used with a constant pressure path, i.e., MODEL = 0 (CARD 1), the scaling will be applied to the water density; if an absolute water column amount is input, then the scaling factor is defined relative to the model atmosphere specified by M2 (assuming it is not 0). The water density within water clouds (ICLD = 1-10) is not scaled. Also, the water number density at each profile altitude will not be increased above 100% RH (relative humidity) or by more than 5 times the original value. When the 100% RH limit is reached, the water is distributed to other levels to the extent possible to achieve the input water column. There is a new H2OSTR option to ignore the 100% relative humidity limit. This option is invoked by setting the first non-blank character in H2OSTR to “+”, a plus sign. Thus, if one wants to set the water column to 3.0 g / cm2 without the 100% RH limit, set H2OSTR to ‘+g3.0’.

O3STR

Vertical ozone column character string. If blank or 0., the default ozone column is used. If the first non-blank character is 'g', the ozone column in g / cm2 follows 'g' (e.g., g 0.0001). If the first non-blank character is an 'a' the ozone column in ATM-cm follows 'a' (e.g., a 0.2). Otherwise, a positive value is interpreted as a scaling factor for the ozone column (e.g., 2.0 doubles the default ozone column). One Dobson unit equals 10^{-3} ATM-cm at 273.15 K. If O3STR is used with a constant pressure path, i.e., MODEL = 0 (CARD 1), the scaling will be applied to the ozone density; if an absolute ozone column amount is input, then the scaling factor is defined relative to the model atmosphere specified by M3 (assuming it is not 0).

C_PROFILE

Do not scale default profiles.

= 0 or blank

Default profile scale factors are read in on CARD 1A5 for 10 uniformly mixed molecular species.

= 1

Default profile scale factors are read in on CARD 1A6 for 13 cross-section molecular species.

= 2

Default profile scale factors are read in on CARDs 1A5 and 1A6 for 10 uniformly mixed and 13 cross-section molecular species.

= 3

Default profile scale factors are read in on CARD 1A7 for 16 trace molecular species.

= 4

Default profile scale factors are read in on CARDs 1A5 and 1A7 for 10 uniformly mixed and 16 trace molecular species.

= 5

Default profile scale factors are read in on CARDs 1A6 and 1A7 for 13 cross-section and 16 trace molecular species.

= 6

Default profile scale factors are read in on CARDs 1A5, 1A6 and 1A7 for 10 uniformly mixed, 13 cross-section and 16 trace molecular species.
LSUNFL = T or t
Read a user-specified Top-Of-Atmosphere (TOA) solar irradiance data file name [USRSUN] from CARD 1A1.

= F, f or blank
The solar irradiance data to be used depends on the spectral resolution of the MODTRAN band model:

“DATA/SUN01kurucz1997.dat” solar irradiances degraded to 15 cm\(^{-1}\) FWHM with a triangular slit (block data S15BD) are used with the 15 cm\(^{-1}\) band model.

“DATA/SUN01kurucz1997.dat” solar irradiances degraded to 5 cm\(^{-1}\) FWHM with a triangular slit (block data S05BD) are used with the 5 cm\(^{-1}\) band model.

“DATA/SUN01kurucz1997.dat” solar irradiances are used with 1 cm\(^{-1}\) band model. This file contains the original 1995 Kurucz 1 cm\(^{-1}\) data renormalized spectral sub-regions to match measurement data.

“DATA/SUNp1kurucz1995.dat” solar irradiances are used with 0.1 cm\(^{-1}\) band model. If |SFWHM| is a multiple of the band model resolution, the block data with be further degraded to |SFWHM| cm\(^{-1}\).

= 1
Use “DATA/SUN01kurucz2005.dat”, the 2005 Kurucz 1.0 cm\(^{-1}\) TOA solar irradiance data file with the 1, 5 and 15 cm\(^{-1}\) band models. Use “DATA/SUNp1kurucz2005.bin”, the 2005 Kurucz 0.1 cm\(^{-1}\) TOA solar irradiance binary data file with the 0.1 cm\(^{-1}\) band model.

= 2
Use “DATA/SUN01chkur.dat”, the Chance plus 1997 Kurucz 1.0 cm\(^{-1}\) TOA solar irradiance data file with the 1, 5 and 15 cm\(^{-1}\) band models. Use “DATA/SUNp1kurucz1997.dat” with the 0.1 cm\(^{-1}\) band model.

= 3
Use “DATA/SUN01cebchkur.dat”, the Cebula, the Chance, and the 1997 Kurucz 1.0 cm\(^{-1}\) TOA solar irradiance data file with the 1, 5 and 15 cm\(^{-1}\) band models. Use “DATA/SUNp1kurucz1997.dat” with the 0.1 cm\(^{-1}\) band model.

= 4
Use “DATA/SUN01thkur.dat”, the Thuillier plus 1997 Kurucz 1.0 cm\(^{-1}\) TOA solar irradiance data file with the 1, 5 and 15 cm\(^{-1}\) band models. Use “DATA/SUNp1rawkur.dat” with the 0.1 cm\(^{-1}\) band model.

= 5
Use “DATA/SUN01fontenla.asc”, the Fontenla 1.0 cm\(^{-1}\) TOA solar irradiance data file with the 1, 5 and 15 cm\(^{-1}\) band models. Use “DATA/SUNp1fontenla.bin”, the binary Fontenla 0.1 cm\(^{-1}\) TOA solar irradiance data file with the 0.1 cm\(^{-1}\) band model.

= 6
Use “DATA/SUN01kurucz1997.dat”, the spectral sub-region renormalized Kurucz 1.0 cm\(^{-1}\) TOA solar irradiance data file with the 1, 5 and 15 cm\(^{-1}\) band models. With the 0.1 cm\(^{-1}\) band model, use “DATA/SUNp1kurucz1995.dat”, the 0.1 cm\(^{-1}\) 1995 Kurucz TOA solar irradiance binary data file.

= 7
Use “DATA/SUN01kurucz1995.dat”, the 1995 Kurucz 1.0 cm\(^{-1}\) TOA solar irradiance data file with the 1, 5 and 15 cm\(^{-1}\) band models. Use “DATA/SUNp1kurucz1995.bin”, the 0.1 cm\(^{-1}\) 1995 Kurucz solar irradiance binary data file with the 0.1 cm\(^{-1}\) band model.

LBMNAM = F, f or blank
The default (1 cm\(^{-1}\) bin) band model database files (DATA/p1_2009c.bn4 and DATA/p1_2009t.bin) are to be used.

= 4, T or t
Read the root name of the band model parameter data file from CARD 1A2. The root names for the 0.1, 1.0, 5.0 and 15.0 band models are ‘p1_2009’, ‘01_2009’, ‘05_2009’, and ’15_2009’. The actual files read have the suffix ‘c.bn4’ or ‘t.bin’ added to the root name; the first suffix is for the 4-parameter line center and the second is for the line tail parameter file.

= 2
Read the root name of the band model parameter data file from CARD 1A2. The root names for the 0.1, 1.0, 5.0 and 15.0 band models are ‘p1_2009’, ‘01_2009’, ‘05_2009’, and ’15_2009’. The actual files read have the suffix ‘c.bin’
or 't.bin' added to the root name; the first suffix is for the 2-parameter line center and the second is for the line tail parameter file.

LFLTNM = t, f or blank. If TRUE (T or t), read file name for user-defined instrument filter function from CARD 1A3.

H2OAER = t, f or blank. If t, aerosol optical properties are modified to reflect the changes from the original relative humidity profile arising from the scaling of the water column (see H2OSTR on this CARD). Otherwise, the H2O properties are fixed even though water amount has changed.

CDTDIR = t, f or blank. If TRUE (T or t), the directory name of the MODTRAN® data files is read in on CARD 1A4. Alternatively, the data directory name can be included as a second string on the first line of the “mod5root.in” file; if this option is to be used, the input root file name must explicitly include the .tp5 string as a suffix. If neither of these options are invoked, data files are assumed to be in directory DATA/.

SOLCON < 0. The absolute value of SOLCON, likely close to +1, is used as a scale factor for the TOA (Top-Of-Atmosphere) solar irradiance. The built-in data files (in the DATA/ directory) integrate to 1368.00 W/m² for SUN01newkur.dat, 1362.12 W/m² for SUN01cebchkur.dat, 1359.75 W/m² for SUN01chkur.dat and 1376.73 W/m² for SUN01thkur.dat. An additional scaling of the solar irradiance value to account for earth-to-sun distance (based on day of year, CARD 3A1) is applied within MODTRAN®, and this earth-to-sun correction factor is written to ‘tape6’ or ‘rootname.tp6’.

= 0. or blank. Do not scale the TOA solar irradiance.

> 0. The solar constant is assigned the input value [W/m²]. As with SOLCON < 0., an additional scaling of the solar irradiance value to account for earth-to-sun distance (based on day of year, CARD 3A1) is applied within MODTRAN®, and this earth-to-sun correction factor is written to ‘tape6’ or ‘rootname.tp6’.

The aerosol Angstrom Law inputs. CDASTM, ASTMC, ASTMX, ASTMO, and NSSALB, are ignored and the reference spectral aerosol extinction, Ext_ref, used when the ASTMX input is zero. Two Angstrom Law options are provided:

(1) Define boundary layer and tropospheric aerosol spectral extinction by the equation

\[
\text{Ext}(\lambda) / \text{Ext}(550nm) = \frac{\text{ASTMO + ASTMC (550nm/\lambda)^ASTMX}}{\text{ASTMO + ASTMC}},
\]

or

(2) Perturb the reference spectral extinction using the equation

\[
\text{Ext}(\lambda) = \text{Ext}_{\text{ref}, 0.55/\lambda}^{\text{ASTMX}}.
\]

With both methods, the visibility defines the 0.55 μm extinction. In the perturbation approach, the reference spectral extinction curve is specified by IHAZE. The atmospheric scattering albedo is maintained unless NSSALB is non-zero.

CDASTM = t, T, d or D Perturb both the boundary layer and tropospheric aerosol reference spectral extinction data (see ASTMX input for details).

= b or B Perturb the boundary layer aerosol reference spectral extinction.

= blank Use Angstrom Law description of boundary layer and tropospheric aerosol extinction data.

ASTMC The Angstrom Law coefficient for both the boundary layer and tropospheric aerosols. ASTMC and ASTMO should sum to unity. This input is not used with the perturbation method.

ASTMX The Angstrom Law offset for both the boundary layer and tropospheric aerosols (used with the perturbation method).

ASTMO The Angstrom Law offset for both the boundary layer and tropospheric aerosols. ASTMC and ASTMO should sum to unity. This input is not used with the perturbation method.
Relative humidity for the boundary layer aerosol.

The relative humidity value determined from the input atmosphere boundary layer is used for the boundary layer aerosol.

Number of aerosol single scattering albedo spectral grid points.

Use reference aerosol spectral single scattering albedo values.

Aerosol single scattering co-albedo (one minus the albedo) is read in on CARD 1B along with the relative humidity used to define the asymmetry factor.

5. OPTIONAL CARDS 1A1, 1A2, 1A3, 1A4, 1A5, 1A6, 1A7, 1B
(SPECTRAL DATA AND SENSOR RESPONSE FUNCTION FILES)

CARDS 1A1, 1A2, 1A3 and 1A4 all read in a character string. By default, this string has a maximum length of 256 characters. Occasionally, a user will need to accommodate an even longer name due to a complex directory structure. The length of the input character string can be increased by resetting parameter NAMLEN in included file PARAMS.h to the desired value. Note that some compilers do have a maximum string length restriction.

CARD 1A1: USRSUN
FORMAT (A256)

If LSUNFL = 'T'
CARD 1A1 is used to select the TOA solar irradiance data file. It is only read in if LSUNFL equals 'T' or 't' in CARD 1A.

USRSUN = 1 Use “DATA/SUN01kuruzc2005.dat”, the 2005 Kurucz 1.0 cm⁻¹ TOA solar irradiance data file with the 1, 5 and 15 cm⁻¹ band models. Use “DATA/SUNp1kuruzc2005.bin”, the 2005 Kurucz 0.1 cm⁻¹ TOA solar irradiance binary data file with the 0.1 cm⁻¹ band model.

= 2 Use “DATA/SUN01chkur.dat”, the Chance plus 1997 Kurucz 1.0 cm⁻¹ TOA solar irradiance data file with the 1, 5 and 15 cm⁻¹ band models. Use “DATA/SUNp1kuruzc1997.dat” with the 0.1 cm⁻¹ band model.

= 3 Use “DATA/SUN01cebchkur.dat”, the Cebula, the Chance, and the 1997 Kurucz 1.0 cm⁻¹ TOA solar irradiance data file with the 1, 5 and 15 cm⁻¹ band models. Use “DATA/SUNp1kuruzc1997.dat” with the 0.1 cm⁻¹ band model.

= 4 Use “DATA/SUN01thkur.dat”, the Thuillier plus 1997 Kurucz 1.0 cm⁻¹ TOA solar irradiance data file with the 1, 5 and 15 cm⁻¹ band models. Use “DATA/SUNp1rawkur.dat” with the 0.1 cm⁻¹ band model.

= 5 Use “DATA/SUN01fontenla.asc”, the Fontenla 1.0 cm⁻¹ TOA solar irradiance data file with the 1, 5 and 15 cm⁻¹ band models. Use “DATA/SUNp1fontenla.bin”, the binary Fontenla 0.1 cm⁻¹ TOA solar irradiance data file with the 0.1 cm⁻¹ band model.

= 6 or blank Use “DATA/SUN01kuruzc1997.dat”, the spectral sub-region renormalized Kurucz 1.0 cm⁻¹ TOA solar irradiance data file with the 1, 5 and 15 cm⁻¹ band models. With the 0.1 cm⁻¹ band model, use “DATA/SUNp1kuruzc1995.bin”, the 0.1 cm⁻¹ 1995 Kurucz TOA solar irradiance binary data file.

= 7 Use “DATA/SUN01kuruzc1995.dat”, the 1995 Kurucz 1.0 cm⁻¹ TOA solar irradiance data file with the 1, 5 and 15 cm⁻¹ band models. Use “DATA/SUNp1kuruzc1995.bin”, the 0.1 cm⁻¹ 1995 Kurucz TOA solar irradiance binary data file with the 0.1 cm⁻¹ band model.

= a file name A user-defined database residing in the file.

The solar databases are obtained from various sources (Anderson and Hall, 1989; Cebula et al., 1996; Chance and Spurr, 1997; Kurucz, 1993; Kurucz, 1995; McElroy, 1995; McElroy et al., 1995; Thuillier et al., 1997; Thuillier et al., 1998; Woods et al., 1996).

The user-defined file must be in a special form. The first line must contain a pair of integers. The first integer designates the spectral unit [1 for frequency in wavenumbers (cm⁻¹); 2 for wavelength in nanometers (nm); and 3 for
Optional CARDS 1A1, 1A2, 1A3, 1A4, 1B

wavelength in microns (μm). The second integer denotes the irradiance unit [1 for Watts cm⁻²/ cm⁻¹; 2 for photons sec⁻¹ cm⁻²/ nm; and 3 for Watts m⁻²/ μμm or equivalently milliwatts m⁻²/ nm]. The subsequent lines contain one pair of frequency and irradiance entry per line. There is no restriction on frequency or wavelength increments. However, data beyond 50,000 wavenumbers are ignored. If needed, data in the user-supplied file are padded with irradiances from SUN01newkur.dat (SUNp1rawkur.dat for the 0.1 cm⁻¹ band model) so that the data encompasses the range of 0 to 50,000 wavenumbers. Note that the user-defined file has a form that is different from that used in the solar irradiance data files delivered MODTRAN®.

CARD 1A2: BMNAME
FORMAT (A256) If LBMNAM = 'T', 't', '4' or '2'

CARD 1A2 is used to select the name of the binary, direct-access version of the band model parameter data file. It is read only if LBMNAM = 'T', 't', '4' or '2' in CARD 1A.

BMNAME = Root name for the binary, direct-access band model parameter data files. The default root names for the 0.1, 1.0, 5.0 and 15.0 cm⁻¹ band model data files are 'DATA/p1_2009', 'DATA/01_2009', 'DATA/05_2009', and 'DATA/15_2009', respectively. The root name will be appended with 'c.bn4' for the 4-parameter line center band model data file, with 'c.bin' for the 2-parameter line center band model data file and with 't.bin' for the line tail band model data file. The Correlated-k data file with matching spectral resolution will also be opened when input variable MODTRAN (CARD 1) equals 'C' or 'K'. The name of the Correlated-k data files are 'DATA/CORKp1.BIN', 'DATA/CORK01.BIN', 'DATA/CORK05.BIN', and 'DATA/CORK15.BIN'.

CARD 1A3: FILTNM
FORMAT (A256) If LFLTNM = 'T'

CARD 1A3 is used to select a user-supplied instrument filter (channel) response function file. It is read only if LFLTNM = T in CARD 1A.

FILTNM = User-supplied instrument filter response function file name. A sample AVIRIS filter response function is supplied with the model ('DATA/aviris.flt'). Whenever this option is used, the include file CHANNELS.h should be reviewed to insure consistency between the CHANNELS.h PARAMETERS and the input response function file. CHANNELS.h defines 4 parameters:

- MXCHAN Maximum number of channels in the response function file.
- MNBIN Minimum frequency bin in the channel function integrations (cm⁻¹).
- MXBIN Maximum frequency bin in the channel function integrations (cm⁻¹).
- MXNCHN Maximum number of channels to which a single band model spectral bin will contribute.

The CHANNELS.h MNBIN and MXBIN parameters must be defined in frequency (cm⁻¹) units even though the filter function file data may be entered in frequency or wavelength (nm or microns) units.

If the filter function file is used, it must be in the following form:

UNITS_HEADER
HEADER (1)
 \(w_{11} \quad \tau_{11} \)
 \(w_{12} \quad \tau_{12} \)
 \(w_{13} \quad \tau_{13} \)
 ...

HEADER (2)
 \(w_{21} \quad \tau_{21} \)
 \(w_{22} \quad \tau_{22} \)
 \(w_{23} \quad \tau_{23} \)
 ...

etc.
Here, UNITS_HEADER is a string whose first character is 'N' (for nm), 'W' (for wavenumber), or 'M' (for microns), denoting the wavelength or frequency unit.

HEADER (i) is a string, whose first character is non-numeric and not a decimal point, denotes the start of a list of (wavelength, response) pairs for the i-th channel.

\((w_{ij}, r_{ij})\) are the j-th wavelength and response values for the i-th channel.

CARD 1A4:
DATDIR
FORMAT (A256)

CARD 1A4 contains DATDIR, the path name for the MODTRAN® data files. If a molecular band model data file name is explicitly entered, DATDIR/ is used for that file.

DATDIR = Path name for the directory containing MODTRAN® data files.

Scale factors for the default profiles are entered using **CARDS 1A5, 1A6 and 1A7.** CARD 1A5 contains scale factors for the default vertical profiles of 9 uniformly mixed molecular species: \(\text{N}_2\text{O}, \text{CO, CH}_4, \text{O}_2, \text{NO, SO}_2, \text{NO}_2, \text{NH}_3, \text{HNO}_3, \text{and N}_2\).
CARD 1A6 contains scale factors for the default vertical profiles of 13 cross-section molecular species: \(\text{CFC–11, CFC–12, CFC–13, CFC–14, CFC–22, CFC–113, CFC–114, CFC–115, ClONO}_2, \text{HNO}_3, \text{CHCl}_2F, \text{CCl}_4, \text{and N}_2\text{O}_5\).
CARD 1A7 contains scale factors for the default vertical profiles of 16 trace molecular species: \(\text{OH, HF, HCl, HBr, HI, ClO, OCS, H}_2\text{CO, HOCl, N}_2, \text{HCN, CH}_3\text{Cl, H}_2\text{O}_2, C_2\text{H}_2, C_2\text{H}_6, \text{and PH}_3\).

CARD 1A5:
\((S_{\text{UMIX}}(\text{IMOL}), \text{IMOL} = 4, 13)\)
FORMAT (10F5.0)

If C_PROF = 1, 3, 5 or 7

CARD 1A6:
\((S_{\text{XSEC}}(\text{IMOL}), \text{IMOL} = 1, 13)\)
FORMAT (13F5.0)

If C_PROF = 2, 3, 6 or 7

CARD 1A7:
\((S_{\text{TRAC}}(\text{IMOL}), \text{IMOL} = 1, 16)\)
FORMAT (16F5.0)

If C_PROF = 4, 5, 6 or 7

CARD 1B:
\((\text{AWAVLN}(\text{ISSALB}), \text{ASSALB}(\text{ISSALB}), \text{ISSALB}=1, \text{NSSALB})\)
FORMAT ((8F10.0))

(AWAVLN) Wavelength grid for boundary layer (and tropospheric) aerosol single scattering albedo in monotonically increasing order \([\mu\text{m}].\)

ASSALB Boundary layer (and tropospheric) aerosol spectral single scattering albedo values.

CARD 1B:
\((\text{ACOALB}, \text{RHASYM})\)
FORMAT (2F10.5)

(ACOALB) Aerosol single scattering co-albedo (one minus the albedo) scaling factor.

 RHASYM Relative humidity used to define the aerosol asymmetry factor [%]

6. **CARD 2 (REQUIRED) – MAIN AEROSOL AND CLOUD OPTIONS**

CARD 2:
FORMAT (A2, I3, A1, I4, A3, I2, 3I5, 5F10.5)

IHAZE, ISEASN, IVULCN, and VIS select the altitude and seasonal-dependent aerosol profiles and aerosol extinction coefficients. IHAZE specifies the aerosol model used for the boundary-layer (0 to 2 km) and a default, surface-meteorological range. The relative humidity dependence of the boundary-layer aerosol extinction coefficients is based on the water vapor content of the model atmosphere selected by MODEL. ISEASN selects the seasonal dependence of the profiles for both the tropospheric (2 to 10 km) and stratospheric (10 to 30 km) aerosols. IVULCN is used to select both the profile and extinction type for the stratospheric aerosols and to determine transition profiles through the stratosphere to 100 km. VIS, the meteorological range, when specified, will supersede the default meteorological range in the boundary-layer aerosol profile set by IHAZE.

IHAZE selects the type of extinction and a default meteorological range for the boundary-layer aerosol models only. If VIS is also specified, it will override the default IHAZE value. Interpolation of the extinction coefficients
based on relative humidity is performed only for the RURAL, MARITIME, URBAN, and TROPOSPHERIC coefficients used in the boundary layer (0 to 2 km altitude).

