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accurately control congestion while recovering from droppedsegments.We have developed a new algorithm to improve TCPcongestion control during recovery. This algorithm, calledForward Acknowledgment or FACK, works in conjunctionwith the proposed TCP SACK option [MMFR96]. The ex-istence of the SACK option alone greatly improves the ro-bustness of TCP following congestion. SACK will help TCPto survive multiple segment losses within a single windowwithout incurring a retransmission timeout. SACK can alsoglean additional information about congestion state, lead-ing to improved TCP behavior during recovery. The FACKalgorithm uses this information to add more precise controlto the injection of data into the network during recovery.Because FACK decouples the congestion control algorithms(which determine when and how much data to send) fromthe data recovery algorithms (which determine what datato send),1 we believe that it is the simplest and most directway to use SACK to improve congestion control.Other researchers are currently studying congestion con-trol issues in TCP. The research community is very in-terested in the potential of TCP Vegas [BOP94, DLY95].Through the use of delay measurements, TCP Vegas at-tempts to eliminate the periodic self-induced segment lossescaused in Reno TCP. The Vegas Congestion AvoidanceMechanism (CAM) algorithm modi�es the \linear increase"phase of congestion avoidance. In another recent study,Hoe investigates congestion control issues during Slow-start[Hoe95, Hoe96]. Because our work is focused primarily onimproving congestion control during recovery (the \expo-nential decrease" phase of congestion avoidance), it is com-patible with these e�orts. It is our expectation that eachof these e�orts can eventually be incorporated into TCP inorder to incrementally improve performance.In section 2 of this paper, we describe the principlesof congestion control on which FACK is built. Section 3presents a detailed description of the FACK algorithm. Sec-tion 4 examines the basic behavior of the FACK algorithmand several optional algorithms. Sections 5 and 6 explorethe performance of the various algorithms presented in thepaper. In section 7 we discuss future research directions forthis work. Finally, we summarize our �ndings.1This idea has been proposed before [CLZ87], but it has not beenimplemented for TCP.1



2 Congestion Control2.1 Ideal PrinciplesIn 1988, Van Jacobson published the paper that has be-come the standard for TCP congestion control algorithms[Jac88, Bra89]. We do not modify any of the algorithms de-scribed in that paper. Rather, FACK extends these conges-tion control algorithms to TCP's recovery interval. The keyconcepts of \conservation of packets," \Self-clock," \Con-gestion Avoidance" and \Slow-start" are reviewed below.\Conservation of packets" requires that a new segmentnot be injected into the network until an old segment hasleft. This principle leads to an inherent stability by ensuringthat the number of segments in the network remains con-stant. Other schemes, especially rate-based transmission,can cause the number of segments in the network to growwithout bound during periods of congestion, because dur-ing congestion the transmission time for segments increases.TCP implements conservation of packets by relying on \Self-clocking": segment transmissions are generally triggered byreturning acknowledgements. TCP's Self-clock contributessubstantially to protecting the network from congestion.\Congestion Avoidance" is the equilibrium state algo-rithm for TCP. TCP maintains a congestion window, cwnd,which represents the maximum amount of outstanding dataon the connection. When the TCP sender detects con-gestion in the network | identi�ed by the loss of one ormore segments | the congestion window is halved. Un-der other conditions, the congestion window is increasedlinearly by one maximum segment size (MSS) per roundtrip on the network. The stability of this linear increaseand multiplicative decrease algorithm has been demon-strated in many investigations since its publication in 1988[ZSC91, FJ91, Mog92, FJ92, FJ93].\Slow-start" is the algorithm which TCP uses to reachthe equilibrium state when cwnd is less than a threshold,ssthresh. Ssthresh attempts to dynamically estimate thecorrect window size for the connection. At connection es-tablishment and after retransmission timeouts, TCP setscwnd to 1 MSS and increases cwnd by 1 MSS for eachreceived ACK.2 This exponential increase continues untilcwnd reaches the Slow-start threshold, ssthresh. Oncessthresh is reached, TCP passes into the Congestion Avoid-ance regime. Ssthresh is set to half of the current value ofcwnd when the sender detects congestion or undergoes aretransmission timeout.2.2 Reno TCP BehaviorReno TCP is currently the de facto standard implementationof TCP [Ste94]. Reno implements Slow-start and Conges-tion Avoidance in the manner described above. It includesthe Fast Retransmit algorithm from Tahoe TCP and addsone new algorithm: Fast Recovery.Both Fast Retransmit and Fast Recovery [Ste96] rely oncounting \duplicate ACKs" { TCP acknowledgments sentby the data receiver in response to each additional receivedsegment following some missing data.2Jacobson describes the algorithm as we do, however, he goes onto note that the time it takes to open to a given window is \Rlog2Wwhere R is the round-trip-time and W is the window size in packets."When the receiver's Delayed ACK sends one ACK per two segments,this estimate should actually be Rlog1:5W . It is generally agreedthat, during Slow-start, it is correct to increase the window size byone MSS per ACK, even when the ACK acknowledges more than oneMSS of data.

