Forward Acknowledgment: Refining TCP Congestion Control

Matthew Mathis and Jamshid Mahdavi*
Pittsburgh Supercomputing Center

<mathis@psc.edu> <mahdavi@psc.edu>

Copyright ©1996 by Association for Computing Machinery, Inc. (ACM) Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted without fee provided that the
copies are not made or distributed for profit or commercial advantage and that the copies bear this notice
and full citation on the first page. Copyright for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or
to redistribute to lists, requires prior specific permission and/or a fee. Request permission to publish from:
Publications Dept. ACM, Inc. Fax +1 212 869 0481 or email jpermissions@acm.org;.

Abstract

We have developed a Forward Acknowledgment (FACK)
congestion control algorithm which addresses many of the
performance problems recently observed in the Internet.
The FACK algorithm is based on first principles of conges-
tion control and is designed to be used with the proposed
TCP SACK option. By decoupling congestion control from
other algorithms such as data recovery, it attains more pre-
cise control over the data flow in the network. We introduce
two additional algorithms to improve the behavior in spe-
cific situations. Through simulations we compare FACK to
both Reno and Reno with SACK. Finally, we consider the

potential performance and impact of FACK in the Internet.

1 Introduction

The evolution of the Internet has pushed TCP to new limits
over a wide variety of IP infrastructures. Anecdotal evidence
suggests that TCP experiences lower than expected perfor-
mance in a number of situations in the Internet [tcp95]. The
common perception is that these weaknesses are a conse-
quence of the failure to deploy a standard Selective Acknowl-
edgment (SACK) [JB88] in any of today’s TCP implemen-
tations. However, SACK is generally viewed as a method to
address data recovery; it has not been widely investigated
to address congestion control issues.

Floyd pointed out that multiple segment losses can cause
Reno TCP to lose its Self-clock, resulting in a retransmission
timeout [Flo95, Flo92]. These timeouts can cause a substan-
tial performance degradation. During the timeout interval,
no data is sent. In addition, the timeout is followed by a
period of Slow-start. This sequence of events underutilizes
the network over several round-trip times, which results in
a significant performance reduction on long-delay links. At
the heart of this problem is the inability of Reno TCP to

*This work is supported in part by National Science Foundation
Grant No. NCR-9415552.

Copyright ©1996 by Association for Computing Machinery, Inc.
(ACM) To appear in Computer Communication Review, a publi-
cation of ACM SIGCOMM, volume 26, number 4, October 1996.
ISSN # 0146-4833. This electronic facsimile differs slighty from
the printed version. It has been reformated to better support elec-
tronic viewing. Therefore, please use the printed version when

referencing layout details, such as page numbers.

accurately control congestion while recovering from dropped
segments.

We have developed a new algorithm to improve TCP
congestion control during recovery. This algorithm, called
Forward Acknowledgment or FACK, works in conjunction
with the proposed TCP SACK option [MMFR96]. The ex-
istence of the SACK option alone greatly improves the ro-
bustness of TCP following congestion. SACK will help TCP
to survive multiple segment losses within a single window
without incurring a retransmission timeout. SACK can also
glean additional information about congestion state, lead-
ing to improved TCP behavior during recovery. The FACK
algorithm uses this information to add more precise control
to the injection of data into the network during recovery.
Because FACK decouples the congestion control algorithms
(which determine when and how much data to send) from
the data recovery algorithms (which determine what data
to send),1 we believe that it is the simplest and most direct
way to use SACK to improve congestion control.

Other researchers are currently studying congestion con-
trol issues in TCP. The research community is very in-
terested in the potential of TCP Vegas [BOP94, DLY95].
Through the use of delay measurements, TCP Vegas at-
tempts to eliminate the periodic self-induced segment losses
caused in Reno TCP. The Vegas Congestion Avoidance
Mechanism (CAM) algorithm modifies the “linear increase”
phase of congestion avoidance. In another recent study,
Hoe investigates congestion control issues during Slow-start
[Hoe95, Hoe96]. Because our work is focused primarily on
improving congestion control during recovery (the “expo-
nential decrease” phase of congestion avoidance), it is com-
patible with these efforts. It is our expectation that each
of these efforts can eventually be incorporated into TCP in
order to incrementally improve performance.

In section 2 of this paper, we describe the principles
of congestion control on which FACK is built. Section 3
presents a detailed description of the FACK algorithm. Sec-
tion 4 examines the basic behavior of the FACK algorithm
and several optional algorithms. Sections 5 and 6 explore
the performance of the various algorithms presented in the
paper. In section 7 we discuss future research directions for
this work. Finally, we summarize our findings.

! This idea has been proposed before [CLZ87], but it has not been
implemented for TCP.

2 Congestion Control

2.1 Ideal Principles

In 1988, Van Jacobson published the paper that has be-
come the standard for TCP congestion control algorithms
[Jac88, Bra89]. We do not modify any of the algorithms de-
scribed in that paper. Rather, FACK extends these conges-
tion control algorithms to TCP’s recovery interval. The key
concepts of “conservation of packets,” “Self-clock,” “Con-
gestion Avoidance” and “Slow-start” are reviewed below.

“Conservation of packets” requires that a new segment
not be injected into the network until an old segment has
left. This principle leads to an inherent stability by ensuring
that the number of segments in the network remains con-
stant. Other schemes, especially rate-based transmission,
can cause the number of segments in the network to grow
without bound during periods of congestion, because dur-
ing congestion the transmission time for segments increases.
TCP implements conservation of packets by relying on “Self-
clocking”: segment transmissions are generally triggered by
returning acknowledgements. TCP’s Self-clock contributes
substantially to protecting the network from congestion.

“Congestion Avoidance” is the equilibrium state algo-
rithm for TCP. TCP maintains a congestion window, cwnd,
which represents the maximum amount of outstanding data
on the connection. When the TCP sender detects con-
gestion in the network — identified by the loss of one or
more segments — the congestion window is halved. Un-
der other conditions, the congestion window is increased
linearly by one maximum segment size (MSS) per round
trip on the network. The stability of this linear increase
and multiplicative decrease algorithm has been demon-
strated in many investigations since its publication in 1988
[ZSC91, FJ91, Mog92, FJ92, FJ93].

