
A computationally novel way to place new markers

onto genetic maps

(Extended Abstract)

Daniel G. Brown∗ Todd J. Vision†

September 30, 1999

Abstract

We study the problem of extending genetic linkage maps to include a large number of new
markers. We note that this problem should be addressed by placing new markers into the
breakpoint-induced bins of the mapping population, rather than by attempting to infer marker
order and distance from recombination fractions among closely-placed markers, which are the
approaches of current software. Based on this observation, we have constructed a new approach
for the placement of new markers onto framework maps which is extremely fast and highly
accurate, even when executed on small-sized mapping samples. Further, our approach provides
an estimate of the error of the placements for new markers, so investigators will know how
precise a new marker’s placement is expected to be. Unlike existing methods, our methods
scale well as the number of new markers increases. We have tested these methods using both
simulations and real biological data, and verified that both the placement of new markers and
the estimation of the errors are precise.
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1 Introduction

Genetic linkage maps are a powerful means of organizing information about the genetics of complex
organisms. They provide a scaffolding for assembly of the fragments of whole-genome sequencing
projects [14], and allow the isolation of genetic factors related to traits of biological, medical and
economic importance [2, 16]. In genetic linkage mapping, the relative orders and positions of
genomic landmarks called markers are inferred by use of a sample of individuals called a mapping

population. This work discusses two proposed changes in the design of these experiments. The first,
an experimental change, is to do most experimentation on a well-selected sample of the mapping
population. The second, an analytic change, is a new method for placing markers onto the map.

For most of this century, laboratory technology was sufficiently crude that n different mapping
populations were used to estimate marker order and recombination frequencies for n different non
or partially-overlapping sets of markers. However, recent decades have seen tremendous advances
in the technology for detecting subtle differences between alleles [3]. This has allowed a shift toward
large-scale, very expensive experiments in which hundreds to thousands of markers are genotyped
in a single mapping population [19]. In model organisms and organisms of commercial importance,
the first-generation of whole-genome maps are currently being greatly embellished by the inclusion
of expressed genes as markers. Such maps have the potential to be far more marker-dense than their
predecessors, since many organisms of interest, such as angiosperms and mammals, are thought to
possess tens to hundreds of thousands of expressed genes.

In what follows, we suggest an alternative approach to mapping such large numbers of additional
markers in the usual case where a high-confidence, but relatively sparse, linkage map already exists.
Our sampling proposal allows researchers to either construct higher-quality maps with greater
precision than before, to map more markers onto a map, or to save money and time while still
obtaining a high-quality map. Our mapping methods are much faster than existing ones, and
attempt to solve a much more appropriate problem in placing new markers. We have tested our
ideas on simulated and real data, and the results support our proposals.

Structure of the paper Section 2 discusses current methods used for linkage mapping. Section
3 describes our proposed changes to this design, summarizing our work on choosing population
samples from mapping populations, and discussing our new approach to the location of new mark-
ers. In section 4, we give details of this new marker location method. We give results from our
experiments on simulated and real populations in section 5. In section 6, we offer our conclusions.

2 Current approaches to these experiments

Basic background A simple example of a mapping population is a collection of second generation
(or F2) progeny derived by inter-mating the first generation (or F1) progeny from two inbred,
genetically homogenous, parental lines (See Figure 1). Such F2 progeny possess two different copies
of each chromosome. As a result of recombination in the gametes of the F1, each F2 chromosome
is a mosaic of segments descended from the two parental lines. The mechanisms for recombination
need not concern us, but these events are rare.

Linkage maps are measured in units called centiMorgans, or cM. In 1 cM, we expect to see a
recombination in 1% of the gametes in a generation. To a first approximation, disjoint regions of
the genome recombine independently, so the Haldane model[6] assumes recombinations are induced
by a Poisson process, where one recombination is expected every 100 cM. In linkage mapping, we
seek the position of new markers, measured in cM, on the genome.
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Figure 1: A mapping population derived from an F2 cross. Recombination in the gametes of
the F1 results in mosaic chromosomes in the F2. Two “composite” chromosomes, one for an
entire population and one for a sample, are shown. Each has a boundary at each position where
a recombination event occurs in any member of the mapping population. Bins are the intervals
between these boundaries, or breakpoints, and new markers cannot be placed more precisely than to
the bin that contains them. A different sample of the population will result in a different composite
chromosome and thus a different set of boundaries and bins. If all members contribute at least one
breakpoint, removing of any member will necessarily result in fewer bins. Nonetheless, it is possible
to choose good samples with good bin distribution.