Fast Retransmit and Fast Recovery [Jac90, Ste94] arealgorithms intended to preserve Self-clock during recoveryfrom a lost segment. Fast Retransmit uses duplicate ACKsto detect the loss of a segment. When three duplicate ACKsare detected, TCP assumes that a segment has been lost andretransmits it. The number three was chosen to minimizethe likelihood of out-of-order segments triggering spuriousretransmissions.The Fast Recovery algorithm attempts to estimate howmuch data remains outstanding in the network by countingduplicate ACKs. It arti�cially in
ates cwnd on each dupli-cate ACK that is received, causing new data to be transmit-ted as cwnd becomes large enough. Fast Recovery allows one(halved) window of new data to be transmitted following aFast Retransmit.Under single segment losses, Fast Retransmit and FastRecovery preserve TCP's Self-clock and enable it to keep thenetwork full while recovering from one lost segment. If thereare multiple lost segments, Reno is unlikely to fully recover,resulting in a timeout and subsequent Slow-start [Flo95].2.3 SACK TCP BehaviorThe new TCP SACK option [MMFR96] is progressingthrough the IETF standards track. It is a slight modi�-cation to the original SACK option described in RFC1072[JB88]. When the receiver holds non-contiguous data, itsends duplicate ACKs bearing SACK options to inform thesender which segments have been correctly received. Eachblock of contiguous data is expressed in the SACK optionusing the sequence number of the �rst octet of data in theblock, and the sequence number of the octet just beyond theend of the block. In the new SACK option the �rst block isrequired to include the most recently received segment. Ad-ditional SACK blocks repeat previously sent SACK blocks,to increase robustness in the presence of lost ACKs.To illustrate FACK, we compare its behavior to a SACKimplementation using Reno congestion control. Since thereis not yet a standard implementation of SACK, we make thefollowing assumptions about a SACK implementation usingReno congestion control:� Fast Retransmit and Fast Recovery are modi�ed tonot resend already SACKed segments (as one wouldexpect).� Fast Recovery continues to estimate the amount of out-standing data by counting returning ACKs. This as-sumption is made in order to retain the congestionproperties of Reno TCP, and is the main distinctionbetween a SACK implementation using Reno conges-tion control and a SACK implementation using FACKcongestion control.� The algorithm for detecting the end of recovery usesthe presence of SACK blocks to prevent partial ad-vances of snd:una3 from causing TCP to leave the re-covery state prematurely.43The TCP sender state variable snd:una holds the sequence num-ber of the �rst byte of unacknowledged data, snd:nxt holds the se-quence number of the �rst byte of unsent data. These variables arede�ned in the TCP standard [Pos81].4This �xes a problem in Reno which has been pointed out by Hoe[Hoe95] and Floyd [Flo95]. In some cases, Reno may incorrectly rein-voke Fast Retransmit and Fast Recovery. Floyd and Hoe have ob-served that strengthening Reno's test for the end of recovery improvesits behavior in a number of situations [FF96, Hoe95].2