“Slow-start” is the algorithm which TCP uses to reach
the equilibrium state when cwnd is less than a threshold,
ssthresh. Ssthresh attempts to dynamically estimate the
correct window size for the connection. At connection es-
tablishment and after retransmission timeouts, TCP sets
cwnd to 1 MSS and increases cwnd by 1 MSS for each
received ACK.? This exponential increase continues until
cwnd reaches the Slow-start threshold, ssthresh. Once
ssthresh is reached, TCP passes into the Congestion Avoid-
ance regime. Ssthresh is set to half of the current value of
cwnd when the sender detects congestion or undergoes a
retransmission timeout.

2.2 Reno TCP Behavior

Reno TCP is currently the de facto standard implementation
of TCP [Ste94]. Reno implements Slow-start and Conges-
tion Avoidance in the manner described above. It includes
the Fast Retransmit algorithm from Tahoe TCP and adds
one new algorithm: Fast Recovery.

Both Fast Retransmit and Fast Recovery [Ste96] rely on
counting “duplicate ACKs” — TCP acknowledgments sent
by the data receiver in response to each additional received
segment following some missing data.

2Jacobson describes the algorithm as we do, however, he goes on
to note that the time it takes to open to a given window is “Rlog. W
where R is the round-trip-time and W is the window size in packets.”
When the receiver’s Delayed ACK sends one ACK per two segments,
this estimate should actually be Rlog:.sW. It is generally agreed
that, during Slow-start, it is correct to increase the window size by
one MSS per ACK, even when the ACK acknowledges more than one
MSS of data.

Fast Retransmit and Fast Recovery [Jac90, Ste94] are
algorithms intended to preserve Self-clock during recovery
from a lost segment. Fast Retransmit uses duplicate ACKs
to detect the loss of a segment. When three duplicate ACKs
are detected, TCP assumes that a segment has been lost and
retransmits it. The number three was chosen to minimize
the likelihood of out-of-order segments triggering spurious
retransmissions.

The Fast Recovery algorithm attempts to estimate how
much data remains outstanding in the network by counting
duplicate ACKs. It artificially inflates cwnd on each dupli-
cate ACK that is received, causing new data to be transmit-
ted as cwnd becomes large enough. Fast Recovery allows one
(halved) window of new data to be transmitted following a
Fast Retransmit.

Under single segment losses, Fast Retransmit and Fast
Recovery preserve TCP’s Self-clock and enable it to keep the
network full while recovering from one lost segment. If there
are multiple lost segments, Reno is unlikely to fully recover,
resulting in a timeout and subsequent Slow-start [Flo95].

2.3 SACK TCP Behavior

The new TCP SACK option [MMFR96] is progressing
through the IETF standards track. It is a slight modifi-
cation to the original SACK option described in RFC1072
[JB88]. When the receiver holds non-contiguous data, it
sends duplicate ACKs bearing SACK options to inform the
sender which segments have been correctly received. Each
block of contiguous data is expressed in the SACK option
using the sequence number of the first octet of data in the
block, and the sequence number of the octet just beyond the
end of the block. In the new SACK option the first block is
required to include the most recently received segment. Ad-
ditional SACK blocks repeat previously sent SACK blocks,
to increase robustness in the presence of lost ACKs.

To illustrate FACK, we compare its behavior to a SACK
implementation using Reno congestion control. Since there
is not yet a standard implementation of SACK, we make the
following assumptions about a SACK implementation using
Reno congestion control:

e Fast Retransmit and Fast Recovery are modified to
not resend already SACKed segments (as one would
expect).

o Fast Recovery continues to estimate the amount of out-
standing data by counting returning ACKs. This as-
sumption is made in order to retain the congestion
properties of Reno TCP, and is the main distinction
between a SACK implementation using Reno conges-
tion control and a SACK implementation using FACK
congestion control.

o The algorithm for detecting the end of recovery uses
the presence of SACK blocks to prevent partial ad-
vances of snd.una® from causing TCP to leave the re-
covery state prematurely.4

3The TCP sender state variable snd.una holds the sequence num-
ber of the first byte of unacknowledged data, snd.nzt holds the se-
quence number of the first byte of unsent data. These variables are
defined in the TCP standard [Pos81].

*This fixes a problem in Reno which has been pointed out by Hoe
[Hoe95] and Floyd [Flo95]. In some cases, Reno may incorrectly rein-
voke Fast Retransmit and Fast Recovery. Floyd and Hoe have ob-
served that strengthening Reno’s test for the end of recovery improves
its behavior in a number of situations [FF96, Hoe95].

In the remainder of this paper, “Reno+SACK?” will refer
to an implementation as outlined above. A SACK imple-

mentation which uses the FACK congestion control algo-
rithm will be referred to simply as “FACK?”.

2.4 FACK Design Goals

Under single segment losses, Reno implements the ideal con-
gestion control principles set forth above. However in the
case of multiple losses, Reno fails to meet the ideal princi-
ples because it lacks a sufficiently accurate estimate of the
data outstanding in the network, at precisely the time when
it is needed most.’

The requisite network state information can be obtained
with accurate knowledge about the forward-most data held
by the receiver. By forward-most, we mean the correctly-
received data with the highest sequence number. This is the
origin of the name “forward acknowledgment.” The goal of
the FACK algorithm is to perform precise congestion con-
trol during recovery by keeping an accurate estimate of the
amount of data outstanding in the network. In doing so,
FACK attempts to preserve TCP’s Self-clock and reduce
the overall burstiness of TCP.

Note that all TCP implementations discussed in this
paper have nearly identical behavior under single segment
losses. This reduces the need for rigorous testing under
“ordinary” conditions because all implementations have the
same expected performance.

