Just the Fax—Differentiating Voice and Fax Phone Lines Using Call Billing
Data

Haim Kaplan, Martin Strauss and Mario Szegedy
AT&T Labs 180 Park Avenue Florham Park, NJ 07932-0971

Summary

We consider the problem of classifying a telephone line #seia voice or fax telephone line based on
its long-distance calling patterns (i.e., the time of day duaration of its long distance calls) and based
on knowledge about other lines with which calls are placee& show that both kinds of information are

important. In particular, neither choosing new learningoaithms nor collecting more detailed calling

pattern data can compensate for the lack of the most impataibutes, call duration and neighbor identity.
Thus, in our application using the algorithms we studiedfinefeature selection to be more important than
the choice of learning algorithm.

Introduction

Motivation

We consider the problem of distinguishing fax lines and gdices on a long-distance telecommunications
network. To identify faxes, an algorithm would primarilyausall billing data which contains, for each call,
the originating and terminating numbers, the date and tiragohone call started (tto®nnect timg and the
duration of the call. This data, available in abundancelexten providers, is collectively referred to as the
call graph since it can be viewed as a directed multigraph in whiclpteb@e lines are nodes and telephone
calls are arcs. In addition to call graph data, we used a catpavide database of voice and fax lines as a
source of labeled examples.

In general, we are interested in classifying phone lines @ategories such as data, fax, voice, customer
help lines, etc., based on the calling records. We are istiedlein the extent to which this is possible
and we are interested in determining good techniques. Vithilkis paper we are particularly concerned
with classifying lines as either voice or fax, we point ouattithe techniques we use may apply in other
classification problems as well. The ability to classifyeinhelps a telecom company to predict revenue
and infrastructure needs, to formulate new service offsjrand to detect fraud. For more discussion on
analysis of call data (especially in connection with detertraud), see [CEWB97].

On one hand one would like to take advantage of well-knowrestiped learning software such as C4.5.
This algorithm requires a flat data set of information abbetéxamples, i.e., there must be a fixed set of
attributes whose values summarize all information aboaiettample phone lines. On the other hand, in our
data set the information about a particular phone line imdad in the call billing records associated with
the line and the graph structure of our data set containsrirdtion valuable to a classification effort.



In our experiment we do flatten the file and compute a set abates for each phone line. We take advantage
of the graph structure by encoding parts of it that are relet@our classification problem as attributes.

Focusing on this global approach we encounter two challégesfirst is coming up with the right attributes
to use. These attributes should encapsulate as much ablpdssbrmation from the call graph that is
valuable for obtaining a good classification. The seconti@sing the right learning algorithm to use on a
set of known fax and voice lines to produce a classifier witalserror rate on unseen lines. We consider a
number of attributes, described in the sequel, and we censig learning algorithms: our own hyperplane
separator algorithm and C4.5, a well-known algorithm thhatlpces a decision tree.

We must compute attributes and choose learning softwatedkas into account that call billing data is
massive. For the most part, one is limited to algorithms tlaatstream through the data, making full use of
each disk block read. Typically, one sorts data once so #haited records are contiguous, then operates on
runs of related records.

Overall Strategy

We obtained and cleaned a list of labeled voice and fax livés.collected call data for these lines for a
22-day period, and computed from the call data variousheitieis for the voice and fax lines. Finally, we ran
machine-learning software on the profiles and assessatkthai rates.

Data Gathering

We collected the telephone and fax numbers from the empldgdase of a large company, approximately
80,000 voice lines and 15,000 fax lines. From this, we elated by hand:

e numbers listed both as voice and as fax (about 600)
e numbers outside the U.S. and Canada

e obviously incorrect numbers (for example, several empdsylested their telephone number as 555-
1212, the number for directory assistance in North Ameyica.

By gathering data from one source this way we hope to avoisl. bi@r example, our fax and voice data
have the same geographic distribution, are used by the samarhpopulation, and are labeled by the same
process. By contrast, if we were successful at distingngstiie fax lines of one phone directory from the
voice lines of another, we may be basing our classificatiosane irrelevant discrepancy between the two
databases. Working with homogeneous data has drawbacksllassuccess at separating voice from fax
lines within a single corporation and its subculture doesnezessarily scale to more heterogeneous data.
Still, we regard fax/voice differentiation within a homaog®us subpopulation to be an important problem.

