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Summary

We consider the problem of classifying a telephone line as either a voice or fax telephone line based on
its long-distance calling patterns (i.e., the time of day and duration of its long distance calls) and based
on knowledge about other lines with which calls are placed. We show that both kinds of information are
important. In particular, neither choosing new learning algorithms nor collecting more detailed calling
pattern data can compensate for the lack of the most important attributes, call duration and neighbor identity.
Thus, in our application using the algorithms we studied, wefind feature selection to be more important than
the choice of learning algorithm.

Introduction

Motivation

We consider the problem of distinguishing fax lines and voice lines on a long-distance telecommunications
network. To identify faxes, an algorithm would primarily use call billing data which contains, for each call,
the originating and terminating numbers, the date and time the phone call started (theconnect time), and the
duration of the call. This data, available in abundance to telecom providers, is collectively referred to as the
call graph, since it can be viewed as a directed multigraph in which telephone lines are nodes and telephone
calls are arcs. In addition to call graph data, we used a corporate-wide database of voice and fax lines as a
source of labeled examples.

In general, we are interested in classifying phone lines into categories such as data, fax, voice, customer
help lines, etc., based on the calling records. We are interested in the extent to which this is possible
and we are interested in determining good techniques. Whilein this paper we are particularly concerned
with classifying lines as either voice or fax, we point out that the techniques we use may apply in other
classification problems as well. The ability to classify lines helps a telecom company to predict revenue
and infrastructure needs, to formulate new service offerings, and to detect fraud. For more discussion on
analysis of call data (especially in connection with detecting fraud), see [CEWB97].

On one hand one would like to take advantage of well-known supervised learning software such as C4.5.
This algorithm requires a flat data set of information about the examples, i.e., there must be a fixed set of
attributes whose values summarize all information about the example phone lines. On the other hand, in our
data set the information about a particular phone line is encoded in the call billing records associated with
the line and the graph structure of our data set contains information valuable to a classification effort.



In our experiment we do flatten the file and compute a set of attributes for each phone line. We take advantage
of the graph structure by encoding parts of it that are relevant to our classification problem as attributes.

Focusing on this global approach we encounter two challeges. The first is coming up with the right attributes
to use. These attributes should encapsulate as much as possible information from the call graph that is
valuable for obtaining a good classification. The second is choosing the right learning algorithm to use on a
set of known fax and voice lines to produce a classifier with small error rate on unseen lines. We consider a
number of attributes, described in the sequel, and we consider two learning algorithms: our own hyperplane
separator algorithm and C4.5, a well-known algorithm that produces a decision tree.

We must compute attributes and choose learning software that takes into account that call billing data is
massive. For the most part, one is limited to algorithms thatcan stream through the data, making full use of
each disk block read. Typically, one sorts data once so that related records are contiguous, then operates on
runs of related records.

Overall Strategy

We obtained and cleaned a list of labeled voice and fax lines.We collected call data for these lines for a
22-day period, and computed from the call data various attributes for the voice and fax lines. Finally, we ran
machine-learning software on the profiles and assessed their error rates.

Data Gathering

We collected the telephone and fax numbers from the employeedatabase of a large company, approximately
80,000 voice lines and 15,000 fax lines. From this, we eliminated by hand:� numbers listed both as voice and as fax (about 600)� numbers outside the U.S. and Canada� obviously incorrect numbers (for example, several employees listed their telephone number as 555-

1212, the number for directory assistance in North America.)

By gathering data from one source this way we hope to avoid bias. For example, our fax and voice data
have the same geographic distribution, are used by the same human population, and are labeled by the same
process. By contrast, if we were successful at distinguishing the fax lines of one phone directory from the
voice lines of another, we may be basing our classification onsome irrelevant discrepancy between the two
databases. Working with homogeneous data has drawbacks as well—success at separating voice from fax
lines within a single corporation and its subculture does not necessarily scale to more heterogeneous data.
Still, we regard fax/voice differentiation within a homogeneous subpopulation to be an important problem.

This particular data set has another peculiarity. Many outbound calls appear in the billing data as originating
from a single central line, so, effectively, we lose outbound data for these lines. Furthermore, since voice
lines and fax lines are pooled this way, we cannot use intra-corporate calls of this type to identify the type of



the terminating line based on the type of the originating line. We attempted to remove some of these central
lines from the list, but were not thorough. (We removed under10 numbers altogether, based on high usage
levels.)