The character string inputs APLUS, CNOVAM, and ARUSS (for AeRosol User Supplied Spectra) were introduced in MODTRAN®3.7 to give greater flexibility in defining aerosols. APLUS was introduced to modify aerosol profiles, NOVAM introduced to allow selection of NOVAM, and ARUSS introduced to give greater flexibility in defining aerosol optical properties.

APLUS = Blank Default

= ’A+’ Use “Aerosol Plus” option (triggers reading of CARD 2A+) to vertically translate or scale user-defined aerosols optical profiles.

IHAZE = -1 No aerosol attenuation, but the model clouds may be included (i.e., ICLD = 1, 2… 10, 18 and 19).

= 0 No aerosol or cloud attenuation included in the calculation.

= 1 RURAL extinction, default VIS = 23 km.

= 2 RURAL extinction, default VIS = 5 km.

= 3 NAVY MARITIME extinction. Sets VIS based on wind speed and relative humidity.

= 4 MARITIME extinction, default VIS = 23 km (LOWTRAN model).

= 5 URBAN extinction, default VIS = 5 km.

= 6 TROPOSPHERIC extinction, default VIS = 50 km.

= 7 User-defined aerosol extinction coefficients. Triggers reading **CARDs 2D, 2D1 and 2D2** for up to 4 altitude regions of user-defined extinction, absorption and asymmetry parameters. (This option is kept for backward compatibility; the ARUSS = ’USS’ option affords greater flexibility in specifying user-defined aerosols).

= 8 FOG1 (Advective Fog) extinction, 0.2 km VIS.

= 9 FOG2 (Radiative Fog) extinction, 0.5 km VIS.

= 10 DESERT extinction, sets visibility from wind speed (WSS).

CNOVAM = Blank Default

= ’N’ Navy Oceanic Vertical Aerosol Model (NOVAM) (Appendix B).

ISEASN = 0 Season determined by the value of MODEL;

SPRING-SUMMER for MODEL = 0, 1, 2, 4, 6, 7, 8

FALL-WINTER for MODEL = 3, 5

= 1 SPRING-SUMMER

= 2 FALL-WINTER

ARUSS = Blank Default

= ’USS’ User-defined aerosol optical properties (instructions in Appendix A)

The parameter IVULCN controls both the selection of the aerosol profile as well as the type of extinction for the stratospheric aerosols, Table 2. It also selects appropriate transition profiles above the stratosphere to 100 km. Meteoric dust extinction coefficients are always used for altitudes from 30 to 100 km.

IVULCN = 0,1 BACKGROUND STRATOSPHERIC profile and extinction

= 2 MODERATE VOLCANIC profile and AGED VOLCANIC extinction

= 3 HIGH VOLCANIC profile and FRESH VOLCANIC extinction

= 4 HIGH VOLCANIC profile and AGED VOLCANIC extinction

= 5 MODERATE VOLCANIC profile and FRESH VOLCANIC extinction
= 6 MODERATE VOLCANIC profile and BACKGROUND STRATOSPHERIC extinction
= 7 HIGH VOLCANIC profile and BACKGROUND STRATOSPHERIC extinction
= 8 EXTREME VOLCANIC profile and FRESH VOLCANIC extinction

Table 2. Shows the Value of IVULCN Corresponding to the Different Choices of Extinction Coefficient Model and the Vertical Distribution Profile.

<table>
<thead>
<tr>
<th>EXTINCTION MODEL</th>
<th>VERTICAL DISTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BACKGROUND STRATOSPHERIC</td>
</tr>
<tr>
<td>BACKGROUND STRATOSPHERIC</td>
<td>0.1</td>
</tr>
<tr>
<td>AGED VOLCANIC</td>
<td>-</td>
</tr>
<tr>
<td>FRESH VOLCANIC</td>
<td>-</td>
</tr>
</tbody>
</table>

ICSTL is the air mass character (1 to 10), used with the precursor to NOVAM, i.e., the Navy-maritime Aerosol Model NAM (IHAZE = 3). Default value is 3. ICSTL is not used with NOVAM.

ICSTL = 1 Open ocean
= 10 Strong continental influence

ICLD specifies the cloud and rain models used. The rain profiles decrease linearly from the ground to the top of the associated cloud model. The program cuts off the rain at the cloud top.

ICLD = 0 No clouds or rain.
= 1 Cumulus cloud layer: base 0.66 km, top 3.0 km.
= 2 Altostratus cloud layer: base 2.4 km, top 3.0 km.
= 3 Stratus cloud layer: base 0.33 km, top 1.0 km.
= 4 Stratus/stratocumulus layer: base 0.66 km, top 2.0 km.
= 5 Nimbostratus cloud layer: base 0.16 km, top 0.66 km.
= 6 2.0 mm/hr ground Drizzle
 (Modeled with cloud 3 and 0.86 mm / hr at 1.0 km).
= 7 5.0 mm/hr ground Light rain
 (Modeled with cloud 5 and 2.6 mm / hr at 0.66 km).
= 8 12.5 mm/hr ground Moderate rain
 (Modeled with cloud 5 and 6.0 mm / hr at 0.66 km).
= 9 25.0 mm/hr ground Heavy rain
 (Modeled with cloud 1 and to 0.2 mm / hr at 3.0 km).
= 10 75.0 mm/hr ground Extreme rain
 (Modeled with cloud 1 and 1.0 mm / hr at 3.0 km).
= 11 Read in user defined cloud extinction and absorption. Triggers reading CARDS 2D, 2D1 and 2D2 for up to 4 altitude regions of user defined extinction, absorption, and asymmetry parameters (This option is kept for backward compatibility; CARD 2A inputs afford greater flexibility in specifying user-defined clouds).
= 18 Standard Cirrus model (64 μm mode radius for ice particles).
= 19 Sub-visual Cirrus model (4 μm mode radius for ice particles).
IVSA selects the use of the Army Vertical Structure Algorithm (VSA) for aerosols in the boundary layer.

IVSA = 0 Not used.
IVSA = 1 Vertical Structure Algorithm.

MODTRAN® introduced a new option for input VIS. Traditionally, VIS specifies the surface meteorological range (km) overriding the default value associated with the boundary layer chosen by IHAZE. If set to zero, VIS is the default value specified by IHAZE. Visibility is related to surface aerosol extinction at 550 nm (EXT550 in km⁻¹) by the equation

\[
VIS [km] = \frac{\ln(50)}{EXT550[km^{-1}]} + 0.01159 km^{-1}
\]

where 0.01159 km⁻¹ is the surface Rayleigh scattering coefficient at 550nm. The new option for the VIS input allows one to define the 550nm aerosol vertical optical depth (OD). The NEGATIVE of the OD is entered. A new MODTRAN® routine GETVIS combines the OD with ground altitude, season (‘Summer/Summer’ or ‘Winter/Fall’), and volcanic aerosol model inputs to determine the appropriate surface meteorological range. Note, if the input OD is too small, i.e., less than the contribution from the higher altitude aerosols, MODTRAN® will terminate with the error message, “GETVIS Error: Input aerosol optical depth is too low.”

VIS > 0. User specified surface meteorological range (km).
VIS = 0. Uses the default meteorological range set by IHAZE; (See Table 3).
VIS < 0. Negative of the 550 nm vertical aerosol optical depth.

Table 3. MODTRAN® CARD 2 Input Parameters: IHAZE, ISEASN, IVULCN, VIS.

<table>
<thead>
<tr>
<th>CARD 2</th>
<th>APLUS, IHAZE, CNOVAM, ISEASN, ARUSS, IVULCN, ICSTL, ICLD, IVSA, VIS, WSS, WHH, RAINRT, GNDALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMAT (A2, I3, A1, I4, A3, I2, 3I5, 5F10.5)</td>
<td></td>
</tr>
<tr>
<td>IHAZE</td>
<td>ISEASN</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>In COL. 3-5</td>
<td>VIS* (KM)</td>
</tr>
<tr>
<td>0</td>
<td>No Aerosols</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>** Desert</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to 2 km</td>
<td>2 to 10 km</td>
</tr>
</tbody>
</table>

* Default VIS can be overridden by VIS > 0 on CARD 2
** Sets own default VIS

WSS specifies the current wind speed for use with the Navy maritime and desert aerosol models.

WSS = Current wind speed (m/s). Used with the Navy Aerosol Maritime (NAM) model (IHAZE = 3) or the DESERT model (IHAZE = 10).

WHH specifies the 24-hour average wind speed for use with the Navy maritime model.

WHH = 24-hour average wind speed (m/s). Used with the Navy Aerosol Maritime (NAM) model (IHAZE = 3)
For the Navy Aerosol Maritime model, if \(WSS = WHH = 0 \), default wind speeds are set according to the value of MODEL, Table 4. For the Desert aerosol model (IHAZE = 10), if \(WSS < 0 \), the default wind speed is 10 m/s.

RAINRT specifies the rain rate and GNDALT specifies the altitude of the surface:

- **RAINRT** = Rain rate (mm/hr). The default value is zero for no rain. Used to top of cloud when cloud is present; when no clouds, rain rate used to 6km.
- **GNDALT** = Altitude of surface relative to sea level (km). GNDALT may be negative but may not exceed 6 km. The baseline 0 to 6-km aerosol profiles are compressed (or stretched) based on input GNDALT. GNDALT is set to the first profile altitude when radiosonde data is used (model = 7).

Table 4 summarizes the use of the input control parameters IHAZE, ISEASN, IVULCN, and VIS on **CARD 2**. Table 5 summarizes the use of the parameter ICLD.

Table 4. Default Wind Speeds for Different Model Atmospheres Used with the Navy Maritime Model (IHAZE = 3).

<table>
<thead>
<tr>
<th>Model</th>
<th>Model Atmosphere</th>
<th>WSS & WHH Default Wind Speeds (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>User-defined (Horizontal Path)</td>
<td>6.9</td>
</tr>
<tr>
<td>1</td>
<td>Tropical</td>
<td>4.1</td>
</tr>
<tr>
<td>2</td>
<td>Mid-latitude summer</td>
<td>4.1</td>
</tr>
<tr>
<td>3</td>
<td>Mid-latitude winter</td>
<td>10.29</td>
</tr>
<tr>
<td>4</td>
<td>Sub-arctic summer</td>
<td>6.69</td>
</tr>
<tr>
<td>5</td>
<td>Sub-arctic winter</td>
<td>12.35</td>
</tr>
<tr>
<td>6</td>
<td>U.S. Standard</td>
<td>7.2</td>
</tr>
<tr>
<td>7,8</td>
<td>User-defined</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Table 5. MODTRAN® CARD 2 Input Parameter: ICLD.

<table>
<thead>
<tr>
<th>ICLD</th>
<th>Cloud and/or Rain Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NO CLOUDS OR RAIN</td>
</tr>
<tr>
<td>1</td>
<td>CUMULUS CLOUD</td>
</tr>
<tr>
<td>2</td>
<td>ALTOSTRATUS CLOUD</td>
</tr>
<tr>
<td>3</td>
<td>STRATUS CLOUD</td>
</tr>
<tr>
<td>4</td>
<td>STRATUS / STRATOCUMULUS</td>
</tr>
<tr>
<td>5</td>
<td>NIMBOSTRATUS CLOUD</td>
</tr>
<tr>
<td>6</td>
<td>2.0 MM/HR DRIZZLE</td>
</tr>
<tr>
<td>7</td>
<td>2.0 MM/HR LIGHT RAIN</td>
</tr>
<tr>
<td>8</td>
<td>12.5 MM/HR MODERATE RAIN</td>
</tr>
<tr>
<td>9</td>
<td>25.0 MM/HR HEAVY RAIN</td>
</tr>
<tr>
<td>10</td>
<td>75.0 MM/HR EXTREME RAIN</td>
</tr>
<tr>
<td>11</td>
<td>USER DEFINED CLOUD EXTINCTION AND ABSORPTION</td>
</tr>
<tr>
<td>18</td>
<td>STANDARD CIRRUS MODEL</td>
</tr>
<tr>
<td>19</td>
<td>SUB VISUAL CIRRUS MODEL</td>
</tr>
</tbody>
</table>

7. OPTIONAL CARD 2A+ (FLEXIBLE AEROSOL MODEL)

CARD 2A+, which is read if APLUS = 'A+' in **CARD 2**, allows the user to move the MODTRAN® built-in aerosols from their original positions to arbitrary altitude regions (which may overlap) and to compress and stretch them using only two input lines. If the **CARD 2** input GNDALT is non-zero, the aerosol densities below 6 km will undergo an additional compression or stretching, as described in Section 6. An important benefit is the ability to move the tropopause height. **CARD 2A+** options cannot be used in conjunction with NOVAM. Furthermore, if A+ is used with MODEL=7 (from **CARD 1**), the atmospheric profile must contain atmospheric levels precisely at
Optional CARD 2A+

GNDALT, GNDALT + (6 – GNDALT) / 3, GNDALT + (6 – GNDALT) / 2, 10.000, 11.000, 30.000, 35.000 and 100.000 km; there are no added restriction on the CARD 2A+ inputs:

CARD 2A+: ZAER11, ZAER12, SCALE1, ZAER21, ZAER22, SCALE2, ZAER31, ZAER32, SCALE3, ZAER41, ZAER42, SCALE4 (IF APLUS = 'A+')
FORMAT ((3(1X, F9.0), 20X, 3(1X, F9.0)))

There are 12 variables in the two lines of CARD 2A+ as enumerated above. The first set of three is for aerosol number 1; the second set of three, for aerosol 2; the set, for aerosol 3 and the fourth set, for aerosol 4. The meanings of the numerical values for ZAERi1, ZAERi2 and SCALEi, i = 1, 2, 3 and 4, are as follows:

ZAERi1: The base/bottom of aerosol i
ZAERi2 > ZAERi1: The top of aerosol i
< ZAERi1: Translate original profile to new base, ZAERi1
= ZAERi1: Set values to default, ignore SCALEi

(Also set to default when both ZAERi1 and ZAERi2 are blank)

SCALEi > 0.0: Multiply vertical profile by SCALEi
= 0 or blank: Multiply vertical profile by 1.0 (i.e., preserves column density)

The aerosols are linearly mapped into the new region and the column densities are preserved if SCALEi is unity. Note that since the cards are read using fixed formats, blanks are interpreted as zeros. By default, SCALEi is set to unity if blanks or 0.0 are input. Note that if the APLUS option is used, the two lines of CARD 2A+ must be present even if any of these lines are intended to consist of all blanks.

The MODTRAN®/LOWTRAN definition of an aerosol region leads to some confusion. Possibly a preferred definition of the aerosol region would be the contiguous altitudes over which the aerosol concentration is positive. By this definition, the region of aerosol 1, for example, is from 0 to 3 km; the profile linearly decreases from a positive value at 2 km to zero at 3 km. Instead, in previous MODTRAN® documentation this region is said to be from 0-2 km. In the MODTRAN® upgrade, the ZAERi1 and ZAERi2 values refer to the bounding altitudes, which sandwich the entire region where the aerosol concentration is positive. Table 6 lists the default values of these bounding altitudes along with the commonly referred to region boundaries for each aerosol.

One caveat with regard to the CARD 2+ inputs should be noted. For the Tropospheric aerosol model (IHAZE = 6), MODTRAN® combines the boundary layer (Aerosol 1) and tropospheric (Aerosol 2) regions; therefore, these region may not be scaled independently. Thus, the parameters used to scale the tropospheric aerosol model are min (ZAER11, ZAER21), max (ZAER12, ZAER22) and max (SCALE1, SCALE2).

Table 6. Default Aerosol Region Boundaries.

<table>
<thead>
<tr>
<th>Aerosol</th>
<th>Common Region Definition</th>
<th>Actual ZAERi1</th>
<th>Actual ZAERi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-2 km</td>
<td>0 km</td>
<td>3 km</td>
</tr>
<tr>
<td>2</td>
<td>2-10</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>10-30</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>30-100</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

8. OPTIONAL CARD 2A (CLOUD MODELS)

CARD 2A is required for all cloud models (ICLD > 0) except ICLD = 11. Note that the original MODTRAN®3.0 format has been changed. To run a default cloud case with ICLD = 1-10, the alternative CARD 2A should read:

The standard and alternate forms are discussed in Subsections 8.1 and 8.2, respectively.
8.1 CARD 2A Standard Form (CIRRUS CLOUD MODELS, ICLD = 18 or 19)

The standard cirrus option should not be used in conjunction with user-defined layering (MODEL = 7 or 8); instead, the alternate form (Section 8.2) should be invoked with user specified profiles.

CARD 2A: CTHIK, CALT, CEXT

FORMAT (3F8.0) (FORMAT changed in MODTRAN® 3.5)

CTHIK is the cirrus thickness (km):

\begin{align*}
\text{CTHIK} & \leq 0. \quad \text{Use thickness statistics.} \\
& > 0. \quad \text{User-defined thickness.}
\end{align*}

CALT is the cirrus base altitude (km):

\begin{align*}
\text{CALT} & \leq 0. \quad \text{Use calculated value.} \\
& > 0. \quad \text{User-defined base altitude.}
\end{align*}

CEXT is the extinction coefficient (km$^{-1}$) at 0.55 micron:

\begin{align*}
\text{CEXT} & \leq 0. \quad \text{Use } 0.14 \text{ km}^2 \text{ * CTHIK.} \\
& > 0. \quad \text{User-defined extinction coefficient.}
\end{align*}

8.2 CARD 2A Alternate Form (WATER/ICE CLOUD MODELS, ICLD = 1 - 10)

CARD 2A: CTHIK, CALT, CEXT, NCRALT, NCRSPC, CWAVLN, CCOLWD, CCOLIP, CHUMID, ASYMWD, ASYMIP

FORMAT(3F8.0, 2I4, 6F8.0)

This form of CARD 2A is for modifying parameters for clouds other than cirrus. Use of this CARD triggers the reading of CARDS 2E1 and 2E2, described below in their respective sections. See Berk and Anderson, SSI-TR-267, for a more extensive discussion.

Default values can be assigned to any of the CARD 2A variables by setting them equal to negative nine. An actual computer card image is shown below (2 leading spaces and two spaces between each number). All CARD 2A variables are set to their default value with this input line:

\[-9.000 \ -9.000 \ -9.000 \ -9.000 \ -9.000 \ -9.000 \ -9.000 \ -9.000 \ -9.000 \ -9.000 \ -9.000 \]

A blank line will not generate the default values. In fact, setting all CARD 2A inputs to zero would produce an isotropic scattering ground-level cloud.

CTHIK is the cloud vertical thickness:

\begin{align*}
\text{CTHIK} & > 0. \quad \text{Cloud vertical thickness [km].} \\
& \leq 0. \quad \text{Use default cloud thickness.}
\end{align*}

The cloud vertical thickness is defined as the altitude difference between the highest and lowest cloud profile boundary altitude for which either water droplet or ice particle density is positive. The ten MODTRAN® cloud/rain models are derived from five distinct clouds. The default thicknesses for these clouds are listed in Table 7. This will not only scale default clouds but also user-specified cloud profiles (CARD 2E1).

<table>
<thead>
<tr>
<th>ICLD</th>
<th>Cloud Type</th>
<th>Thickness (km)</th>
<th>Base (km)</th>
<th>0.55μm Ext. (km$^{-1}$)</th>
<th>Column Amt. (km g / m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cumulus</td>
<td>2.34</td>
<td>0.66</td>
<td>92.6</td>
<td>1.6640</td>
</tr>
<tr>
<td>2</td>
<td>Altostratus</td>
<td>0.60</td>
<td>2.40</td>
<td>128.1</td>
<td>0.3450</td>
</tr>
<tr>
<td>3</td>
<td>Stratus</td>
<td>0.67</td>
<td>0.33</td>
<td>56.9</td>
<td>0.2010</td>
</tr>
<tr>
<td>4</td>
<td>Stratus/Stratocumulus</td>
<td>1.34</td>
<td>0.66</td>
<td>38.7</td>
<td>0.2165</td>
</tr>
<tr>
<td>5</td>
<td>Nimbostratus</td>
<td>0.50</td>
<td>0.16</td>
<td>92.0</td>
<td>0.3460</td>
</tr>
</tbody>
</table>

CALT is the cloud base altitude relative to ground level:

26
Optional CARD 2A

CALT ≥ 0. Cloud base altitude relative to ground level [km].
< 0. Use default cloud base altitude.

This differs from the meaning of CALT in the cirrus cloud models (ICLD = 18 or 19) which define base altitude relative to sea level. Note that a value of zero translates the cloud down to the ground; the user must enter a negative altitude to have the cloud automatically placed at the default altitude. If there is a non-constant rain profile below a cloud, that profile is stretched or compressed depending upon whether the base altitude is increased or decreased.

CEXT is the cloud liquid water droplet and ice particle vertical extinction:

CEXT > 0. Cloud water particle vertical extinction [km⁻¹].
≤ 0. Do not scale extinction coefficients.

CEXT is defined for wavelength CWAVLN (see below). Within the code, CEXT is used to scale the extinction (and absorption) coefficient curves. The ratio of the input optical depth (CEXT * CTHIK) to the calculated optical depth (the product of column density and extinction coefficient at CWAVLN, summed for both liquid water droplets and ice particles) is determined. The extinction and absorption coefficients at all frequencies are multiplied by this ratio. The default cloud extinction at 0.55 µm for each of the five MODTRAN® liquid water droplet model clouds is listed in Table 7.

NCRALT is the number of layer boundary altitudes if a user-defined cloud/rain profile is being input:

NCRALT ≥ 3 Number of layer boundary altitudes (from CARD 2E1) in user-defined cloud/rain profile.
< 3 Use default cloud profile for ICLD.

The maximum allowed value for NCRALT is 16, parameter NZCLD in PARAMS.h; this value can be increased, but this change requires some modification of block data /MDTA/. NCRALT must be at least 3 to define the cloud base, the cloud top, and the highest boundary altitude for which the water droplet and ice particle densities must be zero. It is generally recommended that the altitude below which cloud densities are zero also be included in the cloud profile. If this altitude is not entered, MODTRAN® assumes that the cloud densities drop to zero 1 meter below the cloud base.

NCRSPC is the number of wavelength entries:

NCRSPC ≥ 2 Number of wavelength at which cloud spectral data is being entered (on CARD 2E2).
< 2 Use default spectral data for ICLD.

NCRSPC must be at least 2 so the minimum and maximum wavelengths do not coincide. A maximum of 788 wavelengths (parameter MXWVLN in PARAMS.h) may be input.