3 The FACK Algorithm

The FACK algorithm uses the additional information pro-
vided by the SACK option to keep an explicit measure of
the total number of bytes of data outstanding in the net-
work. In contrast, Reno and Reno+SACK both attempt
to estimate this by assuming that each duplicate ACK re-
ceived represents one segment which has left the network.
The FACK algorithm is able to do this in a straightforward
way by introducing two new state variables, snd.fack and
retran_data. Also, the sender must retain information on
data blocks held by the receiver, which is required in or-
der to use SACK information to correctly retransmit data.
In addition to what is needed to control data retransmis-
sion, information on retransmitted segments must be kept
in order to accurately determine when they have left the
network.

At the core of the FACK congestion control algorithm is
a new TCP state variable in the data sender. This new vari-
able, snd.fack, is updated to reflect the forward-most data
held by the receiver. In non-recovery states, the snd.fack
variable is updated from the acknowledgment number in the
TCP header and is the same as snd.una. During recovery
(while the receiver holds non-contiguous data) the sender
continues to update snd.una from the acknowledgment num-
ber in the TCP header, but utilizes information contained

5The observation that Reno inaccurately assesses the network
state arose as a part of ongoing research aimed at developing tools
for benchmarking the production Internet [ipp96]. Our efforts focused
on a tool called “TReno” for Traceroute-Reno [Mat95, Mat96], which
is an evolution of an earlier tool “Windowed Ping” [Mat94]. TReno
attempts to measure the available network headroom by emulating
Reno TCP over a traceroute-like UDP stream. Although based on
Reno congestion control, TReno was observed to exhibit significantly
different behavior largely due to its precise picture of the congestion
state of the network. Our investigation of the differences between
TReno and Reno behaviors led us to discover FACK’s underlying
principles.

in TCP SACK options® to update snd.fack. When a SACK
block is received which acknowledges data with a higher se-
quence number than the current value of snd.fack, snd.fack
is updated to reflect the highest sequence number known to
have been received plus one.

Sender algorithms that address reliable transport con-
tinue to use the existing state variable snd.una. Sender
algorithms that address congestion management are altered
to use snd.fack, which provides a more accurate view for
the state of the network.

We define awnd to be the data sender’s estimate of
the actual quantity of data outstanding in the network.
Assumin§ that all unacknowledged segments have left the
network:

awnd = snd.nzt — snd.fack (1)

During recovery, data which is retransmitted must also
be included in the computation of awnd. The sender com-
putes a new variable, retran_data, reflecting the quantity of
outstanding retransmitted data in the network. Each time
a segment is retransmitted, retran_data is increased by the
segment’s size; when a retransmitted segment is determined
to have left the network, retran_data is decreased by the
segment’s size. Therefore TCP’s estimate of the amount of
data outstanding in the network during recovery is given by:

awnd = snd.nzt — snd.fack + retran_data (2)

Using this measure of outstanding data, the FACK con-
gestion control algorithm can regulate the amount of data
outstanding in the network to be within one MSS of the
current value of cwnd:®

while (awnd < cwnd)
sendsomething () ;

The FACK congestion control algorithm does not place
special requirements on sendsomething(); the algorithm
implied by the SACK Internet-Draft is sufficient. Gener-
ally sendsomething() should choose to send the oldest data
first.?

FACK derives its robustness from the simplicity of up-
dating its state variables: if sendsomething() retransmits
old data, it will increase retran_data; if it sends new data,
it advances snd.nzt. Correspondingly, ACKs which report
new data at the receiver either decrease retran_data or ad-
vance snd.fack. Furthermore, if the sender receives an ACK
which advances snd.fack beyond the value of snd.nzt at the
time a segment was retransmitted (and that retransmitted
segment is otherwise unaccounted for), the sender knows
that the segment which was retransmitted has been lost.

In principle, the FACK algorithm could also be implemented by
utilizing the information provided by the receiver through other mech-
anisms, such as TCP Timestamp option, to determine the rightmost
segment received [Kar95]. This would allow the benefits of improved
congestion control during recovery to be immediately realized in ex-
isting TCP implementations. However, because of the complementary
nature of FACK and SACK, and the expected imminent deployment
of SACK, in our research we are assuming that FACK is implemented
in conjunction with SACK.

"This is true when the network is not reordering segments and
there have been no retransmissions.

8In the case when cwnd has been halved immediately following a
lost segment, awnd will be significant larger than cwnd. This issue
is addressed in section 4.5.

°If sendsomething() chooses to send new data, it is also con-
strained by the receiver’s window (snd.wnd) and must make an addi-
tional check to ensure that the new data does not lie beyond the limit
imposed by snd.wnd. If sendsomething() chooses to retransmit old
data, it is not constrained by the receiver’s window.

3.1 Triggering Recovery

Reno invokes Fast Recovery by counting duplicate acknowl-
edgments:

if (dupacks == 3) {

}

This algorithm causes an unnecessary delay if several
segments are lost prior to receiving three duplicate acknowl-
edgments. In the FACK version, the cwnd adjustment and
retransmission are also triggered when the receiver reports
that the reassembly queue is longer than 3 segments:

if ((snd.fack - snd.una) > (3 * MSS) ||
(dupacks == 3)) {

}

If exactly one segment is lost, the two algorithms trigger
recovery on exactly the same duplicate acknowledgment.

3.2 Ending Recovery

The recovery period ends when snd.una advances to or be-
yond snd.nzt at the time the first loss was detected. During
the recovery period, cwnd is held constant; when recovery
ends TCP returns to Congestion Avoidance and performs
linear increase on cwnd. In the implementation tested in
this paper, a timeout is forced if it is detected that a re-
transmitted segment has been lost (again). This condition
is included to prevent FACK from being too aggressive in
the presence of persistent congestion.

4 FACK behavior

In this section we explore the behavior of the FACK algo-
rithm in a simulator environment. We introduce another al-
gorithm, Overdamping, which estimates the correct window
more conservatively following losses as a result of Slow-start.
Finally, we introduce a Rampdown algorithm to smooth
data transmission during the recovery period.