The different copies of each marker in the two parental genomes are referred to as alleles.
Assuming that there are differences between the alleles, various laboratory techniques are available
that allow one to determine the genotype, or set of alleles, carried by each individual in the mapping
population for a given marker. Since recombination is rare, if two markers are physically close on
a chromosome, they will usually have the same genotype. Thus, relative orders and map distances
among a set of markers can be inferred from the patterns of co-inheritance in a mapping population.

Current methods The methods for determining the order and position of markers on a large
scale are derived from those used in small-scale experiments. First, markers are grouped into
linkage groups. Then the markers in each linkage group are approximately ordered and the distance
between adjacent markers is etimated. The first step is to assign markers to linkage groups from
contiguous tracts of the genome. Ideally, each linkage group corresponds to one chromosome and
each chromosome corresponds to only one linkage group. Assignment is performed by finding sets of
markers, each of whose members show strong evidence of being linked with at least one other marker
in the set. The most popular criterion for linkage is a log likelihood ratio known as LOD score[12].
This is derived from the likelihood that the two markers are linked relative to the likelihood that
the two markers are unlinked, given the observed pairwise recombination fraction (RF), where RF
is the proportion of chromosomes that do not carry alleles from the same parental line for both
markers. In practice, RF values are first converted to additive, or nearly additive, map distances,
which are used for all subsequent calculations. This grouping step is computationally rapid.

Subsequent to linkage group assignment, the goals are to obtain the optimal linear ordering
of the markers for each linkage group and to estimate the map distances between all adjacent
markers, given the order. Several objective functions have been used for the problem of finding
an optimal order for a linkage group [10]. Two of the most commonly used algorithms combine
ordering and distance estimation by either searching for an order that provides a good least squares
fit to the matrix of pairwise map distances [7], or that that maximizes the likelihood of observing
the mapping population, given the best fit map distances for a given order [13]. These approaches
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are implemented in the popular software packages JoinMap [15] and MapMaker [9], respectively.
Most recent computational advances in linkage mapping have been improvements in the speed

and efficiency of optimization over the space of possible orders and distances. This has been ac-
complished by means of algorithms such as simulated annealing [11] and expectation-maximization
[4]. We note that similar problems are encountered and methods employed in the construction of
so-called radiation-hybrid maps [18]. Although we focus on recombinational linkage maps here for
ease of exposition, our methods are adaptable to other flavors of linkage maps.

An important technical feature of the current approach to placing new markers on a map is the
continuous nature of the parameter being estimated: map distance between adjacent markers. A
problem with this approach arises as maps become ever more densely populated with markers. As
distance between adjacent markers becomes very small, the map positions of many markers become
indistinguishable, since they localize to the same recombination-induced bin. Error in estimating
the distance between adjacent markers, relative to the actual distance, becomes greatly inflated.

Another problem is that the multi-locus likelihood function and the goodness-of-fit test lack high
power to discriminate between permutations of the ordering of very close markers. The likelihood
curve is fairly flat for low map distances, so it is difficult to find a preferred order. Worse, the time
required by these algorithms scales very poorly with the number of new markers to be mapped.
Running time is linear for distance estimation given a fixed order[8], but finding the optimal marker
order in practice very time consuming. Thus, while current methods are effective at constructing
sparse whole-genome maps, they are ill-suited to mapping large numbers of new markers.

3 Our new proposals

We suggest two major changes to the structure of these high-density linkage mapping experiments.
First, we recommend changes in the populations upon which markers are genotyped. In recent work
[17, 1], we advise producing a framework map with a large, randomly chosen mapping population,
using existing methods for joining markers into linkage groups and to order and locate the framework
markers. Then, we recommend choosing a sample from the population after this framework map is
produced, and performing further genotyping only on that sample of the population. Our previous
work, briefly summarized below, discusses the optimization problems encountered in choosing a
good sample upon which to continue experimentation. Our second structural change, which is
largely the subject of this paper, is that new markers should be mapped into breakpoint-induced
bins, and that finding the composite genotypes of these bins is more important than finding the
order among new markers. This is briefly discussed below, and in detail in the following section.