CWAVLN is the reference wavelength used in defining cloud vertical extinction:

CWAVLN ≥0.2 & ≤200.0 Reference wavelength for defining cloud vertical extinction [µm]

CWAVLN outside this range specifies the default, 0.55 µm. The variable CWAVLN is only used if a user-selected value for CEXT is input. Furthermore, if CWAVLN is outside the spectral range of user-defined cloud spectral data (CARD 2E2), a fatal error message is logged and execution terminated.

CCOLWD is the water droplet (WD) cloud vertical column density:

CCOLWD ≥ 0. Cloud liquid water droplet vertical column density [km g / m³].
< 0. Do not scale the water droplet densities.

MODTRAN® determines the ratio of this input water droplet vertical column density to the density calculated from the input cloud base, thickness, and the default water droplet densities. Then all the water droplet densities are scaled by this ratio so that the desired column amount results.

It should be noted that if the cloud being modeled only has liquid water and a positive cloud vertical extinction, CEXT, is input, MODTRAN® will change spectral extinction and absorption coefficients so that predicted path transmittances and radiances are independent of CCOLWD. However, if the spectral data are not being scaled to give a particular vertical extinction, increasing column density will increase extinction. Furthermore, if the cloud consists of both liquid water droplets and ice particles, CCOLWD can be used to customize the relative contribution.
from the two particle types. The default cloud water droplet column densities for the five MODTRAN® liquid water clouds are listed in Table 7.

CCOLIP is the ice particle (IP) cloud vertical column density:

$$CCOLIP \geq 0.$$ Cloud ice particle vertical column density or amount [km g / m³].

$$< 0.$$ Do not scale the ice particle densities.

Generally, CCOLIP is used to scale ice particle density the same way CCOLWD is used to scale water droplet density. However, two points should be noted: (1) The MODTRAN® cumulus and stratus type clouds (ICLD = 1 - 10) treated by this alternate CARD 2A do not contain ice particles. Thus, only user-defined cloud profiles (see CARD 2E1 below) can be scaled using CCOLIP; (2) If both CCOLWD and CCOLIP are zero, scaling is turned off for both; it does not make sense to define a cloud with no liquid water droplets or ice particles.

CHUMID is the relative humidity at all layer boundaries with either a positive rain rate or a positive cloud density:

$$CHUMID > 0, \& \leq 105.$$ Cloud / rain relative humidity [%].

$$\leq 0.$$ Assume 100% relative humidity at cloud/rain layer boundaries.

$$> 105.$$ Do not alter H₂O profile within the cloud.

As much as 5% super saturation is permitted, and clouds with 0% relative humidity throughout the entire cloud region are forbidden.

ASYMWD is the Henyey-Greenstein phase function asymmetry factor for scattering by cloud liquid water droplets:

$$|ASYMWD| < 1.$$ Water droplet Henyey-Greenstein scattering phase function asymmetry factor at all wavelengths.

$$\geq 1.$$ Use user-defined or model spectral asymmetry factors for scattering by cloud liquid water droplets.

Even if the spectral asymmetry factors are input using CARDs 2E2, MODTRAN® uses the ASYMWD value if its absolute value is less than one.

ASYMIP is the Henyey-Greenstein phase function asymmetry factor for scattering by cloud ice particles:

$$|ASYMIP| < 1.$$ Ice particle Henyey-Greenstein scattering phase function asymmetry factor at all wavelengths.

$$\geq 1.$$ Use user-defined or model (standard cirrus) spectral asymmetry factors for scattering by cloud ice particles.

9. OPTIONAL CARD 2B (ARMY VERTICAL STRUCTURE ALGORITHM)

CARD 2B is the input card for the Army VSA (Vertical Structure Algorithm) subroutine (required when IVSA = 1 on CARD 2).

CARD 2B: ZCVSA, ZTVSA, ZINVSA

FORMAT (3F10.0)

The case is determined by the parameters VIS, ZCVSA, ZTVSA, and ZINVSA.

CASE 1: cloud/fog at the surface; increasing extinction with height from cloud/fog base to cloud/fog top. Selected by VIS ≤ 0.5 km and ZCVSA ≥ 0.

Use case 2 or 2’ below the cloud and case 1 inside it.

CASE 2: hazy/light fog; increasing extinction with height up to the cloud base. Selected by 0.5 < VIS ≤ 10 km, ZCVSA ≥ 0.

CASE 2’: clear/hazy; increasing extinction with height, but less so than case 2, up to the cloud base. Selected by VIS > 10 km, ZCVSA ≥ 0.
CASE 3: no cloud ceiling but a radiation fog or an inversion or boundary layer present; decreasing extinction with height up to the height of the fog or layer. Selected by ZCVSA < 0 ZINVSA ≥ 0.

CASE 4: no cloud ceiling or inversion layer; constant extinction with height. Selected by ZCVSA < 0 and ZINVSA < 0.

ZCVSA is the cloud ceiling height [km]:

- **ZCVSA > 0.0** Sets the known cloud ceiling height;
- **ZCVSA = 0.0** Height unknown: the program will calculate one for case 2, and default is 1.8 km for case 2; or
- **ZCVSA < 0.0** No cloud ceiling (cases 3 and 4).

ZTVSA is the thickness of the cloud (case 2) or the thickness of the fog at the surface (case 1) [km]:

- **ZTVSA > 0.0** The known value of the cloud thickness;
- **ZTVSA = 0.0** Thickness unknown; default is 0.2 km.

ZINVSA is the height of the inversion or boundary layer [km]:

- **ZINVSA > 0.0** the known height of the inversion layer;
- **ZINVSA = 0.0** height unknown: default is 2 km, 0.2 km for fog;
- **ZINVSA < 0.0** no inversion layer (case 4, if ZCVSA < 0.0 also).

10. OPTIONAL CARDS 2C, 2CY, 2C1, 2C2, 2C2X, 2C2Y, 2C3
USER-DEFINED SPECIES AND ATMOSPHERIC PROFILES

User-supplied profile data are read in when the parameter MODEL is 7 (or 0 for a constant pressure path) and I_RD2C is 1 on CARD 1. In this case, CARDS 2C and 2C1 are required.

Using CARDS 2C, 2C1, and 2C2, the user has the choice of entering gas concentration data in any of several different sets of units or defaulting to a model atmosphere concentration at the specified altitude. The concentrations are entered on CARDS 2C1 and 2C2 in the units specified by JCHAR on CARD 2C1. If MDEF (CARD 1) is set to 2, concentrations of the heavy molecular gases are read from CARD 2C2X in the units specified by JCHARX on CARD 2C1.

Aerosol vertical distributions, cloud liquid water contents, and rain rates can be input at specified altitudes using CARD 2C3. The default altitudes for the four aerosol regions may be modified using the parameters IHA1, ICLD1 or IVUL1.

CARDS 2C1 through 2C3 are repeated ML times, where ML (in CARD 2C) is the number of atmospheric levels (ML = 1 for a horizontal path).

10.1 CARD 2C

CARD 2C: ML, IRD1, IRD2, HMODEL, REE, NMOLYC, E_MASS, AIRMWT

FORMAT (3I5, A20, F10.0, I5, 2F10.0) (MODEL = 0, 7 or 8; I_RD2C = 1)

- **ML** = Number of atmospheric levels to be inserted (maximum of LAYDIM, see PARAMS.h file).

IRD1 controls reading of WMOL(4-12) as described in Table 8 (CARD 2C2)

- **IRD1 = 0** No read.
- **IRD1 = 1** Read CARD 2C2.

IRD2 controls reading AHAZE, EQLWCZ, ... (CARD 2C3)

- **IRD2 = 0** No read.
- **IRD2 = 1** Read CARD 2C3.
- **IRD2 = 2** Read new version of CARD 2C3; see Appendix A.

HMODEL = Identification of new model atmosphere.
Optional CARDS 2C, 2CY, 2C1, 2C2, 2C2X, 2C2Y, 2C3

REE = Earth radius in kilometers (default according to MODEL). This input is only read in when MODEL = 8. It is redundant with RO on CARD 3, but the Earth radius is required before CARD 3 is read when the hydrostatic equation is being solved. The RO input from CARD 3 is ignored when MODEL = 8.

NMOLYC = Number of user-defined species with specified names, concentrations, and molecular weights.

E_MASS = Planetary mass in Earth masses. If a value of zero is input, E_MASS is set to 1. Used in the hydrostatic equation when MODEL=8.

AIRMWT = The molecular weight of air at the surface in g/mol. If a value of zero is input, AIRMWT is set to parameter AIR_MW = 28.964 g/mol.

CARD 2CY: (YNAME(I), I=1, NMOLYC)

FORMAT((8A10))

YNAME = Array of names of user-defined species. A name may have a minus sign preceding it for excluding the species from being included in radiance/transmittance calculations. Whether a species is excluded or not, its concentration profile must be included in CARD 2CY.

One of two possible types of band model parameters must be supplied for each species. The first type of parameters is the cross-section parameters similar to those for the CFCs. A file of this type must have the name: `species-name`BM. The other type of parameters is similar to that for the molecular band model species, say, for example, CO2. If such a band model parameter set is to be used for a species, its name must have an asterisk at the end. The band model parameters must be separated into line center and tail components, each with its own file: `species-name`.tBM (for tail parameters) and `species-name`.tBM (for center parameters). The contents of these files are described in Appendix D. Utilities will be provided to generate these files.

10.2 CARDS 2C1, 2C2, 2C2X, 2C2Y

CARD 2C1: ZM, P, T, (WMOL(J), J = 1, 3), (JCHAR(J), J = 1, 14), JCHARX, JCHARY

FORMAT (F10.0, 5F10.0, 14A1, 1X, 2A1) (MODEL = 0/7/8, I_RD2C = 1, IVSA=0)

CARD 2C2: (WMOL(J), J = 4, 12) (If IRD1 = 1)

FORMAT (8F10.0, /F10.0)

CARD 2C2X: (WMOLX(J), J = 1, 13) (If IRD1 = 1 and MDEF = 2)

FORMAT ((8F10.0))

CARD 2C2Y: (WMOLY(I), I = 1, ..., NMOLYC)(If IRD1 = 1 and NMOLYC > 0)

FORMAT ((8F10.0))

ZM = Altitude of layer boundary (km).

P = Pressure of layer boundary.

T = Temperature of layer boundary.

WMOL(1-12) = Individual molecular species densities (see Table 8 for species).

WMOLX(1-13) = Heavy molecular species densities (see Table 9 for species).

WMOLY(1-NMOLYC) = User-defined species densities.

JCHAR(1-14) = Control variables for selection of units for primary profile inputs (P, T and molecular constituents, see Table 8).

JCHARX = Single unit selection control input for the entire set of CFCs and cross-section molecules. (See Table 9 for order and identification of these species).

JCHARY = Single unit selection control input for the entire set of user-defined molecules.

By utilizing a choice of values for the JCHAR(J) control variable (where J = 1, 14) the user can designate specific units or accept defaults for the various molecular species and for the temperature and pressure. If JCHAR(J) is left blank the program will default to the values chosen by M1, M2, M3, M4, M5, M6 and MDEF.
when the given amount is zero. If the amount is non-zero and the JCHAR(J) is blank, the code assumes the first option on units: mb for pressure, K for temperature, and ppmv on constituents. The single unit option, JCHARX, follows the same rules, and for each altitude specified on CARD 2C1, the code will expect to find a full set (2 card images) containing values for the 13 species in the order specified by Table 9. These values are required only if MDEF=2.

Table 8. Association of the JCHAR(J) Index (J = 1, 14) with the Variables P, T & WMOL.

<table>
<thead>
<tr>
<th>J</th>
<th>Variable</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P</td>
<td>pressure</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>3</td>
<td>WMOL(1)</td>
<td>water vapor (H2O)</td>
</tr>
<tr>
<td>4</td>
<td>WMOL(2)</td>
<td>carbon dioxide (CO2)</td>
</tr>
<tr>
<td>5</td>
<td>WMOL(3)</td>
<td>ozone (O3)</td>
</tr>
<tr>
<td>6</td>
<td>WMOL(4)</td>
<td>nitrous oxide (N2O)</td>
</tr>
<tr>
<td>7</td>
<td>WMOL(5)</td>
<td>carbon monoxide (CO)</td>
</tr>
<tr>
<td>8</td>
<td>WMOL(6)</td>
<td>methane (CH4)</td>
</tr>
<tr>
<td>9</td>
<td>WMOL(7)</td>
<td>oxygen (O2)</td>
</tr>
<tr>
<td>10</td>
<td>WMOL(8)</td>
<td>nitric oxide (NO)</td>
</tr>
<tr>
<td>11</td>
<td>WMOL(9)</td>
<td>sulfur dioxide (SO2)</td>
</tr>
<tr>
<td>12</td>
<td>WMOL(10)</td>
<td>nitrogen dioxide(NO2)</td>
</tr>
<tr>
<td>13</td>
<td>WMOL(11)</td>
<td>ammonia (NH3)</td>
</tr>
<tr>
<td>14</td>
<td>WMOL(12)</td>
<td>nitric acid (HNO3)</td>
</tr>
</tbody>
</table>

Table 9. Various Names for the Heavy Molecular Gases, (WMOLX(J), J = 1, 13).

<table>
<thead>
<tr>
<th>J</th>
<th>Name</th>
<th>F</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CCl3F</td>
<td>F11</td>
<td>CFC-11</td>
</tr>
<tr>
<td>2</td>
<td>CCl3F2</td>
<td>F12</td>
<td>CFC-12</td>
</tr>
<tr>
<td>3</td>
<td>CClIF3</td>
<td>F13</td>
<td>CFC-13</td>
</tr>
<tr>
<td>4</td>
<td>CF4</td>
<td>F14</td>
<td>CFC-14</td>
</tr>
<tr>
<td>5</td>
<td>CHClF2</td>
<td>F22</td>
<td>CFC-22</td>
</tr>
<tr>
<td>6</td>
<td>C2ClF3</td>
<td>F113</td>
<td>CFC-113</td>
</tr>
<tr>
<td>7</td>
<td>C2Cl2F4</td>
<td>F114</td>
<td>CFC-114</td>
</tr>
<tr>
<td>8</td>
<td>C2ClIF5</td>
<td>F115</td>
<td>CFC-115</td>
</tr>
<tr>
<td>9</td>
<td>CIONO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>HNO3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>CHCl3F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CCl4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>N2O3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

JCHAR(1) = 'A' indicates Pressure in (mb)
 = 'B' indicates Pressure in (Atm)
 = '1-6' will default to specified atmospheric MODEL value
 = blank will default to M1 (CARD 1) model atmosphere value

JCHAR(2) = 'A' for ambient temperature [Kelvin]
 = 'B' for ambient temperature [degrees Celsius]
 = 'C' for temperature difference from M1 profile [Kelvin]. For example, the mid-latitude summer surface air temperature is 294.2K; if JCHAR(2) is set to 'C', M1 is set to 2 (for mid-latitude summer), and T is set to -10.0K at 0km altitude, then the profile temperature will be set to 294.2K – 10.0K = 284.2K.
 = '1-6' to default to specified atmospheric MODEL value
 = blank to default to M1 (CARD 1) model atmosphere value
Optional CARDS 2C, 2C1, 2C2, 2C2X, 2C2Y, 2C3

JCHAR(3-14) = 'A' for Volume mixing ratio (ppmv)
= 'B' for Number density (molecules/cm3)
= 'C' for Mass mixing ratio (g/kg)
= 'D' for Mass density (g/m3)
= 'E' for Partial pressure (mb)
= 'F' for Dew point temperature (TD in T[K]) - H$_2$O only
= 'G' for Dew point temperature (TD in T[°C]) - H$_2$O only
= 'H' for Relative humidity (RH in percent) - H$_2$O only
= '1-6' to default to specified model atmosphere
= blank to default to CARD 1 model atmosphere values (M2 for H$_2$O; M3 for O$_3$; M4 for CH$_4$; M5 for N$_2$O; M6 for CO; otherwise, MDEF).

JCHARX = 'A' for Volume mixing ratio (ppmv)
= 'B' for Number density (molecules/cm3)
= 'C' for Mass mixing ratio (g/kg)
= 'D' for Mass density (g/m3)
= 'E' for Partial pressure (mb)
= '1-6' to use the default vertical profile

JCHARY = 'A' for Volume mixing ratio (ppmv)
= 'B' for Number density (molecules/cm3)
= 'C' for Mass mixing ratio (g/kg)
= 'D' for Mass density (g/m3)
= 'E' for Partial pressure (mb)
= '1' to use default vertical profile if one exists for a given species; otherwise, user will provide Volume mixing ratio (ppmv)
= '2' to use default vertical profile if one exists for a given species; otherwise, user will provide Number density (molecules/cm3)
= '3' to use default vertical profile if one exists for a given species; otherwise, user will provide Mass mixing ratio (g/kg)
= '4' to use default vertical profile if one exists for a given species; otherwise, user will provide Mass density (g/m3)
= '5' to use default vertical profile if one exists for a given species; otherwise, user will provide Partial pressure (mb)
= '6' to use default vertical profile if one exists for a given species; otherwise, user will provide Volume mixing ratio (ppmv) [Same as JCHARY = '1'].

10.3 CARD 2C3

CARD 2C3: AHAZE, EQLWCZ, RRATZ, IHA1, ICLD1, IVUL1, ISEA1, ICHR
FORMAT (10X, 3F10.0, 5I5)

CARD 2C3 (for user-specified aerosol/cloud/rain models) is read when IRD2 is set to 1 on CARD 2C. The following instructions apply to MODTRAN$^{®}$3.5, as well as to more recent versions when IRD2 = 1. Instructions for IRD2 = 2 are given in Appendix A.

If AHAZE is positive, EQLWCZ is ignored.

AHAZE Aerosol or cloud scaling factor (equal to the visible [wavelength of 0.55 μm] extinction coefficient [km$^{-1}$] at altitude ZM)
EQLWCZ Equivalent liquid water content (G / m³) at altitude ZM for the aerosol, cloud or fog models
RRATZ Rain rate (mm / hr) at altitude ZM

Only one of IHA1, ICLD1 or IVUL1 is allowed:

IHA1 Aerosol model extinction and meteorological range control for the altitude, ZM. See IHAZE (CARD 2) for options.
ICLD1 Cloud extinction control for the altitude, ZM; see ICLD (CARD 2) for options. When using ICLD1 it is necessary to set ICLD to the same value as the initial input of ICLD1.
IVUL1 Stratospheric aerosol profile and extinction control for the altitude ZM; see IVULCN (CARD 2) for options.

The precedent order of these parameters (IHA1, ICLD1 and IVUL1) is as follows:
If (IHA1 > 0) then others ignored
If (IHA1 = 0) and (ICLD1 > 0) then use ICLD1
If (IHA1 = 0) and (ICLD1 = 0) then use IVUL1

If AHAZE and EQLWCZ are both zero, the default profile is loaded from IHA1, ICLD1, IVUL1.
ISEA1 Aerosol season control for the altitude, ZM, see ISEASN (CARD 2) for options.
ICHRR Used to indicate a boundary change between 2 or more adjacent user defined aerosol or cloud regions at altitude ZM (required for IHAZE = 7 or ICLD = 11).
ICHRR = 0 No boundary change in user defined aerosol or cloud regions (regions are not adjacent).
ICHRR = 1 Signifies the boundary change in adjacent user defined aerosol or cloud regions.

NOTE: ICHR internally defaults to 0 if (IHA1 ≠ 7) or (ICLD1 ≠ 11).

11. OPTIONAL CARDS 2D, 2D1, 2D2
(USER-DEFINED AEROSOL AND CLOUD PARAMETERS)

These cards allow the user to specify the aerosol and cloud parameters (extinction and absorption coefficients and asymmetry parameter) for any or all four of the aerosol altitude regions. They are only read if IHAZE = 7 or ICLD = 11 are specified on CARD 2.

THE FOLLOWING INSTRUCTIONS ONLY APPLY WHEN PARAMETER ARUSS (CARD 2) IS NOT SET TO 'USS'. WHEN ARUSS EQUALS 'USS', SEE APPENDIX A FOR INSTRUCTIONS.

11.1 CARD 2D

CARD 2D: (IREG(N), N = 1, 4) (If IHAZE = 7 or ICLD = 11)
FORMAT (4I5)

IREG specifies in which of the four altitude regions a user-defined aerosol or cloud model is used (IHAZE = 7 / ICLD = 11). It controls the number of pairs of CARDS 2D1 and 2D2 read in (1 pair for each region for which IREG(N) = 1).

The region boundary altitudes default to 0-2, 3-10, 11-30, 35-100 km but can be overridden with 'IHA1' (CARD 2C3) with MODEL = 7 (See Section 7 for a more complete description of the default aerosol regions).

IREG(N) = 0 Use default values for the region N, N = 1, 2, 3 and 4.
IREG(N) = 1 Read extinction, absorption, and asymmetry parameter for the region.

11.2 CARD 2D1

CARD 2D1 and CARD 2D2 are read sequentially once for each of the four aerosol regions for which IREG(N) = 1.
Optional CARDS 2D, 2D1, 2D2

CARD 2D1: AWCCON, AERNAM
FORMAT (F10.0, 18A4)

AWCCON is a conversion factor from extinction coefficient (km\(^{-1}\)) to equivalent liquid water content (g/m\(^3\)). ONLY USED FOR MICROWAVE (\(\lambda > 287.9\mu m\), \(\nu < 37.4\) cm\(^{-1}\)) FOG EXTINCTION! It is numerically equal to the equivalent liquid water content corresponding to an extinction coefficient of 1.0 km\(^{-1}\), at a wavelength of 0.55 \(\mu m\). AWCCON has units of (km g m\(^{-3}\)).

AERNAM for an aerosol or cloud region (up to 72 characters)

11.3 CARD 2D2

CARD 2D2: (VARSPC(I), EXTC(N, I), ABSC(N, I), ASYM(N, I), I = 1, 47)
FORMAT (3(F6.2, 2F7.5, F6.4))

CARD 2D2 consists of 47 sets of 4 numbers (3 sets or 12 numbers per line) in each aerosol region N for which IREG(N) is 1. There are no corresponding CARDS 2D1 and 2D2 if IREG(N) = 0. This card is for input of user-defined aerosol or cloud extinction and absorption coefficients when IHAZE = 7 or ICLD = 11.