4.1 Simulation Environment

We tested these new algorithms by implementing them un-
der the LBNL simulator “ns” [MF], where we added the
necessary new congestion control algorithms.'® The simula-
tor includes models of Tahoe, Reno, and Reno+SACK. We
added a FACK sender to the simulator, but were able to use
the existing SACK TCP receiver without modification. Our
first set of tests uses a simple network containing four nodes
(figure 1).

Two of these nodes represent routers connected by a 5
ms T1 link; one is a host in close proximity to these routers,
and the other is a host 33 ms away. The bandwidth«delay
product for this network is 16.3 kBytes, including store and
forward delays. In all of our tests we utilize an MSS of 1 kB.
Thus, properly provisioned routers in this network should
have queues at least 17 packets long.

We varied queue lengths in order to examine both ade-
quately provisioned and underprovisioned cases.!' In all of

19 An implementation of FACK will be available in a future release
of ns.

''Note that many historical papers investigating TCP dynamics
use underbuffered networks in their simulations. We believe that any
protocol development work must adequately address both properly
provisioned and underbuffered networks, and protocols must be shown
to be stable (if not optimal) in both environments.

10 Mbl/s,
2ms

The round trip time between S1 and S2 is 80 ms, plus another 7 ms
of store and forward delay, yielding a total pipe size of 16.3 kBytes.

10 Mb/s, 33ms

1.5 Mbls,

Figure 1: The test topology

50
404 Reno Window

204 | - /

o Lo I I
708
5800
508
48008
300
cEE

100 /@ Q=17

Eeno Segments
Losses X

154 Enlarged

188
ol

4] S T T
5] @.2 8.4 @.6 0.8 1
Time (seconds?

The network is provisioned with queues of length 17 packets. 30
segments are unnecessarily retransmitted.

Figure 2: Reno behavior during Slow-start.

our investigations we utilize drop-tail routers. The details of
the FACK algorithm and implementation do not require any
changes to operate in networks with more intelligent queu-
ing disciplines. However, the relative benefit of the FACK
algorithm in these networks will be slightly lower because
episodes of congestion in such networks are expected to be
less extreme.

In this paper, most of our examples plot segment num-
bers vs. time in seconds.'? Each segment is shown twice,
once when it enters the bottleneck queue and once when it
leaves. Dropped segments are indicated by an “x”. Re-
transmissions always stand out because both the enqueue
and dequeue events are visibly out of order. In some cases,
plots of window size and router queue occupancy are shown
as well.

'25ee http://www.psc.edu/networking/papers/ for enlarged
figures.

Reno+3ACK Window

Reno+SACK Segs
Losses

Enlarged

5] T T T
a.4 @.6 @.8 1 1.2 1.4
Time (seconds?

The network is provisioned with queues of length 17 packets. No data
is unnecessarily retransmitted.

Figure 3: Reno+SACK behavior during Slow-start.

£E8 - /
404 ; FACK Window
eoq ./]
8 i
708 -
co0 - FACK Segments

Losses ¥

a.4 @.6 @.8 1 1.2 1.4
Time (seconds?

The network is provisioned with queues of length 17 packets. No data
is unnecessarily retransmitted.

Figure 4: FACK behavior during Slow-start.

40 -
30 -
20 -
10

1464
126+
106+
3E
60 §
48— &

20 Q=10
8 WI' I I I
8 ©.25 B8.5 @.75 1
40
309 MWindow #
20
10
2]
1;2: FACK Segs -
Losses =
192 -
230
60 -)
4@ ya

20 Q=10
@ — T T T
4] p.25 ©B.5 8.5 1
Time (zeconds?)

SACK Segs
Losses X

|
1.25 1.5

The network is provisioned with queues of length 10 packets, and
ssthresh is preset to 35 segments. No data is unnecessarily retrans-
mitted.

Figure 5: SACK and FACK loss recovery details.

4.2 Behavior During Slow-start

During Slow-start, TCP opens its window exponentially,
forcing the network into congestion and often dropping
many segments. Figure 2 shows the behavior of Reno during
Slow-start. Reno is unable to handle the multiple segment
losses; it times out and then proceeds with a Slow-start after
the timeout interval.

Figure 3 shows the behavior of Reno+SACK under the
same circumstances. Reno+SACK does not incur the time-
out. However, due to the large number of lost segments,
Reno+SACK underestimates the window during recovery,
and requires several round trip times to complete recovery.

Figure 4 shows the behavior of FACK in this situation.
FACK divides its window size by two, waits half of an RTT
for data to exit the network, and then proceeds to retransmit
lost segments.

In these examples, both Reno+SACK and FACK make
no unnecessary retransmissions. Reno, on the other hand,
unnecessarily retransmits 30 segments.

4.3 FACK vs. Reno4+SACK

Figure 5 compares the detailed behaviors of FACK and
Reno+SACK in a slightly different case. Here, the variable

ssthresh is preset to 35 and the bottleneck queue has only
10 packet buffers. In this case, the behaviors of FACK and

Reno+SACK are very similar. The primary difference is vis-
ible in the queue length at the bottleneck link. At the end of
recovery (about .8 sec), Reno+SACK makes a burst trans-
mission which causes a spike in the queue length.'® Since
the window size after the end of recovery is identical for
both algorithms, FACK and Reno+SACK will have roughly
the same overall performance for environments where TCP
never loses more than half a window of data.

If more than half a window of data is lost, the window
estimate of Reno+SACK will not be sufficiently accurate.
Figure 6 shows such a case. Here, in addition to the seg-
ments lost during Slow-start, four additional segments were
dropped in transit on the bottleneck link. In this case TCP
runs out of ACKs before invoking Fast Recovery. In the
worst case, this would result in a retransmit timeout fol-
lowed by a Slow-start. One of the requirements of a SACK
implementation is that if the TCP sender takes a retransmit
timeout, it must clear all information about SACK blocks
held by the receiver. Thus, the sender would timeout and
then Slow-start with the possibility of retransmitting data
which has already been received. The SACK implementa-
tion in the simulator includes an additional test specifically
for the case where more than half a window of data is lost,
and proceeds directly into Slow-start. This avoids the re-
transmit timeout, but still incurs the penalties of Slow-start
and duplicated data. The final result, in this case, is that
6 round trip times are lost to the Slow-start, and 25 seg-
ments are unnecessarily retransmitted. Note that it would
be possible to further optimize Reno+SACK for this case
by keeping the information stored in the SACK blocks. The
resulting TCP would only take the penalty of the Slow-start
for this case.

