
†c/o Apple Computer, Inc.
1 Infinite Loop, MS 301-3J
Cupertino, CA 95014 USA
email: Pete Litwinowicz: litwinow@apple.com

Lance Williams: lance.w@apple.com

Animating Images with Drawings

Peter Litwinowicz†

Lance Williams†

Apple Computer, Inc.

ABSTRACT

The work described here extends the power of 2D animation with
a form of texture mapping conveniently controlled by line
drawings.  By tracing points, line segments, spline curves, or filled
regions on an image, the animator defines features which can be
used to animate the image.  Animations of the control features
deform the image smoothly.  This development is in the tradition
of "skeleton"-based animation, and "feature"-based image
metamorphosis.  By employing numerics developed in the
computer vision community for rapid visual surface estimation,
several important advantages are realized.  Skeletons are
generalized to include curved "bones," the interpolating surface is
better behaved, the expense of computing the animation is
decoupled from the number of features in the drawing, and
arbitrary holes or cuts in the interpolated surface can be
accommodated.  The same general scattered data interpolation
technique is applied to the problem of mapping animation from
one image and set of features to another, generalizing the
prescriptive power of animated sequences and encouraging reuse
of animated motion.

Keywords: Image warping, animation, scattered data
interpolation.

Background

Rich detail and texture are usually reserved for the background
paintings in an animation.  Production economics do not permit
the foreground figures to be dressed in plaid, for example, and
such effects are difficult to achieve by traditional means.  Three-
dimensional computer animation offers shading and texture, but
the stylization of form possible in traditional cel animation has
proved more elusive.  Much of the motivation for the work
described here comes from the technique of traditional animation,
where all action is portrayed by drawings -- points, lines, and
curves -- defined at arbitrary instants of time.  Interpolation
defines the full sequence from the sparse keys.  We envision a
similar interpolation in space, embedding the objects and
characters the artist has drawn in a surface controlled by the lines
of the drawings.  The interpolated motion of corresponding

keyframe drawings is used to define spatial deformations which
may be applied to other images.  "Feature-based" deformations,
controlled by the motion of arbitrarily-placed points, curves, and
regions, offer a direct and natural method of animating complex
images and forms.  An earlier attempt at animating drawings by
their features [Litw91] required the user to define a mesh of
bilinear Coons patches [Forr72].  The curved boundaries of the
patches could be aligned with features of interest to the animator,
and subsequently animated to control the image.  Although the
Coons patches are inexpensive to evaluate, the manual division of
the image into a mesh, and the necessity of animating all of the
patch boundaries to control the motion, require substantial time
and effort.  Specifying and animating only the features of interest
is both vastly more general and a great deal easier for the
animator.

Deformations based on tensor-product splines [Sed86][Farin90]
are actually a more recent development than "feature based"
deformations defined by line segments, which were introduced by
Burtnyk and Wein in [Burtn76].  The goal of that work was to
permit an animated "skeleton" of linked line segments to drive the
animation of a drawing, in this case by polygonal tessellation of
regions around the "bones" of the skeleton.  An alternate
parametrization, based on a skeleton derived from the shape of the
matte or support of the image region to be animated, has been
described by Wolberg [Wolb89].  In this case, the skeleton is the
result of successive thinning operations applied to the original
shape.  The image warping algorithm is specialized for morphing,
that is, for transforming between two image/shapes.  Driving an
image warp by modifying the skeleton alone would require a
slightly different algorithm.  Automatic "medial axis" skeletons of
this type might be useful for some purposes, but there is no
guarantee that the "bones" will align with features the animator is
interested in controlling directly.

More recent skeleton animation work appeals to smoother
interpolation functions.  Van Overveld [vanO90] describes a
physical simulation which is calculated for a simple skeleton, then
applied to a more complex model by a distance-weighted "force
field."  The field is defined by a dense set of points on the limbs of
the skeleton.  The formula used is equivalent to Shepard's
interpolation, a simple scattered data interpolant originally
developed for terrain surfaces [Shep68].  In [Beier92], Beier and
Neely developed an algorithm for image morphing based on
Shepard's interpolation, with a significant novelty:  the control
primitives were extended to include line segments as well as
points.  Since the line segments can be aligned with important
edges in the image, the metamorphosis was termed, "feature
based."  At edge-like features of the image, a single line segment
does the work of dozens of points, and offers a natural and
intuitive means of interpolating local orientations.

Thin-plate spline surfaces were introduced to computer-aided
geometric design by Harder and Desmarais [Hard72].  Application
of finite-element methods to computing smooth surfaces over



scattered data for CAGD purposes was first essayed by Pilcher
[Pilch74].  Smooth scattered data interpolants, introduced as
analogues of physical surfaces, have more recently been applied in
vision and image reconstruction [Grim81].  The demands of rapid
processing for practical vision systems has motivated attempts to
compute some of these surfaces using fast numerical methods
[Terz88], and our animation system utilizes these techniques.  We
have implemented a system which performs the scattered data
interpolation for animated deformations or morphing by using
multigrid finite-difference evaluation of a thin-plate spline surface.
This approach extends the "feature" primitives to curves and solid
regions, realized as densely sampled points.  In addition to
generalizing the control primitives, the underlying surface which
defines the deformation is better behaved than a Shepard's
interpolant.  This is particularly important when deformations are
used for animation, without the texture interpolation invoked in a
"morph."

