

RDF/XML Syntax Specification (Revised)

W3C Working Draft 10 October 2003

This version:
http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

Latest version:
http://www.w3.org/TR/rdf-syntax-grammar

Previous version:
http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20030905

Editor:
Dave Beckett (University of Bristol)

Series editor:
Brian McBride (Hewlett Packard Labs)

Copyright © 2003 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C
liability, trademark, document use and software licensing rules apply.

Abstract

The Resource Description Framework (RDF) is a general-purpose language for
representing information in the Web.

This document defines an XML syntax for RDF called RDF/XML in terms of
Namespaces in XML, the XML Information Set and XML Base. The formal
grammar for the syntax is annotated with actions generating triples of the RDF
graph as defined in RDF Concepts and Abstract Syntax. The triples are written
using the N-Triples RDF graph serializing format which enables more precise
recording of the mapping in a machine processable form. The mappings are
recorded as tests cases, gathered and published in RDF Test Cases.

Status of this Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C
publications and the latest revision of this technical report can be found in the
W3C technical reports index at http://www.w3.org/TR/.

This is a W3C Last Call Working Draft of the RDF Core Working Group and has
been produced as part of the W3C Semantic Web Activity (Activity Statement).

Page 1 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

In this version rdf:RDF was made optional when it contains a single node
element, the Unicode Normal Form C (NFC) checks on literals were modified to
be optional and other minor fixes were made. Detailed changes from the
previous 23 January 2003 last call working draft are described in the Appendix
B. Changes since the previous 05 September 2003 working draft are given in
Appendix C.

This document is in the Last Call review period, which ends on 07 November
2003. This Last Call publication consolidates changes and editorial
improvements undertaken in response to feedback received during the
previous Last Call publication of the RDFCore specifications which began on
23 January 2003. A list of the Last Call issues addressed by the Working
Group is also available. This document has been endorsed by the RDF Core
Working Group.

This document is being released for review by W3C Members and other
interested parties to encourage feedback and comments, especially with regard
to how the changes made affect existing implementations and content.

In conformance with W3C policy requirements, known patent and IPR
constraints associated with this Working Draft are detailed on the RDF Core
Working Group Patent Disclosure page.

Comments on this document are invited and should be sent to the public
mailing list www-rdf-comments@w3.org. An archive of comments is available
at http://lists.w3.org/Archives/Public/www-rdf-comments/.

Publication as a Working Draft does not imply endorsement by the W3C
Membership. This is a draft document and may be updated, replaced or
obsoleted by other documents at any time. It is inappropriate to cite this
document as other than work in progress. A list of current W3C
Recommendations and other technical documents can be found at
http://www.w3.org/TR/.

Table of Contents

1 Introduction
2 An XML Syntax for RDF
 2.1 Introduction
 2.2 Node Elements and Property Elements
 2.3 Multiple Property Elements
 2.4 Empty Property Elements
 2.5 Property Attributes
 2.6 Completing the Document: Document Element and XML Declaration
 2.7 Languages: xml:lang
 2.8 XML Literals: rdf:parseType="Literal"
 2.9 Typed Literals: rdf:datatype
 2.10 Identifying Blank Nodes: rdf:nodeID
 2.11 Omitting Blank Nodes: rdf:parseType="Resource"
 2.12 Omitting Nodes: Property Attributes on an empty Property Element

Page 2 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

 2.13 Typed Node Elements
 2.14 Abbreviating URI References: rdf:ID and xml:base
 2.15 Container Membership Property Elements: rdf:li and rdf:_n
 2.16 Collections: rdf:parseType="Collection"
 2.17 Reifying Statements: rdf:ID
3 Terminology
4 RDF MIME Type, File Extension and Macintosh File Type
5 Global Issues
 5.1 The RDF Namespace and Vocabulary
 5.2 Identifiers
 5.3 Resolving URIs
 5.4 Constraints
 5.5 Conformance
6 Syntax Data Model
 6.1 Events
 6.2 Information Set Mapping
 6.3 Grammar Notation
7 RDF/XML Grammar
 7.1 Grammar Summary
 7.2 Grammar Productions
 7.3 Reification Rules
 7.4 List Expansion Rules
8 Serializing an RDF Graph to RDF/XML
9 Using RDF/XML with HTML and XHTML
10 Using RDF/XML with SVG
11 Acknowledgments
12 References

Appendices

A Syntax Schemas (Informative)
 A.1 RELAX NG Compact Syntax Schema (Informative)
B Revisions between Drafts 23 January and 05 September 2003 (Informative)
C Revisions since Working Draft 05 September 2003 (Informative)

1 Introduction

This document defines the XML [XML] syntax for RDF graphs which was
originally defined in the RDF Model & Syntax [RDF-MS] W3C
Recommendation. Subsequent implementations of this syntax and comparison
of the resulting RDF graphs have shown that there was ambiguity —
implementations generated different graphs and certain syntax forms were not
widely implemented.

This document revises the original RDF/XML grammar in terms of XML
Information Set [INFOSET] information items which moves away from the
rather low-level details of XML, such as particular forms of empty elements.
This allows the grammar to be more precisely recorded and the mapping from

Page 3 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

the XML syntax to the RDF Graph more clearly shown. The mapping to the
RDF graph is done by emitting statements in the form defined in the N-Triples
section of RDF Test Cases [RDF-TESTS] which creates an RDF graph, that
has semantics defined by RDF Semantics [RDF-SEMANTICS].

The complete specification of RDF consists of a number of documents:

? RDF Primer [RDF-PRIMER]
? RDF Concepts and Abstract Syntax [RDF-CONCEPTS]
? RDF Semantics [RDF-SEMANTICS]
? RDF/XML Syntax (this document)
? RDF Vocabulary Description Language 1.0: RDF Schema [RDF-

VOCABULARY]
? RDF Test Cases [RDF-TESTS]

For a longer introduction to the RDF/XML syntax with a historical perspective,
see RDF: Understanding the Striped RDF/XML Syntax [STRIPEDRDF].

2 An XML Syntax for RDF

This section introduces the RDF/XML syntax, describes how it encodes RDF
graphs and explains this with examples. If there is any conflict between this
informal description and the formal description of the syntax and grammar in
sections 6 Syntax Data Model and 7 RDF/XML Grammar, the latter two
sections take precedence.

2.1 Introduction

The RDF Concepts and Abstract Syntax [RDF-CONCEPTS] defines the RDF
Graph data model (Section 3.1) and the RDF Graph abstract syntax (Section
6). Along with the RDF Semantics [RDF-SEMANTICS] this provides an abstract
syntax with a formal semantics for it. The RDF graph has nodes and labeled
directed arcs that link pairs of nodes and this is represented as a set of RDF
triples where each triple contains a subject node, predicate and object node.
Nodes are RDF URI references, RDF literals or are blank nodes. Blank nodes
may be given a document-local, non-RDF URI references identifier called a
blank node identifier. Predicates are RDF URI references and can be
interpreted as either a relationship between the two nodes or as defining an
attribute value (object node) for some subject node.

In order to encode the graph in XML, the nodes and predicates have to be
represented in XML terms — element names, attribute names, element
contents and attribute values. RDF/XML uses XML QNames as defined in
Namespaces in XML [XML-NS] to represent RDF URI references. All QNames
have a namespace name which is a URI reference and a short local name. In
addition, QNames can either have a short prefix or be declared with the default
namespace declaration and have none (but still have a namespace name)

The RDF URI reference represented by a QName is determined by appending

Page 4 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

the local name part of the QName after the namespace name (URI reference)
part of the QName. This is used to shorten the RDF URI references of all
predicates and some nodes. RDF URI references identifying subject and object
nodes can also be stored as XML attribute values. RDF literals, which can only
be object nodes, become either XML element text content or XML attribute
values.

A graph can be considered a collection of paths of the form node, predicate
arc, node, predicate arc, node, predicate arc, ... node which cover the entire
graph. In RDF/XML these turn into sequences of elements inside elements
which alternate between elements for nodes and predicate arcs. This has been
called a series of node/arc stripes. The node at the start of the sequence turns
into the outermost element, the next predicate arc turns into a child element,
and so on. The stripes generally start at the top of an RDF/XML document and
always begin with nodes.

Several RDF/XML examples are given in the following sections building up to
complete RDF/XML documents. Example 7 is the first complete RDF/XML
document.

2.2 Node Elements and Property Elements

Figure 1: Graph for RDF/XML Example (SVG version)

An RDF graph is given in Figure 1 where the nodes are represented as ovals
and contain their RDF URI references where they have them, all the predicate
arcs are labeled with RDF URI references and plain literal nodes have been
written in rectangles.

If we follow one node, predicate arc ... , node path through the graph shown in
Figure 2:

Page 5 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

Figure 2: One Path Through the Graph (SVG version)

The left hand side of the Figure 2 graph corresponds to the node/predicate arc
stripes:

1. Node with RDF URI reference http://www.w3.org/TR/rdf-syntax-
grammar

2. Predicate Arc labeled with RDF URI reference
http://example.org/terms/editor

3. Node with no RDF URI reference
4. Predicate Arc labeled with RDF URI reference

http://example.org/terms/homePage
5. Node with RDF URI reference http://purl.org/net/dajobe/

In RDF/XML, the sequence of 5 nodes and predicate arcs on the left hand side
of Figure 2 corresponds to the usage of five XML elements of two types, for the
graph nodes and predicate arcs. These are conventionally called node
elements and property elements respectively. In the striping shown in Example
1, rdf:Description is the node element (used three times for the three nodes)
and ex:editor and ex:homePage are the two property elements.

Example 1: Striped RDF/XML (nodes and predicate arcs)
<rdf:Description>
 <ex:editor>
 <rdf:Description>
 <ex:homePage>
 <rdf:Description>
 </rdf:Description>
 </ex:homePage>
 </rdf:Description>
 </ex:editor>
</rdf:Description>

The Figure 2 graph consists of some nodes that are RDF URI references (and
others that are not) and this can be added to the RDF/XML using the rdf:about
attribute on node elements to give the result in Example 2:

Page 6 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

Example 2: Node Elements with RDF URI references added
<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
 <ex:editor>
 <rdf:Description>
 <ex:homePage>
 <rdf:Description rdf:about="http://purl.org/net/dajobe/">
 </rdf:Description>
 </ex:homePage>
 </rdf:Description>
 </ex:editor>
</rdf:Description>

Adding the other two paths through the Figure 1 graph to the RDF/XML in
Example 2 gives the result in Example 3 (this example fails to show that the
blank node is shared between the two paths, see 2.10):

Example 3: Complete description of all graph paths
<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
 <ex:editor>
 <rdf:Description>
 <ex:homePage>
 <rdf:Description rdf:about="http://purl.org/net/dajobe/">
 </rdf:Description>
 </ex:homePage>
 </rdf:Description>
 </ex:editor>
</rdf:Description>

<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
 <ex:editor>
 <rdf:Description>
 <ex:fullName>Dave Beckett</ex:fullName>
 </rdf:Description>
 </ex:editor>
</rdf:Description>

<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
 <dc:title>RDF/XML Syntax Specification (Revised)</dc:title>
</rdf:Description>

2.3 Multiple Property Elements

There are several abbreviations that can be used to make common uses easier
to write down. In particular, it is common that a subject node in the RDF graph
has multiple outgoing predicate arcs. RDF/XML provides an abbreviation for the
corresponding syntax when a node element about a resource has multiple
property elements. This can be abbreviated by using multiple child property
elements inside the node element describing the subject node.

Taking Example 3, there are two node elements that can take multiple property

Page 7 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

elements. The subject node with URI reference http://www.w3.org/TR/rdf-
syntax-grammar has property elements ex:editor and ex:title and the node
element for the blank node can take ex:homePage and ex:fullName. This
abbreviation gives the result shown in Example 4 (this example does show that
there is a single blank node):

Example 4: Using multiple property elements on a node element
<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
 <ex:editor>
 <rdf:Description>
 <ex:homePage>
 <rdf:Description rdf:about="http://purl.org/net/dajobe/">
 </rdf:Description>
 </ex:homePage>
 <ex:fullName>Dave Beckett</ex:fullName>
 </rdf:Description>
 </ex:editor>
 <dc:title>RDF/XML Syntax Specification (Revised)</dc:title>
</rdf:Description>

2.4 Empty Property Elements

When a predicate arc in an RDF graph points to an object node which has no
further predicate arcs, which appears in RDF/XML as an empty node element
<rdf:Description rdf:about="..."> </rdf:Description> (or
<rdf:Description rdf:about="..." />) this form can be shortened. This is
done by using the RDF URI reference of the object node as the value of an
XML attribute rdf:resource on the containing property element and making the
property element empty.