4.4 Slow-start Overshoots and the Overdamping Algo-
rithm

In both the Reno and FACK examples, the congestion win-
dow is almost immediately cut in half a second time. The
reason for this behavior is that when dividing cwnd by two,
TCP should utilize the value of cwnd when the first lost
segment was sent. At this point, the session fills the avail-
able buffer space exactly, whereas when the loss is detected
one RTT later, cwnd has doubled.'* We can improve this
behavior by implementing the following additional window
adjustment:

if (cwnd <= ssthresh + .5*mss)
cwnd /= 2;

If TCP has recently!® been in Slow-start, it reduces cwnd
by an extra factor of two prior to reducing the window and
setting ssthresh. This takes into account the fact that, at
the time the segment was sent, cwnd was smaller than it
was at the time the loss was detected, and therefore is more
conservative about setting cwnd and ssthresh. With this
additional algorithm in place, the results of our test simu-
lation are shown in figure 7. Note that the first segment
loss following Slow-start does not occur until time 3.4 sec,
compared with figure 4 where it occurs at time 1.7 sec.

'3The size of the burst will be equal to the number of dropped
segments plus the number of dropped ACKs minus one.

'4In this section, we have not utilized Delayed ACKs, which would
cause cwnd to increase by a factor of 1.5. The effects of Overdamping
in this case are shown in section 5.

'5We define “recently” as “within one half of a round-trip” of being
in Slow-start. The choice of one half is somewhat subjective, but
preserves continuity at the boundary conditions.

60

40 Windouw

20 4 e
5]

ZUB 4 SACK Segments
Losses X

156 4
i e
108 ,f’/
S Q=17
% =~ T T T
5] 8.5 1 1.5 I

Time (seconds?

The network is provisioned with queues of length 17 packets, and
four non-congestion related losses have been injected. 25 segments
are unnecessarily retransmitted.

Figure 6: SACK recovery detail under greater than 1/2 win-
dow of loss.

FACK Windouw

20 __/_,ffﬁ‘”

%] - T T T

FACK Segments
Losses X

Enlarged

5] T T
a.4 @.6 @.8 1 1.2 1.4
Time (seconds?

The network is provisioned with queues of length 17 packets. No data
is unnecessarily retransmitted.

Figure 7: Behavior of FACK with Overdamping.

30 _
28 _ Window

18_ . .- - .

2004 Without Rampdoun - pd
Losses X -
150 ~

100 - L
5 % e

30)
50 : Window

10 - e

2BBE With Rampdown

Losses X
150 ..//

190 e

50 #
,,% 0=6
@ - T T T
4] B.5 1 1.5 z
Time (seconds?

The network is provisioned with queues of length 6 packets. No data
is unnecessarily retransmitted.

Figure 8: FACK behavior with (bottom) and without (top)
Rampdown. Overdamping is utilized in both cases.

4.5 Data Smoothing

During a congestion epoch, when one or more segments are
lost, TCP performs an exponential backoff by cutting cwnd
in half. In current TCP implementations, the sender stops
transmitting data until enough data has left the network to
reduce awnd below the new value of cwnd. The sender then
resumes transmission of data. This typically results in a full
window of data being transmitted in one half of a round trip
time, resulting in uneven transmission of data for this and
subsequent round trips. Solutions to this problem have been
suggested [Hoe95, Jac95], but have not yet been deployed.'®
The recommended solution for this problem is to smooth
the transmission of data over one RTT by slowly reducing
cwnd, rather than instantly halving it. We implemented this
solution as follows:
At the time congestion is detected:

wintrim = (snd.nzt — snd. fack) * (1 — winmult) (3)

Each time snd.fack advances by A fack:

wintrim = wintrim — Afack * (1 — winmult) (4)

'®We are aware of one research group working with a TCP imple-
mentation which includes a solution to this problem similar to ours
[Balos].

Here, wintrim is added to cwnd during the “Ramp-
down” phase of congestion control. At the time recovery
begins, cwnd+wintrim is slightly less than awnd. After one
round trip of recovery, wintrim is reduced to zero. While
wintrim is non-zero, it acts to smooth the data evenly over
one round trip, so that exactly cwnd bytes of data are out-
standing at the end of this round trip. The variable winmult
is the scale factor controlling how quickly wintrim is pulled
to zero. Normally winmult is set to 0.5; if Overdamping is
invoked, winmult is set to 0.25 instead.

In figure 8 we set the queue length in the routers to 6
packets, causing the network to be underutilized following
Slow-start. In each RTT following Slow-start, FACK with
Overdamping (top of figure 8) clusters its transmissions to-
gether. On the other hand, FACK with Overdamping and
Rampdown (bottom of figure 8) evenly distributes the data
across a full round trip time, minimizing the effects of bursts
on the network.

5 Comparison of Algorithm Performance During Slow-
start

In order to compare the performance of the various algo-
rithms presented in section 4, we ran simulations of six algo-
rithms over an exhaustive range of queue-lengths in the bot-
tleneck router. The six algorithms are Reno, Reno+SACK,
FACK, FACK with Overdamping, FACK with Rampdown,
and FACK with both Overdamping and Rampdown. In or-
der to compare the performance of the various algorithms in
a meaningful way, we computed the “lost opportunity” for
each run — the amount of additional data which could have
been sent if the connection had run entirely in Congestion
Avoidance. Events which cause idle time on the link during
Slow-start, such as retransmit timeouts or deep reductions
in cwnd, result in higher “lost opportunity”.