Sample selection After producing a framework map, it is possible to approximately locate a
large fraction of the breakpoints. For example, if we consider an F2 recombinant inbred population
with framework markers every 10 cM, 90% of breakpoints can be identified because a popula-
tion member has different genotypes at consecutive framework markers. Based on these perceived
breakpoints, we can also approximately characterize the distribution of bin lengths in the popula-
tion, or in any sample from it. Under the Haldane distance model, recombinations are uniformly
distributed between their flanking framework markers. With this in mind, we can compute the
expected distribution of bin length for a subset of the population. We expect that the usefulness
of a sample for mapping should be a function of its bin lengths and use the inferred breakpoints to
choose a good mapping sample, upon which we propose genotyping many more markers.

In our earlier papers, we considered three possible optimization approaches: maximizing the
number of bins, minimizing the length of the longest bin, and minimizing the sum of the squares of
the bin lengths. This last function may seem odd, but is equivalent to minimizing the expectation
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of the length of the bin containing a marker chosen uniformly from the entire genome. If, for
example, there are bins of length 3, 5 and 2 units, then the length of the bin containing a uniformly
chosen marker is 3

10
× 3 + 5

10
× 5 + 2

10
× 2 = 1

10
(32 + 52 + 22) = 3.8 units.

Optimizing the first of these is trivial–we simply choose the sample with the most visible break-
points. But it may also be undesirable, since there may be many long regions of the genome with no
breakpoints at all in them. The other two objective functions are harder to optimize (indeed, even
if we know the exact sites of all breakpoints, they are still NP-hard to approximately optimize to
within any constant factor). We have designed good heuristics for them using integer programming,
linear programming with randomized rounding, and simpler randomized greedy methods. For a
variety of different experimental populations, we have found population samples with significantly
better map resolution, as measured by both expected bin length (sum of squares of bin lengths)
and by maximum bin length, than the samples containing the most visible breakpoints or random
samples. We conjecture that the most meaningful of these objective functions for mapping is the
last, that of expected bin length, since it takes into account data from the entire genome. We have
thus optimized this function when computing new samples for this study.

Mapping new markers with selected samples Several difficulties would present themselves if
an investigator used existing mapping software to try to map thousands of new markers, genotyped
on a selected sample, onto an existing framework map. First, the software cannot handle the
computational overhead of trying to compute marker placements for so many marker orders, which
yields unacceptable running times. Second, existing algorithms for building linkage maps infer
genetic distance based on the RF of the population members. If we restricted the population to
only the selected (and non-random) samples, this will result in significant distortion of the distances.
These programs are not ideally suited to this scenario, though one could determine recombination
fractions as a fraction of the known recombinations, to scale the mapping results.

A more serious objection, though, is that they do not attempt to solve the correct problem.
The proper goal of high-density linkage mapping should be to assign markers to one of the finite
number of bins induced by a given mapping population. No further resolution is possible, and
estimates of low RF are not practically useful. A different method is needed.

We have designed a new approach to locate new markers, which first tries to find the most likely
framework markers between which a new marker falls, then determines the composite genotype of
the bins induced by the mapping sample, and finally assigns markers to the bins which match them.
Our methods attempt to correct genotyping errors by looking for patterns which are not likely to be
found in correct data. For simplicity, in the following description, we assume that the experimental
population is a doubled haploid, with 50% of the genome of a population member expected to be
derived from one of the lines’ parents, and 50% from the other. We note that our methods extend
to other types of populations (such as F2’s), and can also be used with non-codominant markers,
in a largely straightforward extension, again under the Haldane model.