In this example, the property element ex:homePage contains an empty node
element with the RDF URI reference http://purl.org/net/dajobe/. This can
be replaced with the empty property element form giving the result shown in
Example 5:

Example 5: Empty property elements
<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
 <ex:editor>
 <rdf:Description>
 <ex:homePage rdf:resource="http://purl.org/net/dajobe/"/>
 <ex:fullName>Dave Beckett</ex:fullName>
 </rdf:Description>
 </ex:editor>
 <dc:title>RDF/XML Syntax Specification (Revised)</dc:title>
</rdf:Description>

2.5 Property Attributes

Page 8 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

When a property element's content is string literal, it may be possible to use it
as an XML attribute on the containing node element. This can be done for
multiple properties on the same node element only if the property element
name is not repeated (required by XML — attribute names are unique on an
XML element) and any in-scope xml:lang on the property element's string
literal (if any) are the same (see Section 2.7) This abbreviation is known as a
Property Attribute and can be applied to any node element or with the
rdf:parseType="Resource" form (see Section 2.11).

This abbreviation can also be used when the property element is rdf:type and
it has an rdf:resource attribute the value of which is interpreted as a RDF URI
reference object node.

In Example 5:, there are two property elements with string literal content, the
dc:title and ex:fullName property elements. These can be replaced with
property attributes giving the result shown in Example 6:

Example 6: Replacing property elements with string literal content into
property attributes

<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"
 dc:title="RDF/XML Syntax Specification (Revised)">
 <ex:editor>
 <rdf:Description ex:fullName="Dave Beckett">
 <ex:homePage rdf:resource="http://purl.org/net/dajobe/"/>
 </rdf:Description>
 </ex:editor>
</rdf:Description>

2.6 Completing the Document: Document Element and XML
Declaration

To create a complete RDF/XML document, the serialization of the graph into
XML is usually contained inside an rdf:RDF XML element which becomes the
top-level XML document element. Conventionally the rdf:RDF element is also
used to declare the XML namespaces that are used, although that is not
required. When there is only one top-level node element inside rdf:RDF, the
rdf:RDF can be omitted although any XML namespaces must still be declared.

The XML specification also permits an XML declaration at the top of the
document with the XML version and possibly the XML content encoding. This is
optional but recommended.

Completing the RDF/XML could be done for any of the correct complete graph
examples from Example 4 onwards but taking the smallest Example 6 and
adding the final components, gives a complete RDF/XML representation of the
original Figure 1 graph in Example 7:

Example 7: Complete RDF/XML description of Figure 1 graph

Page 9 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

(example07.rdf output example07.nt)
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ex="http://example.org/stuff/1.0/">
 <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"
 dc:title="RDF/XML Syntax Specification (Revised)">
 <ex:editor>
 <rdf:Description ex:fullName="Dave Beckett">
 <ex:homePage rdf:resource="http://purl.org/net/dajobe/" />
 </rdf:Description>
 </ex:editor>
 </rdf:Description>
</rdf:RDF>

It is possible to omit rdf:RDF in Example 7 above since there is only one
rdf:Description inside rdf:RDF but this is not shown here.

2.7 Languages: xml:lang

RDF/XML permits the use of the xml:lang attribute as defined by 2.12 Language
Identification of XML 1.0 [XML] to allow the identification of content language.
The xml:lang attribute can be used on any node element or property element to
indicate that the included content is in the given language. Typed literals which
includes XML literals are not affected by this attribute. The most specific in-
scope language present (if any) is applied to property element string literal
content or property attribute values. The xml:lang="" form indicates the
absence of a language identifier.

Some examples of marking content languages for RDF properties are shown in
Example 8:

Example 8: Complete example of xml:lang (example08.rdf output
example08.nt)

<?xml version="1.0" encoding="iso-8859-1"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
 <dc:title>RDF/XML Syntax Specification (Revised)</dc:title>
 <dc:title xml:lang="en">RDF/XML Syntax Specification (Revised)</dc:title>
 <dc:title xml:lang="en-US">RDF/XML Syntax Specification (Revised)</dc:title>
 </rdf:Description>

 <rdf:Description rdf:about="http://example.org/buchen/baum" xml:lang="de">
 <dc:title>Das Baum</dc:title>
 <dc:description>Das Buch ist außergewöhnlich</dc:description>
 <dc:title xml:lang="en">The Tree</dc:title>
 </rdf:Description>
</rdf:RDF>

Page 10 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

2.8 XML Literals: rdf:parseType="Literal"

RDF allows XML literals ([RDF-CONCEPTS] Section 5, XML Content within an
RDF graph) to be given as the object node of a predicate. These are written in
RDF/XML as content of a property element (not a property attribute) and
indicated using the rdf:parseType="Literal" attribute on the containing
property element.

An example of writing an XML literal is given in Example 9 where there is a
single RDF triple with the subject node RDF URI reference
http://example.org/item01, the predicate RDF URI reference
http://example.org/stuff/1.0/prop (from ex:prop) and the object node with
XML literal content beginning a:Box.

Example 9: Complete example of
rdf:parseType="Literal" (example09.rdf output example09.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/stuff/1.0/">
 <rdf:Description rdf:about="http://example.org/item01">
 <ex:prop rdf:parseType="Literal"
 xmlns:a="http://example.org/a#"><a:Box required="true">
 <a:widget size="10" />
 <a:grommit id="23" /></a:Box>
 </ex:prop>
 </rdf:Description>
</rdf:RDF>

2.9 Typed Literals: rdf:datatype

RDF allows typed literals to be given as the object node of a predicate. Typed
literals consist of a literal string and a datatype RDF URI reference. These are
written in RDF/XML using the same syntax for literal string nodes in the
property element form (not property attribute) but with an additional
rdf:datatype="datatypeURI" attribute on the property element. Any RDF URI
reference can be used in the attribute.

An example of an RDF typed literal is given in Example 10 where there is a
single RDF triple with the subject node RDF URI reference
http://example.org/item01, the predicate RDF URI reference
http://example.org/stuff/1.0/size (from ex:size) and the object node with
the typed literal ("123", http://www.w3.org/2001/XMLSchema#int) to be
interpreted as an W3C XML Schema [XML-SCHEMA2] datatype int.

Example 10: Complete example of rdf:datatype (example10.rdf output
example10.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

Page 11 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

 xmlns:ex="http://example.org/stuff/1.0/">
 <rdf:Description rdf:about="http://example.org/item01">
 <ex:size rdf:datatype="http://www.w3.org/2001/XMLSchema#int">123</ex:size>
 </rdf:Description>
</rdf:RDF>

2.10 Identifying Blank Nodes: rdf:nodeID

Blank nodes in the RDF graph are distinct but have no RDF URI reference
identifier. It is sometimes required that the same graph blank node is referred to
in the RDF/XML in multiple places, such as at the subject and object of several
RDF triples. In this case, a blank node identifier can be given to the blank node
for identifying it in the document. Blank node identifiers in RDF/XML are scoped
to the containing XML Information Set document information item. A blank node
identifier is used on a node element to replace rdf:about="RDF URI reference"
or on a property element to replace rdf:resource="RDF URI reference" with
rdf:nodeID="blank node identifier" in both cases.

Taking Example 7 and explicitly giving a blank node identifier of abc to the blank
node in it gives the result shown in Example 11. The second rdf:Description
property element is about the blank node.

Example 11: Complete RDF/XML description of graph using rdf:nodeID
identifying the blank node (example11.rdf output example11.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ex="http://example.org/stuff/1.0/">
 <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"
 dc:title="RDF/XML Syntax Specification (Revised)">
 <ex:editor rdf:nodeID="abc"/>
 </rdf:Description>

 <rdf:Description rdf:nodeID="abc"
 ex:fullName="Dave Beckett">
 <ex:homePage rdf:resource="http://purl.org/net/dajobe/"/>
 </rdf:Description>
</rdf:RDF>

2.11 Omitting Blank Nodes: rdf:parseType="Resource"

Blank nodes (not RDF URI reference nodes) in RDF graphs can be writtena in a
form that allows the <rdf:Description> </rdf:Description> pair to be omitted.
The omission is done by putting an rdf:parseType="Resource" attribute on the
containing property element that turns the property element into a property-and-
node element, which can itself have both property elements and property
attributes. Property attributes and the rdf:nodeID attribute are not permitted on
property-and-node elements.

Page 12 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

Taking the earlier Example 7, the contents of the ex:editor property element
could be alternatively done in this fashion to give the form shown in Example
12:

Example 12: Complete example using
rdf:parseType="Resource" (example12.rdf output example12.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ex="http://example.org/stuff/1.0/">
 <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"
 dc:title="RDF/XML Syntax Specification (Revised)">
 <ex:editor rdf:parseType="Resource">
 <ex:fullName>Dave Beckett</ex:fullName>
 <ex:homePage rdf:resource="http://purl.org/net/dajobe/"/>
 </ex:editor>
 </rdf:Description>
</rdf:RDF>

2.12 Omitting Nodes: Property Attributes on an empty Property
Element

If all of the property elements on a blank node element have string literal values
with the same in-scope xml:lang value (if present) and each of these property
elements appears at most once and there is at most one rdf:type property
element with a RDF URI reference object node, these can be abbreviated by
moving them to be property attributes on the containing property element which
is made an empty element.

Taking the earlier Example 5, the ex:editor property element contains a blank
node element with two property elements ex:fullname and ex:homePage.
ex:homePage is not suitable here since it does not have a string literal value, so
it is being ignored for the purposes of this example. The abbreviated form
removes the ex:fullName property element and adds a new property attribute
ex:fullName with the string literal value of the deleted property element to the
ex:editor property element. The blank node element becomes implicit in the
now empty ex:editor property element. The result is shown in Example 13.

Example 13: Complete example of property attributes on an empty
property element (example13.rdf output example13.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ex="http://example.org/stuff/1.0/">
 <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"
 dc:title="RDF/XML Syntax Specification (Revised)">
 <ex:editor ex:fullName="Dave Beckett" />
 <!-- Note the ex:homePage property has been ignored for this example
 </rdf:Description>
</rdf:RDF>

Page 13 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

2.13 Typed Node Elements

It is common for RDF graphs to have rdf:type predicates from subject nodes.
These are conventionally called typed nodes in the graph, or typed node
elements in the RDF/XML. RDF/XML allows this triple to be expressed more
concisely. by replacing the rdf:Description node element name with the
namespaced-element corresponding to the RDF URI reference of the value of
the type relationship. There may, of course, be multiple rdf:type predicates but
only one can be used in this way, the others must remain as property elements
or property attributes.

The typed node elements are commonly used in RDF/XML with the built-in
classes in the RDF vocabulary: rdf:Seq, rdf:Bag, rdf:Alt, rdf:Statement,
rdf:Property and rdf:List.

For example, the RDF/XML in Example 14 could be written as shown in
Example 15.

Example 14: Complete example with rdf:type (example14.rdf output
example14.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ex="http://example.org/stuff/1.0/">
 <rdf:Description rdf:about="http://example.org/thing">
 <rdf:type rdf:resource="http://example.org/stuff/1.0/Document"/>
 <dc:title>A marvelous thing</dc:title>
 </rdf:Description>
</rdf:RDF>

Example 15: Complete example using a typed node element to replace an
rdf:type (example15.rdf output example15.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ex="http://example.org/stuff/1.0/">
 <ex:Document rdf:about="http://example.org/thing">
 <dc:title>A marvelous thing</dc:title>
 </ex:Document>
</rdf:RDF>

2.14 Abbreviating URIs: rdf:ID and xml:base

RDF/XML allows further abbreviating RDF URI references in XML attributes in
two ways. The XML Infoset provides a base URI attribute xml:base that sets the
base URI for resolving relative RDF URI references, otherwise the base URI is

Page 14 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

that of the document. The base URI applies to all RDF/XML attributes that deal
with RDF URI references which are rdf:about, rdf:resource, rdf:ID and
rdf:datatype.

The rdf:ID attribute on a node element (not property element, that has another
meaning) can be used instead of rdf:about and gives a relative RDF URI
reference equivalent to # concatenated with the rdf:ID attribute value. So for
example if rdf:ID="name", that would be equivalent to rdf:about="#name".
rdf:ID provides an additional check since the same name can only appear
once in the scope of an xml:base value (or document, if none is given), so is
useful for defining a set of distinct, related terms relative to the same RDF URI
reference.

