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state complexity of a regular-language operation also gives a lower-bound for the space as well asthe time complexity of the same operation. In many cases, the bounds given are tight.The investigation of the state complexity of regular languages and their operations was alreadygoing on in the sixties and seventies. Examples of early studies concentrated on this topic can befound in [17, 20, 21]. However, many problems remain. We are now back to those basic problemswith much renewed motivation and interest.The DFA model has at least the following advantages over other representations of regular lan-guages such as nondeterministic �nite automata (NFA) and regular expressions: (1) Checking theequivalence of two DFA can be done in almost linear time [1], while the same problem for NFA, re-spectively for regular expressions, is PSPACE complete. (2) For each regular language, the minimalDFA that accepts the language is unique up to an isomorphism. This is not the case in general forthe other models. (3) There is an O(n logn)-time algorithm for the minization of DFA. However,the same problem for the other models is not known to be polynomial. Thus, the size of a DFA is anatural and objective measure for the language it accepts.However, there are many ways to measure the size of a DFA: the number of states, the numberof transitions, or both the number of states and the number of transitions. One may notice thatthe number of states gives a linear upper bound on the number of transitions. In the case of acomplete DFA, i.e., a DFA whose transition function is de�ned for each state and each letter in thealphabet, the number of transitions is totally determined by the number of states when the alphabetis given. Therefore, the number of states is the key measure on the size of a DFA as well as a naturalcomplexity measure for the language that the DFA accepts. In the following, by a DFA we alwaysmean a complete DFA.A regular language is accepted by in�nitely many di�erent DFA. We use the number of statesof the minimal automaton to measure the complexity of the given language. Thus, by the statecomplexity of a regular language L, denoted C(L), we mean the number of states in the minimalDFA that accepts L. By the state complexity of a class L of regular languages, denoted C(L), wemean the maximum among all C(L), L 2 L. When we speak about the state complexity of anoperation on regular languages, we mean the state complexity of the resulting languages from theoperation. For example, we say that the state complexity of the intersection of an m-state DFAlanguage, i.e., a language accepted by an m-state complete DFA, and an n-state DFA language isexactly mn. This means that mn is the state complexity of the class of languages each of which isthe intersection of an m-state DFA language and an n-state DFA language. In other words, thereexist two regular languages that are accepted by an m-state DFA and an n-state DFA, respectively,such that the intersection of them is accepted by a minimal DFA of mn states, and this is the worstcase. So, in a certain sense, state complexity is a worst-case complexity.State complexity is a complexity measure only for regular languages. However, it can be extendedto cover other families of languages as well. For example, the automaticity studied by Shallit et al.[24] can be considered as an extension of the state complexity. We will not consider any extension2