In the remainder of this paper, \Reno+SACK" will referto an implementation as outlined above. A SACK imple-mentation which uses the FACK congestion control algo-rithm will be referred to simply as \FACK".2.4 FACK Design GoalsUnder single segment losses, Reno implements the ideal con-gestion control principles set forth above. However in thecase of multiple losses, Reno fails to meet the ideal princi-ples because it lacks a su�ciently accurate estimate of thedata outstanding in the network, at precisely the time whenit is needed most.5The requisite network state information can be obtainedwith accurate knowledge about the forward-most data heldby the receiver. By forward-most, we mean the correctly-received data with the highest sequence number. This is theorigin of the name \forward acknowledgment." The goal ofthe FACK algorithm is to perform precise congestion con-trol during recovery by keeping an accurate estimate of theamount of data outstanding in the network. In doing so,FACK attempts to preserve TCP's Self-clock and reducethe overall burstiness of TCP.Note that all TCP implementations discussed in thispaper have nearly identical behavior under single segmentlosses. This reduces the need for rigorous testing under\ordinary" conditions because all implementations have thesame expected performance.3 The FACK AlgorithmThe FACK algorithm uses the additional information pro-vided by the SACK option to keep an explicit measure ofthe total number of bytes of data outstanding in the net-work. In contrast, Reno and Reno+SACK both attemptto estimate this by assuming that each duplicate ACK re-ceived represents one segment which has left the network.The FACK algorithm is able to do this in a straightforwardway by introducing two new state variables, snd:fack andretran data. Also, the sender must retain information ondata blocks held by the receiver, which is required in or-der to use SACK information to correctly retransmit data.In addition to what is needed to control data retransmis-sion, information on retransmitted segments must be keptin order to accurately determine when they have left thenetwork.At the core of the FACK congestion control algorithm isa new TCP state variable in the data sender. This new vari-able, snd:fack, is updated to re
ect the forward-most dataheld by the receiver. In non-recovery states, the snd:fackvariable is updated from the acknowledgment number in theTCP header and is the same as snd:una. During recovery(while the receiver holds non-contiguous data) the sendercontinues to update snd:una from the acknowledgment num-ber in the TCP header, but utilizes information contained5The observation that Reno inaccurately assesses the networkstate arose as a part of ongoing research aimed at developing toolsfor benchmarking the production Internet [ipp96]. Our e�orts focusedon a tool called \TReno" for Traceroute-Reno [Mat95, Mat96], whichis an evolution of an earlier tool \Windowed Ping" [Mat94]. TRenoattempts to measure the available network headroom by emulatingReno TCP over a traceroute-like UDP stream. Although based onReno congestion control, TReno was observed to exhibit signi�cantlydi�erent behavior largely due to its precise picture of the congestionstate of the network. Our investigation of the di�erences betweenTReno and Reno behaviors led us to discover FACK's underlyingprinciples.

in TCP SACK options6 to update snd:fack. When a SACKblock is received which acknowledges data with a higher se-quence number than the current value of snd:fack, snd:fackis updated to re
ect the highest sequence number known tohave been received plus one.Sender algorithms that address reliable transport con-tinue to use the existing state variable snd:una. Senderalgorithms that address congestion management are alteredto use snd:fack, which provides a more accurate view forthe state of the network.We de�ne awnd to be the data sender's estimate ofthe actual quantity of data outstanding in the network.Assuming that all unacknowledged segments have left thenetwork:7 awnd = snd:nxt� snd:fack (1)During recovery, data which is retransmitted must alsobe included in the computation of awnd. The sender com-putes a new variable, retran data, re
ecting the quantity ofoutstanding retransmitted data in the network. Each timea segment is retransmitted, retran data is increased by thesegment's size; when a retransmitted segment is determinedto have left the network, retran data is decreased by thesegment's size. Therefore TCP's estimate of the amount ofdata outstanding in the network during recovery is given by:awnd = snd:nxt� snd:fack+ retran data (2)Using this measure of outstanding data, the FACK con-gestion control algorithm can regulate the amount of dataoutstanding in the network to be within one MSS of thecurrent value of cwnd:8while (awnd < cwnd)sendsomething();The FACK congestion control algorithm does not placespecial requirements on sendsomething(); the algorithmimplied by the SACK Internet-Draft is su�cient. Gener-ally sendsomething() should choose to send the oldest data�rst.9FACK derives its robustness from the simplicity of up-dating its state variables: if sendsomething() retransmitsold data, it will increase retran data; if it sends new data,it advances snd:nxt. Correspondingly, ACKs which reportnew data at the receiver either decrease retran data or ad-vance snd:fack. Furthermore, if the sender receives an ACKwhich advances snd:fack beyond the value of snd:nxt at thetime a segment was retransmitted (and that retransmittedsegment is otherwise unaccounted for), the sender knowsthat the segment which was retransmitted has been lost.6In principle, the FACK algorithm could also be implemented byutilizing the information provided by the receiver through other mech-anisms, such as TCP Timestamp option, to determine the rightmostsegment received [Kar95]. This would allow the bene�ts of improvedcongestion control during recovery to be immediately realized in ex-isting TCP implementations. However, because of the complementarynature of FACK and SACK, and the expected imminent deploymentof SACK, in our research we are assuming that FACK is implementedin conjunction with SACK.7This is true when the network is not reordering segments andthere have been no retransmissions.8In the case when cwnd has been halved immediately following alost segment, awnd will be signi�cant larger than cwnd. This issueis addressed in section 4.5.9If sendsomething() chooses to send new data, it is also con-strained by the receiver's window (snd:wnd) and must make an addi-tional check to ensure that the new data does not lie beyond the limitimposed by snd:wnd. If sendsomething() chooses to retransmit olddata, it is not constrained by the receiver's window.3