<table>
<thead>
<tr>
<th>Index</th>
<th>Wavelength ((\mu m))</th>
<th>Index</th>
<th>Wavelength ((\mu m))</th>
<th>Index</th>
<th>Wavelength ((\mu m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2000</td>
<td>17</td>
<td>5.5000</td>
<td>33</td>
<td>15.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.3000</td>
<td>18</td>
<td>6.0000</td>
<td>34</td>
<td>16.4000</td>
</tr>
<tr>
<td>3</td>
<td>0.3371</td>
<td>19</td>
<td>6.2000</td>
<td>35</td>
<td>17.2000</td>
</tr>
<tr>
<td>4</td>
<td>0.5500</td>
<td>20</td>
<td>6.5000</td>
<td>36</td>
<td>18.5000</td>
</tr>
<tr>
<td>5</td>
<td>0.6943</td>
<td>21</td>
<td>7.2000</td>
<td>37</td>
<td>21.3000</td>
</tr>
<tr>
<td>6</td>
<td>1.0600</td>
<td>22</td>
<td>7.9000</td>
<td>38</td>
<td>25.0000</td>
</tr>
<tr>
<td>7</td>
<td>1.5360</td>
<td>23</td>
<td>8.2000</td>
<td>39</td>
<td>30.0000</td>
</tr>
<tr>
<td>8</td>
<td>2.0000</td>
<td>24</td>
<td>8.7000</td>
<td>40</td>
<td>40.0000</td>
</tr>
<tr>
<td>9</td>
<td>2.2500</td>
<td>25</td>
<td>9.0000</td>
<td>41</td>
<td>50.0000</td>
</tr>
<tr>
<td>10</td>
<td>2.5000</td>
<td>26</td>
<td>9.2000</td>
<td>42</td>
<td>60.0000</td>
</tr>
<tr>
<td>11</td>
<td>2.7000</td>
<td>27</td>
<td>10.0000</td>
<td>43</td>
<td>80.0000</td>
</tr>
<tr>
<td>12</td>
<td>3.0000</td>
<td>28</td>
<td>10.5910</td>
<td>44</td>
<td>100.0000</td>
</tr>
<tr>
<td>13</td>
<td>3.3923</td>
<td>29</td>
<td>11.0000</td>
<td>45</td>
<td>150.0000</td>
</tr>
<tr>
<td>14</td>
<td>3.7500</td>
<td>30</td>
<td>11.5000</td>
<td>46</td>
<td>200.0000</td>
</tr>
<tr>
<td>15</td>
<td>4.5000</td>
<td>31</td>
<td>12.5000</td>
<td>47</td>
<td>300.0000</td>
</tr>
<tr>
<td>16</td>
<td>5.0000</td>
<td>32</td>
<td>14.8000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: In MODTRAN®4, this array contains the wavelengths at which the spectral data are read in when IREG(N) = 1. The spectral grid of built-in cloud data is now much finer with 788 points. The aerosol optical properties are also tabulated at the 788 grid points, but the data is simply an interpolation of the lower resolution data. This array is retained for backward compatibility with earlier tape5’s.
Optional CARDS 2E1 and 2E2

12. OPTIONAL CARDS 2E1 AND 2E2
(USER-DEFINED CLOUD PARAMETERS)

The following inputs, used with the alternate CARD 2A, permit the user to control profile and spectral (optical) parameters for cloud models 1 through 10. These cards cannot be used with the ICLD=18 and ICLD=19 cirrus cloud models. CARD 2E1 is read if NCRALT ≥ 3, and CARD 2E2 is read if NCRSPC ≥ 2 on CARD 2A.

12.1 CARD 2E1

CARD 2E1:
(ZCLD(I, 0), CLD(I, 0), CLDICE(I, 0), RR(I, 0), I = 1, NCRALT)
FORMAT ((4F10.5)) (If ICLD = 1 - 10, NCRALT ≥ 3)

A series of these CARD 2E1 inputs is used to set up user-defined cloud/rain profiles, one card per layer boundary. The profile parameters being set are all arrays. If the alternate CARD 2A inputs CTHIK, CALT, CCOLWD and CCOLIP are all assigned negative values, MODTRAN® calculations are performed using the user-defined cloud/rain profiles exactly as input. However, the CARD 2A variables can be used to study the effect of changing the input cloud's thickness, altitude or column amounts.

ZCLD(I, 0) Altitude above ground level of layer boundary I for the user-defined cloud/rain profile [KM].

ZCLD(I, 0) can be 0., and this is necessary if it is raining on the ground. The model also allows the cloud to actually sit on the ground. The ZCLD must monotonically increase. Also, a fatal error will result if the highest cloud altitude, ZCLD(NCRA

CLD(I, 0) Liquid water droplet density at altitude ZCLD(I, 0) [g/m³].

The liquid water droplet densities cannot be negative. MODTRAN® models the densities as varying linearly between altitudes. The entire CLD array is scaled if the CARD 2A variable CCOLWD is assigned a non-negative value.

CLDICE(I, 0) Ice particle density at altitude ZCLD(I, 0) [g/m³]

The ice particle densities cannot be negative. MODTRAN® models the densities as varying linearly between altitudes. The entire CLDICE array is scaled if the CARD 2A variable CCOLIP is assigned a non-negative value.

RR(I, 0) Rain rate at altitude ZCLD(I, 0) [mm/hr]

The rain rates can not be negative. If a rain rate is entered through CARD 2 (variable RAINRT), that constant rain rate supersedes this parameter. Thus, if a user-defined rain rate profile is desired, variable RAINRT must not be positive.

12.2 CARD 2E2

CARD 2E2:
(WAVLEN(I), EXTC(6, I), ABSC(6, I), ASYM(6, I),
EXTC(7, I), ABSC(7, I), ASYM(7, I), I = 1, NCRSPC)
FORMAT (7F10.5) (If ICLD = 1 - 10, NCRSPC ≥ 2)

The CARD 2E2 variables are used to input user-defined cloud spectral data arrays. If the CARD 2A inputs CEXT, ASYMWD and ASYMIP all specify the use of defaults, MODTRAN® uses these spectral data exactly as input. However, if a positive vertical cloud extinction, CEXT, is input, the extinction and absorption coefficients curves are scaled. Similarly, if the CARD 2A asymmetry factors ASYMWD and ASYMIP have magnitude less than one, they supersede the ASYM(6, I) and ASYM(7, I) values, respectively.

WAVLEN(I) Wavelength [μm] I in the spectral grid.

The first wavelength, WAVLEN(1), can be as low as 0.0 μm, and the wavelengths must be entered in increasing order. If a positive vertical cloud extinction (CEXT) is input on CARD 2A, the reference wavelength
Optional CARDs 2E1 and 2E2

(CWAVLN or 0.55 µm) must be between WAVLEN(1) and WAVLEN(NCRSPC) inclusive, or else MODTRAN® execution will be terminated with an error message.

EXTC(6, I) Liquid water droplet extinction coefficient at wavelength WAVLEN(I)

\[\text{[km}^{-1} \text{m}^3 / \text{g]} \]

If a negative value is input, EXTC(6, I) is assigned the wavelength-interpolated extinction coefficient from the default data for cloud model ICLD.

ABSC(6, I) If positive: liquid water droplet absorption coefficient at wavelength WAVLEN(I) [km\(^{-1}\) m\(^3\) / g]

If negative: liquid water droplet scattering albedo, minus 1, at wavelength WAVLEN(I)

If the input value for ABSC(6, I) is less than -1 or if it exceeds the extinction coefficient at WAVLEN(I), ABSC(6, I) is calculated by first determining the default absorption to extinction ratio for cloud model ICLD, and then multiplying EXTC(6, I) by this ratio. This is equivalent to assuming that the liquid water model cloud single scatter albedo (T) should be used to determine the absorption coefficient. A negative value for ABSC(6, I) not less than -1 is taken to be the negative of one minus the liquid water droplet scattering albedo, -(1-T).

ASYM(6, I) Liquid water droplet Henyey-Greenstein scattering phase function asymmetry factor at wavelength WAVLEN(I)

These inputs are ignored if the magnitude of the CARD 2A input ASYMWD is less than one. If ASYM(6, I) is also not between -1. and 1., ASYM(6, I) is assigned the wavelength interpolated value from cloud model ICLD.

EXTC(7, I) Ice particle extinction coefficient at WAVLEN(I) [km\(^{-1}\) m\(^3\) / g]

If a negative value is input, EXTC(7, I) is assigned the wavelength interpolated extinction coefficient from the standard cirrus cloud model (ICLD = 18).

ABSC(7, I) If positive: Ice particle absorption coefficient at wavelength WAVLEN(I) [km\(^{-1}\) m\(^3\) / g]

If negative: Ice particle scattering albedo minus 1 at WAVLEN(I)

If the input value for ABSC(7, I) is less than -1 or if it exceeds the extinction coefficient at WAVLEN(I), ABSC(7, I) is calculated by first determining the default absorption to extinction ratio for the standard cirrus cloud model (ICLD = 18), and then multiplying EXTC(7, I) by this ratio. This is equivalent to assuming that the standard cirrus cloud model single scatter albedo (T) should be used to determine the absorption coefficient. A negative value for ABSC(7, I) not less than -1 is taken to be the negative of one minus the ice particle scattering albedo, -(1-T).

ASYM(7, I) Ice particle Henyey-Greenstein scattering phase function asymmetry factor at wavelength WAVLEN(I)

These inputs are ignored if the magnitude of the CARD 2A input ASYMIP is less than one. If ASYM(7, I) is also not between -1. and 1., ASYM(7, I) is assigned the wavelength interpolated value from the standard cirrus cloud model (ICLD = 18).

12.3 Alternate CARD 2E2

Alternate CARD 2E2: CFILE, CLDTYP, CIRTYP

FORMAT ((A256))

(If ICLD = 1 - 10, NCRSPC = 1)
Alternate CARD 2E2 contains 3 lines and is used to enter the name of auxiliary cloud spectral data file and a pair of cloud types. Nominally, the first cloud is a water cloud and the second is a cirrus cloud; however, one can assign any cloud type each of the pair.

- **CFILE** Cloud spectral data full path file name (maximum 256 characters).
- **CLDTYP** Water cloud type (maximum 256 characters).
- **CIRTYP** Ice cloud type (maximum 256 characters).

'DATA/Macke.dat' (Macke, 2001), a sample cloud spectral data file, is included in the MODTRAN® delivery. (The Macke data is supplied provided strictly as a sample file; its spectral resolution is more coarse than MODTRAN® internal cloud data.) The cloud spectral data files can contain data for any number of cloud types. The format for each cloud type is as follows:

Input 1 [FORMAT (A80)]:

- **CLDNAM** Water or cirrus cloud type name

Input 2 [FORMAT (*):

- **NCLDAN, NCLDLG, NCLDWV**
 - Number of angular grid points
 - Number of Legendre expansion coefficients minus one
 - Number of spectral points

Input 3 [FORMAT (A80)]:

- **INPSTR** Angular grid header (not used)

Input 4 [FORMAT (*):

- **(CLDANG(ICLDAN), ICLDAN = 1, NCLDAN)**
 - Scattering angles, from 0° to 180°

LOOP OVER "NCLDWV" INCREASING SPECTRAL WAVELENGTHS

Input 5 [FORMAT (*):

- **CLDWAV, CLDEXT, CLDABS**
 - Spectral wavelength (μm)
 - Spectral extinction cross-section over average particle mass at CLDWAV (km⁻¹ m³ / g)
 - Spectral absorption cross-section over average particle mass at CLDWAV (km⁻¹ m³ / g)

Input 6 [FORMAT (A80)]:

- **INPSTR** Phase function header (not used)

Input 7 [FORMAT (*):

- **(CLDPF(ICLDAN), ICLDAN = 1, NCLDAN)**
 - Scattering phase function as a function of angle at CLDWAV (sr⁻¹)

Input 8 [FORMAT (A80)]:

- **INPSTR** Legendre expansion coefficients header (not used)

Input 9 [FORMAT (*):

- **(CLDLEG(ICLDLG), ICLDLG = 0, NCLDLG)**
 - Legendre expansion coefficients over (2 ICLDLG + 1)

END LOOP OVER "NCLDWV" SPECTRAL WAVELENGTHS

The Alternative CARD 2E2 inputs CLDTYP and CIRTYP must each match a cloud type name, CLDNAM, from the CFILE data file. The comparison is case-sensitive, but leading blanks are ignored. Extensive checking is performed on the input data. The spectral scattering phase functions are assumed to be normalized to unity, and they are renormalized (and a warning is generated) if the normalization condition is not satisfied. The Legendre expansion coefficients (over 2N+1) are normalized such that the leading order coefficient is 1.
CARD 3 (Required)

13. CARD 3 (REQUIRED) – LINE-OF-SIGHT GEOMETRY

13.1 Standard CARD 3

CARD 3: H1, H2, ANGLE, RANGE, BETA, RO, LENN, PHI

FORMAT (6F10.0, I5, 5X, 2F10.0)

CARD 3 is used to define the geometrical path parameters for a given problem.

- H1 = Initial altitude (km)
- H2 = Final altitude (km) for ITYPE = 2.
- = Tangent height (km) for ITYPE = 3.

It is important to emphasize here that in the radiance mode of program execution (IEMSCT = 1, 2 or 4) H1, the initial altitude, always defines the position of the observer (or sensor). H1 and H2 cannot be used interchangeably as in the transmittance mode.

- ANGLE = Initial zenith angle (degrees) as measured from H1
- RANGE = Path length (km)
- BETA = Earth center angle subtended by H1 and H2 (degrees)
- RO = Radius of the earth (km) at the particular latitude that the calculation is to be performed

If RO is left blank, the program will use the mid-latitude value of 6371.23 km if MODEL is set equal to 7. Otherwise, the earth radius for the appropriate standard model atmosphere (specified by MODEL) will be used as shown in Table 11.

Table 11. Default Values of the Earth Radius for Different Model Atmospheres.

<table>
<thead>
<tr>
<th>Model</th>
<th>Model Atmosphere</th>
<th>Earth Radius, RO (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>User-defined (Horizontal Path)</td>
<td>Not used</td>
</tr>
<tr>
<td>1</td>
<td>Tropical</td>
<td>6378.39</td>
</tr>
<tr>
<td>2</td>
<td>Mid-latitude summer</td>
<td>6371.23</td>
</tr>
<tr>
<td>3</td>
<td>Mid-latitude winter</td>
<td>6371.23</td>
</tr>
<tr>
<td>4</td>
<td>Sub-arctic summer</td>
<td>6356.91</td>
</tr>
<tr>
<td>5</td>
<td>Sub-arctic winter</td>
<td>6356.91</td>
</tr>
<tr>
<td>6</td>
<td>U. S. Standard</td>
<td>6371.23</td>
</tr>
<tr>
<td>7</td>
<td>User-defined (Altitude dependent)</td>
<td>6371.23</td>
</tr>
<tr>
<td>8</td>
<td>User-defined (Pressure dependent)</td>
<td>6371.23</td>
</tr>
</tbody>
</table>

LENN = Switch to determine short and long paths for cases 2a and 2e as described below.

If LENN = 1, path will be "long", extending through the tangent height.

If LENN = 0 (default), path will be "short".

- PHI = Zenith angle at H2 (target or final altitude) towards H1 (sensor or initial altitude)

It is not necessary to specify every variable on CARD 3; only those that adequately describe the problem according to the parameter ITYPE, as described below (also see Table 12).

1. Horizontal Paths (ITYPE = 1)
 (a) specify H1, RANGE
 (b) If non-standard meteorological data are to be used, that is, if MODEL = 0 on CARD 1, then refer to the instructions for CARD 2C for a detailed explanation.

2. Slant Paths Between Two Arbitrary Altitudes (ITYPE = 2)
 (a) specify H1, H2, ANGLE, and LENN (LENN only if H2 < H1
 (b) specify H1, ANGLE, and RANGE
 (c) specify H1, H2, and RANGE
 (d) specify H1, H2, and BETA
 (e) specify H2, H1, PHI, and LENN (LENN only if H1 < H2)
 (f) specify H2, PHI, and RANGE
(3) Slant Paths to Space (ITYPE = 3)
 (a) specify H1 and ANGLE
 (b) specify H1 and H2 (for limb-viewing problem where H2 is the tangent height or minimum altitude of the path trajectory).
 (c) specify H2 and PHI (here H1 = space)

For ITYPE = 2, the following scheme is used to classify geometry inputs:
 If (PHI>0 and RANGE>0) THEN
 CASE 2f
 ELSE IF (PHI>0) THEN
 CASE 2e
 ELSE IF (BETA>0) THEN
 CASE 2d
 ELSE IF (RANGE>0 AND ANGLE>0) THEN
 CASE 2b
 ELSE IF (RANGE>0) THEN
 CASE 2c
 ELSE
 CASE 2a
 END IF

For ITYPE = 3, a similar scheme is used:
 IF (PHI>0) THEN
 CASE 3c
 ELSE IF (H2 = 0) THEN
 CASE 3a
 ELSE
 CASE 3b
 END IF

Table 12 lists the CARD 3 user options for the different types of atmospheric paths.

<table>
<thead>
<tr>
<th>Case</th>
<th>H1</th>
<th>H2</th>
<th>Angle</th>
<th>Range</th>
<th>BETA</th>
<th>LENN (Optional)</th>
<th>PHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>(*)</td>
<td></td>
</tr>
<tr>
<td>2b</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>(*)</td>
<td></td>
</tr>
<tr>
<td>2c</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>(*)</td>
<td>(*)</td>
</tr>
<tr>
<td>2d</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>(*)</td>
<td>(*)</td>
</tr>
<tr>
<td>2e</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>(*)</td>
<td>(*)</td>
</tr>
<tr>
<td>2f</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>(*)</td>
<td>(*)</td>
</tr>
<tr>
<td>3a</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>(*)</td>
<td>(*)</td>
</tr>
<tr>
<td>3b</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>(*)</td>
<td>(*)</td>
</tr>
<tr>
<td>3c</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>(*)</td>
<td>(*)</td>
</tr>
</tbody>
</table>

LENN is used only when H1 > H2 and Case 2a, or H2 > H1 and Case 2c. Otherwise, LENN is automatically set in the program.

* Required Inputs.

13.2 Alternate CARD 3 (TRANSMITTED SOLAR/LUNAR IRRADIANCE, IEMSCT = 3)

For calculating directly transmitted solar or lunar irradiance, an ITYPE = 3 path is assumed and CARD 3 has the following form:

ALT CARD 3: H1ALT, H2, ANGLE, IDAY, RO, ISOURC, ANGLEM
FORMAT (3F10.0, I5, 5X, F10.0, I5, F10.0)

H1 = Altitude of the observer.
H2 = Tangent height of path to sun or moon.
ANGLE = Apparent solar or lunar zenith angle at H1.
IDAY = Day of the year, used to correct for variation in the earth-to-sun distance.
RO = Radius of earth (default according to MODEL).
ISOURC = 0 Extra-terrestrial source is the sun.
 = 1 Extra-terrestrial source is the moon.
ANGLEM = Phase angle of the moon in degrees, defined here as the moon centered angle between the sun and the earth (required only if ISOURC = 1). Enter 0º for a full moon, 90º for a half-moon, and 180º for no moon.

Either H2 or ANGLE should be specified. If both are given as zero, then a vertical path (ANGLE = 0) is assumed. If both are greater than zero, the scheme for ITYPE = 3 is invoked. If IDAY is not specified, then the mean earth to sun distance is assumed.

If the apparent solar zenith angle is not known for a particular case, then the solar scattering option (IEMSCT = 2 or IEMSCT = 4) may be used along with, for instance, the observer's location, day of the year and time of day to determine the solar zenith angle (see instructions for CARDS 3A1 and 3A2). Note that the apparent solar zenith angle is zenith angle at H1 of the refracted path to the sun and is less than the astronomical solar zenith angle. The difference between the two angles is small for angles less than 80º.

14. OPTIONAL CARDS 3A1 AND 3A2
(SOLAR / LUNAR SCATTERING GEOMETRY)

These optional input cards control the specification of the solar/lunar scattering geometry (when IEMSCT = 2 or IEMSCT = 4 on CARD 1) and specification of the selection of the aerosol scattering phase function.

14.1 CARD 3A1

CARD 3A1: IPARM, IPH, IDAY, ISOURC
FORMAT (4I5) (If IEMSCT = 2 or 4)

IPARM = 0, 1, 2, 10, 11, 12 Controls the method of specifying the solar/lunar geometry on CARD 3A2.
IPH = 0 Selects spectrally independent Henyey-Greenstein aerosol phase function (see CARD 3A2).
 = 1 Selects user-supplied aerosol phase function (see CARD 3B).
 = 2 Selects Mie-generated internal database of aerosol phase functions for the MODTRAN® models.
IDAY = Day of the year from 1 to 365 used to specify the earth to sun distance and (if IPARM = 1) to specify the sun's location in the sky. (Default value is the mean earth to sun distance, IDAY = 93).
ISOURC = 0 Extraterrestrial source is the sun.
 = 1 Extraterrestrial source is the moon.

14.2 CARD 3A2

CARD 3A2: PARM1, PARM2, PARM3, PARM4, TIME, PSIPO, ANGLEM, G
FORMAT (8F10.0) (If IEMSCT = 2 or 4)

The definitions of PARM1, PARM2, PARM3, and PARM4 are determined by the value of IPARM on CARD 3A1 (see Table 13):

For IPARM = 0:

PARM1 = observer latitude (-90º to +90º)
PARM2 = observer longitude (0º to 360º west of Greenwich)
Optional CARDS 3A1 and 3A2

PARM3 = source (sun or moon) latitude
PARM4 = source (sun or moon) longitude

For IPARM = 1:

The parameters IDAY (CARD 3) and TIME must be specified. This option cannot be used with ISOURC = 1, which refers to the moon as the source.

PARM1 = observer latitude (-90° to +90°)
PARM2 = observer longitude (0° to 360°, west of Greenwich)
PARM3, PARM4 are not required

For IPARM = 2:

PARM1 = azimuth angle between the observer’s line-of-sight and the observer-to-sun path, measured from the line of sight, positive east of north, between -180° and 180°
PARM2 = the solar zenith angle at H1 (the observer)
PARM3, PARM4 are not required

Note that the calculated apparent solar zenith angle is the zenith angle at H1 of the refracted path to the sun and is less than the astronomical solar zenith angle. The difference between the two angles is negligible for angles less than 80 degrees.