This particular data set has another peculiarity. Many outll calls appear in the billing data as originating
from a single central line, so, effectively, we lose outbduiata for these lines. Furthermore, since voice
lines and fax lines are pooled this way, we cannot use irdrparate calls of this type to identify the type of



the terminating line based on the type of the originating.Ie attempted to remove some of these central
lines from the list, but were not thorough. (We removed uridenumbers altogether, based on high usage
levels.)

We collected the telephone billing data for these lines @2 consecutive day period in November and
December 1997 which included the U.S. holiday of Thanksmjvi

Finally, we removed from the list of examples those lines imgiewer than 25 calls in our 22-day period.
This leaves only 30% of the examples, but the examples thaireaccount for 90% of the call traffic.
In applications such as fraud detection or market shareysisalit is appropriate to give the three-way
classification into low-usage, reasonable-usage fax, @msbnable-usage voice.

Profile Computation

A vector of attributes for a phone line is calleg@filefor the line. We distinguish three types of attributes,
whose computation have different algorithmic and dataestiral characteristics: accumulative attributes
(whose values can be updated based on the current value @t in a single call), historic attributes
(that require call data from more than a single call to updatel propagating attributes (that depend on and
therefore propagate our knowledge about other examples)Xé&tcribe these in more detail below.

Accumulative Attributes

For each phone line, we gathered information about the walt$e to it and from it. We gathered the duration
and connect time of calls, the total number of weekday anckereg calls, and the total usage in seconds.
This information is stored in an aproximate form—for example stored the number of calls made during
the:'th hour of the day, fof < i < 24. Each of these attributes can be computed by maintainirgiitent
value and passing through a stream of call data such thatugmtste needs only the current value and the
information in a single call.

We computed the following accumulative attributes:

e Connect time hourly histogram

e Log duration histogram (i.e., théth histogram bar is the number of calls of durati@nto 2:+*
seconds)

e Total usage, in seconds
e Total number of calls
e Total number of calls to 800/888 numbers (toll-free calls)

e Number of calls broken down into weekend v. weekday and indau outbound



Historic Attributes

We also computed some non-accumulative attributes, ttehues that require more than a single call to
update. Some of these attributes are more difficult to compuatlarger sets of call data. We now describe
several of theses attributes together with a theory for whidvexpect these to be useful.

First, we proposed that fax and voice lines may differ in tagaty of numbers with which they place calls.
For this reason, we collected data about the multiplictfatie various phone numbers called. Specifically,
we computed the number of lines called exactly once, the murmhlled exactly twice, etc., up to some
limit. From these, we compute and report the number of limtiedat leasttwice, at least three times, etc.
(thefrequency tails We also compute thigequency momentsr calls to lines. That is, supposeg s the
number of times our example line called linee computen; = 3, a! for j = 0,1, 2, ..., (but note that
my IS just the total number of calls made by the example linegetber or separately, the first frequency
tails or frequency moments give information about the rplittities of calls in a flat file (fixed number of
fields) representation—this way we captured some of the rimgpertant directed multigraph information
in a useful format. We repeated the computation for inboualts @and combining inbound and outbound
calls.

We also hypothesized that fax output is often misplaced ssea may fax a document several times to
the same line, resulting in two or more calls to the same linth® same duration (to within a tolerance).
Similarly, a server may fax a user a form that the user woulaf{it and fax back, resulting in two calls in
opposite directions between a pair of numbers such thateitensl call is slightly longer than the first. We
therefore computed frequency moments and tails for thethenof calls just as we did for the destinations
of calls, i.e., we let:; be the number of calls of durationt ¢ and computed frequency moments and tails
on thesen;. We also computed frequency moments and tails for the jogguency of destination and
duration—the frequency of multiple calls of the same dematb the same destination line.

Ultimately, these attributes did not prove to be useful (goden't fully describe them). We mention them
here because they may be more useful in other, related afiphs or even in fax/voice differentiation
efforts that have access to the outbound data that we lackseTattributes are also noteworthy for their
algorithmic characteristics.

These attributes are callédstoricsince, to update the attribute valu@pon seeing calt, more data than
andc is needed.

Propagating Attributes

We also computed the number of voice lines and fax lines a¢ddiea given example line, as well as the
corresponding values for lines two calls away. These aiteib are callegoropagatingsince, in order to
update valuer upon seeing calt, one needs to know a classification for the line at the othéroén. Thus
our knowledge (or lack thereof) about some lines propagatesher lines through consideration of these
attributes.