4 Details of the mapping algorithm

Notation and problem specification First, we specify some notation. Let Fi,j be the genotype
of population member i on framework marker fj, and let Ni,j be the genotype of the population
member i, on new marker nj, and that all entries of these matrices are A, B, or ? (indicating that
either A or B is possible, arising from an omitted genotype). For simplicity, let Fj be the entire
sample genotype at framework marker fj, and Nj be the same for new marker nj. Let Ij be the
genome interval between framework marker fj and framework marker fj+1. Let φj be the position
of framework marker fj on the genome. While this is unknown, we assume that its position was
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Figure 2: Assigning new markers to framework intervals and ordering bins. If a marker with a given
genotype falls into a given framework interval, it may require unseen double breakpoint events. A
new marker also constrains the order of breakpoint events between the framework markers. Here,
the new genotype (B,B,A,A,A) requires a double breakpoint in chromosome 1, and that the
first breakpoint in chromosome 1 and the breakpoint in chromosome 2 precede the breakpoints in
chromosome 3 and 4. Otherwise, a bin with this genotype will not occur. The second new genotype
of (B,B,A,B,A) lets us infer that the third breakpoint in this interval is in chromosome 4.

determined with a very large population, and is highly accurate. Let νj be the actual position of
new marker nj on the genome, which is unknown. We assume that genetic distance can be modeled
by the Haldane distance model, where recombinations are generated by a Poisson process. Also, for
simplicity, we assume that our framework markers include the telomeres of all chromosomes–that is,
the entire genome is contained in the intervals between the framework markers; again, our methods
can be applied when this is false. Finally, we assume that no framework intervals contain more
than two breakpoints for any given population member. In real populations, triple recombinations
are unlikely because of the well-documented phenomenon of interference [10].

Our problem is the following: given the framework genotype matrix F , the new marker genotype
matrix N (and the possibility of noise in either of these matrices), and the framework distances
φj , we are to identify the position of the bin containing each new marker nj, and to estimate its
position νj, based on the position of its bin. Further, if possible, we are to identify the composite
genotype vector of as many of the genome’s bins as possible. In our procedure, we first assign
markers to framework intervals, then assign genotypes to bins, and finally assign markers to their
correct bin. We also must cope with both noise and omissions in the genotype data.

Placing markers into framework intervals We first assign markers to the inter-framework
intervals containing them. We do this on a marker-by-marker basis; in general, this process is quite
accurate and very fast. Given a new marker nj, for every inter-framework marker interval Ik, we
compute the expected length lj,k of the region inside Ik which has genotype Nj , and scale this
vector of lengths to a probability vector to determine the probability that the marker is in a given
framework interval. Note that this is often infinitesimally small.

The process is as follows: First, we compute the number of hidden double breakpoints which
need to have occurred for a genotype to be possible in interval Ik. These are lines i where both
Fi,k and Fi,k+1 differ from Ni,j, meaning that if marker nj is in interval Ik, a breakpoint must
occur in interval Ik on line i both before nj’s bin and after it. Next, of the lines i which have
a visible breakpoint in Ik, since Fi,k 6= Fi,k+1, we determine those lines for which the breakpoint
must occur after nj (since Ni,j = Fi,k) and those for which the breakpoint occurs before nj (since
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Ni,j = Fi,k+1). This divides the population sample into four sets: those with no breakpoint, those
with a required double breakpoint, those with a single breakpoint required before the new marker,
and those with a single breakpoint required after the new marker. Suppose there are z, d, l, and r
of these, respectively. This placement requires l + r + 2d breakpoints in Ik (See Figure 2).

We can now approximate lj,k. It is the expected length of a bin ( |Ik|
l+r+2d+1

) in the interval, times
the probability that the required double breakpoints occurred (easily shown by reasoning about
Poisson processes to be approximately (1

2
|Ik|

2)d for small values of |Ik|), times the probability that,
given these double breakpoints, the needed bin genotype actually occurs. If a bin with genotype
Nj occurred, then all of the breaks in l, and one break from each line in d must occur before the
breaks in r and the second break in each line of d. Assuming all breaks in Ik are independent, the
probability of this combinatorial event is 2d/

(

2d+l+r
d+l

)

, giving this formula after simplification:

lj,k =
|Ik|

2d+1(d + l)!(d + r)!

(2d + l + r + 1)!
.

We scale these values to a probability vector. With this procedure, for any new marker genotype,
we can infer its framework interval. The vast majority of new markers whose genotype is not the
same as a framework marker are mapped to the correct interval with very high confidence (p > .99).