of state complexity in this article.Examining the state complexity results on the basic operations, e.g., catenation, union, intersec-tion, and complementation, on regular languages in [27], one would notice that all the worst casesare given by using in�nite languages only. This observation raises the question: Are �nite languagessigni�cantly di�erent from (in�nite) regular languages in state complexity of their operations? Forexample, would the state complexity of the union of two �nite languages accepted by an m-stateand an n-state DFA, respectively, be O(m + n) instead of mn? We will investigate these questionsin this article.Finite languages are, perhaps, one of the most often used but least studied classes of languages.Finite languages are exactly the languages accepted by acyclic �nite automata. It has been shownthat there is a linear (time) algorithm for the minimization of an acyclic DFA by Revuz in 1992 [15].However, for the minimization of a general DFA, the best known algorithm has a time complexityO(n logn) by Hopcropt in 1971 [8].In this article, we compare the state complexity results for �nite and in�nite regular languages.We �rst consider the relatively simple cases, i.e., the operations on languages over a one-letteralphabet. Then we consider the general cases. In the one-letter cases, most of the operations on�nite languages have a much lower state complexity than the corresponding operations on regularlanguages. However, in the general cases, only the catenation of two �nite languages, when the�rst language is accepted by a DFA with a constant number of �nal states, has a much lower statecomplexity than its regular language counterpart.Due to the not-so-positive results in the general cases, we resort to a di�erent concept to try toreduce the number of states for DFA accepting �nite languages. The concept of cover automata for�nite languages is described in the last section of this article. In many cases, cover automata are amuch more concise representation than DFA for �nite languages.2 PreliminariesA deterministic �nite automaton (DFA) is denoted by a quintuple (Q;�; �; q0; F ) where Q is the�nite set of states, � is the �nite alphabet, � : Q � � ! Q is the transition function, q0 2 Q isthe start state, and F � Q is the set of �nal states. In this paper, all the DFAs are assumed to becomplete DFAs. By a complete DFA we mean that there is a transition de�ned for each letter of thealphabet from each state, i.e., � is a total function. In contrast, a DFA is called an incomplete DFAif its transition function is a partial function.For any x 2 ��, we use #(x) to denote the length of x and #a(x) for some a 2 � to denote thenumber of appearances of a in x. The empty word is denoted by ".The transition function � of a DFA is extended to �̂ : Q � �� ! Q by setting �̂(q; ") = q and�̂(q; ax) = �̂(�(q; a); x) for q 2 Q, a 2 �, and x 2 ��. In the following, we simply use � to denote �̂ ifthere is no confusion. 3



A word w 2 �� is accepted by a DFA A = (Q;�; �; q0; F ) if �(q0; w) 2 F . The language acceptedby A, denoted L(A), is the set fw 2 �� j �(q0; w) 2 Fg: Two DFA are said to be equivalent if theyaccept the same language.An incomplete DFA can be transformed to an equivalent complete DFA by adding a `sink state'and transitions, which were unde�ned before, to the `sink state', as well as transitions from the `sinkstate' to the `sink state'.Let A = (Q;�; �; s; F ) be a DFA. Thena) a state q is said to be accessible if there exists w 2 �� such that �(s; w) = q;b) a state q is said to be useful if there exists w 2 �� such that �(q; w) 2 F .It is clear that for every DFA A there exists an equivalent DFA A0 such that every state of A0 isaccessible and at most one state is useless (the `sink state'). A DFA A0 as above is called a reducedDFA. We will use only reduced DFA in the following.A nondeterministic �nite automaton (NFA) is denoted also by a quintuple (Q;�; �; q0; F ) where� � Q� (�[f"g)�Q is a transition relation rather than a function, and Q, �, q0, and F are de�nedsimilarly as in a DFA. The words and languages accepted by NFA are de�ned similarly as for DFA.For a set s, we use jsj to denote the cardinality of s. For a language L, we de�ne L�l = l[i=0Li.For L � ��, we de�ne a relation �L� �� � �� byx �L y i� xz 2 L, yz 2 L for all z 2 ��:Clearly, �L is an equivalence relation, which partitions �� into equivalence classes. The number ofequivalence classes of �L is called the index of �L. The Myhill-Nerode Theorem [9] states that Lis regular if and only if �L has a �nite