3.1 Triggering RecoveryReno invokes Fast Recovery by counting duplicate acknowl-edgments:if (dupacks == 3) {...}This algorithm causes an unnecessary delay if severalsegments are lost prior to receiving three duplicate acknowl-edgments. In the FACK version, the cwnd adjustment andretransmission are also triggered when the receiver reportsthat the reassembly queue is longer than 3 segments:if ((snd.fack - snd.una) > (3 * MSS) ||(dupacks == 3)) {...}If exactly one segment is lost, the two algorithms triggerrecovery on exactly the same duplicate acknowledgment.3.2 Ending RecoveryThe recovery period ends when snd:una advances to or be-yond snd:nxt at the time the �rst loss was detected. Duringthe recovery period, cwnd is held constant; when recoveryends TCP returns to Congestion Avoidance and performslinear increase on cwnd. In the implementation tested inthis paper, a timeout is forced if it is detected that a re-transmitted segment has been lost (again). This conditionis included to prevent FACK from being too aggressive inthe presence of persistent congestion.4 FACK behaviorIn this section we explore the behavior of the FACK algo-rithm in a simulator environment. We introduce another al-gorithm, Overdamping, which estimates the correct windowmore conservatively following losses as a result of Slow-start.Finally, we introduce a Rampdown algorithm to smoothdata transmission during the recovery period.4.1 Simulation EnvironmentWe tested these new algorithms by implementing them un-der the LBNL simulator \ns" [MF], where we added thenecessary new congestion control algorithms.10 The simula-tor includes models of Tahoe, Reno, and Reno+SACK. Weadded a FACK sender to the simulator, but were able to usethe existing SACK TCP receiver without modi�cation. Our�rst set of tests uses a simple network containing four nodes(�gure 1).Two of these nodes represent routers connected by a 5ms T1 link; one is a host in close proximity to these routers,and the other is a host 33 ms away. The bandwidth�delayproduct for this network is 16.3 kBytes, including store andforward delays. In all of our tests we utilize an MSS of 1 kB.Thus, properly provisioned routers in this network shouldhave queues at least 17 packets long.We varied queue lengths in order to examine both ade-quately provisioned and underprovisioned cases.11 In all of10An implementation of FACK will be available in a future releaseof ns.11Note that many historical papers investigating TCP dynamicsuse underbu�ered networks in their simulations. We believe that anyprotocol development work must adequately address both properlyprovisioned and underbu�ered networks, and protocolsmust be shownto be stable (if not optimal) in both environments.
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The network is provisioned with queues of length 17 packets. 30segments are unnecessarily retransmitted.Figure 2: Reno behavior during Slow-start.our investigations we utilize drop-tail routers. The details ofthe FACK algorithm and implementation do not require anychanges to operate in networks with more intelligent queu-ing disciplines. However, the relative bene�t of the FACKalgorithm in these networks will be slightly lower becauseepisodes of congestion in such networks are expected to beless extreme.In this paper, most of our examples plot segment num-bers vs. time in seconds.12 Each segment is shown twice,once when it enters the bottleneck queue and once when itleaves. Dropped segments are indicated by an \�". Re-transmissions always stand out because both the enqueueand dequeue events are visibly out of order. In some cases,plots of window size and router queue occupancy are shownas well.12See http://www.psc.edu/networking/papers/ for enlarged�gures.4



The network is provisioned with queues of length 17 packets. No datais unnecessarily retransmitted.Figure 3: Reno+SACK behavior during Slow-start.
The network is provisioned with queues of length 17 packets. No datais unnecessarily retransmitted.Figure 4: FACK behavior during Slow-start.