We collected the telephone billing data for these lines overa 22 consecutive day period in November and
December 1997 which included the U.S. holiday of Thanksgiving.

Finally, we removed from the list of examples those lines making fewer than 25 calls in our 22-day period.
This leaves only 30% of the examples, but the examples that remain account for 90% of the call traffic.
In applications such as fraud detection or market share analysis, it is appropriate to give the three-way
classification into low-usage, reasonable-usage fax, and reasonable-usage voice.

Profile Computation

A vector of attributes for a phone line is called aprofilefor the line. We distinguish three types of attributes,
whose computation have different algorithmic and data-structural characteristics: accumulative attributes
(whose values can be updated based on the current value and the data in a single call), historic attributes
(that require call data from more than a single call to update) and propagating attributes (that depend on and
therefore propagate our knowledge about other examples). We describe these in more detail below.

Accumulative Attributes

For each phone line, we gathered information about the callsmade to it and from it. We gathered the duration
and connect time of calls, the total number of weekday and weekend calls, and the total usage in seconds.
This information is stored in an aproximate form—for example, we stored the number of calls made during
thei' th hour of the day, for0 � i < 24. Each of these attributes can be computed by maintaining itscurrent
value and passing through a stream of call data such that eachupdate needs only the current value and the
information in a single call.

We computed the following accumulative attributes:� Connect time hourly histogram� Log duration histogram (i.e., thei' th histogram bar is the number of calls of duration2i to 2i+1
seconds)� Total usage, in seconds� Total number of calls� Total number of calls to 800/888 numbers (toll-free calls)� Number of calls broken down into weekend v. weekday and inbound v. outbound



Historic Attributes

We also computed some non-accumulative attributes, i.e., attributes that require more than a single call to
update. Some of these attributes are more difficult to compute on larger sets of call data. We now describe
several of theses attributes together with a theory for why we'd expect these to be useful.

First, we proposed that fax and voice lines may differ in the variety of numbers with which they place calls.
For this reason, we collected data about the multiplicitiesof the various phone numbers called. Specifically,
we computed the number of lines called exactly once, the number called exactly twice, etc., up to some
limit. From these, we compute and report the number of lines calledat leasttwice, at least three times, etc.
(the frequency tails). We also compute thefrequency momentsfor calls to lines. That is, supposeai is the
number of times our example line called linei. We computemj = Pi aji for j = 0; 1; 2; : : :, (but note thatm1 is just the total number of calls made by the example line). Together or separately, the first frequency
tails or frequency moments give information about the multiplicities of calls in a flat file (fixed number of
fields) representation—this way we captured some of the moreimportant directed multigraph information
in a useful format. We repeated the computation for inbound calls and combining inbound and outbound
calls.

We also hypothesized that fax output is often misplaced so a user may fax a document several times to
the same line, resulting in two or more calls to the same line of the same duration (to within a tolerance).
Similarly, a server may fax a user a form that the user would fill out and fax back, resulting in two calls in
opposite directions between a pair of numbers such that the second call is slightly longer than the first. We
therefore computed frequency moments and tails for the lengths of calls just as we did for the destinations
of calls, i.e., we letai be the number of calls of durationi� � and computed frequency moments and tails
on theseai. We also computed frequency moments and tails for the joint frequency of destination and
duration—the frequency of multiple calls of the same duration to the same destination line.

Ultimately, these attributes did not prove to be useful (so we don' t fully describe them). We mention them
here because they may be more useful in other, related applications or even in fax/voice differentiation
efforts that have access to the outbound data that we lack. These attributes are also noteworthy for their
algorithmic characteristics.

These attributes are calledhistoricsince, to update the attribute valuev upon seeing callc, more data thanv
andc is needed.

Propagating Attributes

We also computed the number of voice lines and fax lines called by a given example line, as well as the
corresponding values for lines two calls away. These attributes are calledpropagatingsince, in order to
update valuev upon seeing callc, one needs to know a classification for the line at the other end of c. Thus
our knowledge (or lack thereof) about some lines propagatesto other lines through consideration of these
attributes.

