
Cross-Entropy Method

Dirk P. Kroese, School of Mathematics and Physics, The University of Queens-
land, Brisbane 4072, Australia, kroese@maths.uq.edu.au.

Reuven Y. Rubinstein, Faculty of Industrial Engineering and Management,
Technion, Haifa, Israel, ierrr01@ie.technion.ac.il

Izack Cohen, Faculty of Industrial Engineering and Management, Technion,
Haifa, Israel, izik68@tx.technion.ac.il.

Sergey Porotsky, A.L.D. Ltd., 52 Manachem Begin Road, Tel-Aviv 67137, Is-
rael, Sergey.Porotsky@ald.co.il.

Thomas Taimre, School of Mathematics and Physics, The University of Queens-
land, Brisbane 4072, Australia, ttaimre@maths.uq.edu.au.

Abstract

The cross-entropy method is a powerful heuristic tool for solving difficult estima-
tion and optimization problems, based on Kullback–Leibler (or cross-entropy)
minimization.

1 Introduction

The cross-entropy (CE) method is a versatile Monte Carlo technique introduced
by Rubinstein (1999; 2001), extending earlier work on variance minimization
(Rubinstein 1997). A tutorial on the CE method is given in de Boer et al.
(2005). A comprehensive treatment can be found in Rubinstein and Kroese
(2004); see also Rubinstein and Kroese (2007; Chapter 8). The CE method
homepage is www.cemethod.org.

The CE method can be applied to two types of problems:

1. Estimation: Estimate ` = E[H(X)], where X is a random object taking
values in some set X and H is a function on X . An important special
case is the estimation of a probability ` = P(S(X) > γ), where S is
another function on X .

2. Optimization: Optimize (that is, maximize or minimize) S(x) over all
x ∈ X , where S is some objective function on X .

In the estimation setting, the CE method can be viewed as an adaptive
importance sampling procedure that uses the cross-entropy or Kullback–Leibler
divergence as a measure of closeness between two sampling distributions. In the
optimization setting, the optimization problem is first translated into a rare-
event estimation problem, and then the CE method for estimation is used as
an adaptive algorithm to locate the optimum.

1

2 Estimation

Consider the estimation of

` = Ef [H(X)] =

∫
H(x) f(x) dx , (1)

where H is a real-valued function and f is the probability density function (pdf)
of the random vector X. It is assumed, for simplicity, that X is a continuous
random variable. For the discrete case, replace the integral in (1) by a sum. Let
g be another pdf — which must be non-zero for every x for which H(x) f(x) 6= 0.
Using the pdf g, ` can be represented as

` =

∫
H(x)

f(x)

g(x)
g(x) dx = Eg

[
H(X)

f(X)

g(X)

]
, (2)

where the subscript g indicates that the expectation is taken with respect to
g rather than f . Consequently, if X1, . . . ,XN are independent random vectors
with pdf g, written as X1, . . . ,XN ∼iid g, then

̂̀=
1

N

N∑

k=1

H(Xk)
f(Xk)

g(Xk)
(3)

is an unbiased estimator of `: a so-called importance sampling estimator. The
optimal importance sampling pdf, that is, the pdf g∗ for which the variance of
̂̀ is minimal, is proportional to |H| f (see, e.g., Rubinstein and Kroese (2007;
Page 132)), but is in general difficult to evaluate. The idea of the CE method
is to choose the importance sampling pdf g in a specified class of pdfs such that
the Kullback–Leibler divergence between the optimal importance sampling pdf
g∗ and g is minimal. The Kullback–Leibler divergence between two pdfs g and
h is given by

D(g, h) = Eg

[
ln

g(X)

h(X)

]
=

∫
g(x) ln

g(x)

h(x)
dx

=

∫
g(x) ln g(x) dx −

∫
g(x) ln h(x) dx .