The network is provisioned with queues of length 10 packets, andssthresh is preset to 35 segments. No data is unnecessarily retrans-mitted.Figure 5: SACK and FACK loss recovery details.4.2 Behavior During Slow-startDuring Slow-start, TCP opens its window exponentially,forcing the network into congestion and often droppingmany segments. Figure 2 shows the behavior of Reno duringSlow-start. Reno is unable to handle the multiple segmentlosses; it times out and then proceeds with a Slow-start afterthe timeout interval.Figure 3 shows the behavior of Reno+SACK under thesame circumstances. Reno+SACK does not incur the time-out. However, due to the large number of lost segments,Reno+SACK underestimates the window during recovery,and requires several round trip times to complete recovery.Figure 4 shows the behavior of FACK in this situation.FACK divides its window size by two, waits half of an RTTfor data to exit the network, and then proceeds to retransmitlost segments.In these examples, both Reno+SACK and FACK makeno unnecessary retransmissions. Reno, on the other hand,unnecessarily retransmits 30 segments.4.3 FACK vs. Reno+SACKFigure 5 compares the detailed behaviors of FACK andReno+SACK in a slightly di�erent case. Here, the variablessthresh is preset to 35 and the bottleneck queue has only10 packet bu�ers. In this case, the behaviors of FACK and5



Reno+SACK are very similar. The primary di�erence is vis-ible in the queue length at the bottleneck link. At the end ofrecovery (about .8 sec), Reno+SACK makes a burst trans-mission which causes a spike in the queue length.13 Sincethe window size after the end of recovery is identical forboth algorithms, FACK and Reno+SACK will have roughlythe same overall performance for environments where TCPnever loses more than half a window of data.If more than half a window of data is lost, the windowestimate of Reno+SACK will not be su�ciently accurate.Figure 6 shows such a case. Here, in addition to the seg-ments lost during Slow-start, four additional segments weredropped in transit on the bottleneck link. In this case TCPruns out of ACKs before invoking Fast Recovery. In theworst case, this would result in a retransmit timeout fol-lowed by a Slow-start. One of the requirements of a SACKimplementation is that if the TCP sender takes a retransmittimeout, it must clear all information about SACK blocksheld by the receiver. Thus, the sender would timeout andthen Slow-start with the possibility of retransmitting datawhich has already been received. The SACK implementa-tion in the simulator includes an additional test speci�callyfor the case where more than half a window of data is lost,and proceeds directly into Slow-start. This avoids the re-transmit timeout, but still incurs the penalties of Slow-startand duplicated data. The �nal result, in this case, is that6 round trip times are lost to the Slow-start, and 25 seg-ments are unnecessarily retransmitted. Note that it wouldbe possible to further optimize Reno+SACK for this caseby keeping the information stored in the SACK blocks. Theresulting TCP would only take the penalty of the Slow-startfor this case.4.4 Slow-start Overshoots and the Overdamping Algo-rithmIn both the Reno and FACK examples, the congestion win-dow is almost immediately cut in half a second time. Thereason for this behavior is that when dividing cwnd by two,TCP should utilize the value of cwnd when the �rst lostsegment was sent. At this point, the session �lls the avail-able bu�er space exactly, whereas when the loss is detectedone RTT later, cwnd has doubled.14 We can improve thisbehavior by implementing the following additional windowadjustment:if (cwnd <= ssthresh + .5*mss)cwnd /= 2;If TCP has recently15 been in Slow-start, it reduces cwndby an extra factor of two prior to reducing the window andsetting ssthresh. This takes into account the fact that, atthe time the segment was sent, cwnd was smaller than itwas at the time the loss was detected, and therefore is moreconservative about setting cwnd and ssthresh. With thisadditional algorithm in place, the results of our test simu-lation are shown in �gure 7. Note that the �rst segmentloss following Slow-start does not occur until time 3.4 sec,compared with �gure 4 where it occurs at time 1.7 sec.13The size of the burst will be equal to the number of droppedsegments plus the number of dropped ACKs minus one.14In this section, we have not utilized Delayed ACKs, which wouldcause cwnd to increase by a factor of 1.5. The e�ects of Overdampingin this case are shown in section 5.15We de�ne \recently" as \within one half of a round-trip" of beingin Slow-start. The choice of one half is somewhat subjective, butpreserves continuity at the boundary conditions.

