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Abstract

State complexity is a descriptive complexity measure for regular languages. We investigate the
problems related to the state complexity of regular languages and their operations. In particular,
we compare the state complexity results on regular languages with those on finite languages.
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1 Introduction

Regular languages and their implementations have been attracting more and more attention in recent
years [18, 25] due to the increased applications of regular languages and finite automata in software
engineering, programming languages, and other practical areas of computer science. Evidences of the
increased applications include the popularity of the Regex (“regular expressions”) as a programming-
language construct in many recently-created programming languages such as Perl and Python, and
the adoption of the statecharts as part of the object-oriented modeling and design methodologies
such as OMT and UML [19, 2].

In recent years, quite a few software systems for manipulating formal language objects, with the
emphasis on regular-language objects, have been developed. Examples include AMoRE, Automate,
FIRE Engine, FSA, Grail, and INTEX [18, 25].

The applications as well as the implementations of regular languages require and also motivate
the study of the complexity issues of regular languages. There are two kinds of complexity issues
which are of interest: (1) time and spcace complexity issues and (2) descriptive complexity issues.
In this article, the focus is on the state complexity issues. State complexity is a type of descriptive

complexity for regular languages based on the deterministic finite automaton (DFA) model. The
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state complexity of a regular-language operation also gives a lower-bound for the space as well as
the time complexity of the same operation. In many cases, the bounds given are tight.

The investigation of the state complexity of regular languages and their operations was already
going on in the sixties and seventies. Examples of early studies concentrated on this topic can be
found in [17, 20, 21]. However, many problems remain. We are now back to those basic problems
with much renewed motivation and interest.

The DFA model has at least the following advantages over other representations of regular lan-
guages such as nondeterministic finite automata (NFA) and regular expressions: (1) Checking the
equivalence of two DFA can be done in almost linear time [1], while the same problem for NFA, re-
spectively for regular expressions, is PSPACE complete. (2) For each regular language, the minimal
DFA that accepts the language is unique up to an isomorphism. This is not the case in general for
the other models. (3) There is an O(nlogn)-time algorithm for the minization of DFA. However,
the same problem for the other models is not known to be polynomial. Thus, the size of a DFA is a
natural and objective measure for the language it accepts.

However, there are many ways to measure the size of a DFA: the number of states, the number
of transitions, or both the number of states and the number of transitions. One may notice that
the number of states gives a linear upper bound on the number of transitions. In the case of a
complete DFA, i.e., a DFA whose transition function is defined for each state and each letter in the
alphabet, the number of transitions is totally determined by the number of states when the alphabet
is given. Therefore, the number of states is the key measure on the size of a DFA as well as a natural
complexity measure for the language that the DFA accepts. In the following, by a DFA we always
mean a complete DFA.

A regular language is accepted by infinitely many different DFA. We use the number of states
of the minimal automaton to measure the complexity of the given language. Thus, by the state
complexity of a regular language I, denoted C(L), we mean the number of states in the minimal
DFA that accepts L. By the state complexity of a class £ of regular languages, denoted C(L), we
mean the maximum among all C'(L), L € £. When we speak about the state complexity of an
operation on regular languages, we mean the state complexity of the resulting languages from the
operation. For example, we say that the state complexity of the intersection of an m-state DFA
language, i.e., a language accepted by an m-state complete DFA, and an n-state DFA language is
exactly mn. This means that mn is the state complexity of the class of languages each of which is
the intersection of an m-state DFA language and an n-state DFA language. In other words, there
exist two regular languages that are accepted by an m-state DFA and an n-state DFA, respectively,
such that the intersection of them is accepted by a minimal DFA of mn states, and this is the worst
case. 50, in a certain sense, state complexity is a worst-case complexity.

State complexity is a complexity measure only for regular languages. However, it can be extended
to cover other families of languages as well. For example, the automaticity studied by Shallit et al.

[24] can be considered as an extension of the state complexity. We will not consider any extension



of state complexity in this article.

Examining the state complexity results on the basic operations, e.g., catenation, union, intersec-
tion, and complementation, on regular languages in [27], one would notice that all the worst cases
are given by using infinite languages only. This observation raises the question: Are finite languages
significantly different from (infinite) regular languages in state complexity of their operations? For
example, would the state complexity of the union of two finite languages accepted by an m-state
and an n-state DFA, respectively, be O(m + n) instead of mn? We will investigate these questions
in this article.