For each line/, we looked at the se%; of lines other tharl that made or received any call withand
computed the fax:voice ratio amortj (the first neighborhood statistics). We also looked at thesgeof
lines other thar that made calls witls; and computed the fax:voice ratio ¢if (the second neighborhood
statistics). There is substantially more second neighimitdata than first neighborhood data. Note that,



by definition, neithess; nor 57 containd, but.S; and.S? may overlap.

Cross Validation

We performed ten-fold cross validation. That is, we divideelexamples into ten parts, for eackl : < 10
we removed part, trained on the other nine parts, then tested on pafNe report the average of the error
rates on the test data.

Each training set naturally has more voice than fax exampRefore training we subsampled the voice
training examples so that we ultimately train on a set witle@nal number of voice and fax examples. This
builds a hypothesis that does about as well on voice as ore&ixiata.

For both test and training examples, we computed the nerlolod statistics on neighbors in the training
data only. That is, we recorded the sizes of the voice and éighborhoods restricted to the training data.
For example, consider three fax lindsg, [, andls, each of which calls the other, such thatis a test
example and, andis are training examples. We would say thahas two (undirected) fax neighbors and
I, andl3 have one fax neighbor each.

Algorithmic Considerations

Our data files (and the data files of future experiments) agelanough that disk I/O is a bottleneck. It
is important, therefore, that we can usefully process ertisk blocks of data at once. Suppose there are
N = 1G items to process anll = 1K items per disk block (so there afé¢/ B = 1M blocks). We'd like an
algorithm to make at most 1M- N/B or even 30M= (N/B)log N < N = 1G I/O's. In practice, this
means

e There is sufficient time to sort the data

e Sorting (i.e., grouping) the call data by line is desiralielsat each record relevant to one or more
given lines can be read, processed, and writtef(ih/ B) amortized disk I/O's.

For further discussion, see [AV88].
Note that the strategy of grouping and streaming the dataffisient to compute accumulative attributes.

To compute the several non-accumulative attributes we teeesdjroup the data. That is, we assume that the
call data is grouped according to line number in our list ofecand fax lines. To compute the frequency
moments for lines called by link for example, we sort the calls secondarily by called-lifieravhich it

is straightforward to compute the frequency moments effitye Following this, to compute the frequency
moments for the durations of calls made hywe need to resort the call data so that it remains sorted
primarily by line but now becomes sorted secondarily by tlara Our algorithm only performs the neces-
sary resorting. With this kind of preprocessing, it is alsaightforward to compute our non-accumulative
attributes statistics, assuming we have access to all théata at once.

Our computation of non-accumulative attributes does nalesso well as the the computation of accumula-
tive attributes since the former requires more than theatumttribute value and a single call record to make



an update. Specifically, one cannot decide if a call madeytesito the same destination as a call made
in the last month without storing a month's worth of data. ifirty, one cannot decide if today's call to a
known fax is to anewknown fax without storing all of the previously-called farés. When we scale our
algorithm to all fax lines in the country, for example, we nret have access to more than one or two day's
data at a time and so to scale up we will have to modify ouratig¥somewhat, for example, by considering
the number of calls to known faxes rather than the number ofkrfaxes called.

Learing Algorithms

We ran machine learning software on the file of profiles. We garad two learning algorithms of different
types, that we now discuss.

C4.5

C4.5 is a program written by J. Quinlan [Qui93] that genes@elecision tree classifier when given a set of
labeled examples. The input to the program is a flat file of gtas All information about each example
must be expressible in terms of a fixed collection of attelsuEach observation is also labeled by the name
of the class containingit.

The output generated by the program is a decision tree inhwésch internal node specifies some test to
be carried out on a single attribute value, and each leatbisléal by a name of a class. A decision tree
can be used to classify an example by starting at the rooteofréde and moving through it until a leaf is
encountered. At each nonleaf decision node, the examplésme for the test at the node determines the
child whose test should be carried out next. The class ofdle is predicted to be the class associated with
the leaf in which the process ends.