Description of the problem and our solution

Given starting and ending shapes for a set of primitives in the
plane, such as curves, lines and points, we would like to calculate
a warp that transforms regions between the primitives in a well -
behaved and intuitive way.  By aligning curves, lines and points
with features in an image, intuitive controls for image warping are
easily constructed.  Deformation of an image can then be
accomplished by applying the warp defined by the original
drawing and any other drawing of the same features.  It is then
possible to animate an image simply by animating the drawing,
and applying the corresponding image warp at each frame.

From a control primitive's original and final shape we can derive a
set of displacements.  For a point the displacement is simply a
(∆x,∆y) pair.  For a line or polyline, continuous displacements all
along the length are defined by the initial and final shape.  Not
only the "skeleton animation" of Burtnyk and Wein [Burtn76], but
a number of subsequent facial animation systems and morphing
programs are based on triangulation of displaced points [Gosh86].
For interpolating a set of scattered points, Delaunay triangulation
is frequently used.  A triangulation is defined for the original
feature set, then the vertices are interpolated toward the final
shape, and the triangles texture-mapped from the original image.
While rapid to compute, the warp is generally not as smooth as
desired.  The triangulation can be seen in the resulting animation,
as the texture map shears along the edges of the triangles.

Beier and Neely [Beier92] advanced a modified Shepard's
interpolant which added line segments as control primitives.  This
method interpolates displacements using a distance-weighted
technique and produces smoother interpolations than triangulation.
The usual difficulty with these distance-weighted interpolants is
trading off "cusps" against "flats" at the data points.  In addition,
the interpolation may become very expensive as the number of
primitives increases, since each contributes at every point on the
surface.  To give the animator local control, Beier and Neely
associate a finite region of influence -- a threshold distance from a
point or line segment -- with each primitive.  The process of
specifying the region size for each primitive can potentially be
tedious, and for many warps, no combination of region extents and
inverse-distance weighting exponents yields the desired result
[Rupr92].

Instead of explicit control over the size of the basis functions used
in the interpolation process, our goal was to provide a technique

which automatically extended regions of influence to the next
user-defined primitive.  Another goal was to have a nice "smooth"
interpolant, but at the same time provide a mechanism for
intuitively introducing discontinuities in the interpolant where
appropriate.  Finally, we wished to provide curves as deformation
primitives.

The thin-plate spline provided a nice compromise for our goals.
The region of influence for a particular primitive is global, but the
region most affected is the area between a primitive and its nearest
neighbors.  The thin-plate spline is C 1 continuous, certainly
smoother than a piecewise planar triangulated surface, and not so
potentially cuspy as a Shepard's interpolant.

The thin-plate spline is one solution to a class of scattered data
interpolation problems that have the following problem statement
(from [Franke79]):  "Construct a smooth bivariate function,
F(x,y), which takes on certain prescribed values, F(xk,yk) = fk, k
= 1, . . . , N.  The points (xk,yk) are not assumed to satisfy any
particular conditions as to spacing or density, hence the term
'scattered.'"

How does our problem map onto the scattered data problem?  For
a number of known (xk,yk) positions in the image plane, we have
known displacements (∆xk,∆yk) as defined by our original and
destination drawings.  Substituting ∆xk for fk above, we calculate
a smooth interpolating function for the x-displacements for an
entire image, and similarly for the y-displacements.  The thin plate
also has the added constraint that the surface everywhere should
minimize the following smoothness functional:
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where Ω is the domain of the surface, and F is the surface itself.
Encoded in Ω are the cuts and holes in the surface.

The thin plate spline can be solved by using a d2log d basis
function at each point (where d is the distance from the point), and
solving the linear system.  This becomes extremely expensive as
the number of known points increases.  By solving the problem on
a discrete grid, the solution time is dependent on the strain energy
in the plate and not on the number of data points (beyond a small
initialization cost).  Another advantage to discretizing the problem
is that discontinuities in the interpolant are easy to handle.  In the
continuous problem, it is not obvious how to change the basis
function d 2log d to handle irregular discontinuities.  Our grid sizes
are on the order of the image size, in pixels; we make sure that we
have at least one grid element per pixel in the image.  Finally, we
use a coarse-to-fine multiresolution method to calculate our
interpolants [Terz88].

We present the animator with curves, polylines, and points as
deformation primitives.  When solving the problem on a discrete
grid we must scan convert the primitives' displacements onto the
grid.  In practice, we discretize the primitives into equidistant
samples.

The animator specifies discontinuities in the surface by supplying
an extra black-and-white matte; an image pixel is "connected" to
neighboring pixels labeled "nonzero" in this matte.  For most
purposes, the animator uses the ordinary alpha matte in the role of
discontinuity matte as well, but they may be specified separately.
For instance, the eyes and mouth of the characters in Figure (1)
are on a separate cel level, with holes specified in the top layer.
These holes also specify discontinuities in the interpolant, so when
the top eyelid closes, it does not affect the lower eyelid.