For IPARM = 10:

PARM1 = latitude at H2
PARM2 = longitude at H2
PARM3 = source (sun or moon) latitude
PARM4 = source (sun or moon) longitude
PSIPO = true path azimuth from H2 to H1

For IPARM = 11:

PARM1 = latitude at H2
PARM2 = longitude at H2
TIME = Greenwich time
PSIPO = true path azimuth from H2 to H1

For IPARM = 12:

PARM1 = relative solar azimuth (degrees East of North) at H2
PARM2 = solar zenith (degrees) at H2

The remaining control parameters are:

TIME = Greenwich time in decimal hours, that is, 8:45 a.m. is 8.75, 5:20 p.m. is 17.33 etc. (used with IPARM = 1 or 11)
PSIPO = Path azimuth (degrees east of north, that is, due north is 0.0° due east is 90.0° etc. (used with IPARM = 0, 1, 10, or 11)
ANGLEM = Phase angle of the moon in degrees, defined here as the moon centered angle between the sun and the earth (required only if ISOURC = 1). Enter 0° for a full moon, 90° for a half-moon, and 180° for no moon.
G = Asymmetry factor for use with Henyey-Greenstein phase function (only used withIPH = 0); +1 for complete forward scattering, 0 for isotropic or symmetric scattering, and -1 for complete back scattering.
Optional CARDS 3A1 and 3A2

Table 13. CARD 3A2: Options for Different Choices of IPARM.

<table>
<thead>
<tr>
<th>IPARM</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARM1</td>
<td>Observer Latitude (-90° to +90°)</td>
<td>Observer Latitude (-90° to +90°)</td>
<td>Azimuth Angle Between Observer LOS & Observer to Sun Path</td>
<td>Latitude at H2 (-90° to +90°)</td>
<td>Latitude at H2 (-90° to +90°)</td>
<td>Relative Solar Azimuth at H2 (Degrees East of North)</td>
</tr>
<tr>
<td>PARM2</td>
<td>Observer Longitude (0° to 360° West of Greenwich)</td>
<td>Observer Longitude (0° to 360° West of Greenwich)</td>
<td>Solar Zenith Angle</td>
<td>Longitude at H2 (Degrees West of Greenwich)</td>
<td>Longitude at H2 (Degrees West of Greenwich)</td>
<td>Solar Zenith at H2 (Degrees)</td>
</tr>
<tr>
<td>PARM3</td>
<td>Source Latitude</td>
<td>-</td>
<td>-</td>
<td>Source Latitude</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PARM4</td>
<td>Source Longitude</td>
<td>-</td>
<td>-</td>
<td>Source Longitude</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TIME</td>
<td>-</td>
<td>Greenwich Time (Decimal Hours)</td>
<td>-</td>
<td>-</td>
<td>Greenwich Time (Decimal Hours)</td>
<td>-</td>
</tr>
<tr>
<td>PSIPO</td>
<td>True Path Azimuth Angle \textbf{from H1 to H2} (Degrees East of Due North)</td>
<td>True Path Azimuth Angle \textbf{from H1 to H2} (Degrees East of Due North)</td>
<td>-</td>
<td>True Path Azimuth Angle \textbf{from H2 to H1} (Degrees East of Due North)</td>
<td>True Path Azimuth Angle \textbf{from H2 to H1} (Degrees East of Due North)</td>
<td>-</td>
</tr>
<tr>
<td>ANGLEM (only if ISOURC = 1)</td>
<td>Lunar Phase Angle</td>
<td>-</td>
<td>Lunar Phase Angle</td>
<td>Lunar Phase Angle</td>
<td>-</td>
<td>Lunar Phase Angle</td>
</tr>
<tr>
<td>G (only if IPH = 0)</td>
<td>Asymmetry Parameter (-1 to +1) for use with Henyey-Greenstein Phase Function</td>
<td>Asymmetry Parameter (-1 to +1) for use with Henyey-Greenstein Phase Function</td>
<td>Asymmetry Parameter (-1 to +1) for use with Henyey-Greenstein Phase Function</td>
<td>Asymmetry Parameter (-1 to +1) for use with Henyey-Greenstein Phase Function</td>
<td>Asymmetry Parameter (-1 to +1) for use with Henyey-Greenstein Phase Function</td>
<td>Asymmetry Parameter (-1 to +1) for use with Henyey-Greenstein Phase Function</td>
</tr>
</tbody>
</table>

15. OPTIONAL CARDS 3B1, 3B2, 3C1-3C6

USER-DEFINED SCATTERING PHASE FUNCTIONS

These input cards specify user-defined phase functions when IPH = 1 (CARD 3A1). The following instructions apply when the ARUSS (CARD 2) is not set to ‘USS.’ Instructions for the MODTRAN®3.7 / MODTRAN®4 upgrade (ARUSS = ‘USS’) are provided in Appendix A.

15.1 CARD 3B1

CARD 3B1: NANGLS

(If IPH = 1 on CARD 3A1)

FORMAT (I5)

\[
\text{NANGLS} = \text{number of angles for the user-defined phase functions (50 maximum).}
\]

15.2 CARD 3B2

This card is repeated NANGLS times (1 to NANGLS).
CARD 3B2: (ANGF(I), F(1, I, 1), F(2, I, 1), F(3, I, 1), F(4, I, 1), I = 1, NANGLS)
FORMAT ((5F10.0))

ANGF(I) = scattering angle in decimal degrees (0.0° to 180.0°)
F(1, I, 1) = Unit normalized user-defined aerosol scattering phase function at ANGF(I), boundary layer (0 to 2 km default altitude region) [sr⁻¹].
F(2, I, 1) = Unit normalized user-defined aerosol scattering phase function at ANGF(I), troposphere (2 to 10 km default altitude region) [sr⁻¹].
F(3, I, 1) = Unit normalized user-defined aerosol scattering phase function at ANGF(I), stratosphere (10 to 30 km default altitude region) [sr⁻¹].
F(4, I, 1) = Unit normalized user-defined aerosol scattering phase function at ANGF(I), mesosphere (30 to 100 km default altitude region) [sr⁻¹].

The default altitude regions may be overridden by the parameters IHA1, ICLD1 or IVUL1 (CARD 2C3). The third index, which is 1 here, is introduced to make scattering phase functions wavelength dependent in MODTRAN® 3.7/4. There was no wavelength dependence prior to MODTRAN® 3.7.

15.3 Cards 3C1-3C6
These cards are used only with the MODTRAN® 4 upgrade; see Appendix A.

16. CARD 4 (REQUIRED) - SPECTRAL RANGE AND RESOLUTION
This card specifies the spectral range, frequency/wavelength increments, and spectral degradation of the outputs using a slit function. The default slit function, which is used when FLAGS(1:2) is blank, is triangular and defined on a discrete wavenumber grid. Setting FLAGS(1:4) accesses a set of alternate, continuous slit functions, which may be defined in various frequency or wavelength units. The outputs from the alternate slit functions are written to the files ‘tape7.scn’ [rootname.7sc] and ‘pltout.scn’ [rootname.psc]. When an optional slit function is selected [i.e., FLAGS(1:2) is not blank], tape6 [rootname tp6], tape7 [rootname tp7], tape8 [rootname tp8] and pltout [rootname.plt] files are all generated using the finest spectral resolution parameters [e.g., DV = 1 cm⁻¹ and FWHM = 1 cm⁻¹ if the 1 cm⁻¹ band model is selected].

CARD 4: V1, V2, DV, FWHM, YFLAG, XFLAG, DLIMIT, FLAGS, MLFLX, VRFRAC
FORMAT (4F10.0, 2A1, A8, A7, I3, F10.0)

V1 Initial frequency in wavenumber [cm⁻¹] or, alternatively, wavelength in units defined via FLAGS(1:1)
V2 Final frequency (or wavelength)
DV Frequency (or wavelength) increment used for spectral outputs. DV applies to all output files when using the default slit function, i.e., FLAGS(1:4) is blank. Otherwise, DV is applied to tape7.scn and pltout.scn, and the frequency increment for the other files (tape6, tape7, tape8 and pltout) is set to the calculation bin size. DV should not exceed FWHM for MODTRAN® runs to avoid under sampling in the output spectra. The recommended value for DV is FWHM / 2.

FWHM Slit function Full Width at Half Maximum. FLAGS(1:1) is the unit specifier. For the MODTRAN® band model, the maximum FWHM value is 50 times calculation bin size (1 cm⁻¹ or 15 cm⁻¹). The type of slit function is defined in FLAGS. A minimum of twice the bin size (2 cm⁻¹ for the standard 1 cm⁻¹ bin size) will insure proper sampling. No convolution is performed if FWHM equals the bin size and the default slit function is selected.

YFLAG = T Transmittances are output in pltout [rootname.plt] and pltout.scn [rootname.psc].
= R Radiances (instead of transmittances) are output in pltout [rootname.plt] and pltout.scn [rootname.psc]. If IEMSCT on CARD 1 is 3, the output is irradiance.

XFLAG controls the units for output files pltout and pltout.scn:
CARD 4 (Required)

XFLAG =
- **W** Spectral frequency in wavenumbers; line-of-sight radiances in W/str/cm²/cm⁻¹ or solar/lunar irradiances (IEMSCT=3) in W/cm²/cm⁻¹.
- **M** Spectral wavelength in microns; line-of-sight radiances in W/str/cm²/μm or solar/lunar irradiances (IEMSCT=3) in W/cm²/μm.
- **N** Spectral wavelength in nanometers; line-of-sight radiances in μW/str/cm²/nm or solar/lunar irradiances (IEMSCT=3) in μW/cm²/nm.

DLIMIT
Character string, up to 8 characters long. Used in pltout [rootname.plt] and pltout.scn [rootname.psc] to separate output from repeat (sequential) MODTRAN® runs.

FLAGS:
A string of seven characters, each defined below. If FLAGS(1:2) (the first two characters) are both blank, the default slit function is used and FLAGS(3:7) are ignored. Otherwise, an alternative slit function is used and the results are written to pltout.scn [rootname.psc] and tape7.scn [rootname.7sc].

FLAGS(1:1) defines the spectral units for input parameters V1, V2, DV and FWHM and output files pltout.scn [rootname.psc] and tape7.scn [rootname.7sc].

FLAGS(1:1) =
- blank Default spectral units in wavenumbers.
- **W** Spectral units in wavenumbers (radiance in W sr⁻¹ cm⁻²/cm⁻¹).
- **M** Spectral units in microns (radiance in W sr⁻¹ cm⁻²/μm).
- **N** Spectral units in nanometers (radiance in μW sr⁻¹ cm⁻²/nm).

FLAGS(2:2) =
- blank Default slit function (triangular).
- 1 or **T** Triangular slit function.
- 2 or **R** Rectangular slit function.
- 3 or **G** Gaussian slit function.
- 4 or **S** Sinc slit function.
- 5 or **C** Sinc² slit function.
- 6 or **H** Hamming slit function.
- 7 or **U** User-supplied function.

FLAGS(3:3) =
- blank or **A** FWHM is absolute.
- **R** FWHM is percent, i.e., FWHM = 100 dv/v=100 dλ/λ.

FLAGS(4:4) =
- blank Degrade only total radiance and transmittance.
- **A** Degrade all radiance and transmittance components.

FLAGS(5:5) =
- **S** Save non-degraded results for degrading later.
- blank Do not save current results.

FLAGS(6:6) =
- **R** Use saved results for degrading with the current slit function.
- blank Do not use saved results.

FLAGS(7:7) =
- **T** Write a "specflux" (or rootname.flx) file. Use no more than 80 characters per line in spectral flux table (i.e., include line feeds for each spectral point). These files can be quite large unless input MLFLX (see below) is used to limit the number of atmospheric levels (altitudes). The output data is spectrally gridded based on the input DV (CARD 4) value.
- **F** Write a "specflux" (or rootname.flx) file. For each spectral point, all flux values are on a single line (i.e., there are no line feeds). [A warning is warranted here: Some FORTRAN compilers limit the number of characters per line and setting FLAGS(7:7) to FALSE can cause this limit to be exceeded.
- blank Do not write a spectral flux table.

MLFLX
Number of atmospheric levels for which spectral fluxes [FLAGS(7:7) = 'T' or 'F'] are output, starting from the ground. The Top-Of-Atmosphere value is also output. If MLFLX is left blank or set to 0, spectral flux values are output at all atmospheric levels.
VRFRAC = blank Index of refraction profile for spherical refraction performed at central spectral frequency value for input bandpass.
> 0. Spectral frequency [cm\(^{-1}\)] at which index of refraction profile is calculated for spherical refraction.
< 0. No spherical refraction.

The scanning / slit functions as chosen by FLAGS(2:2) are defined below. All built-in scanning functions are symmetrical about the central spectral wavelength (\(\delta_0 = \lambda_0\)) or frequency (\(\delta_0 = \nu_0\)) [the unit is specified by FLAGS (1:1)]. Let \(\Delta\) be the FWHM along the frequency-axis:

Triangular

\[
F_{\delta,\Delta}(\delta) = \frac{1}{\Delta} \left(1 - \frac{|\delta - \delta_0|}{\Delta} \right) ; \quad |\delta - \delta_0| < \Delta \quad \Rightarrow 0 \quad \text{elsewhere}.
\]

Rectangular

\[
F_{\delta,\Delta}(\delta) = \frac{1}{\Delta} ; \quad |\delta - \delta_0| < \frac{\Delta}{2} \quad \Rightarrow 0 \quad \text{elsewhere}.
\]

Gaussian

\[
F_{\delta,\Delta}(\delta) = \frac{s}{\sqrt{\pi}} e^{-s^2(\delta - \delta_0)^2} ; \quad s = \frac{2\sqrt{\ln 2}}{\Delta}
\]

Sinc [\(\text{Sinc}(x) \equiv \sin (\pi x) / (\pi x)\)]

\[
F_{\delta,\Delta}(\delta) = s \text{Sinc} \left[(\delta - \delta_0) \right] ; \quad s = \frac{1.2067}{\Delta}
\]

Sinc\(^2\)

\[
F_{\delta,\Delta}(\delta) = s \text{Sinc}^2 \left[(\delta - \delta_0) \right] ; \quad s = \frac{0.88589}{\Delta}
\]

Hamming

\[
F_{\delta,\Delta}(\delta) = 0.230822 s \cdot 3.3235 \text{Sinc} \left[(\delta - \delta_0) \right] + Sinc \left[(\delta - \delta_0) - 1 \right] + Sinc \left[(\delta - \delta_0) + 1 \right] ; \quad s = \frac{1.8218}{\Delta}
\]

17. **OPTIONAL CARDS 4A, 4B1, 4B2, 4B3, 4L1 AND 4L2 (GROUND SURFACE CHARACTERIZATION)**

These optional input cards control the specification of the ground surface reflectance and emittance when the first non-blank character in \(\text{SURREF} (\text{CARD 1})\) is 'B' or 'L' (case insensitive).

17.1 **CARD 4A**

CARD 4A: \(\text{NSURF, ATEMP, DH2O, MLTRFL}\)
(If \(\text{SURREF} = \text{'BRDF'}\) or 'LAMBER')

FORMAT (I1, 2F9.0, A1)

CARD 4A inputs permit the modeling of adjacency effects by providing an option to decouple reflectance properties of the image-pixel (H2) surface and the ground surface used in the multiple scattering models. As an
example, this option allows one to model observations of a ground calibration tarp placed within a uniform background.

\[NSURF = 1 \]

Use the reflectance properties of the image pixel for the 'area-averaged' ground surface in the multiple scattering models. If the line-of-sight intersects the earth, the area-averaged surface temperature is set to TPTEMP (CARD 1); otherwise, this temperature is determined from the atmospheric temperature profile.

\[NSURF = 2 \]

Define reflectance properties for the area-averaged ground surface that are independent of those of the image pixel. Also specify an area-averaged ground surface temperature.

\[AATEMP > 0. \]

Area-averaged ground surface temperature if NSURF = 2 (not used if NSURF = 1).

\[\leq 0. \]

Set the area-averaged ground surface temperature to TPTEMP (CARD 1) if the line-of-sight intersects the earth; otherwise, determine it from the atmospheric temperature profile.

\[DH2O \geq 0. \]

Liquid water option, water layer thickness input [mm].

\[MLTRFL = F \]

Embedded surface moisture attenuation model.

\[MLTRFL = T \]

Surface water layer model.

CARDs 4B1, 4B2 and 4B3 (*SURREF = 'BRDF') or **CARD 4L2** (*SURREF = 'LAMBER') are included for the image-pixel surface first and then repeated for the area-averaged ground surface if NSURF equals 2.

17.2 CARD 4B1

CARD 4B1:
CBRDF
FORMAT (A80)

(If *SURREF = 'BRDF'*)

Character string *CBRDF* defines the name or number associated with a BRDF parameterization. Model names are case insensitive and leading blanks are ignored. Currently, there are 7 BRDF model options. The symmetric Walthall (Walthall, 1985) and symmetric Sinusoidal-Walthall are empirical models; the Hapke (Hapke, 1981; Hapke 1986), Rahman (Rahman et al., 1993), Roujean (Roujean et al., 1992), and Ross-Li (Wanner et al., 1995; Wanner et al., 1997; Lucht et al., 1999) are all semi-empirical models; and the Pinty-Verstraete (Pinty and Verstraete, 1991) is a physical model. Generally, the BRDFs are numerically integrated to define surface albedo, directional (hemispheric) reflectivities and emissivities, and azimuth moments (required for interfacing to the DISORT multiple scattering routines); negative values of the BRDF (which can result from angular extrapolation of the measurement-based parameterizations) are replaced by 0. For the simple empirical models, an option to use analytic representations of the reflectance quantities is also provided.

The model descriptions below are primarily intended just to define the BRDF parameters expected by MODTRAN$^\text{®}$; the user should consult the original references for further details.

\[CBRDF = '2' \text{ or 'Walthall'} \]

\[\rho(\theta_v, \theta_s, \Delta\phi) = P_1 + P_2 \theta_v \theta_s \cos(\Delta\phi) + P_3 \theta_v^2 \theta_s^2 + P_4 (\theta_v^2 + \theta_s^2) \]

where \(\theta_v \) is the view zenith angle from the surface to the sensor (H1); \(\theta_s \) is the source zenith angle at the surface; and \(\Delta\phi \) is the view-to-source relative azimuth angle from the surface.

\[CBRDF = '51' \text{ or 'Walthall(a)'} \]

Analytically evaluated Walthall reflectance integrals.
\[CBRDF = '11' \text{ or 'Sine-Walthall'} \]

\[
\rho(\theta_v, \theta_s, \Delta \phi) = P_1' + P_2' \sin \theta_v \sin \theta_s \cos(\Delta \phi)
+ P_3' \sin^2 \theta_v \sin^2 \theta_s + P_4' \left(\sin^2 \theta_v + \sin^2 \theta_s \right)
\]

The sinusoidal Walthall form was introduced to facilitate Monte-Carlo sampling of photon trajectories. The sinusoidal Walthall parameters can be approximated from the Walthall parameters by equating zenith integrations, term-by-term. This lead to the following relationships:

\[
P_1' = P_1 \\
P_2' = 9 \pi^2 P_2 / 64 \\
P_3' = \left(\pi^2 / 4 - 1 \right)^2 P_3 \\
P_4' = \left(\pi^2 / 4 - 1 \right) P_4
\]

\[CBRDF = '52' \text{ or 'Sine-Walthall(a)'} \]

Analytically evaluated sinusoidal Walthall reflectance integrals.

\[CBRDF = '4' \text{ or 'Hapke'} \]

\[
\rho(\theta_v, \theta_s, \Delta \phi) = \frac{P_1 / 4}{\cos \theta_v + \cos \theta_s} \left\{ 1 + \frac{P_4 / P_1}{B(\cos \phi, P_2, P_3)} \right\} P_{HG}(\cos \phi, P_2) + H(\cos \theta_v, P_1) H(\cos \theta_s, P_1) - 1
\]

where \[\cos \phi = \cos \theta_v \cos \theta_s + \sin \theta_v \sin \theta_s \cos \Delta \phi \]

\[
P_{HG}(\cos \phi, g) = \frac{1 - g^2}{(1 + g^2 + 2 g \cos \phi)^{3/2}}
\]

\[
B(\cos \phi, g, h) = \frac{1 - g}{(1 + g)^2} \left[1 + \frac{\sqrt{(1 + \cos \phi)/(1 - \cos \phi)}}{h} \right]
\]

\[
H(x, \omega) = \frac{1 + 2 x}{1 + 2 x \sqrt{1 - \omega}}
\]

Parameter \(P_1 = \omega \) is the average single scattering albedo of the particles making up the surface; parameter \(P_2 = g \) is the Henyey-Greenstein asymmetry factor ranging from \(-1\) (backward scattering) to \(+1\) (forward scattering); parameter \(P_3 = h \) controls the width of the opposition effect (hot spot); and parameter \(P_4 = S_h \) controls the magnitude of the opposition effect. [Note that the atmospheric radiative transport convention for the Henyey-Greenstein variables has been adopted in these equations. The BRDF community generally represents the asymmetry factor with the symbol \(\Theta \) (instead of \(g \)) and represents the scattering angle with the symbol \(\theta \) (instead of \(\phi \)) – a confusing state of affairs to say the least.]

\[CBRDF = '5' \text{ or 'Rahman'} \]

\[
\rho(\theta_v, \theta_s, \Delta \phi) = P_1 \left[\cos \theta_v \cos \theta_s (\cos \theta_v + \cos \theta_s) \right]^{n-1} P_{HG}(\cos \phi, P_2) \left[1 + \frac{1 - P_1}{1 + G(\theta_v, \theta_s, \Delta \phi)} \right]
\]

where \[G(\theta_v, \theta_s, \Delta \phi) = \sqrt{\tan^2 \theta_v + \tan^2 \theta_s - 2 \tan \theta_v \tan \theta_s \cos \Delta \phi} \]

Parameter \(P_1 = \rho_b \geq 0 \) characterizes the reflectance of the surface cover; parameter \(P_2 = g \) is the Henyey-Greenstein asymmetry factor ranging from \(-1\) (backward scattering) to \(+1\) (forward scattering); and parameter \(P_3 = k \) indicates the level of anisotropy of the surface.
CBRDF = '6' or 'Roujean'

\[\rho(\theta_v, \theta_s, \Delta \phi) = P_1 + P_2 K_{\text{geo}}(\theta_v, \theta_s, \Delta \phi) + \frac{4}{3 \pi} P_3 K_{\text{RT}}(\theta_v, \theta_s, \Delta \phi) \]

where

\[K_{\text{geo}} = \frac{(\pi - \Delta \phi) \cos \Delta \phi + \sin \Delta \phi}{2 \pi} \tan \theta_v \tan \theta_s - \tan \theta_v + \tan \theta_s + G(\theta_v, \theta_s, \Delta \phi) \]

\[K_{\text{RT}} = \frac{(\Delta \phi \cos \phi + \sin \phi)}{\cos \theta_v + \cos \theta_s} - \frac{\pi}{4} \]

Parameter \(P_1 = k_{\text{Lamb}} \) is the Lambertian scattering component and equal to the bidirectional reflectance for \(\theta_v = 0 \) and \(\theta_s = 0 \). Parameter \(P_2 = k_{\text{geo}} \) is the coefficient of the geometric scattering kernel \(K_{\text{geo}} \), and parameter \(P_3 = k_{\text{vol}} \) is the coefficient for the Ross-Thick volume scattering kernel \(K_{\text{RT}} \), so called for its assumption of a dense leaf canopy.