The results of this comparison are shown in figure 9. The
upper graph shows the “lost opportunity” for each algorithm
with a receiver which acknowledges every segment (as used
in all of the examples in Section 4). The lower graph uses a
receiver with Delayed ACK.!7

In both graphs, the effects of retransmit timeouts in Reno
are clearly visible at all queue sizes. Without Delayed ACK,
Reno loses between 300 kB and 500 kB of potential data
transfer capability during slowstart. With Delayed ACK,
this value increases to between 650 kB and 900 kB. All of
the options presented for SACK congestion control perform
significantly better than Reno in the cases presented here.

Without Delayed ACK, the FACK algorithm alone shows
poor performance for a subset of the queue sizes examined.
In these cases, FACK is too aggressive following Slow-start,
and takes additional packet loss resulting in a retransmission
timeout. Reno+SACK also shows lower performance across
all queue sizes than the remaining three variations of FACK.
This is the result of additional round trips caused by ACK
starvation immediately following Slow-start (see figure 3).
The two versions of FACK which include the Overdamping
algorithm show poorer performance at low queue lengths.
The best and most consistent performer is the FACK algo-
rithm with Rampdown alone.

With Delayed ACK, the FACK and Reno+SACK cases
no longer exhibit the behaviors mentioned above, because
Slow-start does not push the network as far into congestion.
The effects of Overdamping are even more pronounced, and

17 A Delayed ACK receiver sends ACKs less frequently, and at min-
imum, sends one ACK for every two MSS of data received. Delayed
ACK is used by almost all TCP implementations in the Internet.

1415

450
400
358+
300

250 Bged

~
n

o

4+

o

faa]

=

e

4

n

o

- o
)]

+ 280 1
o

C

3

4+

[

o

[N

O

o]

T T T T T T T
5 8 18 12 14 16 18 20 22 24
Q limit {packets>
The receiver is not using Delayed ACK.

loge

800

Reno ——
RenO+SACK JE—
500 - FACK -3
FACK ws Ouerdamping -»-—

FACK w- Rampdown -#--
FACK w/ both -#*--

400 1

e - *%jﬁﬁéﬁ%

b ﬁ_@g gﬁh@ﬂ,ﬁ:ﬂ_ﬁ A

Opportunity Lost <k Bytes:

@ T T T T T T T T

5 8 18 12 14 16 18 20 22 24
Q limit {packets>

The receiver is using Delayed ACK.

Figure 9: Comparison of the behavior of various congestion
algorithms during Slow-start.

10 Mb/s,
2ms 10 Mb/s, 33ms
"ﬂ' 1.5 Mbl's,
10 Mbl/s, 10 Mby/s,
2ms 3ms

Stream

Figure 10: The jitter test topology

c 108 - . _ -
E g FACK -8—
IS 20 Reno+SACK e
M Q) 4} Ramn
I 20
a 70 -
3 .
5 ..,
L 5E <«>
I T T T T ‘

5] 1 2 3 4 5 [7
% Reverse Utilization

TCP forward path utilization as a function of the reverse path utiliza-
tion. Note that 7% load on the reverse path causes nearly 45% idle
capacity on the forward path. This example uses a 20 packet queue
length, which is more than sufficient buffering for the network.

Figure 11: Comparison of FACK, Reno, and Reno+SACK

even at the largest queue sizes we tested, Overdamping is
too conservative compared with the other algorithms.

6 Performance Comparisons

We have investigated the behavior and performance of the
various congestion control algorithms under several scenar-
ios. One scenario, in which TCP is subjected to delay jitter
and bursty losses, demonstrates some interesting differences
between Reno, Reno+SACK, and FACK.

In the simulator, we have been able to investigate TCP’s
behavior in this situation with a single, very low bandwidth
data stream in the reverse direction (figure 10). The reverse
data stream is one connection with small, randomly dis-
tributed bursts of data at an average rate of two bursts per
second. The bursts are of small constant size for each run,
ranging from 1 to 6 kB. This traffic could be, for example,
characteristic of a small NetNews stream or sporadic e-mail.
In this environment, we ran each of the algorithms — Reno,
Reno+Sack and FACK — and compared their performance.
Figure 11 shows the forward path performance versus the
reverse path load for each algorithm. Note that with only
7% load on the reverse path, Reno leaves almost 50% idle
capacity on the forward path. This reflects the combined

40 -
i Rerno Window

eoH -

£508

Reno Packets

20006 Losses x

15688+

1988+

/'

FACK Window

1 / ""/ I\“/ / / \"\/ / / ""\/

FACK Packets
Losses x

| | |
4] c 4 =]

| | | |
g 18 1z 14

Time {seconds>

In this trace we slightly reduced the buffering from figure 11, to accent interesting detail. All of the behaviors shown in this figure are present in

one or more of the simulations used to generate figure 11.

Figure 12: Reno and Fack with jitter

effects of ACK compression [ZSC91], drop-tail routers and
the high penalty of retransmit timeouts. Note that this ex-
ample uses a 20 packet queue length, which is more than
sufficient buffering for this network.

6.1 Reno vs. FACK

Figure 12 shows detailed behavior of Reno and FACK in a
situation only slightly different than in figure 11. The tiny
reverse traffic causes ACK compression and competes for
router buffer space, which, in turn, causes clusters of packet
loss in the bulk stream.

In response to these clusters of loss, Reno behavior ap-
pears chaotic, showing multiple window adjustments in a
single congestion episode and timeouts due to loss of its
Self-clock.

The bottom of figure 12 shows FACK (with Overdamping
and Rampdown) in exactly the same situation. Even though
many congestion epochs experience clusters of loss, FACK
correctly performs exactly one multiplicative decrease of
cwnd per congestion epoch, preserves the TCP Self-clock,
and avoids all timeouts.'® In this regime FACK appears to
be a stable, well-behaved control system, consistent with the
principles of ideal congestion control.

'8Reno+SACK performs as well as FACK in this situation.