(4)

In most cases of interest the function H is non-negative, and the “nominal”
pdf f is parameterized by a finite-dimensional vector u; that is, f(x) = f(x;u).
It is then customary to choose the importance sampling pdf g in the same
family of pdfs; thus, g(x) = f(x;v) for some reference parameter v. The CE
minimization procedure then reduces to finding an optimal reference parameter
vector, v∗ say, by cross-entropy minimization:

v∗ = argmin
v

D(g∗, f(·;v))

= argmax
v

∫
H(x)f(x;u) ln f(x;v) dx

= argmax
v

EuH(x) ln f(X;v)

= argmax
v

EwH(x) ln f(X;v)
f(X;u)

f(X;w)
, (5)

2

where w is any reference parameter. This v∗ can be estimated via the stochastic
counterpart of (5):

v̂ = argmax
v

1

N

N∑

k=1

H(Xk)
f(Xk;u)

f(Xk;w)
ln f(Xk;v) , (6)

where X1, . . . ,XN ∼iid f(·;w). The optimal parameter v̂ in (6) can often be
obtained in explicit form, in particular when the class of sampling distributions
forms an exponential family; see, for example, Rubinstein and Kroese (2007;
Pages 319–320). Indeed, analytical updating formulas can be found whenever
explicit expressions for the maximal likelihood estimators of the parameters can
be found, cf. de Boer et al. (2005; Page 36).

Example: Exponential Random Variables

Consider the case where X1 = (X1, . . . ,Xn) is a vector of independent expo-
nential random variables with expectations u1, . . . , un. Let u = (u1, . . . , un)
and let v = (v1, . . . , vn) be the reference parameter of the importance sampling
pdf f(x;v), given by

f(x;v) =

n∏

i=1

e−xi/vi

vi
.

Hence, under this importance sampling pdf, X1, . . . ,Xn are again independent
and exponentially distributed, but now with expectations v1, . . . , vn. Writing
Hk = H(Xk) and the likelihood ratio Wk = f(Xk;u)/f(Xk;w) in (6), the
optimal parameter v̂ is found by maximizing

n∑

i=1

N∑

k=1

HkWk ln f(Xk;u) =
n∑

i=1

N∑

k=1

HkWk

(
−Xki

vi
− ln vi

)
, (7)

where Xki is the i-th component of Xk. This maximum can be found by differ-
entiating and equating to zero the righthand side of (7) for each vi, resulting
in the equations

N∑

k=1

HkWk

(
Xki

v2
i

−
1

vi

)
= 0 , i = 1, . . . , n ,

from which it follows that

v̂i =

∑N
k=1 HkWkXki∑N

k=1 HkWk

, i = 1, . . . , n . (8)

Often ` = P(S(X) > γ) for some function S and level γ, in which case H(x)
takes the form of an indicator function: H(x) = I{S(X)>γ}; that is, H(x) = 1
if S(x) > γ, and 0 otherwise. A complication in solving (6) occurs when ` is
a rare-event probability; that is, a very small probability (say less than 10−4).
Then, for moderate sample size N most or all of the values H(Xk) in (6) are

3

zero, and the maximization problem becomes useless. In that case a multi-level
CE procedure is used, where a sequence of reference parameters and levels is
constructed with the goal that the former converges to v∗ and the latter to γ.
This leads to the following algorithm; see, e.g., Rubinstein and Kroese (2007;
Page 238).

Algorithm 2.1 (CE Algorithm for Rare-Event Estimation)

1. Define v̂0 = u. Let N e = d%Ne. Set t = 1 (iteration counter).

2. Generate X1, . . . ,XN ∼iid f(·; v̂t−1). Calculate Si = S(Xi) for all i, and
order these from smallest to largest: S(1) 6 . . . 6 S(N). Let γ̂t be the
sample (1 − %)-quantile of performances; that is, γ̂t = S(N−Ne+1). If
γ̂t > γ, reset γ̂t to γ.

3. Use the same sample X1, . . . ,XN to solve the stochastic program (6),
with w = v̂t−1. Denote the solution by v̂t.

4. If γ̂t < γ, set t = t + 1 and reiterate from Step 2; otherwise, proceed with
Step 5.

5. Let T be the final iteration counter. Generate X1, . . . ,XN1
∼iid f(·; v̂T)

and estimate ` via importance sampling, as in (3).

Apart from specifying the family of sampling pdfs, the sample sizes N and N1,
and the rarity parameter % (typically between 0.01 and 0.1), the algorithm is
completely self-tuning. The sample size N for determining a good reference
parameter can usually be chosen much smaller than the sample size N1 for
the final importance sampling estimation, say N = 1000 versus N1 = 100,000.
Under certain technical conditions the deterministic version of Algorithm 2.1 is
guaranteed to terminate (reach level γ) provided that % is chosen small enough;
see Section 3.5 of Rubinstein and Kroese (2004).