Finite languages are, perhaps, one of the most often used but least studied classes of languages.
Finite languages are exactly the languages accepted by acyclic finite automata. It has been shown
that there is a linear (time) algorithm for the minimization of an acyclic DFA by Revuz in 1992 [15].
However, for the minimization of a general DFA, the best known algorithm has a time complexity
O(nlogn) by Hopcropt in 1971 [8].

In this article, we compare the state complexity results for finite and infinite regular languages.
We first consider the relatively simple cases, i.e., the operations on languages over a one-letter
alphabet. Then we consider the general cases. In the one-letter cases, most of the operations on
finite languages have a much lower state complexity than the corresponding operations on regular
languages. However, in the general cases, only the catenation of two finite languages, when the
first language is accepted by a DFA with a constant number of final states, has a much lower state
complexity than its regular language counterpart.

Due to the not-so-positive results in the general cases, we resort to a different concept to try to
reduce the number of states for DFA accepting finite languages. The concept of cover automata for
finite languages is described in the last section of this article. In many cases, cover automata are a

much more concise representation than DFA for finite languages.

2 Preliminaries

A deterministic finite automaton (DFA) is denoted by a quintuple (@, %, 8, qo, I') where Q) is the
finite set of states, ¥ is the finite alphabet, § : @ x ¥ — @ is the transition function, gy € @ is
the start state, and ¥ C @ is the set of final states. In this paper, all the DFAs are assumed to be
complete DFAs. By a complete DFA we mean that there is a transition defined for each letter of the
alphabet from each state, i.e., ¢ is a total function. In contrast, a DFA is called an incomplete DFA
if its transition function is a partial function.

For any € ¥*, we use #(x) to denote the length of 2 and #,(x) for some a € ¥ to denote the
number of appearances of ¢ in z. The empty word is denoted by «.

The transition function § of a DFA is extended to & : @ X ¥* — ) by setting 5((],5) = q and
5((],@96) = 5(6((],(1),96) forg € Q,a€e Y, and z € 2*. In the following, we simply use é to denote § if

there is no confusion.



A word w € ¥* is accepted by a DFA A = (Q, X, 6, qo, I) if 6(qo, w) € F. The language accepted
by A, denoted L(A), is the set {w € ¥* | §(qo,w) € F'}. Two DFA are said to be equivalent if they
accept the same language.

An incomplete DFA can be transformed to an equivalent complete DFA by adding a ‘sink state’
and transitions, which were undefined before, to the ‘sink state’, as well as transitions from the ‘sink
state’ to the ‘sink state’.

Let A= (Q,%,6,s,F)be a DFA. Then

a) a state ¢ is said to be accessible if there exists w € X* such that §(s,w) = ¢;

b) a state ¢ is said to be useful if there exists w € ¥* such that é(¢q,w) € F.

It is clear that for every DFA A there exists an equivalent DFA A’ such that every state of A’ is
accessible and at most one state is useless (the ‘sink state’). A DFA A’ as above is called a reduced
DFA. We will use only reduced DFA in the following.

A nondeterministic finite automaton (NFA) is denoted also by a quintuple (@, X, 7, qo, F') where
7 CQ x(XU{e})xQ is a transition relation rather than a function, and @, X, go, and F are defined
similarly as in a DFA. The words and languages accepted by NFA are defined similarly as forl DFA.

For a set s, we use |s| to denote the cardinality of s. For a language L, we define L=/ = U L.
=0
For L C ¥*, we define a relation =5, C ¥* X ¥* by
r=pyiffeze L & yze L forall z € X7,

Clearly, =7, is an equivalence relation, which partitions ¥* into equivalence classes. The number of
equivalence classes of =y, is called the index of =;. The Myhill-Nerode Theorem [9] states that L
is regular if and only if =f, has a finite index and the minimal number of states of a complete DFA
that accepts L is equal to the index of =y.
For a rather complete background knowledge in automata theory, the reader may refer to [9, 22].
The following lemmas will be used in the subsequent sections. They can be proved rather easily.

Thus, we omit the proofs to concentrate on our main results.
Lemma 1 Let R C ¥ be a reqular language. If there exists an integer n such that
maz{#(w) | w e X" & w ¢ R} =n,

then any DFA accepting R needs at least n 4+ 2 states. In particular, if 33 is a singleton, the minimal

DFA accepting R uses exactly n + 2 states.