6.2 Impact to the Internet

In the Internet, anecdotal evidence suggests that episodes of
multiple packet loss in one round trip are common. Paxson
observes the following behavior in roughly 13% of the traces
he collected at major Internet exchange points:

...a fast retransmit followed by a retransmit
timeout, with the additional condition that the
packet retransmitted after the retransmit time-
out had not been previously retransmitted...

[FF96]

It is most likely that this behavior is the result of minor
congestion episodes which cause multiple packet loss in one
round trip. Note that because only Reno TCP implemen-
tations exhibit this particular behavior, the prevalence of
multiple packet loss within one round trip may be signifi-
cantly more common than suggested by this data.

On our networks at PSC (a national supercomputing cen-
ter with high bandwidth connectivity to the global Internet),
the behavior shown in figure 12 appears regularly for bulk
data transfers over moderately loaded wide area links.!® The
deployment of any version of SACK should nearly double the
throughput of bulk transfers using TCP for these cases. In

190ver a fixed path, Reno’s performance can be improved by de-
feating TCP’s cwnd calculation by setting the maximum window size
to just slightly smaller than needed to fill the network.

addition, we believe SACK TCP will be less biased against
ATM than Reno TCP. For more typical Internet transfers,
the benefits of SACK will likely be more moderate, but still
result in overall improvements to both latency and goodput.

7 Future Work

We are currently working on an implementation of SACK
TCP which will include FACK.?® Once implemented, FACK
should be evaluated in both a testbed environment and in
the Internet, to verify the performance of the algorithms
and to look for any adverse side effects. These investigations
should also explore the data recovery aspects of SACK.

There are several unresolved issues surrounding the al-
gorithms presented in this paper. We are investigating a
single, simple algorithm to replace the Overdamping and
Rampdown, as well as several methods for addressing per-
sistent congestion (when halving is not a sufficient window
reduction). We have been moderately successful at deriving
closed-form mathematical models for FACK TCP perfor-
mance in some topologies and believe that this technique
deserves further exploration.

The new state variable snd.fack might also be used to
strengthen Round Trip Time Measurements (RTTM) and
Protection Against Wrapped Sequence (PAWS) algorithms
[JBB92] during recovery.

The FACK algorithm was first implemented in TReno,
an Internet performance metric [Mat96]. Tools to measure
Internet performance should track the evolution of TCP
[Mat].

The production Internet still lacks adequate attention to
issues of congestion and congestion detection. Many routers
are incapable of providing full bandwidthxdelay buffering
and do not signal the onset of congestion through mecha-
nisms such as Random Early Detection (RED) [FJ93]. Al-
though the FACK algorithm is designed to help in times of
congestion, it is not a substitute for these signals at the In-
ternet layer. The transport and internet layers must work
together to improve the behavior of the Internet under high
load.

Other current research into TCP congestion is largely
independent of FACK. The Congestion Avoidance Mech-
anism (CAM) of TCP Vegas [BOP94, DLY95] attempts
to avoid unnecessary inflation of the congestion window
through delay sensing techniques. Hoe has done extensive
work in analyzing the effects of congestion during Slow-start
[Hoe95, Hoe96], where there can be significant performance
problems. The implementation of SACK and/or FACK may
reduce the gravity of these problems, but will not eliminate
them. Both of these efforts address different aspects of the
TCP congestion control problem. Hoe also discusses a form
of Rampdown, which was the inspiration for this part of our
work. It should be possible to incorporate all of these con-
cepts in a single TCP implementation, allowing for study of
their combined benefits.

Finally, applications which do not use TCP are becoming
more prevalent in the Internet, and many of these applica-
tions pay little or no attention to congestion control issues.
The more predictable behavior and better understanding of
TCP congestion control may be a step toward a standardized
transport layer congestion behavior for use by all Internet
applications.

20This implementation will be made publicly available when
completed.

10

8 Conclusion

In this paper, we have presented the FACK algorithm for
congestion control, the Overdamping algorithm to offset
Slow-start overshoot, and the Rampdown algorithm for
transmission smoothing. In our investigations, we have dis-
covered that both FACK and Reno+SACK provide major
performance improvements over existing Reno implementa-
tions, due primarily to the avoidance of retransmission time-
outs. Eventually, Reno users will perceive SACK implemen-
tations as having a significant advantage; this will provide
incentive for the rapid widespread deployment of SACK in
the Internet.

The FACK algorithm has several benefits over
Reno+SACK. Since FACK more accurately controls the
outstanding data in the network, it is less bursty than
Reno+SACK, and can recover from episodes of heavy loss
better than Reno+SACK. Because FACK uniformly adheres
to basic principles of congestion control, it may be possi-
ble to produce formal mathematical models of its behavior
and to support further advances in congestion control the-
ory. Furthermore, based on our experience in implementing
FACK in the simulator, it is more straightforward to code
and less prone to subtle bugs than Reno+SACK.

For the additional algorithms presented, Overdamping
and Rampdown, we obtained mixed success. The Over-
damping algorithm is too conservative in the general case.
The Rampdown algorithm, however, appears to work quite
well. Based on the results in this paper, future work should
explore variations on the Rampdown algorithm which incor-
porate the ideas included in the Overdamping algorithm.

Finally, we had difficulties developing realistic simula-
tions of the Internet’s observed clustered packet loss. Cur-
rent simulation technologies do not accurately model the
Internet with its vast complexity and huge populations of
users, hosts, connections and packets.?! This limitation
makes it difficult to predict the operational impact of de-
ploying new protocols in the Internet. Limited simulations
and traffic playback approaches are not likely to reveal phe-
nomena resembling turbulent coupling between protocols.
We hope to investigate new simulation paradigms in the fu-
ture.

9 Acknowledgements

We would like to thank Sally Floyd and Steve McCanne
for making the LBNL simulator publicly available, without
which we would have been unable to complete this work. We
are especially grateful to the five anonymous reviewers for
their insightful comments on our initial draft of this work,
as well as to Sally Floyd and Craig Partridge for their in-
valuable assistance in moving it to final form. We would like
to thank Susan Blackman and Karen Fabrizius for repeated
readings and markups on our grammar and spelling. Finally,
we would like to acknowledge our management at PSC for
encouraging our research activities on TCP performance.