In applying the displacements we use a forward mapping
technique, as opposed to the inverse mapping technique
implemented by Beier and Neely (the former is a "many to one"
mapping, the latter, "one to many").  All the warped images in the
color plates illustrating this paper were generated using a forward
mapping, including the pictures demonstrating Beier-Neely
interpolation.  The Beier interpolation picture actually uses 2
points for the interior points and four lines along the edges; the
displacements for the points are weighted with Shepard's formula
and the edges with the Beier-Neely modifications for lines.  The
checkerboards warped with thin-plate interpolation have displaced
interior feature points and four stationary lines along the edges.

The interpolated displacements for the entire surface are applied to
the image at each pixel.  The image is rendered as a polygon
mesh; each original pixel becomes a polygon vertex in the mesh,
except where the discontinuity matte breaks the connections.
Subpixel positioning of the displaced quadrilateral endpoints is
important for good results.

Observations

Our experience suggests that the imposition of a structure to
animate the image, such as a grid or mesh of polygons, can impose
a heavy burden on the animator.  It is far more intuitive to specify,
and animate, a simple drawing which parametrizes and controls
the image.

Polygonal texturing may not be smooth enough for the extreme
deformations used in animation.  Distance-weighted interpolants
may not be smooth enough, either, and may limit the number of
control primitives for practical purposes.

A very valuable feature of the thin-plate spline surface is its
idempotency .  New features can be added at any time without
modifying the current mapping, and subsequently serve as handles
for further animation.  With a polygonal mapping, this can be
ensured by subdividing only triangles in which new control points
are introduced.  With a distance weighted mapping, this property
is impossible to achieve, and one must settle for gradually, over
time, blending in the contribution of newly introduced control
features.

The iterative relaxation used to compute the multigrid spline
surface can profit from frame-to-frame coherence in animation.
By using the last surface computed as an estimate for the next
frame, the expense for the sequence is greatly reduced.  The first
frame of the example animated cat sequence took 5 min., 34 sec.;
subsequent frames, on average, 3 min., 30 sec. (surface computed
as a 513x513 grid on a MIPS 36Mhz R3000).

There are several ways to trade off computation and quality in the
surface.  One is to evaluate the surface on a coarse grid, and use
tensor-product interpolation to upsample it.  Another is to increase
the error permitted when iteration is ceased, or to perform a fixed
number of iterations.  In this case, a modified form of Southwell
iteration [Gera94] offers improved results for the same number of
cycles.  We implemented this option at the suggestion of Eric
Chen, who was inspired by the "shooting" method of computing
radiosity [Gortler93].
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Key features of the subject have been traced by hand as line drawings.

The leftmost drawings define an automatic mapping to the cat's face.

Thin-plate spline surfaces animate images from drawings.

2 displaced points;       triangulation. 6 displaced points;   discontinuity map.

Polygonal mapping;      ∆X surface. Polygonal
interpolation.

Beier interpolation;        ∆X surface. Beier interpolation.

  Thin-plate spline;         ∆X surface.     without "hole"            with "hole"
                    Thin-plate spline.

Animation

The top row of pictures shows
sample frames from a video
sequence.  Key features of the
subject have been rotoscoped to
extract animated line drawings.
Using cross-synthesis procedures
described in [Patterson91], and the
line drawings of the actor and cat
in the leftmost column, the
animation for the other line
drawings has been automatically
generated for the cat.  Using these
animated line drawings and the
original cat photograph (shown in
the leftmost column), thin-plate
spline surfaces are used to
compute each frame of the
animation.   The final two rows of
frames, at left, show two more
characters animated in this way,
with the original faces shown in
the leftmost column. The eyes and
teeth are animated on a separate
layer.

Holes and Cuts

The two columns of pictures on
the far left show the relative
smoothness of image warps based
on various scattered data
interpolation methods.  At near left,
we show  the process of introducing
deliberate "holes" or "cuts" in

interpolating surfaces:
Top left test image   (closing gap in checkerboard).

The six red control points are moved to the tips of the
yellow arrows. The blue points, as well as each edge of
the square, are held in place.  Top right, the map which
controls the continuity of the surface.

 Polygonal interpolation.  Triangulation results in sharp
bends within the checkerboard as it stretches.
Interpolation is local, however, with no influence across
the gap.

Beier interpolation.   Folds and creases appear in the
checkerboard, and the left edge of the hole folds under
as the right edge approaches.  The "hole" in this and the
next example is simply a matte (transparency map)
which makes part of the surface transparent.

Thin-plate spline, with no holes in the surface .  As the
right edge is stretched, the left edge folds under.

Thin-plate spline, with an actual "hole" in the
interpolated displacement surface.
As the right edge is stretched, the
left edge is relatively unaffected.
This type of control is necessary for
the animation examples at the top of
the page. When closing an eyelid,
the animator doesn't want to affect
the region below the eye.
Continuity and translucency are
specified with independent maps.