index and the minimal number of states of a complete DFAthat accepts L is equal to the index of �L.For a rather complete background knowledge in automata theory, the reader may refer to [9, 22].The following lemmas will be used in the subsequent sections. They can be proved rather easily.Thus, we omit the proofs to concentrate on our main results.Lemma 1 Let R � �� be a regular language. If there exists an integer n such thatmaxf#(w) j w 2 �� & w 62 Rg = n;then any DFA accepting R needs at least n+ 2 states. In particular, if � is a singleton, the minimalDFA accepting R uses exactly n+ 2 states.Lemma 2 Let m;n > 0 be two arbitrary integers such that (m;n) = 1 (m and n are relativelyprime).(i) The largest integer that cannot be presented as cm+ dn for any integers c; d > 0 is mn.(ii) The largest integer that cannot be presented as cm + dn for any integers c > 0 and d � 0 is(m� 1)n.(iii) The largest integer that cannot be presented as cm+dn for any integers c; d � 0 is mn�(m+n).4



3 Finite vs. regular languages over a one-letter alphabetAs we have mentioned in the introduction, we start our comparison of the state complexity ofoperations on regular and �nite languages from the relatively easy cases, i.e., the languages over aone-letter alphabet.We �rst list the basic results below and then give detailed explanations for some of the operations.We assume that L1 is an m-state DFA language and L2 an n-state DFA language, � = fag, andm;n > 1. Finite RegularL1 [ L2 max(m;n) mn, for (m;n) = 1L1 \ L2 min(m;n) mn, for (m;n) = 1�� � L1 m mL1L2 m+ n� 1 mn, for (m;n) = 1LR1 m mL�1 m2 � 7m+ 13, for m > 4 (m� 1)2 � 1Note that for �nite languages, the state complexity for each of the union, intersection, andcatenation operations is linear, while it is quadratic for in�nite regular languages.In the above table, all results for �nite languages are relatively trivial except for L�1. We give aninformal proof in the following. Let L1 be accepted by an m-state DFA A1 and A is a minimal DFAaccepting L�1. It is clear that the length of the longest word accepted by A1 is m� 2. (Note that them states include a `sink state'.) We consider the following three cases (1) A1 has one �nal state; (2)A1 has two �nal states; or (3) A1 has three or more �nal states. If (1), then A has m� 1 states. For(2), the worst case is given by L = fam�2; am�3g. By (iii) of Lemma 2, the length of the longestword that is not in L�1 is (m� 2)(m� 3)� (2m� 5) = m2 � 7m+ 11:Then A has exactly m2� 7m+13 states. In case (3), it is easy to see that A cannot have more thanm2 � 7m+ 13 states.For regular languages, we give a more detailed discussion below.For the union operation, it is clear thatmn states are su�cient for the resulting minimal DFA. Toshow that mn states are necessary, it su�ces to show that there are at least mn distinct equivalenceclasses of the relation �L1[L2 . Let L1 = (am)� and L2 = (an)�, m;n > 1 and (m;n) = 1. Forpositive integers p and q, let mp = p mod m, np = p mod n, mq = q modm, and nq = q mod n,0 � mp; mq < m, 0 � np; nq < n. It turns out that if mp 6= mq or np 6= nq, then ap and aq are notequivalent. However, this is not immediately clear for some cases. For example, let mp = �2 modm,np = �1 mod n, mq = �1 mod m, and nq = �2 mod n. (In order to explain easily, we use the5



negative numbers.) Then neither mp = mq nor np = nq , but mp = nq and np = mq. So, bothapa2; aqa2 2 L1 [L2 and apa; aqa 2 L1 [L2. It then appears that ap �L1[L2 aq. However, this is nottrue because it can be proved that apa2+m 2 L1 [ L2, but aqa2+m 62 L1 [ L2 assuming that m < n.The state complexity result for the intersection of two regular languages can be similarly proved.The result for the catenation of two regular languages is more involved. We outline a proof inthe following. A more detailed proof can be found in [27].We �rst give a general example of an m-state DFA language and an n-state DFA language,(m;n) = 1, such that mn states are necessary for any DFA that accepts the catenation of the