Lemma 2 Let m,n > 0 be two arbitrary integers such that (m,n) = 1 (m and n are relatively

prime).
(i) The largest integer that cannot be presented as cm + dn for any integers c,d > 0 is mn.

(ii) The largest integer that cannot be presented as ecm + dn for any integers ¢ > 0 and d > 0 is
(m—1)n.

(iii) The largest integer that cannot be presented as cm+dn for any integers c,d > 0 is mn—(m+n).



3 Finite vs. regular languages over a one-letter alphabet

As we have mentioned in the introduction, we start our comparison of the state complexity of
operations on regular and finite languages from the relatively easy cases, i.e., the languages over a
one-letter alphabet.
We first list the basic results below and then give detailed explanations for some of the operations.
We assume that L is an m-state DFA language and Ly an n-state DFA language, ¥ = {a}, and

m,n > 1.

Finite Regular
LiU Ly max(m,n) mn, for (m,n)=1
Lin Ly min(m, n) mn, for (m,n)=1
¥*— 14 m m
L1l m+n—1 mn, for (m,n)=1
LE m m
1 m? —Tm+13,form >4 (m—-1)* -1

Note that for finite languages, the state complexity for each of the union, intersection, and
catenation operations is linear, while it is quadratic for infinite regular languages.

In the above table, all results for finite languages are relatively trivial except for L]. We give an
informal proof in the following. Let L1 be accepted by an m-state DFA A; and A is a minimal DFA
accepting Li. It is clear that the length of the longest word accepted by Ay is m — 2. (Note that the
m states include a ‘sink state’.) We consider the following three cases (1) Ay has one final state; (2)
Ay has two final states; or (3) Ay has three or more final states. If (1), then A has m — 1 states. For
(2), the worst case is given by L = {a™ %, a™73}. By (iii) of Lemma 2, the length of the longest

word that is not in L7 is
(m—2)(m—3)—(2m—5)=m* —Tm + 11.

Then A has exactly m? — 7m + 13 states. In case (3), it is easy to see that A cannot have more than

m2 — 7m + 13 states.

For regular languages, we give a more detailed discussion below.

For the union operation, it is clear that mn states are sufficient for the resulting minimal DFA. To
show that mn states are necessary, it suffices to show that there are at least mn distinct equivalence
classes of the relation =p,ur,. Let Ly = (™) and Ly = (a™)*, m,n > 1 and (m,n) = 1. For
positive integers p and ¢, let m, = pmod m, n, = pmod n, m; = ¢ mod m, and n, = ¢ mod n,
0 < my,,mg <m, 0 < n,,n, <n. It turns out that if m, # m, or n, # n,, then ¢” and a? are not
equivalent. However, this is not immediately clear for some cases. For example, let m, = —2 mod m,

n, = —lmod n, my = —1 mod m, and n, = —2mod n. (In order to explain easily, we use the



negative numbers.) Then neither m, = m, nor n, = n,, but m, = n, and n, = m,. So, both
2

aPa?,a%a® € L1 U Ly and aPa,a% € L; U Ly. Tt then appears that a” =r,urL, a’. However, this is not
true because it can be proved that a?a*t™ € L, U Ly, but a?a?t™ ¢ L1 U Ly assuming that m < n.

The state complexity result for the intersection of two regular languages can be similarly proved.

The result for the catenation of two regular languages is more involved. We outline a proof in
the following. A more detailed proof can be found in [27].

We first give a general example of an m-state DFA language and an n-state DFA language,
(m,n) = 1, such that mn states are necessary for any DFA that accepts the catenation of the two
languages. Let L1 = a™ }(a™)* and Ly = a"1(a™)*. Obviously, L; and Ly can be accepted by an
m-state DFA and an n-state DFA, respectively, and L = LiLy = {a' |i=(m — 1)+ (n— 1)+ cm +
dn for some integers ¢,d > 0}. By (i2i) of Lemma 2, for (m,n) = 1, the largest number that cannot
be represented by em 4 dn, ¢,d > 0, is mn — (m +n). Then the largest i such that ' ¢ L is mn — 2.
So, the minimal DFA that accepts L has at least mn states. We show that mn states are sufficient

in the following theorem.