We now describe the C4.5 algorithm in detail. Assume, withoss of generality, that we have only two
classes, namefaxandvoice For a setS of training cases, the entropy 8fisentropy(5) = —(fr(fax, S) *
log, (fr(fax, S)) + fr(voice, S) * log, (fr(voice, S))), wherefr(fax, S) is the fraction of the observations in
S labeled fax, and similarly for voice. The infomation gairsasiated with partitioning' into .S; and.S,
according to the outcome of a téstis

gain (S, T') = entropy(S) — ((|S1]/]S]) * entropy (S1) + (Sa|/|S)  entropy (Sy)).
The entropy associated with any split®into .S; andS; of the given sizes is defined as
split-entropy.S, T) = —(|S11/|S]) * log, (1511/151) = (1S21/1S1) * log, (|S:1/1S1).

C4.5 chooses for each node a t€sbf the form X < Z whereX is an attribute and is a threshold value,
that maximizes thgain ratio(, 7') = gain (95, T') /split-entropy.S, 1') for the training seb associated with
the node.

In a second stage C4.5 prunes its initial tree by replacibgreas with one of their branches. Pruning tends
to reduce overfitting thereby improving the classificationumseen examples.

Note that the bare bones C4.5 algorithm scales well, at feasbntinuous data such as we have. This is
because for each node, in order to find a fesf the form X; < 7;, the algorithm needs to consider each of



d attributesX, sort the examples h¥ -value, then rescan the resulting list of examples to findtiheshold
that optimizes the information gain. Such sorting and sitanalgorithms are 1/O-efficient.

Hyperplanes

Given two sets of daty’ C R?andY C R (the vectors of attributes for voice and fax lines), we mayarel
the data as lying in d-dimensional plane at unit distance from the origimifir!. We can then attempt to
separate the vectors by a hyperplan¢hrough the origin ink4*+!. We measure the successofby the
number of misclassified points,

miscl(X, Y, P) = {z € X : (z,np) <O} +Hy €Y : (y,np) 2 0},

wherenp is the normal vector of’.

The separation iperfectif miscl(X,Y, P) = 0. The classical perceptron algorithm is a simple, efficient
algorithm that finds a perfectly separating hyperplaneif$ts [Ros58, Ros62, MP69]. If such a hyperplane
does not exist, then finding & such thaimiscl (X, Y, P) is minimal is NP-hard. Several algorithms in the
literature try to find a hyperplan® such that miscl(X,Y,P) is as small number as possible [DHBIS95].

We use our own algorithm, which yields good results. The i@lgm iteratively finds hyperplanes with
increasing performance, such that each local optimizatiep is a version of line search ([Vap95]) in some
random direction.

We create a sequence of hyperplaigsP, . . . recursively, all going through the origin. We start with an
arbitrary hyperplané’, which goes through the origin.

Construction off?; from £,_; :

We pick a random vectar € {0, 1}¢, and we minimizeniscl(X,Y, P,_1(\)) over A, whereP,_,()\) is
defined as the hyperplane orthogonahtg_, + Ar. We then put’; = P,_; (). SinceP;_; = F;(0), we
have, thainiscl (X, Y, P;) is monotone-decreasingin

Algorithm to find min miscl(X, Y, P;(\)):

1. For everyz € X find A, such that(z,np,_, + A;r) = 0. For everyy € Y find A, such that
(y,np,_, + Ayr) = 0. (For the analysis, we assume all this are distinct).

2. Sort{\, |z € X}U{\, | y € Y} toobtainasequenca < X, <...< Axuy|-

3. Letly = (—oo, A1), I; = (Aj,Aj4) for 1 < j < | X UY|, and/ xuy| = (Axuy|,o0). Define
COUNT(z) for0 < ¢ < | X UY|recursively:COUNT(0) = 0; COUNT(j) = COUNT (5 —1)+¢;,
wheree; = 1 if A; orginates from a\,, where(z,r) < 0 or if A; orginates from a\,, where
(y,r) > 0, ande; = —1 otherwise.

4. Findj which minimizesCOUNT(j), and set € [; arbitrarily.

The cost of an iteration of the hyperplane algorithm is at tiost required to sont values and to perform
n dot products of vectors of length wheren is the number of examples alds the number of attributes.
The algorithm can proceed by scanning and sorting the ddtigjvis 1/0-efficient.



Overall, the hyperplane and bare-bones C4.5 algorithmeargarable—roughly a sort and scan of all the

data for each hyperplane iteration or each decision tre@nddhen applying these algorithms to larger

datasets, one can limit the number of iterations/nodegetth conserve resources or because a limited
number of iterations/nodes suffices, and so we expect bolimigues to scale well. For further discussion

of I/O-efficient learning algorithms, see [MAR96].