twolanguages. Let L1 = am�1(am)� and L2 = an�1(an)�. Obviously, L1 and L2 can be accepted by anm-state DFA and an n-state DFA, respectively, and L = L1L2 = fai j i = (m� 1) + (n� 1) + cm+dn for some integers c; d � 0g. By (iii) of Lemma 2, for (m;n) = 1, the largest number that cannotbe represented by cm+ dn, c; d � 0, is mn� (m+n). Then the largest i such that ai 62 L is mn� 2.So, the minimal DFA that accepts L has at least mn states. We show that mn states are su�cientin the following theorem.Theorem 1 For any integers m;n � 1, let A and B be an m-state DFA and an n-state DFA,respectively, over a one-letter alphabet. Then there exists a DFA of at most mn states that acceptsL(A)L(B).Proof. The cases when m = 1 or n = 1 are trivial. We assume that m;n � 2 in the following. LetA = (QA; fag; �A; sA; FA) and B = (QB; fag; �B; sB; FB). By a variation of the subset construction,we know that L(A)L(B) is accepted by the DFA C = (QC ; fag; �C; sC ; FC) whereQC = f< q; P > j q 2 QA & P � QBg;sC =< sA; ; > if sA 62 FA and sC =< sA; fsBg > if sA 2 FA;�C(< q; P >; a) =< q0; P 0 > where q0 = �A(q; a) and P 0 = �B(P; a)[fsBg if q0 2 FA, P 0 = �B(P; a)otherwise;and FC = f< q; P > j P \ FB 6= ;g.Now we show that at most mn states of QC are reachable from sC .First we assume that in A there is a �nal state f in the loop of A's transition diagram. Then�A(sA; at) = f and �A(f; al) = f for some nonnegative integers t < m and l � m. Let j1; : : : ; jr,0 < j1 < : : : < jr < l, be all the integers such that �A(f; aji) 2 FA for each 1 � i � r. DenoteP0 = fsBg,P1 = f�B(sB ; al); �B(sB ; al�j1); : : : ; �B(sB; al�jr )g,and for i � 2 we de�nePi = �B(Pi�1; al).Let �C(sC ; at) =< f; S >. Denote S0 = S � fsBg and Si = �B(Si�1; al) for each i � 1. Then wehave the following state transition sequence of C:sC `tC < f; P0 [ S0 > (1)`lC < f; P0 [ P1 [ S1 > (2)6



:::::::::::: (3)`lC < f; P0 [ P1 [ : : :[ Pn�1 [ Sn�1 > (4)`lC < f; P0 [ P1 [ : : :[ Pn [ Sn > (5)Here p `kC q stands for �C(p; ak) = q. Denote P0 [ : : :[ Pi by Pi, i � 0. Let i be the smallest integersuch that Pi�1 = Pi. It is clear that i � n since B has n states. If i = n, then Pn�1 = QB and< f;Pn�1 [ Sn�1 >=< f;Pn [ Sn >=< f;QB > :Therefore, C needs at most m + l(n � 1) � m +m(n � 1) = mn states. If i < n, consider the setS0i�1 = Si�1 � Pi�1. Note that every state in S 0i�1 is in the loop of the transition diagram of B. Iffor each element r of S 0i�1, there exists j, 0 � j � n� i, such that �B(r; ajl) 2 Pi�1 (i.e. Pn�1), thenthe proof is concluded as above. Otherwise, there is an element r0 of S 0i�1 and a transition sequencer0 `lB r1 `lB : : : `lB rn�isuch that, for some j; k � n�i and j < k, rj = rk. (There are at most n�i states not in Pi�1.) Thenit is easy to verify that Si�1+j = Si�1+k . Therefore, < f;Pi�1+j [Si�1+j >=< f;Pi�1+k [Si�1+k >.Thus, the number of states that are reachable from sC is at most t + 1 + l(n� 1) � (m� 1) + 1 +m(n� 1) = mn.Finally we consider the case when no �nal states of A are in the loop. Let QA = f0; : : : ; m� 1gwhere sA = 0 and �A(0; ai) = i for 0 � i � m � 1. We can assume that m � 2 is a �nal state andm� 1 loops to itself. Otherwise, L(A) can be accepted by a complete DFA with less than m states.Consider the following m+ n � 1 transition steps of CsC `m�2C < m� 2; T > `C < m� 1; T0 > `C < m� 1; T1 >`C : : : `C < m� 1; Tn >Let the state �B(sB; ai+1) be ti, for each i � 0. Note that sB 2 T and ti is in Ti. It is clearthat there exist j; k such that 0 � j < k � n and tj = tk. Then it is not di�cult to see that< m� 1; Tj >=< m � 1; Tk >. Therefore, at most m+ n states are necessary for C. (m+ n < mnfor m;n � 2.) 2For the union, intersection, and catenation operations, we have considered only the cases when(m;n) = 1. For (m;n) = t > 1, we have not obtained exact formulas for those cases. Note thatneither mn=(m;n) nor lcm(m;n) (the least common multiple of m and n) is the solution. Forexample, a(a5)� and (a9)� are accepted by a 6-state and a 9-state DFA, respectively, but the unionof them needs at least 45 states rather than 6� 9=3 = 18 states.We now consider the last operation on the table, i.e., the star operation on in�nite regularlanguages. We �nd that the proofs for both directions are interesting.Theorem 2 The number of states which is su�cient and necessary in the worst case for a DFA toaccept the star of an n-state DFA language, n > 1, over a one-letter alphabet is (n� 1)2 + 1.7