Theorem 1 For any integers m,n > 1, let A and B be an m-state DFA and an n-state DFA,
respectively, over a one-letter alphabet. Then there exists a DFA of at most mn states that accepts

L(A)L(B).

Proof. The cases when m = 1 or n = 1 are trivial. We assume that m,n > 2 in the following. Let
A= (Qa,{a},04,54,F4)and B =(Qp,{a},0B,sB, Fs). By a variation of the subset construction,
we know that L(A)L(B) is accepted by the DFA C' = (Q¢,{a}, ¢, sc, F) where

Qo ={<¢, P> [qeQas& P CQB};

so =< 84,0 > if s4 & Fy and s¢ =< s4,{sp} > if s4 € Fa;

dc(< q, P >,a)=<¢', P >whereq = 64(q,a)and P' = ég(P,a)U{sp}tif ¢ € Fy, P' = ég(P,a)
otherwise;

and Fo ={<q,P > |PﬂFB7£@}.

Now we show that at most mn states of ()¢ are reachable from s¢.

First we assume that in A there is a final state f in the loop of A’s transition diagram. Then
6a(sa,al) = f and d4(f,a') = f for some nonnegative integers t < m and [ < m. Let jy,...,j,,
0<j1<...<]j,<l, beall the integers such that d4(f, aji) € Iy for each 1 <7 < 7. Denote

Py ={sB},

P = {53(83, al), 53(83, al_jl), ceey 53(83, al_jr)},
and for ¢ > 2 we define

P; = ég(Pi_y,d").

Let é¢(sc,a’) =< f,5 >. Denote Sg = S — {sg} and 9; = 63(52'_1,(11) for each ¢ > 1. Then we

have the following state transition sequence of C':

S |—tc <f,POUSo> (1)
L < f,PbU P US> (2)



|—lc« < fPRUPU...UP,_1US,_1> (4)
F. < f,PhbUPU...UP,US, > (5)

Here p I—’é q stands for é¢(p, ak) = q. Denote PyU...UP; by P;, ¢ > 0. Let ¢ be the smallest integer
such that P;_1 = P;. 1t is clear that + < n since B has n states. If : = n, then P,_1 = ¢ and

<f7Pn—1USn—1 >=< fanUSn >=< vaB > .

Therefore, C' needs at most m +{(n — 1) < m+ m(n — 1) = mn states. If i < n, consider the set
S!_y = Si—1 — Pi—1. Note that every state in S/_, is in the loop of the transition diagram of B. If
for each element 7 of 57_,, there exists j, 0 < j < n —1, such that ég(r,a’’) € P;_; (i.e. Py_1), then

the proof is concluded as above. Otherwise, there is an element ro of S/_; and a transition sequence
|_l |_l |_l .
TO B Tl B - B Tn—z

such that, for some j, k < n—iand j < k, r; = rg. (There are at most n—1 states not in P;_.) Then
it is easy to verify that S;_14; = Si—14%. Therefore, < f,P;_14;US;_14; >=< f,Pici4rxUSi—14k >.
Thus, the number of states that are reachable from s¢ is at most t + 14+ l(n—1) < (m—-1)+ 1+
m(n — 1) = mn.

Finally we consider the case when no final states of A are in the loop. Let @4 = {0,...,m — 1}
where s4, = 0 and 6A(0,ai) =g for 0 < ¢ < m—1. We can assume that m — 2 is a final state and
m — 1 loops to itself. Otherwise, L(A) can be accepted by a complete DFA with less than m states.

Consider the following m 4+ n — 1 transition steps of C'
so FE?2<m=-2T>Fc<m—-1,To>Fc<m—1,T1 >

Fo ... Fo<m—1,T, >

Let the state 63(53,(1”’1) be t;, for each ¢ > 0. Note that sg € T and ¢; is in ;. It is clear
that there exist j, & such that 0 < ;7 < & < n and ¢; = t;. Then it is not difficult to see that
<m—1,T; >=<m — 1,1 >. Therefore, at most m 4 n states are necessary for C. (m +n < mn
for m,n >2.) O

For the union, intersection, and catenation operations, we have considered only the cases when
(m,n) = 1. For (m,n) =t > 1, we have not obtained exact formulas for those cases. Note that
neither mn/(m,n) nor lem(m,n) (the least common multiple of m and n) is the solution. For

*

example, a(a®)* and (a”)* are accepted by a 6-state and a 9-state DFA, respectively, but the union
of them needs at least 45 states rather than 6 x 9/3 = 18 states.
We now consider the last operation on the table, i.e., the star operation on infinite regular

languages. We find that the proofs for both directions are interesting.