Both forms require a base URI to be known, either from an in-scope xml:base
or from the URI of the RDF/XML document.

Example 16 shows abbreviating the node RDF URI reference of
http://example.org/here/#snack using an xml:base of
http://example.org/here/ and an rdf:ID on the rdf:Description node
element. The object node of the ex:prop predicate is an absolute RDF URI
reference resolved from the rdf:resource XML attribute value using the in-
scope base URI to give the RDF URI reference
http://example.org/here/fruit/apple.

Example 16: Complete example using rdf:ID and xml:base for
shortening URIs (example16.rdf output example16.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/stuff/1.0/"
 xml:base="http://example.org/here/">
 <rdf:Description rdf:ID="snack">
 <ex:prop rdf:resource="fruit/apple"/>
 </rdf:Description>
</rdf:RDF>

2.15 Container Membership Property Elements: rdf:li and
rdf:_n

RDF has a set of container membership properties and corresponding property
elements that are mostly used with instances of the rdf:Seq, rdf:Bag and
rdf:Alt classes which may be written as typed node elements. The list
properties are rdf:_1, rdf:_2 etc. and can be written as property elements or
property attributes as shown in Example 17. There is an rdf:li special
property element that is equivalent to rdf:_1, rdf:_2 in order, explained in
detail in section 7.4. The mapping to the container membership properties is
always done in the order that the rdf:li special property elements appear in
XML — the document order is significant. The equivalent RDF/XML to Example
17 written in this form is shown in Example 18.

Page 15 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

Example 17: Complex example using RDF list properties (example17.rdf
output example17.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Seq rdf:about="http://example.org/favourite-fruit">
 <rdf:_1 rdf:resource="http://example.org/banana"/>
 <rdf:_2 rdf:resource="http://example.org/apple"/>
 <rdf:_3 rdf:resource="http://example.org/pear"/>
 </rdf:Seq>
</rdf:RDF>

Example 18: Complete example using rdf:li property element for list
properties (example18.rdf output example18.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Seq rdf:about="http://example.org/favourite-fruit">
 <rdf:li rdf:resource="http://example.org/banana"/>
 <rdf:li rdf:resource="http://example.org/apple"/>
 <rdf:li rdf:resource="http://example.org/pear"/>
 </rdf:Seq>
</rdf:RDF>

2.16 Collections: rdf:parseType="Collection"

RDF/XML allows an rdf:parseType="Collection" attribute on a property
element to let it contain multiple node elements. These contained node
elements give the set of subject nodes of the collection. This syntax form
corresponds to a set of triples connecting the collection of subject nodes, the
exact triples generated are described in detail in Section 7.2.19 Production
parseTypeCollectionPropertyElt. The collection construction is always done in
the order that the node elements appear in the XML document. Whether the
order of the collection of nodes is significant is an application issue and not
defined here.

Example 19 shows a collection of three nodes elements at the end of the
ex:hasFruit property element using this form.

Example 19: Complete example of a RDF collection of nodes using
rdf:parseType="Collection" (example19.rdf output example19.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/stuff/1.0/">
 <rdf:Description rdf:about="http://example.org/basket">
 <ex:hasFruit rdf:parseType="Collection">
 <rdf:Description rdf:about="http://example.org/banana"/>
 <rdf:Description rdf:about="http://example.org/apple"/>
 <rdf:Description rdf:about="http://example.org/pear"/>
 </ex:hasFruit>
 </rdf:Description>
</rdf:RDF>

Page 16 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

2.17 Reifying Statements: rdf:ID

The rdf:ID attribute can be used on a property element to reify the triple that it
generates (See section 7.3 Reification Rules for the full details). The identifier
for the triple should be constructed as a RDF URI reference made from the
relative URI reference # concatenated with the rdf:ID attribute value, resolved
against the in-scope base URI. So for example if rdf:ID="triple", that would
be equivalent to the RDF URI reference formed from relative URI reference
#triple against the base URI. Each (rdf:ID attribute value, base URI) pair has
to be unique in an RDF/XML document, see constraint-id.

Example 20 shows a rdf:ID being used to reify a triple made from the ex:prop
property element giving the reified triple the RDF URI reference
http://example.org/triples/#triple1.

Example 20: Complete example of rdf:ID reifying a property element
(example20.rdf output example20.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/stuff/1.0/"
 xml:base="http://example.org/triples/">
 <rdf:Description rdf:about="http://example.org/">
 <ex:prop rdf:ID="triple1">blah</ex:prop>
 </rdf:Description>
</rdf:RDF>

3 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC 2119 [KEYWORDS].

All use of string without further qualification refers to a Unicode[UNICODE]
character string; a sequence of characters represented by a code point in
Unicode. (Such as defined in [CHARMOD] in section 3.4 Strings).

4 RDF MIME Type, File Extension and Macintosh File
Type

The Internet media type / MIME type for RDF/XML is "application/rdf+xml" —
see RFC 3032 [RFC-3023] section 8.18.

Registration Note (Informative): For the state of the MIME type
registration, consult IANA MIME Media Types[[IANA-MEDIA-TYPES]

It is recommended that RDF/XML files have the extension ".rdf" (all
lowercase) on all platforms.

Page 17 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

It is recommended that RDF/XML files stored on Macintosh HFS file systems
be given a file type of "rdf " (all lowercase, with a space character as the
fourth letter).

5 Global Issues

5.1 The RDF Namespace and Vocabulary

Note (Informative): The names aboutEach and aboutEachPrefix were
removed from the language and the RDF vocabulary by the RDF Core
Working Group. See the resolution of issues rdfms-abouteach and rdfms-
abouteachprefix for further information.

Note (Informative): The names List, first, rest and nil were added for
issue rdfms-seq-representation. The names XMLLiteral and datatype
were added to support RDF datatyping. The name nodeID was added for
issue rdfms-syntax-incomplete. See the RDF Core Issues List for further
information.

The RDF namespace URI reference (or namespace name) is
http://www.w3.org/1999/02/22-rdf-syntax-ns# and is typically used in XML
with the prefix rdf although other prefix strings may be used. The RDF
Vocabulary is identified by this namespace name and consists of the following
names only:

Syntax names — not concepts

RDF Description ID about parseType resource li nodeID datatype

Class names

Seq Bag Alt Statement Property XMLLiteral List

Property names

subject predicate object type value first rest _n
where n is a decimal integer greater than zero with no leading zeros.

Resource names

nil

Any other names are not defined and SHOULD generate a warning when
encountered, but should otherwise behave normally.

Within RDF/XML documents it is not permitted to use XML namespaces whose
namespace name is the ·RDF namespace URI reference· concatenated with
additional characters.

Page 18 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

Throughout this document the terminology rdf:name will be used to indicate
name is from the RDF vocabulary and it has a RDF URI reference of the
concatenation of the ·RDF namespace URI reference· and name. For example,
rdf:type has the RDF URI reference http://www.w3.org/1999/02/22-rdf-
syntax-ns#type

5.2 Identifiers

The RDF Graph (RDF Concepts and Abstract Syntax Section 3) defines three
types of nodes and one type of predicate:

RDF URI reference nodes and predicates

RDF URI references (RDF Concepts and Abstract Syntax Section 3.1)
can be either:

? given as XML attribute values interpreted as relative URI references
that are resolved against the in-scope base URI as described in
section 5.3 to give absolute RDF URI references

? transformed from XML namespace-qualified element and attribute
names (QNames)

? transformed from rdf:ID attribute values.

Within RDF/XML, XML QNames are transformed into RDF URI
references by appending the XML local name to the namespace name
(URI reference). For example, if the XML namespace prefix foo has
namespace name (URI reference) http://example.org/somewhere/ then
the QName foo:bar would correspond to the RDF URI reference
http://example.org/somewhere/bar. Note that this restricts which RDF
URI references can be made and the same URI can be given in multiple
ways.

The rdf:ID values are transformed into RDF URI references by
appending the attribute value to the result of appending "#" to the in-
scope base URI which is defined in Section 5.3 Resolving URIs

Literal nodes (always object nodes)

RDF literals (RDF Concepts and Abstract Syntax 6.5) are either plain
literals (ibid), or typed literals (ibid). The latter includes XML literals (ibid
section 5, XML Content within an RDF graph).

Blank Node Identifiers

Blank nodes have distinct identity in the RDF graph. When the graph is
written in a syntax such as RDF/XML, these blank nodes may need
graph-local identifiers and a syntax in order to preserve this distinction.
These local identifiers are called blank node identifiers and are used in
RDF/XML as values of the rdf:nodeID attribute with the syntax given in
Production nodeIdAttr. Blank node identifiers in RDF/XML are scoped to

Page 19 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

the XML Information Set document information item.

If no blank node identifier is given explicitly as an rdf:nodeID attribute
value then one will need to be generated (using generated-blank-node-id,
see section 6.3.3). Such generated blank node identifiers must not clash
with any blank node identifiers derived from rdf:nodeID attribute values.
This can be implemented by any method that preserves the distinct
identity of all the blank nodes in the graph, that is, the same blank node
identifier is not given for different blank nodes. One possible method
would be to add a constant prefix to all the rdf:nodeID attribute values
and ensure no generated blank node identifiers ever used that prefix.
Another would be to map all rdf:nodeID attribute values to new
generated blank node identifiers and perform that mapping on all such
values in the RDF/XML document.

5.3 Resolving URIs

RDF/XML supports XML Base [XML-BASE] which defines a ·base-uri·
accessor for each ·root event· and ·element event·. Relative URI references are
resolved into RDF URI references according to the algorithm specified in XML
Base [XML-BASE] (and RFC 2396). These specifications do not specify an
algorithm for resolving a fragment identifier alone, such as #foo, or the empty
string "" into an RDF URI reference. In RDF/XML, a fragment identifier is
transformed into a RDF URI reference by appending the fragment identifier to
the in-scope base URI. The empty string is transformed into an RDF URI
reference by substituting the in-scope base URI.

Test: Indicated by test001.rdf and test001.nt

Test: Indicated by test004.rdf and test004.nt

Test: Indicated by test008.rdf and test008.nt

Test: Indicated by test013.rdf and test013.nt

Test: Indicated by test016.rdf and test016.nt

An empty same document reference "" resolves against the URI part of the
base URI; any fragment part is ignored. See Uniform Resource Identifiers (URI)
[URIS] section 4.2

Test: Indicated by test013.rdf and test013.nt

Implementation Note (Informative): When using a hierarchical base URI
that has no path component (/), it must be added before using as a base
URI for resolving.

Test: Indicated by test011.rdf and test011.nt

Page 20 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

5.4 Constraints

constraint-id

Each application of production idAttr matches an attribute. The pair
formed by the ·string-value· accessor of the matched attribute and the
·base-uri· accessor of the matched attribute is unique within a single
RDF/XML document.

The syntax of the names must match the rdf-id production.

Test: Indicated by test014.rdf and test014.nt

5.5 Conformance

Definition:
An RDF Document is a serialization of an RDF Graph into a concrete
syntax.

Definition:
An RDF/XML Document is an RDF Document written in the
recommended XML transfer syntax for RDF as defined in this document.

Conformance:
An RDF/XML Document is a conforming RDF/XML document if it adheres
to the specification defined in this document.

6 Syntax Data Model

This document specifies the syntax of RDF/XML as a grammar on an alphabet
of symbols. The symbols are called events in the style of the [XPATH]
Information Set Mapping. A sequence of events is normally derived from an
XML document, in which case they are in document order as defined below in
Section 6.2 Information Set Mapping. The sequence these events form are
intended to be similar to the sequence of events produced by the [SAX2] XML
API from the same XML document. Sequences of events may be checked
against the grammar to determine whether they are or are not syntactically
well-formed RDF/XML.

The grammar productions may include actions which fire when the production
is recognized. Taken together these actions define a transformation from any
syntactically well-formed RDF/XML sequence of events into an RDF graph
represented in the N-Triples language.

The model given here illustrates one way to create a representation of an RDF
Graph from an RDF/XML document. It does not mandate any implementation
method — any other method that results in a representation of the same RDF
Graph may be used.

In particular:

Page 21 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

? This specification permits any representation of an RDF graph (see [RDF-
CONCEPTS]); in particular, it does not require the use of N-Triples.

? This specification does not require the use of [XPATH] or [SAX2]
? This specification places no constraints on the order in which software

transforming RDF/XML into a representation of a graph, constructs the
representation of the graph.