Determining bin genotypes If the number of new markers to place is small, this first step may
be all that is possible. However, if the number of new markers is large (perhaps, at least as large
as the number of bins in the genome), it is likely that we will be able to identify bin genotypes and
place new markers directly into their correct bin.

Our goal in identifying bin genotypes is to order the breakpoints in each inter-framework inter-
val; each new breakpoint induces a new bin. We examine the markers nk that have been placed
into each inter-framework interval Ij with probability pk > .5. As noted above, each new marker
nk, placed into Ij, implies a constraint on the order of the breakpoints in the interval: a set U of
breakpoints must precede another set V of the breakpoints in Ij. For each pair (u, v) in U × V ,
we increase the votes that u precedes v by pk. At the end of the procedure, we infer the order
of each pair of breakpoints by which of the two orders has more votes, and construct an order of
all of the breakpoints which is compatible with this pairwise order. From this ordering, we can
infer the genotype vector of each bin contained within the interval and their relative order. As the
number of markers correctly placed in Ij gets larger, the heuristic order obtained by this proce-
dure will converge to the right bin order, even with randomly placed noise. We never experienced
contradictory orders in our experiments.

To include lines with two breakpoints in Ij in this process, we must first order the bins showing
the double breakpoint, and then place the bins on either side of them. The situation theoretically
could become potentially complicated, but multiple double breakpoints are rare, and tend to be easy
to order in practice. For simplicity, we discuss only the case where all lines have single breakpoints.

After this bin genotype assignment step, we determine the expected position of a marker uni-
formly placed in each bin, the approximate length of each bin, and the expectation of the square
of the position of a marker placed in each bin. The expected length of any bin entirely enclosed in
an interval Ij to which we have assigned bj breakpoints is |Ij |/(bj + 1). The expected position of a
marker in the kth such bin is φj + |Ij|(k + 1/2)/(bj + 1), assuming the breakpoints are uniformly
placed inside the interval and the new marker is uniformly placed in the bin. Given that the position
of the left and right endpoints of a bin (under our Poisson assumption) inside their flanking interval
are distrbuted as beta variables, we can also compute the expectation of the square of the position
of a marker placed in each bin, which will allow us to estimate variance of marker placement. We
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can find the expected length, expected position, and expected squared position of markers found
in bins which include one or more framework markers as well.

Assigning new markers to bins With noise-free data, especially with samples of moderate
size, the majority of markers will have a bin that matches their genotype (as was our experience in
simulations). The other markers are either noisy, or an error has occurred in assigning genotypes
to bins (or, possibly, multiple bins have the same genotype). For markers that exactly match only
one bin genotype, we assign them to that bin with probability 1.

We assign the other markers to bins based on the expected lengths of the bins and the number of
marker genotypes we must change to make a marker’s genotype compatible with a bin’s genotype.
We assume that these switches, possibily caused by genotyping errors, occur with a user-specified
probability pe (pe = 0.01 is a standard value). We assign a new marker to a bin with measure equal
to the expected length of the bin, multiplied by pe times the number of required changes, and then
scale this measure to a probability vector which estimates the probability that a marker is in a bin.

In most cases, these bin placement probability values are very strongly focused on a single
bin. In some very rare cases, however, two distant parts of the genome are both suggested to be
possible. This only happened in our experiments (even under noisy conditions) for samples of size
20. Markers with two perturbed genotypes may be in bins whose genotype has been mis-identified
(not surprising, since it may have had no other new marker in it). Such a marker may need as
many as four or five changes to make it compatible with an inferred bin genotype for a place near
its actual site on the genome. In the small space of 220 ≈ 106 bin genotype vectors on 20-tuples,
this perturbed new marker genotype may also be close to the genotype of a bin a far distance away
on the genome. In our simulations, these failures were easy to identify; the marker was placed with
probability greater than 0.1 in two distant bins. Should this happen in real experiments, we would
suggest that the marker be re-genotyped. This serious error never occured in mapping samples
of size 30 or higher. It would also be much less common in a denser framework, in which hidden
double breakpoints are much less common and bin genotype inference is more precise.