Proof. For n = 2, the necessity is shown by a 2-state DFA which accepts (aa)�. For each n > 2,the necessary condition can be shown by the DFA A = (f0; : : : ; n� 1g; fag; �; 0; fn � 1g) where�(i; a) = i + 1 mod n for each i, 0 � i � n � 1. The star of L(A) is the language fai j i =c(n� 1) + dn; for some integers c > 0 and d � 0; or i = 0g. By (ii) of Lemma 2, the largest i suchthat ai 62 (L(A))� is (n � 2)n. So, the minimal DFA that accepts (L(A))� has (n � 2)n + 2, i.e.(n� 1)2 + 1, states.The proof for showing that (n � 1)2 + 1 states are su�cient is more interesting. Let A =(Q; fag; �; s; F ) be an arbitrary n-state DFA, n > 1 and R = L(A). If s is the only �nal state of A,then R� = R. So, we assume that there is at least one �nal state f such that f 6= s. Clearly, R�(excluding " if s 62 F ) is accepted by the NFA A0 = (Q; fag; �0; s; F ) where �0 = �[ f(q; "; s) j q 2 Fg.For any X � Q, denote by closure(X) the set X [ fq 2 Q j (p; "; q) 2 �0 for some p 2 Xg. Now wefollow the subset construction approach to build a DFA B = (P; fag; �; fsg; FP) from A0 to acceptR� such that P � 2Q, �(X; a) = closure(fq 2 Q j there exists p 2 X such that (p; a; q) 2 �0g), andFP = fX 2 P jX \ F 6= ; or X = fsg g. Let f be the �rst �nal state from s in A and at is theshortest word such that �(s; at) = f . Then �(fsg; at) = fs; fg. Denote by pki the state �(fsg; ait) inP , i � 0, which is a subset of Q.We claim that pki � pki�1 for all i � 1. It is true for i = 1 because �(fsg; at) = fs; fg, and alsotrue for i > 1 sincepki = �(fsg; ait) = �(fs; fg; a(i�1)t) = �(fsg; a(i�1)t)[ �(ffg; a(i�1)t)= pki�1 [ �(ffg; a(i�1)t):Then one of the following must be true:(1) pki = pki�1 for some i � n � 1;(2) pkn�1 = Q.This is because if (1) is false, pkn�1 contains at least n states and, therefore, (2) is true. Note that if(2) is true, then �(pkn�1; a) = pkn�1 . In any of the cases, the number of states of B is no more thant(n� 1) + 1 which is at most (n � 1)2 + 1. 2For the transformation from an n-state NFA to a DFA, it is clear in the case of �nite languagesover a one-letter alphabet, at most n states are needed. However, in the case of an in�nite regularlanguage over a one-letter alphabet, the problem is still open.4 Finite vs. regular languages over an arbitrary alphabetFor the one-letter alphabet case which we have discussed in the previous section, the state complex-ities for most operations on �nite languages are of a lower order than their counterpart for regularlanguages. However, this is no longer true in the case when the size of the alphabet is arbitrary.Although none of the operations on �nite languages, except the complementation, can reach the8



exact bound for regular languages, most of them have a complexity that is of the same order as thecorresponding operation on regular languages.We list the state complexity of the basic operations for both �nite and regular languages over anarbitrary alphabet below. All the results for regular languages are given as exact numbers. However,we use the big \O" notation for most of the results for �nite languages due to the fact that eitherthe formulas we have obtained are acutely nonintuitive or we do not have an exact result, yet. Moredetailed explanations follow the table.We assume that L1 and L2 are accepted by an m-state DFA A1 = (Q1;�; �1; s1; F1) and ann-state DFA A2 = (Q2;�; �2; s2; F2), respectively, and m;n > 1. We use t to denote the number of�nal states in A1. Finite RegularL1 [ L2 O(mn) mnL1 \ L2 O(mn) mn�� � L1 m mL1L2 O(mnt�1 + nt) (2m� 1)2n�1LR1 O(2m=2), for j�j = 2 2mL�1 2m�3 + 2m�4, for m � 4 2m�1 + 2m�2For the union and the