CBRDF = '10' or 'Pinty-Verstraete'

\[\rho(\theta_v, \theta_s, \Delta \phi) = \frac{P_1 / 4}{\cos \theta_v + \kappa_v(P_3) \left(\frac{\cos \theta_s}{\kappa_s(P_3)} \right)} \]

\[\left\{ T(\theta_v, \theta_s, \Delta \phi, \chi_1, r \Lambda) + H \left[\left(\frac{\cos \theta_v}{\kappa_v(P_3)} \right), P_1 \right] H \left[\left(\frac{\cos \theta_s}{\kappa_s(P_3)} \right), P_1 \right] - 1 \right\} \]

where

\[T(\theta_v, \theta_s, \Delta \phi, \chi_1, r \Lambda) = 1 + \frac{1}{1 + \left(\frac{4 - 16}{3 \pi} \right) \cos \theta_v \left(\frac{G(\theta_v, \theta_s, \Delta \phi)}{r \Lambda} \right) \kappa_s(\chi_1)} \]

\[\kappa_s(\chi_1) = 1 - \Psi(\chi_1) + 1.754 \Psi(\chi_1) \cos \chi_1 \]

\[\Psi(\chi_1) = (1.2666 + 0.66 \chi_1) \chi_1 ; \quad x = \nu \text{ or } s \]

Parameter \(P_1 = \omega \) is the average single scattering albedo of the particles making up the surface; parameter \(P_2 = g \) is the Henyey-Greenstein asymmetry factor ranging from -1 (backward scattering) to +1 (forward scattering); parameter \(P_3 = \chi_2 \) is most negative (-0.4) for an erectophile canopy (mostly vertical scatterers), 0 for a canopy with a uniform distribution (equal probability for all scatterer orientations), and most positive (0.6) for a planophile canopy (mostly horizontal scatterers); and parameter \(P_4 = r \Lambda \) is the product of \(r \), the radius of the Sun flecks on the inclined scatterers, and \(\Lambda \), the scatterer area density of the canopy (expressed as the scatterer surface per unit bulk area). Note that the functions describing the orientation distribution of the scatterers for the illumination and viewing angles, \(\kappa_v \) and \(\kappa_s \), are defined here as twice their normal value to be consistent with the definition of multiple scattering functions, \(H(x, \omega) \).
OPTIONAL CARDS 4A, 4B1, 4B2, 4B3, 4L1 and 4L2

\[
\text{CBRDF} = \text{'12' or 'Ross-Li'}
\]

\[
\rho(\theta_s, \theta_i, \Delta \phi) = P_1 + P_2 K_{LSR}(\theta_s, \theta_i, \Delta \phi, P_4, P_5) + P_3 K_{RT}(\theta_s, \theta_i, \Delta \phi)
\]

where

\[
K_{LSR} = \frac{1 + \sec \theta'_i \sec \theta'_s + \tan \theta'_i \cos \Delta \phi}{2} + \left(\frac{t - \sin t \cos t}{\pi} - 1 \right) \sec \theta'_i + \sec \theta'_s
\]

\[
\cos^2 t = \min \left\{ \left(\frac{P_4}{\sec \theta'_i + \sec \theta'_s} \right)^2 \left[G(\theta'_i, \theta'_s, \Delta \phi)^2 + \tan \theta'_i \tan \theta'_s \sin \Delta \phi \right], 1 \right\}
\]

\[
\tan \theta'_x = P_5 \tan \theta'_s; \quad x = v \text{ or } s
\]

Parameter \(P_1 = k_{\text{Lamb}} \) is the Lambertian scattering component and equal to the bidirectional reflectance for \(\theta_i = 0 \) and \(\theta_s = 0 \). Parameter \(P_2 = k_{\text{geo}} \) is the coefficient of the LiSparse-Reciprocal geometric scattering kernel \(K_{LSR} \), derived for a sparse ensemble of surface objects casting shadows on a Lambertian background. Parameter \(P_3 = k_{\text{vol}} \) is the coefficient for the RossThick volume scattering kernel \(K_{RT} \), so called for its assumption of a dense leaf canopy. The two constants, dimensionless crown relative height \((P_4 = h / b) \) and shape \((P_5 = b / r) \) parameters have been empirically obtained and should not be interpreted too literally. The LiSparse-Reciprocal kernel has only been validated for \(h / b = 2 \) and \(b / r = 1 \). These are the recommended constant input values for parameters \(P_4 \) and \(P_5 \), and the values that will be used to invert the angular radiance data from NASA’s Moderate Resolution Imaging Spectroradiometer - MODIS (Justice et al., 1998).

17.3 **CARD 4B2**

CARD 4B2: \textit{NWVSRF, SURFZN, SURFAZ FORMAT (*)} \hfill (If \textit{SURREF} = 'BRDF')

CARD 4B2 defines the number of BRDF spectral grid points and the direction of the surface normal. Currently, the surface normal is required to point upward; the surface normal inputs are included in anticipation of a future upgrade allowing modeling of a graded ground surface and/or arbitrarily oriented image facets.

\textbf{NWVSRF} Number of BRDF spectral grid points. If NWVSRF is set to 1, the BRDF will be spectrally independent. The maximum allowed value for NWVSRF is defined by the parameter MWVSRF in the PARAM.LST file. If necessary, the user can increase MWVSRF and then recompile MODTRAN. Upon delivery of MODTRAN, MWVSRF is set to 50.

\textbf{SURFZN} The zenith angle [degrees] of the surface normal. Currently, only a value of 0 is supported.

\textbf{SURFAZ} The true azimuth angle of the image pixel surface normal [0 for North, 90 for East, 180 for South, and 270 for East]. This value is currently not used.

17.4 **CARD 4B3**

CARD 4B3: \textit{WVSURF, (PARAMS(I), I = 1, NPARAM) FORMAT (*)} \hfill (If \textit{SURREF} = 'BRDF')

CARD 4B3 defines the BRDF parameters on the input spectral grid and is repeated \textit{NWVSRF} times.

\textbf{WVSURF} BRDF spectral wavelength [\(\mu \text{m} \)]. The wavelength grid must be input in increasing wavelength order.
PARAMS(I) BRDF parameters at wavelength WVSURF. The Rahman and Roujean BRDF models are 3-parameter models. Ross-Li is also a 3 parameter model, although an additional two constants [PARAMS(4) = 2. and PARAMS(5) = 1.] are required as inputs (See Section 17.2 for further details). All other current BRDF models require 4 parameters. The parameters must be entered in the order specified by the model equations of Section 17.2, i.e., P_1, P_2, \ldots

17.5 CARD 4L1

CARD 4L1: SALBFL
FORMAT (A256) (If SURREF = 'LAMBER')

CARD 4L1 defines the name of the input data file being used to define the spectral albedo. Leading blanks are ignored.

SALBFL Name of the spectral albedo data file. The default spectral albedo file, 'DATA/spec_alb.dat' may be used or a user-supplied file. If a user-supplied file is specified, it must conform to the format described in the default file.

17.6 CARD 4L2

CARD 4L2: CSALB
FORMAT (A80) (If SURREF = 'LAMBER')

CARD 4L2 defines the number or name associated with a spectral albedo curve from the SALBFL file. As noted above, input of CARD 4L2 is repeated NSURF times.

CSALB Number or name of a spectral albedo curve in the SALBFL file. There are currently 13 spectral albedo curves available in the default spectral albedo file 'DATA/spec_alb.dat'. Leading blanks are ignored. The 13 (case-insensitive) CSALB inputs for 'DATA/spec_alb.dat' are:

- '1' or 'snow cover'
- '2' or 'forest'
- '3' or 'farm'
- '4' or 'desert'
- '5' or 'ocean'
- '6' or 'cloud deck'
- '7' or 'old grass'
- '8' or 'decayed grass'
- '9' or 'maple leaf'
- '10' or 'burnt grass'
- '21' or 'constant5%'
- '22' or 'constant50%'
- '31' or 'CCM3 Sea ice'

18. CARD 5 (REQUIRED) – REPEAT RUN OPTION

CARD 5: IRPT
FORMAT (I5)

Non-zero values of the control parameter IRPT cause MODTRAN® to repeat program execution, so that a series of problems can be run with a single submission of tape5. A message is written to standard output indicating a repeat run is beginning if a negative value of IRPT is input.
\textit{CARD 5 (Required)}

\begin{itemize}
\item IRPT = 0 or blank \hspace{1cm} \text{STOP program.}
\item IRPT = ±1 \hspace{1cm} \text{Read full set of new data cards followed by an additional \textbf{CARD 5}.}
\item IRPT = ±3 \hspace{1cm} \text{Read new line-of-sight (and solar/lunar) geometry (\textbf{CARD 3, CARD 3A, \ldots}) and surface (\textbf{CARD 4A, \ldots}) inputs followed by an additional \textbf{CARD 5}.}
\item IRPT = ±4 \hspace{1cm} \text{Read new spectral and surface (\textbf{CARD 4, \ldots}) inputs followed by an additional \textbf{CARD 5}.}
\end{itemize}

The previous calculation atmospheric profiles are reused when the IRPT = ±3 or IRPT = ±4 options are selected. In these cases, the specific sequences of CARD inputs are as follows:

\textbf{If IRPT = ±3}

\begin{itemize}
\item \textbf{CARD 5:} \hspace{1cm} \text{IRPT = ±3}
\item \textbf{CARD 3:} \hspace{1cm} H1, H2, ANGLE, RANGE, BETA, RO, LENN, PHI \hspace{1cm} (If IEMSCT < 3)
\item \textbf{CARD 3:} \hspace{1cm} H1, H2, ANGLE, IDAY, RO, ISOURC, ANGLEM \hspace{1cm} (If IEMSCT = 3)
\item \textbf{CARD 3A1:} \hspace{1cm} IPARM, IPH, IDAY, ISOURC \hspace{1cm} (If IEMSCT = 2 or 4)
\item \textbf{CARD 3A2:} \hspace{1cm} PARM1, PARM2, PARM3, PARM4, TIME, PSIPO, ANGLEM, G \hspace{1cm} (If IEMSCT = 2 or 4)
\item \textbf{CARD 3B1:} \hspace{1cm} NANGLS, NWLF \hspace{1cm} (If IPH = 1)
\item \textbf{CARD 3B2:} \hspace{1cm} (ANGF(I), F(1, I, 1), F(2, I, 1), F(3, I, 1), F(4, I, 1), I = 1, NANGLS), \hspace{1cm} (If IPH = 1 and NWLF = 0)
\item \textbf{CARD 3C1:} \hspace{1cm} (ANGF(I), I = 1, NANGLS) \hspace{1cm} (If IPH = 1 and NWLF > 0)
\item \textbf{CARD 3C2:} \hspace{1cm} (WLF(J), J = 1, NWLF) \hspace{1cm} (If IPH = 1 and NWLF > 0)
\item \textbf{CARD 3C3:} \hspace{1cm} (F(1, I, J), J = 1, NWLF) \hspace{1cm} (If IPH = 1 and NWLF > 0)
\item \textbf{CARD 3C4:} \hspace{1cm} (F(2, I, J), J = 1, NWLF) \hspace{1cm} (If IPH = 1 and NWLF > 0)
\item \textbf{CARD 3C5:} \hspace{1cm} (F(3, I, J), J = 1, NWLF) \hspace{1cm} (If IPH = 1 and NWLF > 0)
\item \textbf{CARD 3C6:} \hspace{1cm} (F(4, I, J), J = 1, NWLF) \hspace{1cm} (If IPH = 1 and NWLF > 0)
\item \textbf{CARD 4A:} \hspace{1cm} NSURF, AATEMP \hspace{1cm} (If SURREF = 'BRDF' or 'LAMBER')
\item \textbf{CARD 4B1:} \hspace{1cm} CBRDF \hspace{1cm} (If SURREF = 'BRDF')
\item \textbf{CARD 4B1:} \hspace{1cm} NWVSRF, SURFZN, SURFAZ \hspace{1cm} (If SURREF = 'BRDF')
\item \textbf{CARD 4B3:} \hspace{1cm} WVSURF, (PARAMS(I), I = 1, NPARAM) \hspace{1cm} (If SURREF = 'BRDF')
\item \textbf{CARD 4L1:} \hspace{1cm} SALBFL \hspace{1cm} (If SURREF = 'LAMBER')
\item \textbf{CARD 4L2:} \hspace{1cm} CSALB \hspace{1cm} (If SURREF = 'LAMBER')
\item \textbf{CARD 5} \hspace{1cm} IRPT = 0
\end{itemize}

\textbf{If IRPT = ±4}

\begin{itemize}
\item \textbf{CARD 5:} \hspace{1cm} IRPT = ±4
\item \textbf{CARD 4} \hspace{1cm} V1, V2, DV, FWHM, YFLAG, XFLAG, DLIMIT, FLAGS
\item \textbf{CARD 4A:} \hspace{1cm} NSURF, AATEMP \hspace{1cm} (If SURREF = 'BRDF' or 'LAMBER')
\item \textbf{CARD 4B1:} \hspace{1cm} CBRDF \hspace{1cm} (If SURREF = 'BRDF')
\item \textbf{CARD 4B2:} \hspace{1cm} NWVSRF, SURFZN, SURFAZ \hspace{1cm} (If SURREF = 'BRDF')
\item \textbf{CARD 4B3:} \hspace{1cm} WVSURF, (PARAMS(I), I = 1, NPARAM) \hspace{1cm} (If SURREF = 'BRDF')
\item \textbf{CARD 4L1:} \hspace{1cm} SALBFL \hspace{1cm} (If SURREF = 'LAMBER')
\item \textbf{CARD 4L2:} \hspace{1cm} CSALB \hspace{1cm} (If SURREF = 'LAMBER')
\item \textbf{CARD 5} \hspace{1cm} IRPT = 0
\end{itemize}

The final IRPT card should always be blank or contain a value of zero. Table 14 summarizes the user-control parameters on \textbf{CARD 5}. IRPT can be −1, −3, or −4, which are same as 1, 3, or 4, respectively with the exception that a message is printed to the screen each time a repeat run begins. The user is thus able more easily to follow the progress of an extensive series of calculations.
Table 14. MODTRAN® CARD 5 Input Parameter: IRPT.

<table>
<thead>
<tr>
<th>COLUMNS 1-5</th>
<th>IRPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>End of program.</td>
</tr>
<tr>
<td>±1</td>
<td>Read full set of new CARDs.</td>
</tr>
<tr>
<td>±2</td>
<td>Not used (same as 0).</td>
</tr>
<tr>
<td>±3</td>
<td>Read new CARDs 3 and 5 plus optional CARDs.</td>
</tr>
<tr>
<td>±4</td>
<td>Read new CARDs 4 and 5 plus optional CARDs.</td>
</tr>
</tbody>
</table>

19. DEDICATION AND ACKNOWLEDGEMENTS

We dedicate this report to John Selby and the late Frank Kneizys whose pioneering work led to the development of the original LOWTRAN programs and formed the basis for the MODTRAN® model. MODTRAN®5 is just the latest in the series of AFRL atmospheric radiative transport band models. We also acknowledge the contributions of other early developers, from the AF Geophysics Laboratory: S.A. Clough, L.W. Abreu, and W.O. Gallery; and from Spectral Sciences, Inc.: D.C. Robertson and L.S. Bernstein.

Specifically for MODTRAN®4, significant contributions have been made by the developers of the DISORT model, K.H. Stamnes (University of Alaska, Fairbanks, AK), N.F. Larsen (Raytheon ITSS, Lanham, MD), W. Wiscombe (NASA Goddard Space Flight Center, Greenbelt, MD), and S.-C. Tsay (NASA Goddard Space Flight Center, Greenbelt, MD). J. Qi (Michigan State University, East Lansing, MI), C.B. Schaaf (Boston University, Boston, MA), and N. Goldstein (Spectral Sciences, Inc., Burlington, MA) provided assistance and direction in the development of the MODTRAN®4 BRDF model. H. Dothe (Spectral Sciences, Inc., Burlington, MA) helped develop the 15 cm-1 MODTRAN® band model and data file.

Contributions to earlier versions of the MODTRAN® model include the 2-stream multiple scattering algorithm (R.G. Isaacs and R.D. Worsham, Atmospheric and Environmental Research, Inc., Cambridge, MA) and the Navy Oceanic Vertical Aerosol Model (NOVAM) (led by S.G. Gathman Space and Naval Warfare Center, SPAWAR). Modifications to the solar irradiance options were suggested by R. Kurucz and K. Chance (Smithsonian Observatory, Harvard University), M.E. VanHoosier (Naval Research Laboratory), A. Hall (AFRL), and G. Thuillier (Service d'Aeronomie du CNRS, France), among others. K. Minschwaner (New Mexico State Technical College) provided suggestions for an enhanced integration for the single scattered radiance implementation.

This work was funded by AFRL under contracts F19628-91-C-0145 and F19628-98-0050.

20. REFERENCES

Dutton, E.G., Climate Monitoring & Diagnostics Laboratory, NOAA (private communication to Gail P. Anderson, 1999).

Dutton, E.G., Climate Monitoring & Diagnostics Laboratory, NOAA (private communication to Gail P. Anderson, 1999).

References

APPENDIX A: MODTRAN® USER-SUPPLIED AEROSOL UPGRADES

This section contains instructions for the MODTRAN® options that provide flexible wavelength-dependent specification of extinction, absorption, and asymmetry parameters and phase functions. These upgrades, used in conjunction with a stand-alone Mie code, allow aerosols to be modeled more realistically. The spectral grid can be arbitrary (i.e., not limited to the default 47 fixed spectral points of Table 10) and different for each aerosol. The scattering phase function can have wavelength dependence in addition to angular dependence. There can be up to four user-defined aerosol profiles. In addition, utility programs are provided which allow MODTRAN® to be run with the Navy Oceanic Vertical Aerosol Model (NOVAM).

A.1 User-Supplied Aerosol Spectral Parameters (ARUSS Option)

Previous to this upgrade, the user could provide extinction, absorption and asymmetry parameters only for user-supplied aerosol profiles (IHAZE = 7 or ICLD = 11) which are in fact the extinction values at 0.55 µm. Furthermore, the spectral parameters were limited to the 47 wavelengths of Table 10. This was done using CARDS 2D, 2D1 and 2D2 with IHAZE = 7 or ICLD = 11.
Appendix A: User-Supplied Aerosol Parameters

There have been two generalizations to user-supplied aerosol spectral data:

- Now the user can supply spectral data on an arbitrary grid for IHAZE = 7 or ICLD = 11. For this ARUSS (in CARD 2) needs to be set to the three-character string 'USS'. Additionally, the meaning of the IREG(N), N = 1, 2, 3 and 4, variables in CARD 2D has been generalized; when > 1, they now specify the number of wavelengths at which data is supplied.

- The user can also supply spectral data for the default aerosol profiles, as selected by IHAZE, ISEASN and IVULCN (IHAZE=7 and ICLD=11), instead of relying on the sparse built-in databases of MODTRAN®. Setting ARUSS to the character string 'USS' also does this. The USS option can also be used in conjunction with the APLUS option.

The relevant CARDS for these upgrades are CARD 2D, 2D1 and 2D2 as described below.

Note that the extinction and absorption coefficients in MODTRAN® are dimensionless because they are defined by dividing the actual values by the extinction at 0.55 µm:

\[
K_{\text{EXT}}(\lambda) = \frac{\text{EXT}(\lambda)}{\text{EXT}(0.55 \mu m)} \quad K_{\text{ABS}}(\lambda) = \frac{\text{ABS}(\lambda)}{\text{EXT}(0.55 \mu m)}
\]

CARD 2D: IREG(1), IREG(2), IREG(3), IREG(4) FORMAT(4I5) (If IHAZE = 7 or ICLD = 11 or ARUSS = 'USS')

CARD 2D1: AWCCON, AERNAM FORMAT(F10.0, 18A4) (CARDs 2D1 and 2D2 needed if IREG(1) > 0)

CARD 2D2: (VARSPC(1, I), EXTC(1, I), ABSC(1, I), ASYM(1, I), I = 1, IREG(1) or 47) FORMAT(3(F6.2, 2F7.5, F6.4)) (If ARUSS is not set)

CARD 2D1: AWCCON, AERNAM FORMAT(F10.0, 18A4) (If IREG(2) > 0)

CARD 2D2: (VARSPC(2, I), EXTC(2, I), ABSC(2, I), ASYM(2, I), I = 1, IREG(2) or 47) FORMAT(3(F6.2, 2F7.5, F6.4)) (If ARUSS is not set)

CARD 2D1: AWCCON, AERNAM FORMAT(F10.0, 18A4) (If IREG(3) > 0)

CARD 2D2: (VARSPC(3, I), EXTC(3, I), ABSC(3, I), ASYM(3, I), I = 1, IREG(3) or 47) FORMAT(3(F6.2, 2F7.5, F6.4)) (If ARUSS is not set)

CARD 2D1: AWCCON, AERNAM FORMAT(F10.0, 18A4) (If IREG(4) > 0)

CARD 2D2: (VARSPC(4, I), EXTC(4, I), ABSC(4, I), ASYM(4, I), I = 1, IREG(4) or 47) FORMAT(3(F6.2, 2F7.5, F6.4)) (If ARUSS is not set)

CARDs 2D1 and 2D2 are repeated up to four times, one pair for each aerosol. However, the two cards for aerosol i are needed if and only if IREG(N) > 0. The only differences between the present and prior forms are in CARD 2D and CARD 2D2. Now CARD 2D has four integer values denoting the number of spectral grid points for each of the four aerosols; IREG(N) = number of spectral grid points for aerosol N. CARD 2D2 is the list of the spectral parameters: VARSPC is the wavelength in microns, EXTC is the extinction coefficient, ABSC is the absorption coefficient and ASYM is the asymmetry parameter. Previously the IREG values were all 1 or 0. A value of 1 meant that spectral parameters had to be read using CARD 2D2 and the number of spectral points were fixed at 47. (Actually the VARSPC array was not used at all because the 47 wavelengths were already fixed in the code at an earlier point.) Now, VARSPC is a 2D-array; the first dimension identifies the aerosol and the second is the wavelength index. The user must input VARSPC values in microns and in increasing order; that is, the first VARSPC must be the lowest wavelength. The VARSPC array may differ for each aerosol.
The meaning of IREG is summarized and further clarified below:

<table>
<thead>
<tr>
<th>VALUE OF ARUSS</th>
<th>VALUE AND MEANING OF IREG(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARUSS = 'USS'</td>
<td>IREG(N) = 0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ARUSS = blank</td>
<td>IREG(N) = 0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AWCCON is a conversion factor from extinction coefficient (km\(^{-1}\)) to equivalent liquid water content (g/m\(^3\)), ONLY USED FOR MICROWAVE (\(\lambda > 287.9\mu m, \nu < 37.4\) cm\(^{-1}\)) FOG EXTINCTION! It is numerically equal to the equivalent liquid water content corresponding to an extinction coefficient of 1.0 km\(^{-1}\), at a wavelength of 0.55 \(\mu m\). AWCCON has units of (km g m\(^{-3}\)).