? Software transforming RDF/XML into a representation of a graph MAY
eliminate duplicate predicate arcs.

The syntax does not support non-well-formed XML documents, nor documents
that otherwise do not have an XML Information Set; for example, that do not
conform to Namespaces in XML [XML-NS].

The Infoset requires support for XML Base [XML-BASE]. RDF/XML uses the
information item property [base URI], discussed in section 5.3

This specification requires an XML Information Set [INFOSET] which supports
at least the following information items and properties for RDF/XML:

document information item
[document element], [children], [base URI]

element information item
[local name], [namespace name], [children], [attributes], [parent], [base
URI]

attribute information item
[local name], [namespace name], [normalized value]

character information item
[character code]

There is no mapping of the following items to data model events:

processing instruction information item
unexpanded entity reference information item
comment information item
document type declaration information item
unparsed entity information item
notation information item
namespace information item

Other information items and properties have no mapping to syntax data model
events.

Element information items with reserved XML Names (See Name in XML 1.0)
are not mapped to data model element events. These are all those with
property [prefix] beginning with xml (case independent comparison) and all
those with [prefix] property having no value and which have [local name]
beginning with xml (case independent comparison).

All information items contained inside XML elements matching the
parseTypeLiteralPropertyElt production form XML literals and do not follow this

Page 22 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

mapping. See parseTypeLiteralPropertyElt for further information.

This section is intended to satisfy the requirements for Conformance in the
[INFOSET] specification. It specifies the information items and properties that
are needed to implement this specification.

6.1 Events

There are nine types of event defined in the following subsections. Most events
are constructed from an Infoset information item (except for URI reference,
blank node, plain literal and typed literal). The effect of an event constructor is
to create a new event with a unique identity, distinct from all other events.
Events have accessor operations on them and most have the string-value
accessor that may be a static value or computed.

6.1.1 Root Event

Constructed from a document information item and takes the following
accessors and values.

document-element
Set to the value of document information item property [document-
element].

children
Set to the value of document information item property [children].

base-uri
Set to the value of document information item property [base URI].

language
Set to the empty string.

6.1.2 Element Event

Constructed from an element information item and takes the following
accessors and values:

local-name
Set to the value of element information item property [local name].

namespace-name
Set to the value of element information item property [namespace name].

children
Set to the value of element information item property [children].

base-uri
Set to the value of element information item property [base URI].

attributes

Made from the value of element information item property [attributes]
which is a set of attribute information items.

If this set contains an attribute information item xml:lang ([namespace

Page 23 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

name] property with the value "http://www.w3.org/XML/1998/namespace"
and [local name] property value "lang") it is removed from the set of
attribute information items and the ·language· accessor is set to the
[normalized-value] property of the attribute information item.

All remaining reserved XML Names (See Name in XML 1.0) are now
removed from the set. These are, all attribute information items in the set
with property [prefix] beginning with xml (case independent comparison)
and all attribute information items with [prefix] property having no value
and which have [local name] beginning with xml (case independent
comparison) are removed. Note that the [base URI] accessor is computed
by XML Base before any xml:base attribute information item is deleted.

The remaining set of attribute information items are then used to
construct a new set of Attribute Events which is assigned as the value of
this accessor.

URI
Set to the string value of the concatenation of the value of the
namespace-name accessor and the value of the local-name accessor.

li-counter
Set to the integer value 1.

language
Set from the ·attributes· as described above. If no value is given from the
attributes, the value is set to the value of the language accessor on the
parent event (either a Root Event or an Element Event), which may be
the empty string.

subject
Has no initial value. Takes a value that is an Identifier event. This
accessor is used on elements that deal with one node in the RDF graph,
this generally being the subject of a statement.

6.1.3 End Element Event

Has no accessors. Marks the end of the containing element in the sequence.

6.1.4 Attribute Event

Constructed from an attribute information item and takes the following
accessors and values:

local-name
Set to the value of attribute information item property [local name].

namespace-name
Set to the value of attribute information item property [namespace name].

string-value
Set to the value of the attribute information item property [normalized
value] as specified by [XML] (if an attribute whose normalized value is a
zero-length string, then the string-value is also a zero-length string).

URI

Page 24 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

If ·namespace-name· is present, set to a string value of the concatenation
of the value of the ·namespace-name· accessor and the value of the
·local-name· accessor. Otherwise if ·local-name· is ID, about, resource,
parseType or type, set to a string value of the concatenation of the ·RDF
namespace URI reference· and the value of the ·local-name· accessor.
Other non-namespaced ·local-name· accessor values are forbidden.

The support for a limited set of non-namespaced names is REQUIRED
and intended to allow RDF/XML documents specified in [RDF-MS] to
remain valid; new documents SHOULD NOT use these unqualified
attributes and applications MAY choose to warn when the unqualified
form is seen in a document.

The construction of RDF URI references from XML attributes can
generate the same RDF URI references from different XML attributes.
This can cause ambiguity in the grammar when matching attribute events
(such as when rdf:about and about XML attributes are both present).
Documents that have this are illegal.

6.1.5 Text Event

Constructed from a sequence of one or more consecutive character information
items. Has the single accessor:

string-value
Set to the value of the string made from concatenating the [character
code] property of each of the character information items.

6.1.6 URI Reference Event

An event for a RDF URI references which has the following accessors:

identifier
Takes a string value used as an RDF URI reference.

string-value

The value is the concatenation of "<", the value of the ·identifier· accessor
and ">"

The <>-quoted ·identifier· accessor value must use the N-Triples escapes
for URI references as described in 3.3 URI References.

These events are constructed by giving a value for the ·identifier· accessor.

For further information on identifiers in the RDF graph, see section 5.2.

6.1.7 Blank Node Identifier Event

An event for a blank node identifier which has the following accessors:

Page 25 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

identifier
Takes a string value.

string-value
The value is a function of the value of the ·identifier· accessor. The value
begins with "_:" and the entire value MUST match the N-Triples nodeID
production. The function MUST preserve distinct blank node identity as
discussed in in section 5.2 Identifiers.

These events are constructed by giving a value for the ·identifier· accessor.

For further information on identifiers in the RDF graph, see section 5.2.

6.1.8 Plain Literal Event

An event for a plain literal which can have the following accessors:

literal-value
Takes a string value.

literal-language
Takes a string value used as a language tag in an RDF plain literal.

string-value

The value is calculated from the other accessors as follows.

If ·literal-language· is the empty string then the value is the concatenation
of """ (1 double quote), the value of the 2 ·literal-value· accessor and """ (1
double quote).

Otherwise the value is the concatenation of """ (1 double quote), the value
of the ·literal-value· accessor ""@" (1 double quote and a '@'), and the
value of the ·literal-language· accessor.

The double-quoted ·literal-value· accessor value must use the N-Triples
escapes for strings as described in 3.2 Strings for escaping certain
characters such as ".

These events are constructed by giving values for the ·literal-value· and ·literal-
language· accessors.

Interoperability Note (Informative): Literals beginning with a Unicode
combining character are allowed however they may cause interoperability
problems. See [CHARMOD] for further information.

6.1.9 Typed Literal Event

An event for a typed literal which can have the following accessors:

literal-value
Takes a string value.

Page 26 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

literal-datatype
Takes a string value used as an RDF URI reference.

string-value

The value is the concatenation of the following in this order """ (1 double
quote), the value of the ·literal-value· accessor, """ (1 double quote),
"^^<", the value of the ·literal-datatype· accessor and ">".

The double-quoted ·literal-value· accessor value must use the N-Triples
escapes for strings as described in 3.2 Strings for escaping certain
characters such as ". The <>-quoted ·literal-datatype· accessor value
must use the N-Triples escapes for URI references as described in 3.3
URI References.

These events are constructed by giving values for the ·literal-value· and ·literal-
datatype· accessors.

Interoperability Note (Informative): Literals beginning with a Unicode
combining character are allowed however they may cause interoperability
problems. See [CHARMOD] for further information.

Implementation Note (Informative): In XML Schema (part 1) [XML-
SCHEMA1], white space normalization occurs during validation according
to the value of the whiteSpace facet. The syntax mapping used in this
document occurs after this, so the whiteSpace facet formally has no further
effect.

6.2 Information Set Mapping

To transform the Infoset into the sequence of events in document order, each
information item is transformed as described above to generate a tree of
events with accessors and values. Each element event is then replaced as
described below to turn the tree of events into a sequence in document order.

1. The original element event
2. The value of the children accessor recursively transformed, a possibly

empty ordered list of events.
3. An end element event

6.3 Grammar Notation

The following notation is used to describe matching the sequence of data
model events as given in Section 6 and the actions to perform for the matches.
The RDF/XML grammar is defined in terms of mapping from these matched
data model events to triples, using notation of the form:

number event-type event-content

action...

Page 27 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

N-Triples

where the event-content is an expression matching event-types (as defined in
Section 6.1), using notation given in the following sections. The number is used
for reference purposes. The grammar action may include generating new
triples to the graph, written in N-Triples format.

The following sections describe the general notation used and that for event
matching and actions.

6.3.1 Grammar General Notation

6.3.2 Grammar Event Matching Notation

Grammar General Notation.

Notation Meaning
event.accessor The value of an event accessor.
rdf:X A URI as defined in section 5.1.

"ABC" A string of characters A, B, C in order.

Grammar Event Matching Notation.

Notation Meaning
A == B Event accessor A matches expression B.
A != B A is not equal to B.
A | B | ... The A, B, ... terms are alternatives.
A - B The terms in A excluding all the terms in B.
anyURI. Any URI.
anyString. Any string.
list(item1, item2,
...); list() An ordered list of events. An empty list.

set(item1, item2,
...); set() An unordered set of events. An empty set.

* Zero or more of preceding term.
? Zero or one of preceding term.
+ One or more of preceding term.
root(acc1 ==
value1,
 acc2 ==
value2, ...)

Match a Root Event with accessors.

start-element
(acc1 == value1,
 acc2 ==
value2, ...)

Match a sequence of Element Event with accessors, a
possibly empty list of events as element content and an

Page 28 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

6.3.3 Grammar Action Notation

7 RDF/XML Grammar

7.1 Grammar summary

children
end-element()

End Element Event.

attribute(acc1 ==
value1,
 acc2 ==
value2, ...)

Match an Attribute Event with accessors.

text() Match a Text Event.

Grammar Action Notation.

Notation Meaning
A := B Assigns A the value B.
concat(A, B, ..) A string created by concatenating the terms in order.

resolve(e, s)

A string created by interpreting string s as a relative
URI reference to the ·base-uri· accessor of e as
defined in Section 5.3 Resolving URIs. The resulting
string represents an RDF URI reference.

generated-blank-
node-id()

A string value for a new distinct generated blank node
identifier as defined in section 5.2 Identifiers.

event.accessor :=
value Sets an event accessor to the given value.

uri(identifier := value) Create a new URI Reference Event.
bnodeid(identifier :=
value)

Create a new Blank Node Identifier Event. See also
section 5.2 Identifiers.

literal(literal-value :=
string,
 literal-language :=
language, ...)

Create a new Plain Literal Event.

typed-literal(literal-
value := string, ...) Create a new Typed Literal Event.