Example: Rare-Event Probability Estimation

A stochastic activity network is a frequently used tool in project management
to schedule concurrent activities. Each arc corresponds to an activity, and
is weighted by the duration of that activity. The maximal project duration
corresponds to the length of the longest path in the graph. Figure 1 shows a
stochastic activity network with eight activities. Suppose the durations of the
activities are independent exponential random variables X1, . . . ,X8, each with
mean 1.

4

8

2

4

5

6

7

1

3
start finish

Figure 1: A stochastic activity network.

Let S(X) denote length of the longest path in the graph; that is,

S(X) = max{X1 + X4 + X6 + X8, X1 + X4 + X7, X1 + X5 + X8,

X2 + X8, X3 + X6 + X8, X3 + X7} .

Suppose the objective is to estimate the rare-event probability P(S(X) > 20) us-
ing importance sampling where the random vector X = (X1, . . . ,X8) has inde-
pendent exponentially distributed components with mean vector v = (v1, . . . , v10).
Note that the nominal pdf is obtained by setting vi = 1 for all i. At the
t-th iteration of the multilevel CE Algorithm 2.1, the solution to (6) with
H(X) = I{S(X)>bγt} is, using (8), given by

v̂t,i =

∑N
k=1 I{S(Xk)>bγt}WkXki∑N

k=1 I{S(Xk)>bγt}Wk

, (9)

where X1, . . . ,XN ∼iid f(·; v̂t−1), Wk = f(Xk;u)/f(Xk; v̂t−1), and Xki is the
i-th element of Xk.

Table 1 lists the successive estimates for the optimal importance sampling
parameters obtained from the multilevel CE algorithm, using N = 105 and
% = 0.1.

Table 1: Convergence of the sequence {(γ̂t, v̂t)}.

t bγt bvt

0 – 1 1 1 1 1 1 1 1

1 7.32 1.93 1.12 1.39 1.83 1.32 1.81 1.37 1.96

2 12.01 3.33 1.09 1.58 2.98 1.50 2.95 1.58 3.32

3 20 5.03 1.00 1.88 4.63 1.51 4.73 1.47 5.14

The last step in Algorithm 2.1 gives an estimate of 4.15 · 10−6 with an
estimated relative error of 1%, using a sample size of N1 = 106. A typical crude
Monte Carlo estimate (that is, taking v = u = (1, 1, . . . , 1)) using the same
sample size is 3 · 10−6, with an estimated relative error of 60%, and is therefore
of little use.

For large-size activity networks the accurate estimation of the optimal pa-
rameters via (9) runs into problems due to the degeneracy behavior of the
likelihood ratio; cf. Rubinstein and Kroese (2007; Page 133). For such systems
it is recommended to estimate the optimal CE parameters by drawing samples
directly from g∗, e.g., via Markov chain Monte Carlo; see Chan (2010).

5

3 Optimization

Let X be an arbitrary set of states and let S be a real-valued performance
function on X . Suppose the goal is to find the maximum of S over X , and the
corresponding maximizer x∗ (assuming, for simplicity, that there is only one).
Denote the maximum by γ∗, so that

S(x∗) = γ∗ = max
x∈X

S(x) . (10)

Associate with the above problem the estimation of the probability ` =
P(S(X) > γ), where X has some probability density f(x;u) on X (for example
corresponding to the uniform distribution on X) and γ is some level. Thus,
for optimization problems randomness is purposely introduced in order to make
the model stochastic, as in the estimation setting. If γ is chosen close to the
unknown γ∗, then ` is typically a rare-event probability, and the CE approach
of Section 2 can be used to find an importance sampling distribution close to
the theoretically optimal importance sampling density, which concentrates all
its mass on the point x∗. Sampling from such a distribution thus produces
optimal or near-optimal states. Note that the final level γ = γ∗ is generally
not known in advance, in contrast to the rare-event simulation setting. The
CE method for optimization produces a sequence of levels {γ̂t} and reference
parameters {v̂t} such that the former tends to the optimal γ∗ and the latter
to the optimal reference vector v∗ corresponding to the point mass at x∗; see,
e.g., (Rubinstein and Kroese 2007; Page 251).