Far more commonly, a marker is mapped either to one bin with very high probability, placed
entirely into nearby bins. Here, we compute the expectation of the marker’s placement, given the
expected placement of a marker in each bin, computed in the previous step, and the expectation
of the new marker’s placement squared. These expectations can be used to estimate the variance
in the new marker placement immediately, with no additional statistical procedures.

Noise and missing data Many complications to this approach arise when data may have noise
or genotypes are unavailable for certain markers on certain population members. We have added
several changes to this basic procedure to deal with these errors and omissions. First, if new marker
genotypes are assumed to be in error with probability pe, and a new marker has a genotype that
disagrees with both of the flanking markers in a framework interval, this could be caused by either
a double breakpoint, or by a genotyping error (or by the marker not actually belonging in that
interval, of course). In most dense frameworks, genotyping error is much more common, so we
raise the probability of seeing such an event accordingly. Similarly, we ignore population members
which are omitted for a new marker when doing mapping, and assume the fewest needed double
breakpoints when adding a new marker to a framework interval where one of the framework markers
is untyped for a particular population member.

After we have assigned markers to framework intervals, we look for framework markers for which
all of the markers assigned to the adjacent intervals on either side all have incompatible genotype
for a particular population member; this suggests that either the framework marker is the only
member of a double recombinant bin (which is possible, but unlikely), or that a genotyping error
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has occured. We flag these framework genotype matrix entries as likely to be wrong, change them
to omissions, and run the first step again.

To correct new genotype errors, we try to do much the same process: we look for markers
which have been placed into a bin with high probability (p > .9), which are the only witnesses of
a double breakpoint in their flanking interval, mark them as likely to be in error, and redetermine
a placement for the marker. While single markers showing a double recombination are possibly
correct, this can be validated by experimental re-genotyping, and by forcing the marker to be placed
with unchanged genotype. Similarly, if a marker with missing genotype is placed into a framework
interval in which both flanking markers and all new markers placed into the interval are of one
genotype, we suggest that it is likely that the new marker is also of that genotype.

When we simulated a 1% genotyping error rate, these error-correction procedures were able
to detect over half of the errors on mapping samples of size 20; in larger samples, they caught
significantly more. We do not suspect, however, that these methods would work well for data with
systematic errors and omissions, or with a high frequency of such difficulties.

5 Experimental results

The populations: real and simulated In our previous paper, we examined data from ten
experimental populations, adapting existing linkage mapping data to our methods. To test the
ideas in this paper, we need a large mapping population, typed on a large number of markers,
with a small, scattered number of cells in the genotype matrix of unknown genotype. The one
population from our original ten meeting all of our needs is a 73-member doubled haploid barley
population, derived from a cross between IGRI and FRANKA, genotyped on over 470 markers [5].
We removed three population members genotyped on fewer than half of the markers.

Our other experiments were performed on ten simulated populations of size 100. We divided
their 1000 cM genome into 200 cM and 800 cM linkage groups, to allow comparison with the largest
barley linkage group, which is 200 cM long. We generated breakpoints via independent Poisson
processes. Then, we simulated a framework map, with one framework marker placed every 15 cM
and the genotypes of 500 new markers, placed uniformly at random in the 200 cM linkage group.

Experiments on simulated data In our experiments on simulated data, for each of the ten
simulated populations, we computed eight samples of sizes {20, 30, . . . , 90}, minimizing expected
bin length, and eight samples of the sampe sizes maximizing the number of visible breakpoints.
We computed ten random samples for each sample size. We mapped the 500 new markers onto the
population for all of these 960 samples, and also for the ten full populations.

We compared the results from these 970 experiments, which took 4 hours on a Sun Ultra
Sparc 20 workstation, against analysis of the same mapping populations using MapMaker 3.0,
a standard genetic linkage mapping package[9]. We restricted analysis to only twenty of the new
markers (in five clusters of four nearby markers), since MapMaker’s running time would be far
too long for the full set. In our tests, we used MapMaker’s place and together commands, with
the multipoint linkage criteria set to values which are very liberal in assigning markers to unique
framework intervals. In these tests, we also used the Haldane mapping function.