7.2.2 coreSyntaxTerms rdf:RDF | rdf:ID | rdf:about |
rdf:parseType | rdf:resource | rdf:nodeID
| rdf:datatype

7.2.3 syntaxTerms coreSyntaxTerms | rdf:Description |
rdf:li

7.2.4 oldTerms rdf:aboutEach | rdf:aboutEachPrefix |
rdf:bagID

7.2.5 nodeElementURIs anyURI - (coreSyntaxTerms | rdf:li |

Page 29 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

oldTerms)
7.2.6 propertyElementURIs anyURI - (coreSyntaxTerms |

rdf:Description | oldTerms)
7.2.7 propertyAttributeURIs anyURI - (coreSyntaxTerms |

rdf:Description | rdf:li | oldTerms)
7.2.8 doc root(document-element == RDF, children

== list(RDF))
7.2.9 RDF start-element(URI == rdf:RDF, attributes ==

set())
nodeElementList
end-element()

7.2.10 nodeElementList ws* (nodeElement ws*)*
7.2.11 nodeElement start-element(URI == nodeElementURIs

 attributes == set((idAttr | nodeIdAttr |
aboutAttr)?, propertyAttr*))
propertyEltList
end-element()

7.2.12 ws A text event matching white space defined
by [XML] definition White Space Rule [3] S
in section Common Syntactic Constructs

7.2.13 propertyEltList ws* (propertyElt ws*) *
7.2.14 propertyElt resourcePropertyElt | literalPropertyElt |

parseTypeLiteralPropertyElt |
parseTypeResourcePropertyElt |
parseTypeCollectionPropertyElt |
parseTypeOtherPropertyElt |
emptyPropertyElt

7.2.15 resourcePropertyElt start-element(URI ==
propertyElementURIs), attributes == set
(idAttr?))
ws* nodeElement ws*
end-element()

7.2.16 literalPropertyElt start-element(URI ==
propertyElementURIs), attributes == set
(idAttr?, datatypeAttr?))
text()
end-element()

7.2.17
parseTypeLiteralPropertyElt

start-element(URI ==
propertyElementURIs), attributes == set
(idAttr?, parseLiteral))
literal
end-element()

7.2.18
parseTypeResourcePropertyElt

start-element(URI ==
propertyElementURIs), attributes == set
(idAttr?, parseResource))
propertyEltList
end-element()

Page 30 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

7.2.19
parseTypeCollectionPropertyElt

start-element(URI ==
propertyElementURIs), attributes == set
(idAttr?, parseCollection))
nodeElementList
end-element()

7.2.20
parseTypeOtherPropertyElt

start-element(URI ==
propertyElementURIs), attributes == set
(idAttr?, parseOther))
propertyEltList
end-element()

7.2.21 emptyPropertyElt start-element(URI ==
propertyElementURIs), attributes == set
(idAttr?, (resourceAttr | nodeIdAttr)?,
propertyAttr*))
end-element()

7.2.22 idAttr attribute(URI == rdf:ID, string-value ==
rdf-id)

7.2.23 nodeIdAttr attribute(URI == rdf:nodeID, string-value
== rdf-id)

7.2.24 aboutAttr attribute(URI == rdf:about, string-value ==
URI-reference)

7.2.25 propertyAttr attribute(URI == propertyAttributeURIs,
string-value == anyString)

7.2.26 resourceAttr attribute(URI == rdf:resource, string-value
== URI-reference)

7.2.27 datatypeAttr attribute(URI == rdf:datatype, string-value
== URI-reference)

7.2.28 parseLiteral attribute(URI == rdf:parseType, string-
value == "Literal")

7.2.29 parseResource attribute(URI == rdf:parseType, string-
value == "Resource")

7.2.30 parseCollection attribute(URI == rdf:parseType, string-
value == "Collection")

7.2.31 parseOther attribute(URI == rdf:parseType, string-
value == anyString - ("Resource" | "Literal"
| "Collection"))

7.2.32 URI-reference An attribute ·string-value· representing an
RDF URI reference.

7.2.33 literal Any XML element content that is allowed
according to [XML] definition Content of
Elements Rule [43] content. in section 3.1
Start-Tags, End-Tags, and Empty-Element
Tags

7.2.34 rdf-id An attribute ·string-value· matching any
legal [XML-NS] token NCName

Page 31 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

7.2 Grammar Productions

7.2.1 Grammar start

If the RDF/XML is a standalone XML document (identified by presentation as
an application/rdf+xml RDF MIME type object, or by some other means) then
the grammar may start with production doc or production nodeElement.

If the content is known to be RDF/XML by context, such as when RDF/XML is
embedded inside other XML content, then the grammar can either start at
Element Event RDF (only when an element is legal at that point in the XML) or
at production nodeElementList (only when element content is legal, since this is
a list of elements). For such embedded RDF/XML, the ·base-uri· value on the
outermost element must be initialized from the containing XML since no Root
Event will be available. Note that if such embedding occurs, the grammar may
be entered several times but no state is expected to be preserved.

7.2.2 Production coreSyntaxTerms

rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID |
rdf:datatype

A subset of the syntax terms from the RDF vocabulary in section 5.1 which are
used in RDF/XML.

7.2.3 Production syntaxTerms

coreSyntaxTerms | rdf:Description | rdf:li

All the syntax terms from the RDF vocabulary in section 5.1 which are used in
RDF/XML.

7.2.4 Production oldTerms

rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID

These are the names from the RDF vocabulary that have been withdrawn from
the language. See the resolutions of Issue rdfms-aboutEach-on-object, Issue
rdfms-abouteachprefix and Last Call Issue timbl-01 for further information.

Error Test: Indicated by error001.rdf and error002.rdf

7.2.5 Production nodeElementURIs

anyURI - (coreSyntaxTerms | rdf:li | oldTerms)

Page 32 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

The RDF URI references that are allowed on node elements.

7.2.6 Production propertyElementURIs

anyURI - (coreSyntaxTerms | rdf:Description | oldTerms)

The URIs that are allowed on property elements.

7.2.7 Production propertyAttributeURIs

anyURI - (coreSyntaxTerms | rdf:Description | rdf:li | oldTerms)

The RDF URI references that are allowed on property attributes.

7.2.8 Production doc

root(document-element == RDF,
 children == list(RDF))

7.2.9 Production RDF

start-element(URI == rdf:RDF,
 attributes == set())
nodeElementList
end-element()

7.2.10 Production nodeElementList

ws* (nodeElement ws*)*

7.2.11 Production nodeElement

start-element(URI == nodeElementURIs
 attributes == set((idAttr | nodeIdAttr | aboutAttr)?, propertyAttr*))
propertyEltList
end-element()

For node element e, the processing of some of the attributes has to be done
before other work such as dealing with children events or other attributes.
These can be processed in any order:

? If there is an attribute a with a.URI == rdf:ID, then e.subject := uri
(identifier := resolve(e, concat("#", a.string-value))).

? If there is an attribute a with a.URI == rdf:nodeID, then e.subject :=

Page 33 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

bnodeid(identifier:=a.string-value).
? If there is an attribute a with a.URI == rdf:about then e.subject := uri

(identifier := resolve(e, a.string-value)).

If e.subject is empty, then e.subject := bnodeid(identifier := generated-blank-
node-id()).

The following can then be performed in any order:

? If e.URI != rdf:Description then the following statement is added to the
graph:
e.subject.string-value <http://www.w3.org/1999/02/22-rdf-
syntax-ns#type> <e.URI> .

? If there is an attribute a in propertyAttr with a.URI == rdf:type then the
following statement is added to the graph:
e.subject.string-value <http://www.w3.org/1999/02/22-rdf-
syntax-ns#type> <a.string-value> .

? For each attribute a matching propertyAttr (and not rdf:type), the
Unicode string a.string-value SHOULD be in Normal Form C[NFC], o :=
literal(literal-value := a.string-value, literal-language := e.language) and
the following statement is added to the graph:

e.subject.string-value <a.URI> o.string-value .

? Handle the propertyEltList children events in document order.

7.2.12 Production ws

A text event matching white space defined by [XML] definition White Space
Rule [3] S in section Common Syntactic Constructs

7.2.13 Production propertyEltList

ws* (propertyElt ws*) *

7.2.14 Production propertyElt

resourcePropertyElt | literalPropertyElt | parseTypeLiteralPropertyElt |
parseTypeResourcePropertyElt | parseTypeCollectionPropertyElt |
parseTypeOtherPropertyElt | emptyPropertyElt

If element e has e.URI = rdf:li then apply the list expansion rules on element
e.parent in section 7.4 to give a new URI u and e.URI := u.

The action of this production must be done before the actions of any sub-
matches (resourcePropertyElt ... emptyPropertyElt). Alternatively the result
must be equivalent to as if it this action was performed first, such as performing

Page 34 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

as the first action of all of the sub-matches.

7.2.15 Production resourcePropertyElt

start-element(URI == propertyElementURIs),
 attributes == set(idAttr?))
ws* nodeElement ws*
end-element()

For element e, and the single contained nodeElement n, first n must be
processed using production nodeElement. Then the following statement is
added to the graph:

 e.parent.subject.string-value <e.URI> n.subject.string-value .

If the rdf:ID attribute a is given, the above statement is reified with i := uri
(identifier := resolve(e, concat("#", a.string-value))) using the reification rules in
section 7.3 and e.subject := i

7.2.16 Production literalPropertyElt

start-element(URI == propertyElementURIs),
 attributes == set(idAttr?, datatypeAttr?))
text()
end-element()

Note that the empty literal case is defined in production emptyPropertyElt.

For element e, and the text event t. The Unicode string t.string-value SHOULD
be in Normal Form C[NFC]. If the rdf:datatype attribute d is given then o :=
typed-literal(literal-value := t.string-value, literal-datatype := d.string-value)
otherwise o := literal(literal-value := t.string-value, literal-language :=
e.language) and the following statement is added to the graph:

e.parent.subject.string-value <e.URI> o.string-value .

If the rdf:ID attribute a is given, the above statement is reified with i := uri
(identifier := resolve(e, concat("#", a.string-value))) using the reification rules in
section 7.3 and e.subject := i.

7.2.17 Production parseTypeLiteralPropertyElt

start-element(URI == propertyElementURIs),
 attributes == set(idAttr?, parseLiteral))
literal
end-element()

Page 35 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

For element e and the literal l that is the rdf:parseType="Literal" content. l is
not transformed by the syntax data model mapping into events (as noted in 6
Syntax Data Model) but remains an XML Infoset of XML Information items.

l is transformed into the lexical form of an XML literal in the RDF graph x (a
Unicode string) by the following algorithm. This does not mandate any
implementation method — any other method that gives the same result may be
used.

1. Use l to construct an XPath[XPATH] node-set (a document subset)
2. Apply Exclusive XML Canonicalization [XML-XC14N]) with comments and

with empty InclusiveNamespaces PrefixList to this node-set to give a
sequence of octets s

3. This sequence of octets s can be considered to be a UTF-8 encoding of
some Unicode string x (sequence of Unicode characters)

4. The Unicode string x is used as the lexical form of l
5. This Unicode string x SHOULD be in NFC Normal Form C[NFC]

Then o := typed-literal(literal-value := x, literal-datatype :=
http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral) and the following
statement is added to the graph:

e.parent.subject.string-value <e.URI> o.string-value .

Test: Empty literal case indicated by test009.rdf and test009.nt

If the rdf:ID attribute a is given, the above statement is reified with i := uri
(identifier := resolve(e, concat("#", a.string-value))) using the reification rules in
section 7.3 and e.subject := i.

7.2.18 Production parseTypeResourcePropertyElt

start-element(URI == propertyElementURIs),
 attributes == set(idAttr?, parseResource))
propertyEltList
end-element()

For element e with possibly empty element content c.

n := bnodeid(identifier := generated-blank-node-id()).

Add the following statement to the graph:

e.parent.subject.string-value <e.URI> n.string-value .

Page 36 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

Test: Indicated by test004.rdf and test004.nt

If the rdf:ID attribute a is given, the statement above is reified with i := uri
(identifier := resolve(e, concat("#", a.string-value))) using the reification rules in
section 7.3 and e.subject := i.

If the element content c is not empty, then use event n to create a new
sequence of events as follows:

start-element(URI := rdf:Description,
 subject := n,
 attributes := set())
c
end-element()

Then process the resulting sequence using production nodeElement.

7.2.19 Production parseTypeCollectionPropertyElt

start-element(URI == propertyElementURIs),
 attributes == set(idAttr?, parseCollection))
nodeElementList
end-element()

For element event e with possibly empty nodeElementList l. Set s:=list().

For each element event f in l, n := bnodeid(identifier := generated-blank-node-id
()) and append n to s to give a sequence of events.

If s is not empty, n is the first event identifier in s and the following statement is
added to the graph:

e.parent.subject.string-value <e.URI> n.string-value .

otherwise the following statement is added to the graph:

e.parent.subject.string-value <e.URI> <http://www.w3.org/1999/02/22-
rdf-syntax-ns#nil> .

If the rdf:ID attribute a is given, either of the the above statements is reified
with i := uri(identifier := resolve(e, concat("#", a.string-value))) using the
reification rules in section 7.3.

If s is empty, no further work is performed.

For each event n in s and the corresponding element event f in l, the following

Page 37 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

statement is added to the graph:

n.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#first>
f.string-value .

For each consecutive and overlapping pair of events (n, o) in s, the following
statement is added to the graph:

n.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#rest>
o.string-value .

If s is not empty, n is the last event identifier in s, the following statement is
added to the graph:

n.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#rest>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#nil> .