intersection of �nite languages, it was expected that their state com-plexities would be linear, more speci�cally O(m+ n), but it turns out that both of them are of theorder of mn although neither of them can reach the exact bound mn.It is easy to show that mn states are su�cient for both union and intersection by the followingsimple argument. We can construct a DFA A = (Q;�; �; s; F ) which is the cross-product of A1and A2, i.e., Q = Q1 � Q2, � = �1 � �2 that is �((q1; q2); a) = (�(q1; a); �2(q2; a)), s = (s1; s2).For the union operation, F = f(q1; q2) j q1 2 F1 or q2 2 F2g and for the intersection operation,F = f(q1; q2) j q1 2 F1 and q2 2 F2g.Note that the pairs of the form (s1; q2) where q2 6= s2 and (q1; s2) where q1 6= s1 are neverreached from (s1; s2), and therefore, are useless. So, mn � (m + n � 2) states are su�cient forboth the union and intersection of two �nite languages accepted by an m-state and an n-state DFA,respectively. However, this is a very rough upper bound. Much tighter upper bounds for the unionand intersection of �nite languages are given in [4], which unfortunately are in a very complicatedand highly incomprehensible form. Thus, we will not quote them in this paper.It is more interesting to show that the state complexities of those two operations are indeed of theorder ofmn but not lower. The following examples were originally given by Shallit [23]. Automaton-based examples are given in [4], which give better lower bounds than the examples below. We chooseto present the following examples due to their clarity and intuitiveness.For the intersection of two �nite languages, consider the following example. Let � = fa; bg andL1 = fw 2 �� j #a(w) + #b(w) = 2ng;9



L2 = fw 2 �� j #a(w) + 2#b(w) = 3ng:Clearly, L1 is accepted by a DFA with 2n + 2 states and L2 by a DFA with 3n + 2 states. Theintersection L = L1 \ L2 is fw 2 �� j #a(w) = #b(w) = ngOne can prove that any DFA accepting L needs at least n2 states by the Myhill-Nerode Theorem [9].For the union of two �nite languages, the example is slightly more complicated. Let � = fa; bgand L1 = fw 2 �� j #(w) � 3t and #a(w) + #b(w) 6= 2tg;L2 = fw 2 �� j #a(w) + 2#b(w) < 3tg:It is clear that L1 [L2 includes all words in �� of length less than or equal to 3t except those wordsw such that #(w) = 2t and #b(w) � t. One can prove that any DFA accepting L1 [ L2 needs morethan t2 states by checking the number of the equivalence classes of �L1[L2 .We now consider the catenation operation. Notice that for the �nite language case, if thenumber of �nal states in A1 is a constant, then the state complexity of catenation is a polynomial interms of m and n. In particular, if A1 has only one �nal state, then the state complexity is linear,i.e., m+ n. In contrast, for in�nite regular languages, there are examples in which A1 has only one�nal state but any DFA accepting the catenation of the two languages needs at least (2m� 1)2n�1states [27, 26]. This is one of a few cases in which the state complexities for �nite and in�nite regularlanguages, respectively, are in di�erent orders.We now give the proof for the �nite language case. For the general case for the catenation ofregular languages, the reader may refer to [27] or [26].Without loss of generality, we assume that all the DFA we are considering are reduced andordered. A DFA A = (Q;�; �; 0; F ) with Q = f0; 1; : : : ; ng is called an ordered DFA if, for anyp; q 2 Q, the condition �(p; a) = q implies that p � q.For convenience, we introduce the following notation: n� i ! = iXj=0 nj ! :Theorem 3 Let Ai = (Qi;�; �i; 0; Fi), i = 1; 2, be two DFA accepting �nite languages Li, i = 1; 2,respectively, and #Q1 = m, #Q2 = n, #� = k, and #F1 = t. There exists a DFA A = (Q;�; �; s; F )such that L(A) = L(A1)L(A2) and#Q � m�2Xi=0 min(ki; n� 2� i ! ; n� 2� t � 1 !)+min(km�1; n� 2� t !) : (�)10