The AWCCON values are conversion factors from extinction coefficient (km\(^{-1}\)) to equivalent liquid water content (g/m\(^3\)), ONLY USED FOR MICROWAVE (\(\lambda > 287.9\mu m, \nu < 37.4\) cm\(^{-1}\)) FOG EXTINCTION!

A.2 User-Supplied Aerosol Phase Functions (CARDs 3B1, 3B2, 3C1-3C6)

The user-supplied phase function has no wavelength dependence whereas a positive integer means that the phase function will be specified on a wavelength grid with that many points. The phase function array, F, now has three indices: aerosol index, angle index and the wavelength index.

If NWLF = 0 or blank, CARD 3B2 is used as before:

CARD 3B2: (ANGF(I), F(1, I, 1), F(2, I, 1), F(3, I, 1), F(4, I, 1), I = 1, NANGLS)

FORMAT(5F10.0) (If IPH = 1, NWLF = 0)

If NWLF > 0, CARD 3B2 is replaced by CARDs 3C1-3C6:

CARD 3C1: (ANGF(I), I = 1, NANGLS)

FORMAT(8(1X, F9.0)) (Read angles [0\(^{\circ}\) to 180\(^{\circ}\)] if IPH = 1, NWLF > 0)

CARD 3C2: (WLF(J), J = 1, NWLF)

FORMAT(8(1X, F9.0)) (Read wavelengths [\(\mu m\)] if IPH = 1, NWLF > 0)

CARD 3C3: (F(1, I, J), J = 1, NWLF) (Read phase function for aerosol 1 if IPH = 1

FORMAT(8(1X, F9.0)) and NWLF > 0; repeat NANGLS times)

CARD 3C4: (F(2, I, J), J = 1, NWLF) (Read for aerosol 2; repeat NANGLS times)

CARD 3C5: (F(3, I, J), J = 1, NWLF) (Read for aerosol 3; repeat NANGLS times)

CARD 3C6: (F(4, I, J), J = 1, NWLF)

FORMAT(8(1X, F9.0)) (Read for aerosol 4; repeat NANGLS times)

In this upgrade, the wavelength grid and the angle grid is the same for each of the four aerosols. Furthermore, the phase function must be supplied either for all aerosols or no aerosol. For each, all CARDs 3C3 are supplied first, then all CARDs 3C4, all 3C5, and finally all 3C6; the CARDs for the subsequent aerosol then follow.

A.3 User-Supplied Aerosol Profiles (CARD 2C3)

Prior to these upgrades, the user could only input one aerosol profile by using the user-selected profile option, MODEL = 7, IRD2 = 1. Now the user can have up to four user-defined aerosol profiles with MODEL = 7, IRD2 = 2. (MODEL = 0 is not allowed.)
This upgrade cannot be used with the A+ upgrade option; the APLUS option is ignored if MODEL = 7 and IRD2 = 2 or 1. The A+ option allows the built-in aerosols to be shifted around, whereas this upgrade allows the user to input aerosol profiles (up to all four) with greater control. The four profiles can only be input as altitude-dependent aerosol extinction coefficients at 0.55 µm. Previously the single user-defined aerosol profile could be either the altitude-dependent extinction coefficient or the altitude-dependent liquid water content (in g/m³). For backward compatibility the previous option for the single aerosol profile is maintained.

This upgrade is achieved by a generalization of CARD 2C3. For this purpose AHAZE was changed from a scalar variable to an array, AHAZE(4). The two versions of CARD 2C3 are shown below:

CARD 2C3:
AHAZE(1), EQLW CZ, RRATZ, IHA1, ICLD1, IVUL1, ISEA1, ICHR
FORMAT(10X, 3F10.0, 5I5)
(If IRD2 = 1)

CARD 2C3:
AHAZE(1), RRATZ, AHAZE(2), AHAZE(3), AHAZE(4)
FORMAT(10X, F10.0, 10X, 4F10.0)
(If IRD2 = 2)

The variables missing in the newer version of CARD 2C3 (IRD2 = 2) are not needed for specifying aerosols. However, ICLD1 (IRD2 = 1) allows the user to specify cloud profiles in addition to aerosol profiles with the restriction that a cloud extinction and an aerosol extinction cannot be specified at the same altitude using CARD 2C3. The price of the current upgrade is the elimination of the cloud extinction at an altitude for having the luxury of inputting up to four aerosol extinctions. However, user-specified cloud profiles may be entered using CARD 2E1.

A.4 Example tape5 File

Here is an example of a tape5 that has both the A+ and ARUSS aerosol options. Notice the CARD 2A+ following CARD 2 (which contains 'A+' as its first two characters). Also note that user-supplied spectral data are used for a built-in aerosol profile.

```
M   4    3    0    1    0    0    0    0    0    0    1    0   -1   .0500
F   0F   0
A+  1    1USS 0    0    0    0    0.000    0.000    0.000    0.000
     0.0    4.0   1.0  (CARD 2A+)
                              (CARD 2A+)
40    0    0    0  (CARD 2D)
                   0.000e+00region #1 desert summer aerosol
     .20  1.0167  .43495  .8797  .30  1.0167  .43495  .8797  .34  1.0194  .44735  .8857
     .55  1.0167  .43495  .8797  .69  1.0370  .16743  .7666  1.06  1.1149  .03721  .7143
     1.54  1.2084  .04348  .7689  2.00  1.0471  .04212  .8557  2.25  .90502  .03577  .9247
     2.50  .77022  .9116  2.70  .66704  .8821  .9281  3.00  .62886  .11551  .8706  3.40  .60842  .10247  .8524
     3.39  .81244  .12218  .8623  3.75  .78888  .10013  .8493  4.50  .67765  .10404  .8524
      5.00  .60842  .10247  .8524  5.50  .51168  .11551  .8706  6.00  .36239  .15033  .9038
     6.20  .33716  .15081  .9065  6.50  .31172  .15288  .9079  7.20  .67035  .20663  .7748
     7.90  .82524  .12992  .8881  8.20  .30108  .18832  .8855  8.70  .60029  .25834  .7717
     9.00  .82965  .33903  .6736  9.20  .83153  .34675  .6684  10.00  .80838  .34487  .6558
    10.59  .69210  .27596  .6814  11.00  .66931  .25000  .6748  11.50  .62531  .23290  .6805
    12.50  .52648  .20100  .7023  14.80  .49395  .19037  .6708  15.00  .48791  .18807  .6700
    16.40  .46622  .17702  .6539  17.20  .46122  .17202  .6408  18.50  .44203  .18161  .6366
    21.30  .48520  .26897  .5959  25.00  .45705  .22352  .5460  30.00  .40179  .25847  .5494
   40.00  .36801  .23947  .4688  
     4.90000   180.00000  
     2500   2600   25   5
```

APPENDIX B: NOVAM IN MODTRAN®

The most recent compilation of the NOVAM (Navy Oceanic Vertical Aerosol Model) profiles offers a new set of aerosol descriptions, providing both optical and size distributions appropriate from the shipboard surface to 6 km, covering the spectral range from 0.2 micron to 40 microns at relatively sparse spectral resolution. Since the ozone retrievals currently implemented in the UV encompass an accounting of the aerosol background, the addition of NOVAM profiles to MODTRAN® was deemed critically important.
Appendix B: NOVAM

B.1 NOVAM Code

Spectral Sciences, Incorporated (SSI) obtained the NOVAM code from NRaD through S. Gathman (Gathman and Davidson, 1993). R. A. Paulis released this code under the authority of J. H. Richter, Oceanic and Atmospheric Sciences Division, Naval Command, Control and Ocean Surveillance Center, San Diego. The NOVAM code is an upgrade to NAM (Navy Aerosol Model) which is already in MODTRAN®. NOVAM is based on extensive direct shipboard measurements carried out by several different agencies specializing in the marine environment. The inputs to the NOVAM code are radiosonde data consisting of altitude, temperature, pressure and relative humidity (RH), and other surface observation parameters such as optical visibility, wind speeds and surface IR extinction (1/km) at 10.6 microns; not all the inputs are required for implementation.

NOVAM recognizes three types of meteorological profiles characterized by existence or non-existence of temperature inversions. The cases are denoted numerically: 1 for no inversion; 2 for two inversions; and 3 for one inversion. The wavelength spectrum ranges from 0.2 to 40 microns. The actual spectral grid (in microns) is: 0.2, 0.3, 0.3371, 0.55, 0.6943, 1.06, 1.536, 2.0, 2.25, 2.5, 2.7, 3.0, 3.3923, 3.75, 4.5, 5.0, 5.5, 6.0, 6.2, 6.5, 7.2, 7.9, 8.2, 8.7, 9.0, 9.2, 10.0, 10.591, 11.0, 11.5, 12.5, 14.8, 15.0, 16.4, 17.2, 18.5, 21.3, 25.0, 30.0, 40.0. The model contains four classes of marine aerosols with three mode radii of 0.03, 0.24 and 2.0 microns, where the mode radius is the "size" of the most populous part (i.e., the peak) of the distribution at the RH of 80%. The 0.03-micron aerosol consists of two classes: soluble and insoluble. The other two sizes consist of soluble aerosols only.

The version of NOVAM from NRaD outputs surface layer altitudes, and the net extinction, absorption and asymmetry coefficients by combining the effect of all four aerosols. The output of NOVAM consists of aerosol size distribution parameters, and total extinction, absorption and asymmetry values as a function of wavelength. In this study, NOVAM was modified to output this information as a function of wavelength for a series of altitude values beginning at the lowest “significant” radiosonde altitude (usually a few meters), extending into the lower troposphere. The NOVAM model is claimed to be valid up to 6 km. However, in consultation with Gathman (private communication), we have restricted the NOVAM aerosol profiles to reach no higher than 2 km.

The set of NOVAM routines consists of about 6000 lines of FORTRAN code written in non-standard FORTRAN 77. NOVAM, however, needs only minimal modification so as to be acceptable to most FORTRAN compilers. Extensive modification of the code was ruled out in order to maintain an easily discernible correspondence between the modified and original versions.

The user should familiarize herself/himself with the NOVAM input files of which there are three: (i) the Surface Observation Data File, (ii) the Radiosonde Profile File, and (iii) a file called novam.in. For purposes of familiarizing with NOVAM, it is highly recommended that the user consult the above referenced NOVAM manual. In this report only a very brief description of the inputs and output are given. Questions regarding the use of NOVAM within MODTRAN® should be directed to the authors of this report.

Note that the NOVAM code supplied with this delivery has 13 inputs in the Surface Observation File as opposed to 9 as stated on page 9, Table 4, of the NOVAM manual. These inputs are the same as stated for positions 1 to 7. The revised Table 4 is described below. Values outside the stated range make the code use built-in default values. It is suggested that the user employ the default values when any of the specific data items are not available.

1 Sea Surface Temperature (°C)
2 Air Temperature (°C)
3 Relative Humidity (%)
4 Optical Visibility (km)
5 Current Real Wind Speed (m / s)
6 Averaged Wind Speed (24 hours, m / s)
7 Air Mass Parameter (1 to 30)
8 Cloud Cover Fraction (0 to 1)
9 Cloud Type (0 to 9)
10 Surface IR Extinction at 10.6 micron (1/km, 0.001 to 100.0)
11 Weather (0 to 11)
12 Height of Lowest Cloud (meters, negative value uses default)
13 Zonal/Seasonal Category (1 to 6)
The **Radiosonde Profile Data File** is in either of the formats described on page 15, Table 6 and Table 7, of the NOVAM manual. Table 6 contains data, each line of which consists of an altitude (m), potential temperature (°C) and aerosol mixing ratio (g/kg). The relationship between the potential temperature (Θ) and the usual air temperature (T) is given by the formula:

\[
\Theta = T \left(\frac{P_0}{P}\right)^\kappa; \quad \kappa = (C_p - C_v) / C_p \approx 0.288
\]

where the C's are heat capacities at constant pressure and constant volume, P₀ = 1013.25 mb and both temperatures are in Kelvin. [Potential temperature is the temperature attained by air at pressure P and temperature T where it is brought adiabatically (i.e., at constant entropy) to a standard pressure P₀ (Houghton, 1986).] Table 7 contains data, each line of which consists of a line number (an integer), log (base 10) of pressure in millibars multiplied by 10⁴, the air temperature in °C, RH in percent and pressure in millibars multiplied by 10⁴. As stated above, one needs the profile data either in the format of Table 6 and Table 7. Table 6 is said to be in ‘n’ format whereas Table 7 is said to be in ‘r’ format, presuming that ‘n’ denotes ‘number’ defined by mixing ratio, while ‘r’ denotes ‘relative humidity.’

In addition to these files, NOVAM needs another file called **novam.in**. An example of **novam.in** is reproduced below:

```
1905sops
1905prof.txt
n
Here, 1905sops is the **Surface Observation File** and 1905prof.txt is the **Profile File** in the ‘n’ format as indicated by the last line. This file then specifies for the program where the necessary data files can be found.
```

The output of NOVAM, **novam.out**, now in a form suitable for MODTRAN™, typically looks as follows. The *italicized* text will not appear in the output. The first number is 40, which is the number of wavelengths (in microns) which are then individually listed. The number 10 is the number of altitudes (in meters) which are then individually listed. Then the temperatures (in K) for each altitude are listed, followed by the pressures (in MB) and relative humidity (RH in %). Then for the first wavelength (0.2 micron), the extinction coefficients (in 1/km) for each altitude are listed. The absorption coefficients (in 1/km) for each altitude are followed by the asymmetry parameters for each altitude. Then the same set of information of the second wavelength (.3 micron) is listed. This pattern continues.

```
40 (number of wavelengths and wavelengths in microns)
.2000 .3000 .3371 .5500 .6943 1.0600 1.5360 2.0000
2.2500 2.5000 2.7000 3.0000 3.3923 3.7500 4.5000 5.0000
15.0000 16.4000 17.2000 18.5000 19.7000 21.3000 25.0000 40.0000
10 (number of altitudes and altitudes in m)
20.9 123.6 226.3 329.1 393.8 458.6 523.4 572.0 620.7 669.3
(temperature in K)
287.65 286.49 285.57 284.85 285.37 285.95 285.65 287.65 288.91 288.45
(pressures in mb)
1010.70 999.40 988.10 976.80 969.66 962.55 955.50 949.60 943.73 937.90
(RH)
88.80 91.41 95.39 95.60 81.88 66.69 65.60 50.08 37.44 35.80
(spectral data for 0.2 microns)
.156E+00 .146E+00 .145E+00 .145E+00 .144E+00 .142E+00 .140E+00 .377E-01 .377E-01 .377E-01
.377E-01 .377E-01 .377E-01 .377E-01 .377E-01 .377E-01 .377E-01 .624E-03 .624E-03 .624E-03
.624E-03 .624E-03 .624E-03 .624E-03 .624E-03 .624E-03 .624E-03 .901E+00 .901E+00 .901E+00
.901E+00 .901E+00 .901E+00 .901E+00 .901E+00 .901E+00 .901E+00 .488E+00 .488E+00 .488E+00
.488E+00 .488E+00 .488E+00 .488E+00 .488E+00 .488E+00 .488E+00 .804E+00 .804E+00 .804E+00
.804E+00 .804E+00 .804E+00 .804E+00 .804E+00 .804E+00 .804E+00 .777E+00 .777E+00 .777E+00
```

```
Appendix B: NOVAM

B.2 Incorporation into MODTRAN®

First all structure variables were eliminated and all non-standard system routines (such as `gettim`) were also eliminated from NOVAM. Several non-standard (i.e., non-FORTRAN 77) features were left intact. These include the DO ... ENDDO structure, longer than six character variable names and the use of the INCLUDE statement as these are acceptable by almost all modern compilers. The goal was to minimize changes to NOVAM and to use it almost “as is”. The changes to the NOVAM code are briefly stated later.

Extensive changes were made to MODTRAN® to accommodate the way NOVAM treats its four aerosols. The reason changes were extensive is that, unlike the MODTRAN® current requirement, NOVAM does not output an aerosol profile (varying with altitude) and spectral extinction and absorption coefficients (varying with wavelength but not with altitude). Instead NOVAM outputs both altitude and spectrally varying quantities which are products of profile and spectral parameters. Changes to NOVAM code itself, however, were kept to a minimum. This meant use of NOVAM in MODTRAN® requires the user to supply radiosonde input data to NOVAM, separate from the MODTRAN® inputs. NOVAM is executed off-line and creates a file called `novam.out` (lower case in UNIX) which is used as input to MODTRAN® (uppercase filename in UNIX). Note that NOVAM input files are currently separate and in addition to the MODTRAN® usual input file (which is named `tape5`). If the altitudes in `tape5` overlap with those in the NOVAM output file, the meteorological parameters, such as humidity, pressure and temperature, used by MODTRAN® will be those provided by NOVAM.

In a future upgrade, the requirement for NOVAM to have a separate input file can be eliminated; both MODTRAN® and NOVAM will then use the information contained in the MODTRAN® input file, `tape5`. This process will be facilitated by the prior development of a sonde compression scheme. SSI and PL/GPO have collaborated to write a program, called `SNDTP5`, which can compress radiosonde measurements, consisting of hundreds of altitude layers (such as those used by NOVAM), into a form more suitable for the finite layering appropriate (and generally just as accurate for transmittance and radiance calculations) for a MODTRAN® `tape5`.

As mentioned NOVAM actually can model altitudes as high as 6000 meters. However, in consultation with E.P. Shettle (Naval Research Laboratory, private communication) and S. G. Gathman (NOSC, private communication), the maximum NOVAM altitude relevant for MODTRAN® was determined to be 2 km. In reality, for most applications it will be less than 2 km. NOVAM distinguishes between three different temperature inversion cases. The code was modified to output these inversion layers explicitly which are then used in MODTRAN®. This enables MODTRAN® to use only a few layers and still accurately model the temperature effects. If the aerosol does not contain inversion layers, currently MODTRAN® will introduce layers, which are at most 100 m apart. Although adequate, this scheme may be improved so those layers are more closely spaced nearer to the surface (where the scale height is smaller/steeper) and are farther apart towards the top of the boundary layer (where the scale height is generally larger). This may allow using fewer layers without loss of accuracy.

In summary, NOVAM is simply used to generate a database of marine aerosol profiles and spectral information for MODTRAN®. NOVAM does not at present generate angular phase functions. Instead, it has a database of asymmetry parameters from which Henyey-Greenstein phase functions can be computed. In principle, a Mie code can be used to generate the phase functions for NOVAM.

B.3 Some Results

Three typical (as provided in the NOVAM package) profiles of aerosol extinction and coincident temperature are shown in Figures 1a and 1b. Figure 2a, b, and c shows the simulated backscattered UV signatures associated with these profiles, as might be measured by a potential ozone monitor staring down from a space platform. These calculations use all three types of temperature inversions modeled in NOVAM. The calculation with no aerosol includes only the Rayleigh scattering component and is used as the measure of change imparted to the backscattered signature by low-lying aerosols. No attempt was made to smoothly incorporate these profiles into a total profile. Rather, the "default" US Standard temperature, pressure, and constituent (primarily ozone) profiles and background rural (23 km visibility) aerosols were employed above 0 - 2 km, the acceptable vertical range for the NOVAM input. The spectral range presented is only that reaching the surface and near-surface, as wavelengths short of 300 nm will be absorbed (in general) at higher altitudes. MODTRAN® will accommodate simulations from 200 nm to the far-IR, including the aerosol impact, so the short spectral range depicted in these calculations is not a restriction.
B.4 NOVAM input and MODTRAN® input Files

The NOVAM files were described earlier. So they are not reproduced here. In the delivered code, there are several `novam.in`, `Surface Observation` and `Radiosonde Profile` files.

The tape5 used to run MODTRAN® with NOVAM aerosols for the calculations in this report is shown below. The 'N' in the third line invokes the NOVAM aerosol option in MODTRAN®.