7.2.20 Production parseTypeOtherPropertyElt

start-element(URI == propertyElementURIs),
 attributes == set(idAttr?, parseOther))
propertyEltList
end-element()

All rdf:parseType attribute values other than the strings "Resource", "Literal" or
"Collection" are treated as if the value was "Literal". This production matches
and acts as if production parseTypeLiteralPropertyElt was matched. No extra
triples are generated for other rdf:parseType values.

7.2.21 Production emptyPropertyElt

start-element(URI == propertyElementURIs),
 attributes == set(idAttr?, (resourceAttr | nodeIdAttr)?, propertyAttr*))
end-element()

? If there are no attributes or only the optional rdf:ID attribute i then o :=
literal(literal-value:="", literal-language := e.language) and the following
statement is added to the graph:

e.parent.subject.string-value <e.URI> o.string-value .

and then if i is given, the above statement is reified with uri(identifier :=
resolve(e, concat("#", i.string-value))) using the reification rules in section
7.3.

Page 38 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

Test: Indicated by test002.rdf and test002.nt

Test: Indicated by test005.rdf and test005.nt

? Otherwise

? If rdf:resource attribute i is present, then r := uri(identifier :=
resolve(e, i.string-value))

? If rdf:nodeID attribute i is present, then r := bnodeid(identifier :=
i.string-value)

? If neither, r := bnodeid(identifier := generated-blank-node-id())

The following are done in any order:

? For all propertyAttr attributes a (in any order)

? If a.URI == rdf:type then the following statement is added to
the graph:

r.string-value <http://www.w3.org/1999/02/22-rdf-
syntax-ns#type> <a.string-value> .

? Otherwise Unicode string a.string-value SHOULD be in
Normal Form C[NFC], o := literal(literal-value := a.string-value,
literal-language := e.language) and the following statement is
added to the graph:

r.string-value <a.URI> o.string-value .

Test: Indicated by test013.rdf and test013.nt

Test: Indicated by test014.rdf and test014.nt

? Add the following statement to the graph:

e.parent.subject.string-value <e.URI> r.string-value .

and then if rdf:ID attribute i is given, the above statement is reified
with uri(identifier := resolve(e, concat("#", i.string-value))) using the
reification rules in section 7.3.

7.2.22 Production idAttr

attribute(URI == rdf:ID,
 string-value == rdf-id)

Constraint:: constraint-id applies to the values of rdf:ID attributes

Page 39 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

7.2.23 Production nodeIdAttr

attribute(URI == rdf:nodeID,
 string-value == rdf-id)

7.2.24 Production aboutAttr

attribute(URI == rdf:about,
 string-value == URI-reference)

7.2.25 Production propertyAttr

attribute(URI == propertyAttributeURIs,
 string-value == anyString)

7.2.26 Production resourceAttr

attribute(URI == rdf:resource,
 string-value == URI-reference)

7.2.27 Production datatypeAttr

attribute(URI == rdf:datatype,
 string-value == URI-reference)

7.2.28 Production parseLiteral

attribute(URI == rdf:parseType,
 string-value == "Literal")

7.2.29 Production parseResource

attribute(URI == rdf:parseType,
 string-value == "Resource")

7.2.30 Production parseCollection

attribute(URI == rdf:parseType,
 string-value == "Collection")

7.2.31 Production parseOther

Page 40 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

attribute(URI == rdf:parseType,
 string-value == anyString - ("Resource" | "Literal" | "Collection"))

7.2.32 Production URI-reference

An attribute ·string-value· representing an RDF URI reference.

7.2.33 Production literal

Any XML element content that is allowed according to [XML] definition
Content of Elements Rule [43] content. in section 3.1 Start-Tags, End-Tags,
and Empty-Element Tags
The string-value for the resulting event is discussed in section 7.2.17.

7.2.34 Production rdf-id

An attribute ·string-value· matching any legal [XML-NS] token NCName

7.3 Reification Rules

For the given URI reference event r and the statement with terms s, p and o
corresponding to the N-Triples:

s p o .

add the following statements to the graph:

r.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject>
s .
r.string-value <http://www.w3.org/1999/02/22-rdf-syntax-
ns#predicate> p .
r.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#object>
o .
r.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> .

7.4 List Expansion Rules

For the given element e, create a new RDF URI reference u := concat
("http://www.w3.org/1999/02/22-rdf-syntax-ns#_", e.li-counter), increment the
e.li-counter property by 1 and return u.

8 Serializing an RDF Graph to RDF/XML

There are some RDF Graphs as defined in RDF Concepts and Abstract Syntax

Page 41 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

that cannot be serialized in RDF/XML. These are those that:

Use property names that cannot be turned into XML namespace-qualified
names.

An XML namespace-qualified name (QName) has restrictions on the
legal characters such that not all property URIs can be expressed as
these names. It is recommended that implementors of RDF serializers, in
order to break a URI into a namespace name and a local name, split it
after the last XML non-NCName character, ensuring that the first
character of the name is a Letter or '_'. If the URI ends in a non-NCName
character then throw a "this graph cannot be serialized in RDF/XML"
exception or error.

Use inappropriate reserved names as properties
For example, a property with the same URI as any of the syntaxTerms
production.

Implementation Note (Informative): When an RDF graph is serialized to
RDF/XML and has an XML Schema Datatype (XSD), it SHOULD be
written in a form that does not require whitespace processing. XSD
support is NOT required by RDF or RDF/XML so this is optional.

9 Using RDF/XML with HTML and XHTML

If RDF/XML is embedded inside HTML or XHTML this can add many new
elements and attributes, many of which will not be in the appropriate DTD. This
embedding causes validation against the DTD to fail. The obvious solution of
changing or extending the DTD is not practical for most uses. This problem has
been analyzed extensively by Sean B. Palmer in RDF in HTML: Approaches
[RDF-IN-XHTML] and it concludes that there is no single embedding method
that satisfies all applications and remains simple.

The recommended approach is to not embed RDF/XML in HTML/XHTML but
rather to use <link> element in the <head> element of the HTML/HTML to point
at a separate RDF/XML document. This approach has been used for several
years by the Dublin Core Metadata Initiative (DCMI) on its Web site.

To use this technique, the <link> element href should point at the URI of the
RDF/XML content and the type attribute should be used with the value of
"application/rdf+xml", the proposed MIME type for RDF/XML, see Section 4

The value of the rel attribute may also be set to indicate the relationship; this is
an application dependent value. The DCMI has used and recommended
rel="meta" when linking in RFC 2731 — Encoding Dublin Core Metadata in
HTML[RFC-2731] however rel="alternate" may also be appropriate. See
HTML 4.01 link types, XHTML Modularization — LinkTypes and XHTML 2.0 —
LinkTypes for further information on the values that may be appropriate for the
different versions of HTML.

Example 21 shows using this method with the link tag inside an XHTML

Page 42 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

document to link to an external RDF/XML document.

Example 21: Using link in XHTML with an external RDF/XML document
(example21.html linking to example21.rdf)

<?xml version="1.0" encoding='iso-8859-1'?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>My document</title>
 <meta http-equiv="Content-type" content='text/html; charset="iso-8859
 <link rel="alternate" type="application/rdf+xml" title="RDF Version" href="example21.rdf" />
 </head>
 <body>
 <h1>My document</h1>

 </body>
</html>

10 Using RDF/XML with SVG (Informative)

There is a standardized approach for associating RDF compatible metadata
with SVG — the metadata element which was explicitly designed for this
purpose as defined in Section 21 Metadata of the Scalable Vector Graphics
(SVG) 1.0 Specification [SVG] and Section 21 Metadata of the Scalable Vector
Graphics (SVG) 1.1 Specification [SVG11].

This document contains two example graphs in SVG with such embedded
RDF/XML inside the metadata element: figure 1 and figure 2.

11 Acknowledgments (Informative)

The following people provided valuable contributions to the document:

? Dan Brickley, W3C/ILRT
? Jeremy Carroll, HP Labs, Bristol
? Graham Klyne, Nine by Nine
? Bijan Parsia, MIND Lab at University of Maryland at College Park

This document is a product of extended deliberations by the RDF Core working
group, whose members have included: Art Barstow (W3C) Dave Beckett
(ILRT), Dan Brickley (W3C/ILRT), Dan Connolly (W3C), Jeremy Carroll
(Hewlett Packard), Ron Daniel (Interwoven Inc), Bill dehOra (InterX), Jos De
Roo (AGFA), Jan Grant (ILRT), Graham Klyne (Clearswift and Nine by Nine),
Frank Manola (MITRE Corporation), Brian McBride (Hewlett Packard), Eric
Miller (W3C), Stephen Petschulat (IBM), Patrick Stickler (Nokia), Aaron Swartz
(HWG), Mike Dean (BBN Technologies / Verizon), R. V. Guha (Alpiri Inc), Pat
Hayes (IHMC), Sergey Melnik (Stanford University), Martyn Horner (Profium
Ltd).

Page 43 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

This specification also draws upon an earlier RDF Model and Syntax document
edited by Ora Lassilla and Ralph Swick, and RDF Schema edited by Dan
Brickley and R. V. Guha. RDF and RDF Schema Working group members who
contributed to this earlier work are: Nick Arnett (Verity), Tim Berners-Lee
(W3C), Tim Bray (Textuality), Dan Brickley (ILRT / University of Bristol), Walter
Chang (Adobe), Sailesh Chutani (Oracle), Dan Connolly (W3C), Ron Daniel
(DATAFUSION), Charles Frankston (Microsoft), Patrick Gannon
(CommerceNet), RV Guha (Epinions, previously of Netscape
Communications), Tom Hill (Apple Computer), Arthur van Hoff (Marimba),
Renato Iannella (DSTC), Sandeep Jain (Oracle), Kevin Jones, (InterMind),
Emiko Kezuka (Digital Vision Laboratories), Joe Lapp (webMethods Inc.), Ora
Lassila (Nokia Research Center), Andrew Layman (Microsoft), Ralph LeVan
(OCLC), John McCarthy (Lawrence Berkeley National Laboratory), Chris
McConnell (Microsoft), Murray Maloney (Grif), Michael Mealling (Network
Solutions), Norbert Mikula (DataChannel), Eric Miller (OCLC), Jim Miller (W3C,
emeritus), Frank Olken (Lawrence Berkeley National Laboratory), Jean Paoli
(Microsoft), Sri Raghavan (Digital/Compaq), Lisa Rein (webMethods Inc.), Paul
Resnick (University of Michigan), Bill Roberts (KnowledgeCite), Tsuyoshi
Sakata (Digital Vision Laboratories), Bob Schloss (IBM), Leon Shklar (Pencom
Web Works), David Singer (IBM), Wei (William) Song (SISU), Neel Sundaresan
(IBM), Ralph Swick (W3C), Naohiko Uramoto (IBM), Charles Wicksteed
(Reuters Ltd.), Misha Wolf (Reuters Ltd.), Lauren Wood (SoftQuad).

12 References

Normative References

[RDF-MS]
Resource Description Framework (RDF) Model and Syntax Specification,
O. Lassila and R. Swick, Editors. World Wide Web Consortium. 22
February 1999. This version is http://www.w3.org/TR/1999/REC-rdf-
syntax-19990222. The latest version of RDF M&S is available at
http://www.w3.org/TR/REC-rdf-syntax.

[XML]
Extensible Markup Language (XML) 1.0, Second Edition, T. Bray, J.
Paoli, C.M. Sperberg-McQueen and E. Maler, Editors. World Wide Web
Consortium. 6 October 2000. This version is
http://www.w3.org/TR/2000/REC-xml-20001006. latest version of XML is
available at http://www.w3.org/TR/REC-xml.

[XML-NS]
Namespaces in XML, T. Bray, D. Hollander and A. Layman, Editors.
World Wide Web Consortium. 14 January 1999. This version is
http://www.w3.org/TR/1999/REC-xml-names-19990114. The latest
version of Namespaces in XML is available at
http://www.w3.org/TR/REC-xml-names.

[INFOSET]
XML Information Set, J. Cowan and R. Tobin, Editors. World Wide Web
Consortium. 24 October 2001. This version is
http://www.w3.org/TR/2001/REC-xml-infoset-20011024. The latest
version of XML Information set is available at http://www.w3.org/TR/xml-

Page 44 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

infoset.
[URIS]

RFC 2396 — Uniform Resource Identifiers (URI): Generic Syntax, T.
Berners-Lee, R. Fielding and L. Masinter, IETF, August 1998. This
document is http://www.isi.edu/in-notes/rfc2396.txt.