Theorem 2 The number of states which is sufficient and necessary in the worst case for a DFA to

accept the star of an n-state DFA language, n > 1, over a one-letter alphabet is (n — 1) + 1.



Proof. For n = 2, the necessity is shown by a 2-state DFA which accepts (aa)*. For each n > 2,
the necessary condition can be shown by the DFA A = ({0,...,n—1},{a},6,0,{n — 1}) where
6(iya) = i + 1 mod n for each i, 0 < ¢ < n — 1. The star of L(A) is the language {a' | i =
¢(n — 1)+ dn, for some integers ¢ > 0 and d > 0, or 7 = 0}. By (¢) of Lemma 2, the largest ¢ such
that @' ¢ (L(A))* is (n — 2)n. So, the minimal DFA that accepts (L(A))* has (n — 2)n + 2, i.e.
(n—1)% + 1, states.

The proof for showing that (n — 1)% + 1 states are sufficient is more interesting. Let A =
(Q,{a},é,s, ") be an arbitrary n-state DFA, n > 1 and R = L(A). If s is the only final state of A4,
then R* = R. So, we assume that there is at least one final state f such that f # s. Clearly, R*
(excluding ¢ if s ¢ F') is accepted by the NFA A’ = (Q, {a}, 8, s, F) where §' = 6U{(q,¢,3)| ¢ € F}.
For any X C @, denote by closure(X ) the set X U{q € Q| (p,¢,q) € ¢ for some p € X}. Now we
follow the subset construction approach to build a DFA B = (P,{a},n,{s}, Fp) from A’ to accept
R* such that P C 29, n(X,a) = closure({q € Q | there exists p € X such that (p,a,q) € ¢'}), and
Fp={XeP|XNF+#0orX = {s}}. Let f be the first final state from s in A and ' is the
shortest word such that é(s,a’) = f. Then n({s},a') = {s, f}. Denote by py, the state n({s},a’) in
P, 1> 0, which is a subset of §).

We claim that pg, D pg,_, for all ¢ > 1. It is true for 7 = 1 because n({s},a’) = {s, f}, and also

true for ¢ > 1 since
pr = n({s}, ") = n({s, £},a"0 = n({s}, Y Un({ £}, D

= Pr_y Un({/} a(i_l)t)'

Then one of the following must be true:
(1) pr;, = pr,_, for some ¢ < n —1;
(2) pr,_, = Q-

This is because if (1) is false, py, _, contains at least n states and, therefore, (2) is true. Note that if

n—1
(2) is true, then n(pk,_,,a) = pk,_,. In any of the cases, the number of states of B is no more than
t(n — 1) + 1 which is at most (n — 1)? + 1. O

For the transformation from an n-state NFA to a DFA, it is clear in the case of finite languages
over a one-letter alphabet, at most n states are needed. However, in the case of an infinite regular

language over a one-letter alphabet, the problem is still open.

4 Finite vs. regular languages over an arbitrary alphabet

For the one-letter alphabet case which we have discussed in the previous section, the state complex-
ities for most operations on finite languages are of a lower order than their counterpart for regular
languages. However, this is no longer true in the case when the size of the alphabet is arbitrary.

Although none of the operations on finite languages, except the complementation, can reach the



exact bound for regular languages, most of them have a complexity that is of the same order as the
corresponding operation on regular languages.

We list the state complexity of the basic operations for both finite and regular languages over an
arbitrary alphabet below. All the results for regular languages are given as exact numbers. However,
we use the big “O” notation for most of the results for finite languages due to the fact that either
the formulas we have obtained are acutely nonintuitive or we do not have an exact result, yet. More
detailed explanations follow the table.

We assume that Ly and Ly are accepted by an m-state DFA Ay = (Q1,%, 61,51, F1) and an
n-state DFA Ay = (Q2, X, 62, 52, F2), respectively, and m,n > 1. We use ¢ to denote the number of
final states in Aj.