Algorithm 3.1 (CE Algorithm for Optimization)

1. Choose an initial parameter vector v̂0. Let N e = d%Ne. Set t = 1 (level
counter).

2. Generate X1, . . . ,XN ∼iid f(·; v̂t−1). Calculate the performances S(Xi)
for all i, and order them from smallest to largest: S(1) 6 . . . 6 S(N). Let
γ̂t be the sample (1−%)-quantile of performances; that is, γ̂t = S(N−Ne+1).

3. Use the same sample X1, . . . ,XN and solve the stochastic program

max
v

1

N

N∑

k=1

I{S(Xk)>bγt} ln f(Xk;v) . (11)

Denote the solution by v̂t.

4. If some stopping criterion is met, stop; otherwise, set t = t+1, and return
to Step 2.

To run the algorithm, one needs to provide the class of sampling pdfs, the
initial vector v̂0, the sample size N , the rarity parameter %, and the stopping
criterion. Any CE algorithm for optimization involves thus the following two
main iterative phases:

6

1. Generate a random sample of objects in the search space X (trajecto-
ries, vectors, etc.) according to a specified probability distribution.

2. Update the parameters of that distribution, based on the N e best per-
forming samples (the so-called elite samples), using CE minimization.

Note that Step 5 of Algorithm 2.1 is missing in Algorithm 3.1. Another
main difference between the two algorithms is that the likelihood ratio term
f(Xk;u)/f(Xk; v̂t−1) in (6) is missing in (11).

Often a smoothed updating rule is used, in which the parameter vector v̂t

is taken as
v̂t = α ṽt + (1 − α) v̂t−1, (12)

where ṽt is the solution to (11) and 0 6 α 6 1 is a smoothing parameter. Many
other modifications can be found in Kroese et al. (2006), Rubinstein and Kroese
(2004), and Rubinstein and Kroese (2007). When there are two or more optimal
solutions the CE algorithm typically “fluctuates” between the solutions before
focusing in on one of the solutions. The effect that smoothing has on conver-
gence is discussed in detail in Costa et al. (2007). In particular, it is shown
that with appropriate smoothing the CE method converges and finds the opti-
mal solution with probability arbitrarily close to 1. Necessary conditions and
sufficient conditions under which the optimal solution is generated eventually
with probability 1 are also given. Other convergence results, including a proof
of convergence along the lines of the convergence proof for simulated annealing
can be found in Margolin (2005). The CE method is also effective for solving
noisy optimization problems, for example when the objective function value is
obtained via simulation. Typical examples may be found in Alon et al. (2005)
and Cohen et al. (2007).

3.1 Combinatorial Optimization

When the state space X is finite, the optimization problem (10) is often re-
ferred to as a discrete or combinatorial optimization problem. For example, X

could be the space of combinatorial objects such as binary vectors, trees, paths
through graphs, permutations, etc. To apply the CE method, one needs to
first specify a convenient parameterized random mechanism to generate objects
X in X . An important example is where X = (X1, . . . ,Xn) has independent
components such that Xi = j with probability pij, i = 1, . . . , n, j = 1, . . . ,m.
In that case, the CE updating rule (see de Boer et al. (2005; Page 56)) at the
t-th iteration is

p̂t,ij =

∑N
k=1 I{S(Xk)>bγt}I{Xki=j}∑N

k=1 I{S(Xk)>bγt}

, i = 1, . . . , n, j = 1, . . . ,m , (13)

where X1, . . . ,XN are independent copies of X ∼ {p̂t−1,ij} and Xki is the i-th
element of Xk. Thus, the updated probability p̂t,ij is simply the number of elite
samples for which the i-th component is equal to j, divided by the total number
of elite samples.

7

A possible stopping rule for combinatorial optimization problems is to stop
when the overall best objective value does not change over a number of it-
erations. Alternatively, one could stop when the sampling distribution has
“degenerated” enough. For example, when in (13) the {p̂t,ij} differ less than
some small ε > 0 from the {p̂t−1,i,j}.

Example: Max-Cut Problem

The max-cut problem in a graph can be formulated as follows. Given a weighted
graph G(V,E) with node set V = {1, . . . , n} and edge set E, partition the nodes
of the graph into two subsets V1 and V2 such that the sum of the (nonnegative)
weights of the edges going from one subset to the other is maximized. Let
C = (C(i, j)) be the matrix of weights. The objective is to maximize

∑

(i,j)∈V1×V2

(C(i, j) + C(j, i)) (14)

over all cuts {V1, V2}. Such a cut can be conveniently represented by a binary
cut vector x = (1, x2, . . . , xn), where xi = 1 indicates that i ∈ V1. Let X be
the set of cut vectors and let S(x) be the value of the cut represented by x, as
given in (14).