Proof. The DFA A is constructed in two steps. First, an NFA A0 is constructed from A1 and A2 byadding a �-transition from each �nal state in F1 to the starting state 0 of A2. Then, we construct aDFA A from the NFA A0 by the standard subset construction. Again, we assume that A is reducedand ordered.It is clear that we can view each q 2 Q as a pair (q1; P2), where q1 2 Q1 and P2 � Q2. Thestarting state of A is s = (0; ;) if 0 62 F1 and s = (0; f0g) if 0 2 F1. Let us consider all states q 2 Qsuch that q = (i; P ) for a particular state i 2 Q1 � fm � 1g and some set P � Q2. Since A1 isordered and acyclic, the number of such states in Q is restricted by the following three bounds: (1)ki, (2)  n� 2� i !, and (3)  n� 2� t � 1 !. We explain these bounds below informally.We have (1) as a bound since all states of the form q = (i; P ) are at a level � i, which have atmost ki�1 predecessors. By saying that a state p is at level i we mean that the length of the longestpath from the starting state to q is i.We now consider (2). Notice that if q; q0 2 Q such that �(q; a) = q0, q = (q1; P2) and q0 = (q01; P 02),then �1(q1; a) = q01 and P 02 = f�2(p; a) j p 2 P2g if q01 62 F1 and P 02 = f0g [ f�2(p; a) j p 2 P2g ifq01 2 F1. So, #P 02 > #P2 is possible only when q01 2 F1. Therefore, for q = (i; P ), #P � i if i 62 F1and #P � i+ 1 if i 2 F1. In both cases, the maximum number of distinct sets P is  n� 2� i !. Thenumber n� 2 comes from the exclusion of the sink state n� 1 and starting state 0 of A2. Note that,for a �xed i, either 0 2 P for all (i; P ) 2 Q or 0 is not in any set P such that (i; P ) 2 Q.(3) is a bound since for each state i 2 Q1 � fm� 1g, there are at most t � 1 �nal states on thepath from the starting state to i (not including i).For the second term of (�), it su�ces to explain that for each (m�1; P ), P � Q2, #P is boundedby the total number of �nal states in F1. 2Corollary 1 Let Ai = (Qi;�; �i; 0; Fi), i = 1; 2, be two DFA accepting �nite languages Li, i = 1; 2,respectively, and #Q1 = m, #Q2 = n, and #F1 = t, where t > 0 is a constant. Then there exists aDFA A = (Q;�; �; s; F ) of O(mnt�1 + nt) states such that L(A) = L(A1)L(A2).It has been shown in [3] that the bound given in Theorem 3 can be reached in the case j�j = 2.About the state complexity of the reversal of an m-state DFA language, one may easily havea misconception. Many thought, without any hesitation, that it should be linear (in terms of m),especially in the case of �nite languages. In fact, it is not even polynomial for both �nite and in�niteregular languages. We break the misconception by giving two examples in the following: one for�nite languages and the other for in�nite regular languages. Note that a nontrivial proof for a tightupper bound on the state complexity of the reversal of �nite languages can be found in [3].Example 1 Let m = 2n+ 2 and L = fa; bgnafa; bg�n, where fa; bg�n denotes�[ fa; bg [ fa; bg2 [ � � � [ fa; bgn:11



It is clear that L is a �nite language accepted by an m-state DFA. One can prove that any DFAaccepting LR needs at least 2n states.Example 2 An n-state DFA that accepts an in�nite regular language is shown in Figure 1. A proofshowing that any DFA accepting the reversal of this language requires at least 2n states can foundin [27].
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Figure 1: An n-state DFA such that L(A)R requires 2n statesFor the star operation, the di�erence between the state complexity for �nite and in�nite regularlanguages is that the latter is 4 times the former. Both bounds have been shown to be tight [3, 27].Here we only give two examples to demonstrate that the bound given on the table can be reached.Example 3 The n-state DFA A shown in Figure 2 accepts a �nite language. It is shown in [3] thatany DFA accepting L(A)� needs at least 2n�3 + 2n�4 states (assuming that n is even).
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bFigure 2: DFA A of n states such that L(A)� needs 2n�3 + 2n�4 statesExample 4 Let L be the language accepted by the DFA shown in Figure 3. It is shown in [26] thatany DFA accepting L� requires at least 2n�1 + 2n�2 states.12
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