For each linel, we looked at the setSl of lines other thanl that made or received any call withl and
computed the fax:voice ratio amongSl (the first neighborhood statistics). We also looked at the set S2l of
lines other thanl that made calls withSl and computed the fax:voice ratio onS2l (the second neighborhood
statistics). There is substantially more second neighborhood data than first neighborhood data. Note that,



by definition, neitherSl norS2l containsl, butSl andS2l may overlap.

Cross Validation

We performed ten-fold cross validation. That is, we dividedthe examples into ten parts, for each1 � i � 10
we removed parti, trained on the other nine parts, then tested on parti. We report the average of the error
rates on the test data.

Each training set naturally has more voice than fax examples. Before training we subsampled the voice
training examples so that we ultimately train on a set with anequal number of voice and fax examples. This
builds a hypothesis that does about as well on voice as on fax test data.

For both test and training examples, we computed the neighborhood statistics on neighbors in the training
data only. That is, we recorded the sizes of the voice and fax neighborhoods restricted to the training data.
For example, consider three fax lines,l1, l2, and l3, each of which calls the other, such thatl1 is a test
example andl2 andl3 are training examples. We would say thatl1 has two (undirected) fax neighbors andl2 andl3 have one fax neighbor each.

Algorithmic Considerations

Our data files (and the data files of future experiments) are large enough that disk I/O is a bottleneck. It
is important, therefore, that we can usefully process entire disk blocks of data at once. Suppose there areN = 1G items to process andB = 1K items per disk block (so there areN=B = 1M blocks). We'd like an
algorithm to make at most 1M= N=B or even 30M= (N=B) logN � N = 1G I/O's. In practice, this
means� There is sufficient time to sort the data� Sorting (i.e., grouping) the call data by line is desirable so that each record relevant to one or more

given lines can be read, processed, and written inO(1=B) amortized disk I/O's.

For further discussion, see [AV88].

Note that the strategy of grouping and streaming the data is sufficient to compute accumulative attributes.

To compute the several non-accumulative attributes we needto regroup the data. That is, we assume that the
call data is grouped according to line number in our list of voice and fax lines. To compute the frequency
moments for lines called by linel, for example, we sort the calls secondarily by called-line after which it
is straightforward to compute the frequency moments efficiently. Following this, to compute the frequency
moments for the durations of calls made byl, we need to resort the call data so that it remains sorted
primarily by line but now becomes sorted secondarily by duration. Our algorithm only performs the neces-
sary resorting. With this kind of preprocessing, it is also straightforward to compute our non-accumulative
attributes statistics, assuming we have access to all the call data at once.

Our computation of non-accumulative attributes does not scale so well as the the computation of accumula-
tive attributes since the former requires more than the current attribute value and a single call record to make



an update. Specifically, one cannot decide if a call made today is to the same destination as a call made
in the last month without storing a month's worth of data. Similarly, one cannot decide if today's call to a
known fax is to anewknown fax without storing all of the previously-called fax lines. When we scale our
algorithm to all fax lines in the country, for example, we maynot have access to more than one or two day's
data at a time and so to scale up we will have to modify our attibutes somewhat, for example, by considering
the number of calls to known faxes rather than the number of known faxes called.

Learing Algorithms

We ran machine learning software on the file of profiles. We compared two learning algorithms of different
types, that we now discuss.

C4.5

C4.5 is a program written by J. Quinlan [Qui93] that generates a decision tree classifier when given a set of
labeled examples. The input to the program is a flat file of examples. All information about each example
must be expressible in terms of a fixed collection of attributes. Each observation is also labeled by the name
of the class containing it.

The output generated by the program is a decision tree in which each internal node specifies some test to
be carried out on a single attribute value, and each leaf is labeled by a name of a class. A decision tree
can be used to classify an example by starting at the root of the tree and moving through it until a leaf is
encountered. At each nonleaf decision node, the example's outcome for the test at the node determines the
child whose test should be carried out next. The class of the case is predicted to be the class associated with
the leaf in which the process ends.