Results

We ran C4.5 and our hyperplane algorithm on various comianatof attributes. The results are given in
Figure 1.

Figure 1: Results of C4.5 and the Hyperplane algorithm, ir®+, using combinations of attributes indi-
cated by +.

Attributes C4.5 Hyperplane

| n]us|nc|wk|n8]|dur|tod]|fm | voice| fax | total | voice| fax | total
1+ + | + + + + + + 10.5| 12.0| 10.6 88| 125| 9.2
2|+ + | + + + + + - 10.1| 11.9| 104 881 13.2| 9.3
3|+ + | + + + + - + 9.2|111.4| 95 8.1|105| 8.4
4|1+ + | + + + - + + 140|174 144 | 11.2| 29.6| 135
51+ + | + + - + + + 10.1( 11.7| 10.3 95| 12.7| 9.9
6|+ | + | + - + + + + 10.8| 11.7| 10.9 9.1|14.1| 9.7
7|+ + | - + + + + + 10.0| 12.3| 10.3 9.7] 13.6| 10.1
8|+ ]| - | + + + + + + 10.0| 11.7| 10.1 8.8 13.0f 9.3
9| - | + | + + + + + + 125| 134 12.6| 13.2| 15.4| 13.3
10| + | - - - - + - - 10.3| 12.0| 10.5 8.0|14.0| 8.8
11| + | - - - - - - - 14.8| 22.2| 15.8|| 13.0| 28.3| 15.1
12| - | - - - - + - - 13.0| 16.5| 134 10.6| 16.9| 114

Key:
n: first and second neighborhood statistics, inbound anfoloaund (6 attributes)
us: total usage, seconds
nc:  total number of calls
wk:  weekend versus weekday usage, inbound and outbountiputgs)
n8: number of calls to toll-free numbers
dur: call duration histogram (13 attributes)
tod: call time-of-day histogram (24 attributes)
fm: frequency moments and frequency tails (15 attributes)

We consider twelve experiments, each a combination of fasdf attributes. Experiment 1 consists of all
attributes, experiments 2—9 consist of all attribute féasibut one, and experiments 10—-12 consist of subsets
of nearest-neighbor and duration attribute families.

First, note that experiment 3, in which the time-of-day mfiation is omitted, does somewhat better than
experiment 1 in which all attributes are present. This magieto overfitting.



Of all attribute families, the nearest-neighbor and dorathformation seem to be the most important single
families. First, we note that experiments 4 and 9 (that edelthese attributes) yield significantly worse
results than experiment 1. Furthermore, experiment 10y(tré duration and neighbor information) does
about as well as experiment 1 (except that the hyperplameitigy suffers somewhat on faxes).

Note that the overall performance of C4.5 and the hyperpdégrithm are correlated, that is, attributes that
are important for one algorithm tend to be important to tHesoalgorithm.

Finally, we note that, for most subsets of the attributes dligorithms give similar performance.

Conclusions

The C4.5 algorithm and our hyperplane algorithm have singiteor rate in all our experiments despite the
fact that they compute very different classifiers. This sgjg that many learning algorithms would have
comparable performance on our data. Clearly to establisittnjecture a more thorough experiment with
more learning algorithms is required. (For example, we sty support vector machines [CV95]).

In contrast with the observation that the learning algonitias little affect on the error rate we also observe
that the particular choice of attributes seems to be ctiticeour case duration and neighborhood informa-
tion are the important attributes and if we omit either ofith@e do not see the low error rate we achieve by
using both. Other attributes seem to contain less infonati hus, discovering the right attributes seems
to be the main challenge in classification problems of thislk{\We note that the relative importance of at-
tributes may be an artifact of our particular dataset andids®of most outbound traffic data; other attributes
may be more important when outbound traffic data is religble.

Adding attributes that do not contain information releveamthe classification may cause overfitting and

thereby increase the error rate. It also slows down theitrgiprocess and unnecessarily complicates the
classification device. Therefore, a feature selection@reikely to improve the results. In our experiments

we performed this process manually but one can use automatibanisms for this purpose (See [Man97]

for an automatic algorithm for feature reduction that fareell on the breast cancer database [WSM95,
MA92]).
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