Our experiments test four hypotheses. The first is that our algorithms would map the new
markers more accurately as the sample size increased, but that even for well-chosen small samples,
we would still be able to map with precision. The second is that MapMaker would have more
difficulty with small samples, but that the two procedures would approach each other in quality
as the sample size increased. The third is that the function which we minimize when picking
samples, expected bin length, is closely related to what we really want to optimize, sample mapping
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performance. The fourth is that the estimate of new marker placement error is accurate. That
is, the distance from a marker’s actual placement to the algorithm’s placement is asymptotically
normal, with mean 0 and standard deviation equal to our estimate.

Figure 3 shows the improved performance of our algorithms, as compared to MapMaker,
as sample size increases, and the improved performance of our optimized samples, as compared to
random samples or samples chosen to maximize the number of bins. The measure of performance is
the root-mean-squared distance from the algorithm’s placement of a marker to the actual placement.
In MapMaker, we scaled the data so that the inter-framework intervals were the correct 15 cM,
even when MapMaker shrank or expanded the region, to make a fair test. We do not include
the markers which were not placed by the algorithms in these plots; this is much higher under
MapMaker than under our methods. The optimized samples are much better for mapping than
the random ones, and a Wilcoxon test on the rms error results for the most-recombinant samples
and the optimized samples shows that the optimized samples perform better with high confidence
(p = 0.017). The difference is moderate, especially for larger-sized samples.

Figure 4 shows that the performance of a sample for mapping is highly correlated with the
measure which we attempt to optimize, expected bin length. We also note an odd difference
between the three types of samples–the slope of the regression line is lower for random samples
than for selected samples. That is, if we decrease expected bin length by 1 cM, mean absolute
error goes down by 0.45 cM for the most recombinant samples, and by 0.46 cM for the optimized
samples, but by only 0.38 cM for random samples. We do not know the source of this deviation.

Figure 5 shows the high quality of our error estimate. We took the positions estimated using the
full population to be correct, and calculated the deviations from these positions for the same markers
in the sample-derived maps. For an ideal error estimate, the ratio of deviation to estimated error
would be normally distributed with mean zero and variance one. In fact, the ratio is distributed
approximately normally, with mean 0.01 and standard deviation 1.10. The distribution has heavy
tails, indicating that infrequently, the procedure underestimates the likely error.

We also performed experiments to see how well our algorithms handled noisy data, by flipping
a random 1% of the genotype bits in each simulated marker population and running the 970
experiments again. Our procedures experienced a 5% increase in root-mean-squared error under
this condition for small samples, and the error estimate was as accurate as before. A slightly
elevated number of markers were not placed with high confidence under this procedure for samples
of size 20. For samples of size 30 or higher, performance was comparable to the previous tests.

Experiments for the barley data In our barley experiments, we mapped the markers from
one 200 cM linkage group of the barley data, using both our methods and MapMaker. We chose
12 of the markers, roughly spaced at 15 cM intervals, to serve as a framework, and mapped the
remaining markers onto that framework. We note that while this experiment is not what we desired
(mapping a huge number of well-typed markers onto a very dense framework), these results give a
sense of the quality of our methods. We mapped all 98 markers in the linkage group with the bin
mapping procedure, while with MapMaker, we picked 26 markers at different locations along the
linkage group and ordered them. We mapped the markers using the data from the whole population
of 70 plants, and from an optimized subset of 25 plants, using both mapping procedures.

Our procedures were much more successful at mapping than MapMaker on small populations.
The running time of five seconds for our algorithms on these data is also noteworthy. The root
mean squared distance a marker moved between a population of size 25 and the full population
was 2.2 cM for our methods, and 7.4 cM for MapMaker. Our methods were again effective at
estimating their error. While our error estimate is not normally distributed, it is still of high
quality–the mean error is 0.19 times our estimate, and the standard deviation of this error is 0.85
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times our estimate. Figure 6 shows the position of markers under the sample against their position
under the full population, and the width of a 2-standard-deviation band around each new marker.