We now describe the C4.5 algorithm in detail. Assume, without loss of generality, that we have only two
classes, namelyfaxandvoice. For a setS of training cases, the entropy ofS is entropy(S) = �(fr(fax; S)�log2(fr(fax; S)) + fr(voice; S) � log2(fr(voice; S))), wherefr(fax; S) is the fraction of the observations inS labeled fax, and similarly for voice. The infomation gain associated with partitioningS into S1 andS2
according to the outcome of a testT isgain(S; T ) = entropy(S)� ((jS1j=jSj) � entropy(S1) + (jS2j=jSj) � entropy(S2)):
The entropy associated with any split ofS intoS1 andS2 of the given sizes is defined as

split-entropy(S; T ) = �(jS1j=jSj) � log2(jS1j=jSj)� (jS2j=jSj) � log2(jS2j=jSj):
C4.5 chooses for each node a testT of the formX � Z whereX is an attribute andZ is a threshold value,
that maximizes thegain ratio(S; T ) = gain(S; T )=split-entropy(S; T ) for the training setS associated with
the node.

In a second stage C4.5 prunes its initial tree by replacing subtrees with one of their branches. Pruning tends
to reduce overfitting thereby improving the classification on unseen examples.

Note that the bare bones C4.5 algorithm scales well, at leastfor continuous data such as we have. This is
because for each node, in order to find a testT of the formXi � Zi, the algorithm needs to consider each of



d attributesX , sort the examples byX-value, then rescan the resulting list of examples to find thethreshold
that optimizes the information gain. Such sorting and scanning algorithms are I/O-efficient.

Hyperplanes

Given two sets of dataX � Rd andY � Rd (the vectors of attributes for voice and fax lines), we may regard
the data as lying in ad-dimensional plane at unit distance from the origin inRd+1. We can then attempt to
separate the vectors by a hyperplaneP through the origin inRd+1. We measure the success ofP by the
number of misclassified points,miscl(X; Y; P ) = jfx 2 X : hx; nP i � 0gj+ jfy 2 Y : hy; nP i � 0gj;
wherenP is the normal vector ofP .

The separation isperfectif miscl(X; Y; P ) = 0. The classical perceptron algorithm is a simple, efficient
algorithm that finds a perfectly separating hyperplane iff exists [Ros58, Ros62, MP69]. If such a hyperplane
does not exist, then finding aP such thatmiscl(X; Y; P ) is minimal is NP-hard. Several algorithms in the
literature try to find a hyperplaneP such that miscl(X,Y,P) is as small number as possible [DH73,Bis95].
We use our own algorithm, which yields good results. The algorithm iteratively finds hyperplanes with
increasing performance, such that each local optimizationstep is a version of line search ([Vap95]) in some
random direction.

We create a sequence of hyperplanesP0; P1; : : : recursively, all going through the origin. We start with an
arbitrary hyperplaneP0, which goes through the origin.

Construction ofPi from Pi�1 :
We pick a random vectorr 2 f0; 1gd, and we minimizemiscl(X; Y; Pi�1(�)) over�, wherePi�1(�) is
defined as the hyperplane orthogonal tonPi�1 + �r. We then putPi = Pi�1(�). SincePi�1 = Pi(0), we
have, thatmiscl(X; Y; Pi) is monotone-decreasing ini.
Algorithm to findmin�miscl(X; Y; Pi(�)):

1. For everyx 2 X find �x such thathx; nPi�1 + �xri = 0. For everyy 2 Y find �y such thathy; nPi�1 + �yri = 0. (For the analysis, we assume all the�' s are distinct).

2. Sortf�x j x 2 Xg [ f�y j y 2 Y g to obtain a sequence�1 � �2 � : : :� �jX[Y j.
3. Let I0 = (�1; �1), Ij = (�j ; �j+1) for 1 � j < jX [ Y j, andIjX[Y j = (�jX[Y j;1). DefineCOUNT(i) for 0 � i � jX[Y j recursively:COUNT(0) = 0; COUNT(j) = COUNT(j�1)+�j,

where�j = 1 if �j orginates from a�x, wherehx; ri < 0 or if �j orginates from a�y , wherehy; ri > 0, and�j = �1 otherwise.

4. Findj which minimizesCOUNT(j), and set� 2 Ij arbitrarily.

The cost of an iteration of the hyperplane algorithm is at most that required to sortn values and to performn dot products of vectors of lengthd, wheren is the number of examples andd is the number of attributes.
The algorithm can proceed by scanning and sorting the data, which is I/O-efficient.