21In our experiments, we did not take advantage of the capabilities
of tcplib [DJ91], which models some of these complexities.

References

[Bal96]

[BOP94]

[Brag9]

[CLZ87]

[DJ91]

[DLY95]

[FF96]

[FJ91]

[FJ92]

[FJ93]

[Flo92]

[Flo95]

[Hoe95]

[Hoe96]

[ipp96]

Hari Balakrishnan, March 1996. Presentation
to the IETF TCP-LW working group.

Lawrence S. Brakmo, Sean W. O’Malley, and
Larry L. Peterson. TCP Vegas: New Techniques
for Congestion Detection and Avoidance. Pro-

ceedings of ACM SIGCOMM ’94, August 1994.

R. Braden. Requirements for Internet Hosts —
Communication Layers, October 1989. Request
for Comments 1122.

D. D. Clark, M. L. Lambert, and L. Zhang.
NETBLT: A High Throughput Transport Pro-
tocol. Computer Communications Review,
17(5):353-359, 1987.

Peter B. Danzig and Sugih Jamin. te-
plib: A Library of TCP/IP Traffic Char-
acteristics. Technical Report TR-SYS-91-
01, USC Networking and Distributed Sys-
tems Laboratory, October 1991. Obtain via:
ftp://catarina.usc.edu/pub/jamin/tcplib.

Peter B. Danzig, Zhen Liu, and Limim Yan. An
Evaluation of TCP Vegas by Live Emulation.
ACM SIGMetrics '95, 1995.

Kevin Fall and Sally Floyd. Compar-
isons of Tahoe, Reno and Sack TCP, May
1996. Submitted to CCR, Obtain via
ftp://ftp.ee.lbl.gov/papers/sacks_v2.ps.Z.

Sally Floyd and Van Jacobson. Traffic Phase
Effects in Packet-Switched Gateways. Computer
Communications Review, 21(2), April 1991.

Sally Floyd and Van Jacobson. On Traffic Phase
Effects in Packet-Switched Gateways. Inter-
networking: Research and Ezperience, 3(3):115—
156, September 1992.

Sally Floyd and Van Jacobson. Random Early
Detection Gateways for Congestion Avoidance.
IEEE/ACM Transactions on Networking, Au-
gust 1993.

Sally Floyd, February 1992. Private communi-
cation.

Sally Floyd. TCP and Successive Fast
Retransmits, February 1995. Obtain via
ftp://ftp.ee.lbl.gov/papers/fastretrans.ps.

Janey C. Hoe. Startup Dynamics of TCP’s Con-
gestion Control and Avoidance Schemes. Mas-
ter’s thesis, Massachusetts Institute of Technol-
ogy, June 1995.

Janey C. Hoe. Improving the Start-up Behavior
of a Congestion Control Scheme for TCP. Pro-
ceedings of ACM SIGCOMM ’96, August 1996.

Charter of the Benchmarking Working Group
(BMWG) of the IETF, 1996. Obtain via:
http://www.ietf.cnri.reston.va.us/html.charters/
bmwg—charter.html.

[Jac88]

[Jac90]
[Jac95]

[JB8S]

[JBB92]

[Kar95]

[Mat]

[Mat94]

[Mat95]

[MMFR96]

[Mog92]

[Pos81]
[Ste94]

[Ste96]

[tcp95]

[ZSC91]

Van Jacobson. Congestion Avoidance and Con-
trol. Proceedings of ACM SIGCOMM ’'88, Au-
gust 1988.

Van Jacobson. Fast Retransmit. Message to the
end2end-interest mailing list, April 1990.

Van Jacobson, July 1995. Private communica-
tion.

V. Jacobson and R. Braden. TCP Extensions
for Long-Delay Paths, October 1988. Request
for Comments 1072.

V. Jacobson, R. Braden, and D. Borman. TCP
Extensions for High Performance, May 1992.
Request for Comments 1323.

Phil Karn, December 1995. Private communi-
cation.

Matthew Mathis. Internet Performance
and IP Provider Metrics information page.
http://www.psc.edu/ “mathis/ippm/.

Matthew B. Mathis. Windowed Ping: An IP
Layer Performance Diagnostic. Proceedings of

INET’94/JENCS, 2, June 1994.

Matthew Mathis. Source code for the TReno
package, 1995. Obtain via:
ftp://ftp.psc.edu/pub/net_tools/treno.shar.

Matthew Mathis. Diagnosing Internet Conges-
tion with a Transport Layer Performance Tool.
Proceedings of INET’96, June 1996.

S. McCanne and S. Floyd. ns-LBNL Net-
work Simulator. Obtain via: http://www—
nrg.ee.lbl.gov/ns/.

Matthew Mathis, Jamshid Mahdavi, Sally

Floyd, and Allyn Romanow. TCP Selective Ac-
knowledgement Options, May 1996. Internet
Draft (“work in progress”) draft-ietf-tcplw-sack-
02.txt.

Jeff C. Mogul. Observing TCP Dynamics in
Real Networks. Proceedings of ACM SIGCOMM
'92, pages 305-317, October 1992.

J. Postel. Transmission Control Protocol,
September 1981. Request for Comments 793.

W. Stevens. TCP/IP Illustrated, volume 1.
Addison-Wesley, Reading MA, 1994.

W. Richard Stevens. TCP Slow Start, Conges-
tion Avoidance, Fast Retransmit, and Fast Re-
covery Algorithms, March 1996. Currently an
Internet Draft: draft-stevens-tcpca-spec-01.txt.

Minutes of the tcpfix meeting at the 34th IETF,
in Dallas TX, December 1995. Obtain via:
http://www.ietf.cnri.reston.va.us/proceedings/
95dec/tsv/tcplw.html.

Lixia Zhang, Scott Shenker, and David D.
Clark. Observations on the Dynamics of a Con-
gestion Control Algorithm: The Effects of Two-
Way Traffic. Proceedings of ACM SIGCOMM
'91, pages 133-148, 1991.