Finite Regular
LU Ly O(mn) mn
LinLy  O(mn) mn
-1 m m
LL, O(mn!=t + nt) (2m — 1)2nt
Lr 0(2/%), for |X| = 2 2
L 2m=3 4 2m=4 for m >4 2m~l 4 om—2

For the union and the intersection of finite languages, it was expected that their state com-
plexities would be linear, more specifically O(m + n), but it turns out that both of them are of the
order of mn although neither of them can reach the exact bound mn.

It is easy to show that mn states are sufficient for both union and intersection by the following
simple argument. We can construct a DFA A = (Q, Y, 6, s, F') which is the cross-product of 4
and Aj, ie., Q@ = Q1 X Q2, § = 61 X 63 that is §((q1,92),¢) = (6(qr,a),d2(q2,a)), s = (s1,52).
For the union operation, F' = {(q1,¢2) | 1 € Fi or gz € Fy} and for the intersection operation,
F={(qg1,0)| ¢ € Fy and ¢ € F5}.

Note that the pairs of the form (s1,¢2) where g2 # s3 and (¢1,s2) where 1 # s; are never
reached from (sq,s2), and therefore, are useless. So, mn — (m + n — 2) states are sufficient for
both the union and intersection of two finite languages accepted by an m-state and an n-state DFA,
respectively. However, this is a very rough upper bound. Much tighter upper bounds for the union
and intersection of finite languages are given in [4], which unfortunately are in a very complicated
and highly incomprehensible form. Thus, we will not quote them in this paper.

It is more interesting to show that the state complexities of those two operations are indeed of the
order of mn but not lower. The following examples were originally given by Shallit [23]. Automaton-
based examples are given in [4], which give better lower bounds than the examples below. We choose
to present the following examples due to their clarity and intuitiveness.

For the intersection of two finite languages, consider the following example. Let ¥ = {a,b} and

Ly = {we S | #a(w)+ #s(w) = 20},



Ly ={we X" | #4(w) 4+ 2#(w) = 3n}.

Clearly, Ly is accepted by a DFA with 2n + 2 states and Ly by a DFA with 3n 4+ 2 states. The
intersection L = L1 N Ly is

{we X" [ #u(w) = #5(w) = n}

One can prove that any DFA accepting L needs at least n? states by the Myhill-Nerode Theorem [9].
For the union of two finite languages, the example is slightly more complicated. Let ¥ = {a,b}

and

Ly = {we 5 | #(w) < 3t and #a(w) + #a(w) £ 21},
Ly = {w € X7 | #4(w) + 2¢#4(w) < 3t}.

It is clear that Ly U Lo includes all words in * of length less than or equal to 3t except those words
w such that #(w) = 2t and #,(w) > t. One can prove that any DFA accepting L1 U Ly needs more
than t? states by checking the number of the equivalence classes of =I,0UL,-

We now consider the catenation operation. Notice that for the finite language case, if the
number of final states in Ay is a constant, then the state complexity of catenation is a polynomial in
terms of m and n. In particular, if Ay has only one final state, then the state complexity is linear,
i.e., m 4+ n. In contrast, for infinite regular languages, there are examples in which Ay has only one
final state but any DFA accepting the catenation of the two languages needs at least (2m — 1)27~!
states [27, 26]. This is one of a few cases in which the state complexities for finite and infinite regular
languages, respectively, are in different orders.

We now give the proof for the finite language case. For the general case for the catenation of
regular languages, the reader may refer to [27] or [26].

Without loss of generality, we assume that all the DFA we are considering are reduced and
ordered. A DFA A = (Q,%,6,0,F) with @ = {0,1,...,n} is called an ordered DFA if, for any
P, q € @, the condition §(p,a) = ¢ implies that p < g.

For convenience, we introduce the following notation:

[2)-205)

Theorem 3 Let A; = (Q;,X,6;,0, 1), t = 1,2, be two DFA accepting finite languages L;, 1 = 1,2,
respectively, and #Q1 = m, #Q2 =n, #X =k, and #F, = t. There existsa DFA A = (Q,%,0,s, F)
such that L(A) = L(A1)L(A3) and

m=2 ,f n—2 n—2
sas om0 ) (1)
. 1 n—2
-I-mm{k ,( <1 )} (*)

10



Proof. The DFA A is constructed in two steps. First, an NFA A’ is constructed from A; and A, by
adding a A-transition from each final state in F; to the starting state 0 of Ay. Then, we construct a
DFA A from the NFA A’ by the standard subset construction. Again, we assume that A is reduced
and ordered.