Overall, the hyperplane and bare-bones C4.5 algorithms arecomparable—roughly a sort and scan of all the
data for each hyperplane iteration or each decision tree node. When applying these algorithms to larger
datasets, one can limit the number of iterations/nodes either to conserve resources or because a limited
number of iterations/nodes suffices, and so we expect both techniques to scale well. For further discussion
of I/O-efficient learning algorithms, see [MAR96].

Results

We ran C4.5 and our hyperplane algorithm on various combinations of attributes. The results are given in
Figure 1.

Figure 1: Results of C4.5 and the Hyperplane algorithm, in %-error, using combinations of attributes indi-
cated by +.

Attributes C4.5 Hyperplane
n us nc wk n8 dur tod fm voice fax total voice fax total

1 + + + + + + + + 10.5 12.0 10.6 8.8 12.5 9.2
2 + + + + + + + - 10.1 11.9 10.4 8.8 13.2 9.3
3 + + + + + + - + 9.2 11.4 9.5 8.1 10.5 8.4
4 + + + + + - + + 14.0 17.4 14.4 11.2 29.6 13.5
5 + + + + - + + + 10.1 11.7 10.3 9.5 12.7 9.9
6 + + + - + + + + 10.8 11.7 10.9 9.1 14.1 9.7
7 + + - + + + + + 10.0 12.3 10.3 9.7 13.6 10.1
8 + - + + + + + + 10.0 11.7 10.1 8.8 13.0 9.3
9 - + + + + + + + 12.5 13.4 12.6 13.2 15.4 13.3

10 + - - - - + - - 10.3 12.0 10.5 8.0 14.0 8.8
11 + - - - - - - - 14.8 22.2 15.8 13.0 28.3 15.1
12 - - - - - + - - 13.0 16.5 13.4 10.6 16.9 11.4

Key:
n: first and second neighborhood statistics, inbound and outbound (6 attributes)
us: total usage, seconds
nc: total number of calls
wk: weekend versus weekday usage, inbound and outbound (4 attributes)
n8: number of calls to toll-free numbers
dur: call duration histogram (13 attributes)
tod: call time-of-day histogram (24 attributes)
fm: frequency moments and frequency tails (15 attributes)

We consider twelve experiments, each a combination of families of attributes. Experiment 1 consists of all
attributes, experiments 2–9 consist of all attribute families but one, and experiments 10–12 consist of subsets
of nearest-neighbor and duration attribute families.

First, note that experiment 3, in which the time-of-day information is omitted, does somewhat better than
experiment 1 in which all attributes are present. This may bedue to overfitting.



Of all attribute families, the nearest-neighbor and duration information seem to be the most important single
families. First, we note that experiments 4 and 9 (that exclude these attributes) yield significantly worse
results than experiment 1. Furthermore, experiment 10 (only the duration and neighbor information) does
about as well as experiment 1 (except that the hyperplane algorithm suffers somewhat on faxes).

Note that the overall performance of C4.5 and the hyperplanealgorithm are correlated, that is, attributes that
are important for one algorithm tend to be important to the other algorithm.

Finally, we note that, for most subsets of the attributes, the algorithms give similar performance.

Conclusions

The C4.5 algorithm and our hyperplane algorithm have similar error rate in all our experiments despite the
fact that they compute very different classifiers. This suggests that many learning algorithms would have
comparable performance on our data. Clearly to establish this conjecture a more thorough experiment with
more learning algorithms is required. (For example, we should try support vector machines [CV95]).

In contrast with the observation that the learning algorithm has little affect on the error rate we also observe
that the particular choice of attributes seems to be critical. In our case duration and neighborhood informa-
tion are the important attributes and if we omit either of them we do not see the low error rate we achieve by
using both. Other attributes seem to contain less information. Thus, discovering the right attributes seems
to be the main challenge in classification problems of this kind. (We note that the relative importance of at-
tributes may be an artifact of our particular dataset and theloss of most outbound traffic data; other attributes
may be more important when outbound traffic data is reliable.)

Adding attributes that do not contain information relevantto the classification may cause overfitting and
thereby increase the error rate. It also slows down the training process and unnecessarily complicates the
classification device. Therefore, a feature selection phase is likely to improve the results. In our experiments
we performed this process manually but one can use automaticmechanisms for this purpose (See [Man97]
for an automatic algorithm for feature reduction that faredwell on the breast cancer database [WSM95,
MA92]).
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