```
T 6 2 2 1 0 0 0 0 0 0 1 0 1 .0500
F 0F 0
 1N 0 0 0 0 0 0.000 0.000 0.000 0.000
0050.0000 .10 180.00000
 2 2 0 0
 45. 60.
 .3 .4 00001 0010 $ M1
```

Figure 1a and b. The 3 aerosol and coincident temperature profiles (in extinction at 0.3μm and K, respectively) as a function of altitude. These profiles were chosen to capture the number of temperature inversions used as a parameter in NOVAM, 1 or no inversion, 2 or two inversions, and 3 for 1 inversion. There was not attempt to find the most perturbing case, so these can be considered typical. Note the MODTRAN® merges these profiles into those describing the rest of the atmospheric profile from whatever source has been specified, ‘default’ or ‘user-defined’. This can lead to very coarse discontinuities whose impact might need to be further explored.
As denoted, these represent typical sensitivity to the new NOVAM aerosol profiles shown in Figure 1. The plots are shown linearly to emphasize the impact at the longer wavelengths that ‘see’ to the surface, and, therefore, would be impacted by boundary-layer variability. At shorter wavelengths, <0.3 μm), the stratospheric aerosol component might be important under extremes of volcanic loading. That sensitivity requires a logarithmic plot and has not been explored in this study.

First NOVAM is executed to produce the novam.out file. This file then should be copied to the directory containing the MODTRAN® executable as NOVAM.OUT; MODTRAN® requires this file with the uppercase name.
B.5 Future Upgrades to NOVAM Implementation

There are at least six general areas in which the aerosol product in MODTRAN® can be improved.

1. The first is to enable NOVAM to run from the MODTRAN® input file, tape5. This task will enable MODTRAN® to use radiosonde data consisting of several hundred altitude layers several of which can even be redundant. This will alleviate the need for NOVAM to have its own input file as is required in the current input scheme. Note that there still may be a need for the NOVAM input file, for example, to input surface observations.

2. MODTRAN® does not now have phase functions for several aerosols (e.g., the desert aerosols) and for none of the cloud models. In the future this can be rectified by generation of the phase functions using the Mie code and incorporating them in MODTRAN®.

3. The phase functions for NOVAM are also not available. In consultation with S. Gathman, they can be generated for the NOVAM aerosols and incorporated in MODTRAN®.

4. The output of the Mie code can be put in a format so that user can include them in the MODTRAN® input file without extensive editing.

5. Based on the El Chichon and Mt. Pinatubo eruptions, the content, size, type, and H₂SO₄ component of fresh and aging volcanic aerosols need to be altered from the default profiles now available within MODTRAN® (E.P. Shettle, private communication).

6. MODTRAN® currently merges NOVAM-generated profiles (e.g., extinction and temperature) into those describing the rest of the atmospheric profile from whatever source has been specified, 'default' or 'user-defined'. This could lead to very coarse discontinuities whose impact might need to be explored. General validation against real sonde data will provide additional confidence in the procedure.

B.6 Modifications to NOVAM to Code

As mentioned NOVAM modifications were kept to a bare minimum. Here is a list of types of coding changes to NOVAM.

1. All structure variables were replaced using this scheme:
   
   structure.member was replaced by structure_member

   This of course meant that numerous corresponding changes to subroutine arguments had to be made.

2. The driver3.f routine was substantially changed to output the novam.out file described earlier.

3. The assym1 routine in the file optics2.f was substantially rewritten to fix an interpolation problem with the asymmetry parameters.

4. The calls to gettim were eliminated as it is not available on all machines.

5. potential_temperature was replaced by potential_temp as this variable and routine name is too long.

6. The file drivesub2.f was renamed drivesb2.f so that the new prefix has no more than eight characters which is the maximum for the PC environment.

7. As before the sigfile is created by calling it with repeatflag equal to .false.. In the same call, a new file called invfile is created with inversion and other extra layers to be used as MODTRAN® layers. This file also contains pressure, air temperature (not potential temperature) and RH. It is created by modifying the routine make_rdataary. Later the driver (with repeatflag = .true.) reads the invfile and creates the novam.out file at these altitudes.

8. The driver checks to see that all altitudes in the invfile that are greater than 2 km are discarded. Also discarded is the set of all top altitudes if the first altitude in the set has a relative humidity, which is below 50%. That is because the NOVAM aerosols appear to be restricted to be in an environment of 50% humidity or higher.

B.7 References


APPENDIX C: MODTRAN® INSTALLATION

MODTRAN(R)5.2.1 is delivered as a single DVD. The DVD contains a PC distribution containing both 32-bit and 64-bit machine installation files, Mac distribution installation file, and a Linux distribution as a gzip’ed tar file.

Installation instructions for PC, Mac and Linux systems are provided below. For additional installation or technical questions, please email either Spectral Sciences, Inc. (SSI) at modtran@spectral.com or AFRL at Gail.Anderson@hanscom.af.mil.

C.1 MODTRAN5.2.1 PC Installation Steps

The PC version of MODTRAN(R) is delivered ready to run. Enter the Mod5.2.1 sub-directory appropriate for your machine [pc_32bit/ or pc_64bit/ and double click the installation file modtran5.2.1.msi or modtran5.2.1(x64).msi, respectively]. Icons will be set-up for MODTRAN(R) executables, Mod5.2.1qwin.exe or Mod5.2.1cons.exe. The only difference between these two executables is that the QWin version retains the standard output window upon completion of the MODTRAN(R) run(s), while the Console version closes the window. This will run all the test cases. On most modern PC’s, all the test cases should run in less than 30 minutes. The newly generated output (located in the TEST/ directory) can be compared to the files in TEST/COMPARE/ sub-directory.

C.2 MODTRAN5.2.1 MAC Installation Steps

This Mac version of MODTRAN delivers executables and binary data files for Mac systems based on the i386 architecture. The executables were built with gfortran and use dynamic gfortran libraries that are also provided here. The terms of the gfortran license can be found in the file Licenses.txt that comes with this media.

If you are unsure of what Mac hardware you have, type

```
uname -m
```

on the command line. We do not support PPC-based Macs at this point.

You can build MODTRAN(R) yourself on such systems by following the instructions for UNIX installation.

To install,

1. Copy the disk image (.dmg) file to your desktop, then double-click. This will mount the Volume called Mod5.2.1.
2. Open a console. Navigate to the directory where you want Mod5.2.1 installed. Then uncompress and unpack MODTRAN. The following commands show how this is done (Note: In the following lines, “$” denotes the command prompt, and anything inside “<>” means something he user has to specify):

   ```bash
 $ cd <some directory>
 $ tar xvf /Volumes/Mod5.2.1/Mod.5.2.1.tgz
   ```

   The second command will unpack everything to a directory "Mod5.2.0.0"
3. Change directory to Mod5.2.1/. All the appropriate executables and data files are contained there. On most current systems, all the test cases should run in less than 30 minutes. The newly generated output (located in the TEST/ directory) can be compared to the files in COMPARE/ sub-directory.

C.3 MODTRAN5.2.1 Linux (UNIX) Installation Steps

The Linux (UNIX) version of MODTRAN5 is delivered as a single gzip tar file. Copy the gzipped tar file onto your UNIX system to begin installation. Follow the step by step instructions below. Note that most MODTRAN cases can be run with either a FORTRAN77 or a FORTRAN90 executable. (The last two MODTRAN test cases in the distributed modd5root.in file are the only ones that cannot be run with FORTRAN77). In these instructions, the FORTRAN compiler is referred to as “f90”, but users should insert the name of their FORTRAN compiler.

1) Uncompress the "Mod5.2.1.tar.z" file using either the “uncompress” or "gunzip" command.
2) Enter ‘tar xvf Mod5.2.1.tar’ to extract MODTRAN’s expanded directory structure and files. The top-level directory Mod5.2.1/ will contain the following sub-directories: src/, src/_F77only/, mie/, mie/Compare,
novam/, novam/src/, novam/obj77/, novam/cs/, novam/Compare/, DATA/, DATA/HITRANtrace/, TEST/, TEST/COMPARE/, obj77/, and obj90/.

3) Create Correlated-k binary data files in the DATA/ subdirectory. After entering the DATA/ subdirectory, compile CKBIN.f (e.g., f90 CKBIN.f -o CKBIN.exe). Run CKBIN.exe; you will be prompted for a Correlated-k ASCII file name. Reply 'CORK15.ASC'. This file should have been placed in the DATA/ directory during the untar process. You will then be prompted for a binary name; reply with 'CORK15.BIN'. The program should announce a successful write and place the file in the DATA/ directory. Repeat for 'CORK05.ASC', 'CORK01.ASC' and 'CORKp1.ASC'.

4) Create band model parameter files. Compile and run the BM_as2bn.f program. Select an ASCII-to-binary conversion. MODTRAN5 molecular band model data for each band model spectral resolution (15.0cm⁻¹, 5.0cm⁻¹, 1.0cm⁻¹ and 0.1cm⁻¹) is stored in two "LINE CENTER ABSORPTION" files and one "LINE TAIL ABSORPTION" file. Select line center conversion first (these run faster). Although entering names of ASCII files is possible, the current files of interest should appear in the menu: p1_2009c.asc, 01_2009c.asc, 05_2009c.asc, 15_2009c.asc, p1_2009c.as4, 01_2009c.as4, 05_2009c.as4, and 15_2009c.as4. A second menu permits choosing output file names; select the corresponding .bin or .bn4 names. For line tails, the "e" is replaced by a "t", and there are only 4 tail files. Run BM_as2bn a total of 12 times to create all the line center and tail binary files at the 4 band model resolutions.

5) Create the binary 0.1 cm⁻¹ solar irradiance data files. Compile and run the SUN_as2bn.f program. SUN_as2bn should be run three times: once on file "SUNp1kurucz2005.asc" once on file "SUNp1kurucz1995.asc", and once on file "SUNp1fontenla.asc".

6) The command 'make -f Makef77' is used to build the FORTRAN77 version of the Mod5.2.1 executable file, Mod77_5.2.1.exe. Object files are placed in the obj77/ directory. YOU WILL PROBABLY HAVE TO EDIT THE MAKEFILE TO REPLACE THE NAME OF THE FORTRAN COMPILER WITH THE NAME USED ON YOUR MACHINE AND TO SET COMPILED OPTIONS. The FORTRAN90 version of the Mod5.2.1 executable, Mod90_5.2.1.exe, is created by typing 'make -f Makef90'. The FORTRAN90 object files are placed in the obj90/ directory.

7) MODTRAN can interface to NOVAM, the Navy Oceanic Vertical Aerosol Model. If you wish to use this code, NOVAM should be compiled and run to produce a NOVAM.OUT file for use by MODTRAN. The NOVAM program files are located in the novam/ subdirectory tree under the top MODTRAN directory. Not all users will require NOVAM. Go to the sub-director novam/ to prepare NOVAM for running. Create the NOVAM executable using the makefile: 'make -f Makefile'. NOVAM (novam.exe) reads input from novam.in, and writes output to novam.out. The I/O for 3 test cases is located in the novam/Compare/ subdirectory. Copy an input file into the novam/ directory, using the name novam.in, or create your own novam.in file, and use 'novam.exe' to create novam.out. Copy 'novam.out' to 'NOVAM.OUT' (upper case) in the topmost MODTRAN directory, which contains the Mod5.2.1.exe executable that runs NOVAM.

8) The TEST/ sub-directory contains the 59 input test cases for MODTRAN5.2.1. Input files are named in the pattern <rootname>.tp5. Output files with .tp6, .tp7, .tp8, .7sc, .7sr, .plt, .psc, .clr, .chn, .mc, .flx, .acd, and .wrn extensions and copies of the .tp5 files are located in TEST/COMPARE/. The mod5root.in file in the MODS5.2.1 directory is initially set up to run all 59 cases. With an optimized MODTRAN5.2.1 executable, the collection of test cases should run in less than 30 minutes.

9) MODTRAN provides an option to generate binary rather than ASCII output. The test case BINwrite exercises this option. One must run M5_bn2as.exe to convert the binary files to ASCII. Compile M5_bn2as.f (e.g., f90 M5_bn2as.f -o M5_bn2as.exe) from the topmost MODTRAN directory. M5_bn2as interrogates the first line of mod5root.in to determine the rootname of the run to be converted. As delivered, mod5root.in lists TEST/BINwrite first. Run the conversion program by typing "M5_bn2as.exe"; this will convert the TEST/BINwrite_b.* files to TEST/BINwrite_a.* files.

C.4 I/O Files

MODTRAN® makes it easy for the users to keep track of input and output (I/O) files. A MODTRAN® input file named either 'mod5root.in' or 'MOD5ROOT.IN' contains a list of file root names. If 'mod5root.in' does not exist, MODTRAN® checks for the existence of a 'MOD5ROOT.IN' file. If neither of these files exist, MODTRAN® I/O files are the traditional ones: 'tape5', 'tape6', 'tape7', 'tape8', etc. If a root name file exists and its very first line contains a non-null string (maximum length is 80 characters), this string is treated as a prefix. If the string consists of all blanks or is a null string, the traditional I/O file names are assumed. The root name should
contain no embedded blanks; leading and trailing blanks are properly ignored. If the rootname file has the extension “.tp5”, this extension is also ignored. The character string is used as a prefix for the I/O files whose names have mnemonic suffixes. As an example, if the string is Denver, the MODTRAN® I/O files will have these names:

<table>
<thead>
<tr>
<th>Denver.tp5</th>
<th>(corresponding to tape5)</th>
<th>Denver.tp6</th>
<th>(corresponding to tape6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denver.tp7</td>
<td>(corresponding to tape7)</td>
<td>Denver.tp7</td>
<td>(corresponding to tape7b)</td>
</tr>
<tr>
<td>Denver.tp8</td>
<td>(corresponding to tape8)</td>
<td>Denver.tp8</td>
<td>(corresponding to tape8b)</td>
</tr>
<tr>
<td>Denver.7sc</td>
<td>(corresponding to tape7.scn)</td>
<td>Denver.7sr</td>
<td>(corresponding to tape7.scr)</td>
</tr>
<tr>
<td>Denver.plt</td>
<td>(corresponding to pltout)</td>
<td>Denver.plt</td>
<td>(corresponding to pltoub)</td>
</tr>
<tr>
<td>Denver.psc</td>
<td>(corresponding to pltout.scn)</td>
<td>Denver.clr</td>
<td>(corresponding to clrates)</td>
</tr>
<tr>
<td>Denver.chn</td>
<td>(corresponding to channels.out)</td>
<td>Denver.flx</td>
<td>(corresponding to specflux)</td>
</tr>
<tr>
<td>Denver.acd</td>
<td>(corresponding to atmcor.dat)</td>
<td>Denver.wrn</td>
<td>(corresponding to warnings.txt)</td>
</tr>
</tbody>
</table>

A useful feature of MODTRAN® is the ability to process several input files in a single execution of MODTRAN®. To accomplish this, list the rootname of each input file as consecutive lines (without intervening blank lines) in ‘mod5root.in’ or ‘MOD5ROOT.IN’. When the user executes MODTRAN®, each input ‘.tp5’ file, whose rootname is listed in ‘mod5root.in’ or ‘MOD5ROOT.IN’, is processed until the first blank line is encountered. Any ‘.tp5’ file whose rootname is encountered after the first blank line is not processed.

APPENDIX D: BAND MODEL FILES FOR USER-DEFINED SPECIES

Each user-defined species require one of two types of band model parameters. The first type is similar to the CFC cross-section parameters used in MODTRAN®. The cross-section file names must conform to the following form

$$RS_{\text{species name}}.BM$$

$RS$ is a two character abbreviation for the band model resolution, with

- $RS = 'p1'$ for 0.1 cm$^{-1}$ data
- $RS = '01'$ for 1.0 cm$^{-1}$ data
- $RS = '05'$ for 5.0 cm$^{-1}$ data
- $RS = '15'$ for 15.0 cm$^{-1}$ data

An example of the contents of a cross-section data file is shown below.

```
0 0 0 0 0 0 0 153.8235 CCL4
7862 1.885E-19 1.885E-19 1.885E-19 1.885E-19 1.885E-19 1.885E-19
```

The molecular weight of the species is listed in columns 47-56 of the first line. Here 153.8235 is the molecular weight of CCL4 (carbon tetrachloride). The file contains cross-section parameters from 786.0 cm$^{-1}$ to 806.0 cm$^{-1}$ in increments of 0.1 cm$^{-1}$. No frequency between the first and the last value can be omitted; however, a zero value of cross-section for any frequency is a valid entry. The next six entries on a line following the frequency are cross-sections for these six temperatures: 180, 205, 230, 255, 280 and 305 K. The unit for cross-section is molecule/cm$^2$.

Cross-sections are interpolated over available temperatures. Extrapolation is avoided above and below available temperature extremes; instead, the end point values are used for temperatures beyond the extremes.

APPENDIX E: BINARY OUTPUT OPTION

MODTRAN® calculations often produce very large formatted ASCII output files, creating a significant load on the CPU and resulting in excessive use of the disk space. A new binary-out option has been added to MODTRAN®. Activation of this option causes the program to produce binary outputs for the spectral data in tapes 7, 8, plot, fluxes, and spherical albedo files. The speedup from the use of this option is generally small, but it provides
for improved model interfacing. In addition, binary files are imported by post processing programs without lost of precision.

The binary-out option is activated by placing the flag “t” (one character in the third position of the Card 1 as shown below.

A new tool M5binrestore.exe (which must be compiled from its source file M5binrestore.f and is also included with the MODTRAN® distribution) converts existing MODTRAN® binary output files to their standard ASCII form. If the file “mod5root.in” is present, M5binrestore.exe uses it to find the binary files for conversion; otherwise the program prompts for user input of the binary file names.

E.1 Naming convention:

MODTRAN® appends an additional suffix “b” to the name of the each binary output file. For example, MODTRAN® run using an input tape5 named test.tp5 will produce text files test.tp6, test7.tp7, test7sc, test.tp8, etc. If the binary-out option is on, MODTRAN® creates additional binary files: testb.tp7, testb.tp8 and testb.plt. The text file test.tp7 contains headers necessary for restoring other files. Upon executing the binary-to-ASCII conversion is done, the suffix “b” is changed to the suffix “a” (i.e. testa.tp7, testa.tp8, testa.plt are created). Files created by this conversion are identical to the text files that MODTRAN® would create if binary option had not been used. Note that tape8 is present only if the extended print is requested. However, binary tape8 is also created if any of the flux output or the spherical albedo output is requested.

E.2 Binary file structures:

<table>
<thead>
<tr>
<th>mm</th>
<th>t2</th>
<th>3</th>
<th>2</th>
<th>-1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>-1</th>
<th>.000</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>tt</td>
<td>4f</td>
<td>1</td>
<td>360.000</td>
<td>1.00000</td>
<td>1.00000</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.000</td>
<td>0.000</td>
<td>180.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>0</td>
<td>0.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>45.0000</td>
<td>40.0000</td>
<td></td>
</tr>
<tr>
<td>19900.0</td>
<td>20000.0</td>
<td>1.</td>
<td>1.</td>
<td></td>
</tr>
</tbody>
</table>

While implementing the binary-out option we were constrained by the requirement that the text files restored from the binary counterparts must be exactly the same as the ASCII outputs without binary-out option.

The FORTRAN standard requires that binary read operator be supplied with the length of the record. MODTRAN® generates records of various lengths, creating complications for reading binary files. Additional complication arises from the fact that the single tape5 can request several MODTRAN® runs that append output to the same file.

When the binary-out option is requested, the tape7 is split into two pieces: the text and the binary counterparts. For each binary run the text part contains only the header, while the actual data are placed in the binary part. As before, a separator between different runs from the same tape5 takes the form of a single text line containing a number -9999. only.

The structure of the binary tape7 depends on the type of the MODTRAN® radiance/irradiance/transmittance run (i.e. whether multiple scattering is on, what kind of path is considered, etc.) The restoring program reads the header from the ASCII portion of the tape7 and makes the branching decision based on the information in this header.

The binary tape8 also includes spectral output described elsewhere in this manual. It is created as a single stream of information. There is a unique tag assigned to the each MODTRAN® write statement that goes to tape8 (that includes fluxes and spherical albedo/transmittances.) Each record in the binary file consists of this tag followed by the size of the record and by the actual data. Hence it is easy to read and search for specific data. For example, subroutine loop.f has three different write statements to tape8. If the binary option is invoked this three statements have tags 7, 9, and 13. While two writes from the file flxsum.f have tags 1000 and 1001. The actual writing to the binary tape8 is done through several subroutines collected in the binwrite.f file.

E.3 Description of the file restoring program:

The program searches for the file mod5root.in or MOD5ROOT.IN to locate binary output files. If neither exists, the program prompts user to input the filename. Then the program opens both counterparts, ASCII and binary tape7, for input. If the binary plot file (*.plt) and/or tape8 file exist, the program also operates on them.
APPENDIX F: SPECIAL DISORT OPTION FOR ATMOSPHERIC CORRECTION


The mapping of down-looking sensor radiance images into surface reflectance maps is defined as atmospheric correction. In the solar dominated short-wave region, apparent reflectances, ρ, are defined as observed radiances, R, normalized by the top-of-atmosphere horizontal solar flux, I₀:

$$\rho = \frac{\pi R}{\mu I_0}$$

(1)

The observed down-looking apparent reflectance ρ in the absence of adjacency correction equals:

$$\rho = \rho_0 + \frac{TA}{1 - AS}$$

(2)

where ρ₀ is the portion of the solar scattered apparent reflectance coming directly from the atmosphere, T is total (diffused plus direct) transmittance for the Sun-Ground-Observer path, A is the surface albedo, and S is spherical albedo (the portion of the radiation that comes back to the ground as a result of isotropic illumination from the ground).

In 3-albedo method, parameters T, ρ₀, and S are found by solving the algebraic equations that result of three independent MODTRAN calculations with different surface albedo values, typically 0, ½ and 1.

Alternatively, one can calculate the three parameters directly from a single A=0 DISORT calculations by exploiting the reciprocity principle of radiation transport theory [Chandrasekhar, 1950; Stamnes, et al., 1982]. MODTRAN and DISORT been modified to include an implementation of this approach. DISORT already had a routine for computing the total transmittance (and spherical albedo) for the entire atmosphere; the modifications to DISORT allow the total transmittance to be computed for a line-of-sight path initiated at any altitude within the atmosphere. In a single MODTRAN run, parameters T and S are found from a special call to DISORT (much faster than a radiance calculation) and ρ₀ is determined from a standard DISORT call with ground albedo equal to zero. This new option is triggered by a single switch in the MODPTRAN input file.

The first two figures below (Figure 1a-b) illustrate a comparison between the 3-albedo and the A = 0 DISORT approaches for computing spherical albedo and total (direct + diffuse) transmission with 4 streams. These comparisons focus on a short spectral range within the visible near 0.5 μm. Ground meteorological range (visibility) was set very low (5 km) to accentuate the diffuse transmittance contribution. The airborne sensor is modeled as viewing 50º off-nadir from 3 km with a 40º sun. The vertical scales are very much expanded in these figures, so the residuals are small and, most likely, the result of round-off errors arising from the 3-albedo approach.

For these calculations, the A = 0 DISORT method required 3.0 CPU seconds while the 3-albedo calculations required 7.5 CPU seconds, a savings of a factor of 2.5. In order to invoke albedo calculations user has to add the “t” flag in the 1A card in the 3rd position.
Appendix F: Spectral DISORT Option for FLAASH Parameters

Figure 1 a-b.

The next pair of illustrations (Figure 2a-b) is for a nadir-viewing sensor at 20 km with a 40º sun.

Figure 2 a-b.