To maximize S via the CE method one can generate the random cut vectors
by drawing each component (except the first one, which is set to 1) indepen-
dently from a Bernoulli distribution, that is, X = (1,X2, . . . ,Xn) ∼ Ber(p),
where p = (1, p2, . . . , pn). Given an elite sample set E , with size N e, the up-
dating formula (13) is then:

p̂t,i =

∑
X∈E

Xi

N e
, i = 2, . . . , n . (15)

That is, the updated success probability for the i-th component is the mean of
the i-th components of the vectors in the elite set.

Figure 2 illustrates the evolution of the Bernoulli parameters for a max-cut
problem from de Boer et al. (2005) of dimension n = 400, for which the optimal
solution is given by x∗ = (1, . . . , 1, 0, . . . , 0).

8

0

1

0

1

0

1

0

1

0 50 100 150 200 250 300 350 400
0

1

Figure 2: Sequence of reference vectors for a synthetic max-cut problem with
400 nodes. Iterations 0, 5, 10, 15, and 20 are displayed.

3.2 Continuous Optimization

When the state space is continuous, in particular when X = R
n, the optimiza-

tion problem is often referred to as a continuous optimization problem. The
sampling distribution on R

n can be quite arbitrary, and does not need to be
related to the function that is being optimized. The generation of a random
vector X = (X1, . . . ,Xn) ∈ R

n is most easily performed by drawing the coordi-
nates independently from some 2-parameter distribution. In most applications
a normal (Gaussian) distribution is employed for each component. Thus, the
sampling distribution for X is characterized by a vector of means µ and a vector
of standard deviations σ. At each iteration of the CE algorithm these param-
eter vectors are updated simply as the vectors of sample means and sample
standard deviations of the elements in the elite set; see, for example, Kroese
et al. (2006).

Algorithm 3.2 (CE for Continuous Optimization: Normal Updating)

1. Initialize: Choose µ̂0 and σ̂
2
0. Set t = 1.

2. Draw: Generate a random sample X1, . . . ,XN from the N(µ̂t−1, σ̂
2
t−1)

distribution.

3. Select: Let I be the indices of the N e best performing (=elite) samples.
Update: For all j = 1, . . . , n let

µ̃t,j =
∑

i∈I

Xij/N
e (16)

9

and
σ̃2

t,j =
∑

i∈I

(Xij − µ̃t,j)
2/N e. (17)

4. Smooth:

µ̂t = αµ̃t + (1 − α)µ̂t−1, σ̂t = ασ̃t + (1 − α)σ̂t−1 (18)

5. If maxj{σ̂t,j} < ε stop and return µt as an approximate solution. Oth-
erwise, increase t by 1 and return to Step 2.

For constrained continuous optimization problems, where the samples are
restricted to a subset X ⊂ R

n, it is often possible to replace the normal sam-
pling with sampling from a truncated normal distribution while retaining the
updating formulas (16)–(17). An alternative is to use a beta distribution. In-
stead of returning µ̂t as the final solution, one often returns the overall best
solution generated by the algorithm.

Smoothing, as in Step 4, is often crucial to prevent premature shrinking of
the sampling distribution. Instead of using a single smoothing factor, it is often
useful to use separate smoothing factors for µ̂t and σ̂t. An alternative is to use
dynamic smoothing for σ̂t:

αt = β − β

(
1 −

1

t

)q

, (19)

where q is an integer (typically between 5 and 10) and β is a smoothing constant
(typically between 0.8 and 0.99). Another approach is to inject extra variance
into the sampling distribution, for example by increasing the components of σ,
once the distribution has degenerated; see Botev and Kroese (2004). Finally,
significant speed up can be achieved by using a parallel implementation of CE;
see, for example, Evans et al. (2007).