[RDF-CONCEPTS]
Resource Description Framework (RDF): Concepts and Abstract Syntax,
G. Klyne, J. Carroll, Editors, World Wide Web Consortium Working Draft,
work in progress, 10 October 2003. This version of the RDF Concepts
and Abstract Syntax is http://www.w3.org/TR/2003/WD-rdf-concepts-
20031010/. The latest version of the RDF Concepts and Abstract Syntax
is at http://www.w3.org/TR/rdf-concepts/.

[RDF-TESTS]
RDF Test Cases, J. Grant and D. Beckett, Editors, World Wide Web
Consortium Working Draft, work in progress, 10 October 2003. This
version of the RDF Test Cases is http://www.w3.org/TR/2003/WD-rdf-
testcases-20031010/. The latest version of the RDF Test Cases is at
http://www.w3.org/TR/rdf-testcases/.

[KEYWORDS]
RFC 2119 — Key words for use in RFCs to Indicate Requirement Levels,
S. Bradner, IETF. March 1997. This document is
http://www.ietf.org/rfc/rfc2119.txt.

[RFC-3023]
RFC 3032 — XML Media Types, M. Murata, S. St.Laurent, D.Kohn, IETF.
January 2001. This document is http://www.ietf.org/rfc/rfc3023.txt.

[IANA-MEDIA-TYPES]
MIME Media Types, The Internet Corporation for Assigned Names and
Numbers (IANA). This document is
http://www.iana.org/assignments/media-types/.

[XML-BASE]
XML Base, J. Marsh, Editor, W3C Recommendation. World Wide Web
Consortium, 27 June 2001. This version of XML Base is
http://www.w3.org/TR/2001/REC-xmlbase-20010627. The latest version
of XML Base is at http://www.w3.org/TR/xmlbase.

[XML-XC14N]
Exclusive XML Canonicalization Version 1.0, J. Boyer, D.E. Eastlake 3rd,
J. Reagle, Authors/Editors. W3C Recommendation. World Wide Web
Consortium, 18 July 2002. This version of Exclusive XML
Canonicalization is http://www.w3.org/TR/2002/REC-xml-exc-c14n-
20020718. The latest version of Canonical XML is at
http://www.w3.org/TR/xml-exc-c14n.

[UNICODE]
The Unicode Standard, Version 3, The Unicode Consortium, Addison-
Wesley, 2000. ISBN 0-201-61633-5, as updated from time to time by the
publication of new versions. (See
http://www.unicode.org/unicode/standard/versions/ for the latest version
and additional information on versions of the standard and of the Unicode
Character Database).

[NFC]
Unicode Normalization Forms, Unicode Standard Annex #15, Mark Davis,
Martin Dürst. (See http://www.unicode.org/unicode/reports/tr15/ for the

Page 45 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

latest version).

Informational References

[CHARMOD]
Character Model for the World Wide Web 1.0, M. Dürst, F. Yergeau, R.
Ishida, M. Wolf, A. Freytag, T Texin, Editors, World Wide Web
Consortium Working Draft, work in progress, 20 February 2002. This
version of the Character Model is http://www.w3.org/TR/2002/WD-
charmod-20020220. The latest version of the Character Model is at
http://www.w3.org/TR/charmod.

[RDF-SEMANTICS]
RDF Semantics, P. Hayes, Editor. World Wide Web Consortium Working
Draft, work in progress, 10 October 2003. This version of the RDF
Semantics is http://www.w3.org/TR/2003/WD-rdf-mt-20031010. The latest
version of the RDF Semantics is at http://www.w3.org/TR/rdf-mt.

[RDF-PRIMER]
RDF Primer, F. Manola, E. Miller, Editors, World Wide Web Consortium
Working Draft, work in progress, 10 October 2003. This version of the
RDF Primer is http://www.w3.org/TR/2003/WD-rdf-primer-20031010. The
latest version of the RDF Primer is at http://www.w3.org/TR/rdf-primer.

[RDF-VOCABULARY]
RDF Vocabulary Description Language 1.0: RDF Schema, D. Brickley,
R.V. Guha, Editors, World Wide Web Consortium Working Draft, work in
progress, 10 October 2003. This version of the RDF Vocabulary
Description Language is http://www.w3.org/TR/2003/WD-rdf-schema-
20031010. The latest version of the RDF Vocabulary Description
Language is at http://www.w3.org/TR/rdf-schema.

[STRIPEDRDF]
RDF: Understanding the Striped RDF/XML Syntax, D. Brickley, W3C,
2001. This document is http://www.w3.org/2001/10/stripes/.

[SVG]
Scalable Vector Graphics (SVG) 1.0 Specification, J. Ferraiolo (editor), 4
September 2001, W3C Recommendation. This version of SVG is
http://www.w3.org/TR/2001/REC-SVG-20010904. The latest version of
SVG is at http://www.w3.org/TR/SVG.

[SVG11]
Scalable Vector Graphics (SVG) 1.1 Specification, J. Ferraiolo, J.
FUJISAWA, D. Jackson (editors), 14 January 2003, W3C
Recommendation. This version of SVG is
http://www.w3.org/TR/2003/REC-SVG11-20030114/. The latest version of
SVG is at http://www.w3.org/TR/SVG11.

[XPATH]
XML Path Language (XPath) Version 1.0, J. Clark and S. DeRose,
Editors. World Wide Web Consortium, 16 November 1999. This version of
XPath is http://www.w3.org/TR/1999/REC-xpath-19991116. The latest
version of XPath is at http://www.w3.org/TR/xpath.

[SAX2]
SAX Simple API for XML, version 2, D. Megginson, SourceForge, 5 May
2000. This document is http://sax.sourceforge.net/.

Page 46 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

[UNPARSING]
Unparsing RDF/XML, J. J. Carroll, HP Labs Technical Report, HPL-2001-
294, 2001. This document is available at
http://www.hpl.hp.com/techreports/2001/HPL-2001-294.html.

[RELAXNG]
RELAX NG Specification, James Clark and MURATA Makoto, Editors,
OASIS Committee Specification, 3 December 2001. This version of
RELAX NG is http://www.oasis-open.org/committees/relax-ng/spec-
20011203.html. The latest version of the RELAX NG Specification is at
http://www.oasis-open.org/committees/relax-ng/spec.html.

[RELAXNG-COMPACT]
RELAX NG Compact Syntax, James Clark, Editor. OASIS Committee
Specification, 21 November 2002. This document is http://www.oasis-
open.org/committees/relax-ng/compact-20021121.html.

[RDF-IN-XHTML]
RDF in HTML: Approaches, Sean B. Palmer, 2002

[RFC-2731]
RFC 2731 — Encoding Dublin Core Metadata in HTML, John Kunze,
DCMI, December 1999.

[XML-SCHEMA1]
XML Schema Part 1: Structures, H.S. Thompson, D. Beech, M. Maloney,
N. Mendelsohn, Editors, World Wide Web Consortium Recommendation,
2 May 2001. This version of XML Schema Part 1: Structures is
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/. The latest
version of XML Schema Part 1: Structures is at
http://www.w3.org/TR/xmlschema-1.

[XML-SCHEMA2]
XML Schema Part 2: Datatypes, P.V. Biron, A. Malhotra, Editors, World
Wide Web Consortium Recommendation, 2 May 2001. This version of
XML Schema Part 2: Datatypes is http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/. The latest version of XML Schema Part 2:
Datatypes is at http://www.w3.org/TR/xmlschema-2.

A Syntax Schemas (Informative)

This appendix contains XML schemas for validating RDF/XML forms. These
are example schemas for information only and are not part of this specification.

A.1 RELAX NG Compact Schema (Informative)

This is an example schema in RELAX NG Compact (for ease of reading) for
RDF/XML. Applications can also use the RELAX NG XML version. These
formats are described in RELAX NG ([RELAXNG]) and RELAX NG Compact
([RELAXNG-COMPACT]).

Note: The RNGC schema has been updated to attempt to match the
grammar but this has not been checked or used to validate RDF/XML.

Page 47 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

RELAX NG Compact Schema for RDF/XML

RELAX NG Compact Schema for RDF/XML Syntax

This schema is for information only and NON-NORMATIVE

It is based on one originally written by James Clark in
http://lists.w3.org/Archives/Public/www-rdf-comments/2001JulSep/0248.html
and updated with later changes.

namespace local = ""
namespace rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
datatypes xsd = "http://www.w3.org/2001/XMLSchema-datatypes"

start = doc

I cannot seem to do this in RNGC so they are expanded in-line

coreSyntaxTerms = rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype
syntaxTerms = coreSyntaxTerms | rdf:Description | rdf:li
oldTerms = rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID
nodeElementURIs = * - (coreSyntaxTerms | rdf:li | oldTerms)
propertyElementURIs = * - (coreSyntaxTerms | rdf:Description | oldTerms)
propertyAttributeURIs = * - (coreSyntaxTerms | rdf:Description | rdf:li | oldTerms)

Also needed to allow rdf:li on all property element productions
since we can't capture the rdf:li rewriting to rdf_<n> in relaxng

Need to add these explicitly
xmllang = attribute xml:lang { text }
xmlbase = attribute xml:base { text }
and to forbid every other xml:* attribute, element

doc =
 RDF | nodeElement

RDF =
 element rdf:RDF {
 xmllang?, xmlbase?, nodeElementList
}

nodeElementList =
 nodeElement*

 # Should be something like:
 # ws* , (nodeElement , ws*)*
 # but RELAXNG does this by default, ignoring whitespace separating tags.

nodeElement =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype | rdf:li |
 rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID) {
 (idAttr | nodeIdAttr | aboutAttr)?, xmllang?, xmlbase?, propertyAttr*, propertyEltList
 }

 # It is not possible to say "and not things

Page 48 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

 # beginning with _ in the rdf: namespace" in RELAX NG.

ws =
 " "

 # Not used in this RELAX NG schema; but should be any legal XML
 # whitespace defined by http://www.w3.org/TR/2000/REC-xml-20001006#NT-

propertyEltList =
 propertyElt*

 # Should be something like:
 # ws* , (propertyElt , ws*)*
 # but RELAXNG does this by default, ignoring whitespace separating tags.

propertyElt =
 resourcePropertyElt |
 literalPropertyElt |
 parseTypeLiteralPropertyElt |
 parseTypeResourcePropertyElt |
 parseTypeCollectionPropertyElt |
 parseTypeOtherPropertyElt |
 emptyPropertyElt

resourcePropertyElt =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype |
 rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 idAttr?, xmllang?, xmlbase?, nodeElement
 }

literalPropertyElt =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype |
 rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 (idAttr | datatypeAttr)?, xmllang?, xmlbase?, text
 }

parseTypeLiteralPropertyElt =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype |
 rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 idAttr?, parseLiteral, xmllang?, xmlbase?, literal
 }

parseTypeResourcePropertyElt =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype |
 rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 idAttr?, parseResource, xmllang?, xmlbase?, propertyEltList
 }

parseTypeCollectionPropertyElt =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype |

Page 49 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

 rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 idAttr?, xmllang?, xmlbase?, parseCollection, nodeElementList
 }

parseTypeOtherPropertyElt =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype |
 rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 idAttr?, xmllang?, xmlbase?, parseOther, any
 }

emptyPropertyElt =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype |
 rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 idAttr?, (resourceAttr | nodeIdAttr)?, xmllang?, xmlbase?, propertyAttr*
 }

idAttr =
 attribute rdf:ID {
 IDsymbol
 }

nodeIdAttr =
 attribute rdf:nodeID {
 IDsymbol
 }

aboutAttr =
 attribute rdf:about {
 URI-reference
 }

propertyAttr =
 attribute * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype | rdf:li |
 rdf:Description | rdf:aboutEach |
 rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 string
 }

resourceAttr =
 attribute rdf:resource {
 URI-reference
 }

datatypeAttr =
 attribute rdf:datatype {
 URI-reference
 }

parseLiteral =
 attribute rdf:parseType {
 "Literal"
 }

Page 50 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

parseResource =
 attribute rdf:parseType {
 "Resource"
 }

parseCollection =
 attribute rdf:parseType {
 "Collection"
 }

parseOther =
 attribute rdf:parseType {
 text
 }

URI-reference =
 string

literal =
 any

IDsymbol =
 xsd:NMTOKEN

any =
 mixed { element * { attribute * { text }*, any }* }

B Revisions between Drafts 23 January 2003 and 05
September 2003 (Informative)

Changes between the 23 January 2003 last call working draft and 05 September
2003 working draft

These are are divided into non-editorial and editorial. The non-editorial changes
also list consquential editorial changes. Editorial changes are those which do not
result in any change in the meaning of an RDF document or the behaviour of an
RDF application.