For MapMaker, to supply an error estimation, we used the nonparametric statistical method
of jackknifing. To approximate the error of an estimate which depends on a sample S of size k, we
compute the sample standard deviation among the k estimates obtained by the same procedure,
performed on the sets S − {i} for each i in S. The claim is that if removing any member from
the set has minimal effect on the estimate, it is likely to be precise, while if removing members of
the set has large impact, the estimate is likely to be imprecise. With jackknifing, we computed the
approximate sample standard deviation for the placement of the markers, using MapMaker. For
each new marker, we scaled the framework interval containing it to the same size as it was in the full
population framework map, so that localized size changes of the perceived genome length were not
responsible for mapping error. Even with this assistance, the jackknife standard deviation was very
poor as a predictor of mapping error. While it is possible that other placement error estimation
procedures would be more successful, our simple estimator, which is instantly computed, is of
very high quality. A plot comparable to Figure 6 is shown in Figure 7; for each marker, we show
two-standard deviation error bars around its placement under the 25-member sample.

While our results are preliminary, they show that mapping accuracy and error estimation are
better under our much faster methods than under MapMaker, at least as implemented.

6 Conclusions

We have validated two proposed changes in approach to the problem of adding large numbers of
new markers to framework genetic maps. The first of these, discussed in our recent papers [1, 17],
is to perform most genotyping on a well-chosen sample of the mapping population, rather than the
population as a whole. The sample is chosen after the production of a framework map. The second
of these changes, the primary subject of this paper, is to view adding new markers to the existing
maps as the problem of deterimining the genotypes of recombination-induced bins of the genome,
and assigning new markers to these bins, rather than to continuously placed locations.

For the problem of locating new markers, we have developed new methods, based on Poisson
process properties, to assign new markers to the correct framework interval, to assign genotypes to
bins, and then to assign markers to the correct bin. With our methods, we can estimate the position
of new markers, and have developed a method to estimate the error in new marker placement.

We have performed experimental tests to justify both of these changes. In our experiments on
simulated populations, we showed that our methods are more precise, especially on small popu-
lations, than existing methods, like those found in MapMaker. We also showed that a selected
sample which optimizes one of the functions, expected bin length, which we studied in our previous
work, performs better for mapping than either random samples or samples chosen to maximize the
number of breakpoints. This measure is highly correlated with the mapping precision of a sample.
We found that our estimate of error in marker placement is reasonably accurate. Finally, in a test
on a real doubled haploid barley population, we showed that mapping on a well-chosen sample is
highly accurate, and that our mapping error estimates are reasonably good in this case as well.

Our methods are available in software we are developing, called MapPop. They are much faster
than those found in other packages for genetic mapping. Yet this is not surprising–many of these
sophisticated tools do a very good job at identifying new linkage groups, assigning new markers
to nascent linkage groups, and ordering the markers in new linkage groups: the tasks which we
describe as the production of a framework map. We propose that our methods, which explicitly
place markers into breakpoint defined bins, are to be preferred for the final stage of a mapping
project in which large numbers of new markers are to be added to a well-defined framework map.
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Figure 4: Scatter plot of sample mean absolute mapping error versus expected length. Data are
from samples of various sizes on ten simulated populations of size 100 on a genome of length 1000
cM. For samples obtained either by choosing the most visibly recombinant population members,
by minimizing expected bin length, or at random, mean absolute error is highly linearly correlated
with expected bin length (R2 = .91). The slopes of the regression lines of these three different
sample selection methods are somewhat different.
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Figure 5: Quantile-quantile plot of simulation error distance, in multiples of the estimate of mapping
standard deviation, versus quantiles from a normal distribution with mean 0.01 and standard
deviation 1.1. If errors were normally distributed with these parameters, this quantile plot would
be along the indicated line; instead, the simulated data has slightly heavy tails.
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Figure 6: Placement of 98 markers on barley chromosome 7, from a doubled haploid population of
70 members. The expected position of the markers under a sample of size 25 is plotted against the
position of the markers with the entire population. If mapping quality did not degrade for smaller
sample sizes, the points would be along the indicated line. The shaded region is twice the predicted
standard deviation in each marker placement; all but two of the markers are found in this region.
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Figure 7: Placement of 26 markers on barley chromosome 7 under MapMaker. The axes are as in
the previous figure, though the determined map length is somewhat different. Around each marker
is an error bar of two times the jackknife error estimate in both directions. These estimates appear
unrelated to marker placement error.
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