Example: Parameter Estimation for Differential Equations

Consider the FitzHugh–Nagumo differential equations:

dVt

dt
= c

(
Vt −

V 3
t

3
+ Rt

)
,

dRt

dt
= −

1

c
(Vt − a + bRt) ,

(20)

which model the behavior of certain types of neurons (Nagumo et al. 1962).
Ramsay et al. (2007) consider estimating the parameters a, b, and c from noisy
observations of (Vt) by using a generalized smoothing approach. The simulated
data in Figure 3 correspond to the values of Vt obtained from (20) at times
0, 0.05, . . . , 20.0, adding Gaussian noise with standard deviation 0.5. The true
parameter values are a = 0.2, b = 0.2, and c = 3. The initial conditions are
V0 = −1 and R0 = 1.

10

Estimation of the parameters via the CE method can be established by
minimizing the least-squares performance

S(x) =
400∑

i=0

(yi − V0.05i(x))2 ,

where {yi} are the simulated data, x = (a, b, c, V0, R0), and Vt(x) is the solution
to (20) for parameter vector x. Algorithm 3.2 was implemented with µ̂0 =
(0, 0, 5, 0, 0), σ̂0 = (1, 1, 1, 1, 1), N = 100, N e = 10, and ε = 0.001. Constant
smoothing parameters α1 = 0.9 and α2 = 0.5 were used for the {µ̂t} and the
{σ̂t}, respectively. The following solution was found (notice that the initial
condition was assumed to be unknown): â = 0.19, b̂ = 0.21, ĉ = 3.00, V̂0 =
−1.02, and R̂0 = 1.02. The smooth curve in Figure 3 gives the corresponding
estimated curve, which is practically indistinguishable from the true one.

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

4

Figure 3: Simulated data for the FitzHugh–Nagumo model and a fitted curve
obtained via the CE method.

References

G. Alon, D. P. Kroese, T. Raviv, and R. Y. Rubinstein. Application of the
cross-entropy method to the buffer allocation problem in a simulation-based
environment. Annals of Operations Research, 134(1):137–151, 2005.

Z. I. Botev and D. P. Kroese. Global likelihood optimization via the cross-
entropy method with an application to mixture models. In Proceedings of the
36th Winter Simulation Conference, pages 529–535, Washington, D.C., 2004.

J. C. C. Chan. Advanced Monte Carlo Methods with Applications in Finance.
PhD thesis, University of Queensland, 2010.

I. Cohen, B. Golany, and A. Shtub. Resource allocation in stochastic, finite-
capacity, multi-project systems through the cross entropy methodology. Jour-
nal of Scheduling, 10(1):181–193, 2007.

11

A. Costa, J. Owen, and D. P. Kroese. Convergence properties of the cross-
entropy method for discrete optimization. Operations Research Letters, 35
(5):573–580, 2007.

P. T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on the
cross-entropy method. Annals of Operations Research, 134(1):19–67, 2005.

G. E. Evans, J. M. Keith, and D. P. Kroese. Parallel cross-entropy optimization.
In Proceedings of the 2007 Winter Simulation Conference, pages 2196–2202,
Washington, D.C., 2007.

D. P. Kroese, S. Porotsky, and R. Y. Rubinstein. The cross-entropy method
for continuous multi-extremal optimization. Methodology and Computing in
Applied Probability, 8(3):383–407, 2006.

L. Margolin. On the convergence of the cross-entropy method. Annals of Op-
erations Research, 134(1):201–214, 2005.

J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line
simulating nerve axon. Proceedings of the IRE, 50(10):2061–2070, October
1962.

J. O. Ramsay, G. Hooker, D. Campbell, and J. Cao. Parameter estimation
for differential equations: A generalized smoothing approach. Journal of the
Royal Statistical Society, Series B, 69(5):741–796, 2007.

R. Y. Rubinstein. Combinatorial optimization, cross-entropy, ants and rare
events. In S. Uryasev and P. M. Pardalos, editors, Stochastic Optimization:
Algorithms and Applications, pages 304–358, Dordrecht, 2001. Kluwer.

R. Y. Rubinstein. Optimization of computer simulation models with rare events.
European Journal of Operational Research, 99(1):89–112, 1997.

R. Y. Rubinstein. The cross-entropy method for combinatorial and continuous
optimization. Methodology and Computing in Applied Probability, 1(2):127–
190, 1999.

R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method.
John Wiley & Sons, New York, second edition, 2007.

R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Ap-
proach to Combinatorial Optimization, Monte Carlo Simulation and Machine
Learning. Springer-Verlag, New York, 2004.

12