It is clear that we can view each ¢ € Q as a pair (g1, P2), where ¢; € @1 and P> C Q2. The
starting state of Ais s = (0,0)if 0 ¢ F; and s = (0,{0})if 0 € Fy. Let us consider all states ¢ € Q)
such that ¢ = (7, P) for a particular state ¢ € @1 — {m — 1} and some set P C Q3. Since A; is
ordered and acyclic, the number of such states in @) is restricted by the following three bounds: (1)
k', (2) ( n<_i2 ), and (3) ( <nt_ 21 ) We explain these bounds below informally.

We have (1) as a bound since all states of the form ¢ = (7, P) are at a level < ¢, which have at
most k'~! predecessors. By saying that a state p is at level i we mean that the length of the longest
path from the starting state to ¢ is ¢.

We now consider (2). Notice that if ¢,¢" € @ such that é(¢,a) = ¢, ¢ = (¢, P») and ¢ = (¢}, P3),
then é1(q1,a) = ¢ and Pi = {83(p,a) | p € P} if ¢f & Fy and P = {0} U {é2(p,a) | p € Po} if
gy € Fi. So, # P} > #P, is possible only when ¢ € Fy. Therefore, for ¢ = (i, P), #P < i¢if i ¢ I
and #P <i+1if7 € Fi. In both cases, the maximum number of distinct sets P is ( n<_i2 ) . The
number n — 2 comes from the exclusion of the sink state n — 1 and starting state 0 of AQ_. Note that,
for a fixed 1, either 0 € P for all (¢, P) € @ or 0 is not in any set P such that (¢, P) € Q.

(3) is a bound since for each state i € ()1 — {m — 1}, there are at most ¢t — 1 final states on the
path from the starting state to ¢ (not including 7).

For the second term of (%), it suffices to explain that for each (m—1, P), P C Q, #P is bounded
by the total number of final states in F;. O

Corollary 1 Let A; = (Q;,%,6;,0,F;), i = 1,2, be two DFA accepting finite languages L;, i = 1,2,
respectively, and #0Q1 = m, #Qo = n, and #F, = t, where t > 0 is a constant. Then there exists a
DFA A =(Q,%,8,8,F) of O(mn'~" + n') states such that L(A) = L(A1)L(Asz).

It has been shown in [3] that the bound given in Theorem 3 can be reached in the case || = 2.
About the state complexity of the reversal of an m-state DFA language, one may easily have
a misconception. Many thought, without any hesitation, that it should be linear (in terms of m),
especially in the case of finite languages. In fact, it is not even polynomial for both finite and infinite
regular languages. We break the misconception by giving two examples in the following: one for
finite languages and the other for infinite regular languages. Note that a nontrivial proof for a tight

upper bound on the state complexity of the reversal of finite languages can be found in [3].
Example 1 Let m = 2n 4 2 and L = {a,b}"a{a,b}<", where {a,b}<" denotes

AU {a,b}U{a,b}*U---U{a,b}"™
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It is clear that I is a finite language accepted by an m-state DFA. One can prove that any DFA

accepting LT needs at least 2" states.

Example 2 An n-state DFA that accepts an infinite regular language is shown in Figure 1. A proof

showing that any DFA accepting the reversal of this language requires at least 2" states can found
in [27].

b, c

Figure 1: An n-state DFA such that L(A)® requires 2" states

For the star operation, the difference between the state complexity for finite and infinite regular
languages is that the latter is 4 times the former. Both bounds have been shown to be tight [3, 27].

Here we only give two examples to demonstrate that the bound given on the table can be reached.

Example 3 The n-state DFA A shown in Figure 2 accepts a finite language. It is shown in [3] that
any DFA accepting L(A)* needs at least 2772 4 27* states (assuming that n is even).

ab,.c

b

Figure 2: DFA A of n states such that L(A)* needs 2772 4 2774 states

Example 4 Let L be the language accepted by the DFA shown in Figure 3. It is shown in [26] that
any DFA accepting L* requires at least 27! 4 27~2 states.

12



a
a'b

Figure 3: An n-state DFA A,,: The language (L(A,))* requires 2"~ 4 2"~% states
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