Appendix B.1: Non-Editorial Revisions

hodder-01 — RDF in HTML (syntaxLCC-002)
Updated 9 Using RDF/XML with HTML and XHTML to add new example,
correct the meta rel attribute value and link to XHTML2's section on link
types. after comment by Hodder which was accepted by the RDF Core
WG.

reagle-01 — XMLLiteral equality
Updated 6 Syntax Data Model, 7.2.17 Production
parseTypeLiteralPropertyElt and 7.2.33 Production literal (was 7.2.34 in
previous draft) after comment by Reagle and others to more precisely
describe XML literals for equality which was accepted by the RDF Core
WG with changes to several documents to use only Exclusive

Page 51 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

Canonicalization with comments and empty InclusiveNamespaces
PrefixList. See 7.2.17 Production parseTypeLiteralPropertyElt for the full
description.

timbl-01 — bagid needed (syntaxLCC-004)
The RDF Core WG decided to accept this comment and remove bagID.
This meant changes to remove all references to rdf:bagID being
permitted. Section 2.17 Reifying Statements changed title, removed
rdf:bagID discussion and Example 21. Section 3 Terminology removed
bagID from syntax names. Section 5.2 Identifiers removed bagID from
discussion of URI references. Section 5.4 Constraints removed bagID
from constraint-id. Section 6.1.2 Element Event removed bag-id-counter
accessor. Section 6.1.4 Attribute Event removed bagID from allowed non-
namespaced attributes. 7.2.2 Production coreSyntaxTerms removed
rdf:bagID. 7.2.4 Production oldTerms added rdf:bagID and link to the
LC Issue. 7.2.11 Production nodeElement removed use of bagIDAttr
production, removed actions when bagID found and removed S1-4 labels.
7.2.21 Production emptyPropertyElt removed use of bagIDAttr production
and removed actions when bagID found. 7.2.25 Production bagID deleted
(7.2.26-7.2.35 then renumbered), Section 7.5 Bag Expansion Rules
deleted.

timbl-03 — collection clutter
Updated Section 7.2.19 Production parseTypeCollectionPropertyElt to
remove the redundant triple in rdf:parseType="Collection" after the
RDF Core WG accepted this comment.

xmlsch-02 — Whitespace facets
Updated 6.1.9 Typed Literal Event to add a note that the whitespace facet
in W3C XML Schema datatypes does not affect RDF lexical-to-value
mapping after the proposal to address the issue approved in RDF Core
telcon 2003-05-09.

Language tags in Typed Literals
Updated 2.9 Typed Literals and 6.1.9 Typed Literal Event, 6.3 Grammar
Notation, 7.2.16 Production literalPropertyElt, 7.2.17 Production
parseTypeLiteralPropertyElt after removal of language tag from all typed
literals including rdf:XMLLiteral as approved in RDF Core telcon 2003-
05-09. Also added N-Triples escapes for URI references to 6.1.6 URI
Reference Event as added to 6.1.9

Appendix B.2: Editorial Revisions

efth-01 — change namespace URIs
Removed two informative notes about potentially changing the rdf
namespace URIs in 5.1 The RDF Namespace and Vocabulary and 7.2.5
Production nodeElementURIs. After the resolution of this issue and action
recorded in RDF Core WG 2003-04-11 telcon.

pfps-19 — namespace v vocabulary
Throughout: Changed the term "namespace" to be used to refer to XML
namespaces and the term "vocabulary" be used to refer to collections of
names (RDF URI references) after the RDF Core WG accepted this
comment.

williams-01 — Nodes and arcs terminology

Page 52 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

Throughout: Changed arc to be predicate arc when talking about the
thing in the graph picture. Removed use of 'labeling' when not talking
about the picture. Replaced arc with predicate when talking about part of
an RDF triple. Changes after RDF Core WG discussion 2003-06-06 on
the use of arc and RDF Core WG decision 2003-03-21 on the resolution
of issue williams-01 about the use of node.

xmlsch-09 — qnames
2.1 Introduction 2nd paragraph modified and split into two to mention
namespace names more and prefixes less after editorial comments in
section 4.2 of XML Schema WG comments on RDF documents

Notes on Whitespace Normalization for XML Schema Datatypes
Added an implementation note to 8 Serializing an RDF Graph to
RDF/XML that when generating RDF/XML, if XSD support is provided,
the whitespaced normalized form should be used.

Grammar Notation
Split the huge table of notation in 6.3 Grammar Notation into three
smaller ones for general, matching and action notation. Reworded the
introduction to this section to match.

XML Canonicalization
Reworded 7.2.17 Production parseTypeLiteralPropertyElt to give the
method how to get the lexical form (Unicode string) of XML literals from
the XML Infoitems inside the rdf:parseType="Literal" content using
Exclusive XML Canonicalization. A clarification after it was noticed the
output of exc-C14N was an sequence of octets not a Unicode string.

Unicode NFC
Added references to NFC checking for Unicode strings used as literal
values in 7.2.11 Production nodeElement, 7.2.16 Production
literalPropertyElt and 7.2.21 Production emptyPropertyElt. Added new
normative references Unicode[UNICODE] and Normal Form C[NFC].
After comment by Patel-Schneider 2003-08-05

RDF Vocabulary definiton
Added a definition of RDF Vocabulary to Section 5.1 The RDF
Namespace and Vocabulary and edited the wording slightly from
suggestion by Patel-Schneider 2003-08-07

RDF/XML in SVG
Added informative section 10 Using RDF/XML with SVG (renumbering
Acknowledgements to 11, and References to 12) to add pointers to where
the SVG 1.0 and 1.1 specifications describe using RDF/XML inside SVG.
Added after the original comment from Chris Lilley as actioned by the
RDF Core WG telcon 2003-04-04.

Conformance
Added section 5.5 Conformance as actioned after RDF Core WG telcon
2003-07-18 to define the terms RDF Document and RDF/XML Document
as well as conformance to this specification.

Review by Graham Klyne
Editorial and wording changes to several sections 2.1, 2.7, 2.10, 4, 5.2,
6.1, 6.1.2, 6.3, 7.2.1, 7.2.19, 7.3, 11 References after Graham Klyne's
review for RDF Core WG.

Remove document statuses from document body
Removed the use of document status words (Working Draft,
Recommendation etc.) throughout the document body RDF Core WG

Page 53 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

telcon 2003-07-18. These remain in the references (correct) and status
(yet to be edited) sections.

Review by Jeremy Carroll
Changes to several sections after Jeremy Carroll's review 2003-07-07 for
the RDF Core WG. 1 Introduction Removed (process, historical)
paragraph 2. 2.1 Introduction Rewordings — subject and object nodes
don't use QNames. 2.2 Node Elements and Property Elements Use "left
hand side of figure 2" to describe the path. Minor words.
2.14 Abbreviating URI References Added note that a base URI is
required either from xml:base or the URI of the document. 7.2.19
Production parseTypeCollectionPropertyElt Minor words.

Editorial comments on section 2
2.11 Omitting Blank Nodes: rdf:parseType="Resource" reworded to
clarify which property element was discussed. 2.12 Omitting Nodes:
Property Attributes on an empty Property Element reworded to explain
moving the property element to a property attribute 2.15 Container
Membership Property Elements: rdf:li and rdf:_n added note that
document order matters here. 2.16 Collections:
rdf:parseType="Collection" added note that document order matters
here. After comments in personal communication to the editor 2003-06-
17.

Editorial comments
Minor fixes to 7.2.15 Production resourcePropertyElt and 7.2.16
Production literalPropertyElt (not 7.12 as in the comment) after comments
by Palmer, 2003-06-10

XML Reserved Names
5.1 The RDF Namespace Remove the restriction on namespace names
starting with the XML namespace URI. 6 Syntax Data Model Add how to
remove reserved XML Names when they are element names. 6.1.2
Element Event Expand the details of how to remove remove XML Names
when they are attribute names. Updates after several comments by Patel-
Schneider starting 2003-05-22 and 2003-06-04 and after approval to
change in RDF Core WG 2003-06-06 telcon.

Status of Notes
In sections 4, 5.1, 5.2, 5.3, 6.1.8, 6.1.9, 7.2.4, 7.2.16. Reviewed the
status of Notes and marked those specifically that are informative such as
implementation or interoperability notes. After action recorded in RDF
Core telcon 2003-03-28.

Missing case in parseOther
7.2.31 Production parseOther (was 7.2.32 in previous draft) added the
case "Collection" which had been mistakenly omitted after the comment
by Patel-Schneider, 2003-05-09.

RELAX NG sufixes
Renamed the informative RELAX NG schemas in A.1 RELAX NG
Compact Schema to use suffixes .rnc (compact version) and .rng (XML
version) after comment by Prud'hommeaux, 2003-05-06.

Citing Namespaces in XML
Throughout, changed to use the correct document title Namespaces in
XML after a private editorial comment to the editor 2003-05-04.

Editorial comments 4.3 from XML Schema WG

Page 54 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

2.4 Empty Property Elements first sentence modified after editorial
comments in section 4.3 of XML Schema WG comments on RDF
documents

Editorial comments (syntaxLCC-001)
Spellings, grammar, CSS style and suggested rewordings after editorial
comments from Lesch, 2003-02-25. In particular the small two-paragraph
informative section 2.18 has been merged into section 1 introduction.
Many excessive capitalizations were removed.

Minor editorial
1 letter change after comment from Dürst, 2003-01-30

Blank node identifier clarification
Additional clarification added to 5.2, 6.1.7 and 6.3 (bnodeid definition) as
described 2003-01-30 after coment by Patel-Schneider, 2003-01-28.

Appendix B.3: Issues requiring no document revisions

chas-01 — aboutEachPrefix
not accepted

krech-01 — emptyPropertyElt ambiguity (syntaxLCC-003)
After rdf:bagID was removed from the language for last call issue timbl-
01, this comment by Krech required no action.

hendler-01 — literals in parsetype collection
postponed

xmlsch-08 — xsi:type
accepted with explanation

xmlsch-10 — cannonical syntax
postponed 2003-04-29 (not accepted 2003-10-03)

xmlsch-11 — layering on xml
clarification given 2003-04-29 (not accepted 2003-10-03)

xmlsch-12 — capricious syntax
postponed

C Revisions since Working Draft 05 September 2003
(Informative)

Changes since the 05 September 2003 working draft

These are are divided into non-editorial and editorial. The non-editorial
changes also list consquential editorial changes. Editorial changes are those
which do not result in any change in the meaning of an RDF document or the
behaviour of an RDF application.

Appendix C.1: Non-Editorial Revisions

rdf:RDF made optional
The rdf:RDF element was made optional when there is only one outer
node element (inside rdf:RDF) in an RDF/XML document. Changed 7.2.1
Grammar start to allow this and updated 2.6 Completing the Document:
Document Element and XML Declaration to mention this option.

Page 55 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

Amended the informative RELAX NG schema to match. Change made
after comment from Mark Baker 2003-09-25 as approved at RDF Core
WG telcon 2003-10-03.

Unicode Normal Form C (NFC) checks
Modified the NFC checks to be optional (SHOULD) rather than required
(MUST) and added some missing checks. Updated productions 7.2.11
nodeElement, 7.2.16 literalPropertyElt, 7.2.17
parseTypeLiteralPropertyElt and 7.2.21 emptyPropertyElt from the
proposal 2003-09-18 and revised proposal 2003-10-03 after the original
comment by Patel-Schneider 2003-08-07 as approved by RDF Core WG
Telcon 2003-10-03

Appendix C.2: Editorial Revisions

Links to concepts for RDF URI references, language tags
Note that events 6.1.6 URI Reference Event and 6.1.9 Typed Literal
Event take string values used as RDF URI References. Note that 6.1.8
Plain Literal Event takes a language tag.

Unicode strings
Checked for consistent use of the phrase. Added a note that string means
Unicode string to section 3 Terminology, and as the first use, linked to
Unicode[UNICODE]. Removed some later links to the reference.

Blank nodeID text
Updated the blank node identifier description in 5.2 Identifiers and
constraints in 6.1.7 Blank Node Identifier Event to clarify that some blank
node identifiers may need to be generated and there are restrictions on
those generated names. Change made consequent to discussion after
the review by Jeremy Carroll 2003-09-22

Page 56 sur 56RDF/XML Syntax Specification (Revised)

09/02/2004http://www.w3.org/TR/2003/WD-rdf-syntax-grammar-20031010/