The network is provisioned with queues of length 17 packets, andfour non-congestion related losses have been injected. 25 segmentsare unnecessarily retransmitted.Figure 6: SACK recovery detail under greater than 1/2 win-dow of loss.
The network is provisioned with queues of length 17 packets. No datais unnecessarily retransmitted.Figure 7: Behavior of FACK with Overdamping.6



The network is provisioned with queues of length 6 packets. No datais unnecessarily retransmitted.Figure 8: FACK behavior with (bottom) and without (top)Rampdown. Overdamping is utilized in both cases.4.5 Data SmoothingDuring a congestion epoch, when one or more segments arelost, TCP performs an exponential backo� by cutting cwndin half. In current TCP implementations, the sender stopstransmitting data until enough data has left the network toreduce awnd below the new value of cwnd. The sender thenresumes transmission of data. This typically results in a fullwindow of data being transmitted in one half of a round triptime, resulting in uneven transmission of data for this andsubsequent round trips. Solutions to this problem have beensuggested [Hoe95, Jac95], but have not yet been deployed.16The recommended solution for this problem is to smooththe transmission of data over one RTT by slowly reducingcwnd, rather than instantly halving it. We implemented thissolution as follows:At the time congestion is detected:wintrim = (snd:nxt� snd:fack) � (1�winmult) (3)Each time snd:fack advances by �fack:wintrim = wintrim��fack � (1� winmult) (4)16We are aware of one research group working with a TCP imple-mentation which includes a solution to this problem similar to ours[Bal96].

Here, wintrim is added to cwnd during the \Ramp-down" phase of congestion control. At the time recoverybegins, cwnd+wintrim is slightly less than awnd. After oneround trip of recovery, wintrim is reduced to zero. Whilewintrim is non-zero, it acts to smooth the data evenly overone round trip, so that exactly cwnd bytes of data are out-standing at the end of this round trip. The variable winmultis the scale factor controlling how quickly wintrim is pulledto zero. Normally winmult is set to 0.5; if Overdamping isinvoked, winmult is set to 0.25 instead.In �gure 8 we set the queue length in the routers to 6packets, causing the network to be underutilized followingSlow-start. In each RTT following Slow-start, FACK withOverdamping (top of �gure 8) clusters its transmissions to-gether. On the other hand, FACK with Overdamping andRampdown (bottom of �gure 8) evenly distributes the dataacross a full round trip time, minimizing the e�ects of burstson the network.5 Comparison of Algorithm Performance During Slow-startIn order to compare the performance of the various algo-rithms presented in section 4, we ran simulations of six algo-rithms over an exhaustive range of queue-lengths in the bot-tleneck router. The six algorithms are Reno, Reno+SACK,FACK, FACK with Overdamping, FACK with Rampdown,and FACK with both Overdamping and Rampdown. In or-der to compare the performance of the various algorithms ina meaningful way, we computed the \lost opportunity" foreach run | the amount of additional data which could havebeen sent if the connection had run entirely in CongestionAvoidance. Events which cause idle time on the link duringSlow-start, such as retransmit timeouts or deep reductionsin cwnd, result in higher \lost opportunity".The results of this comparison are shown in �gure 9. Theupper graph shows the \lost opportunity" for each algorithmwith a receiver which acknowledges every segment (as usedin all of the examples in Section 4). The lower graph uses areceiver with Delayed ACK.17In both graphs, the e�ects of retransmit timeouts in Renoare clearly visible at all queue sizes. Without Delayed ACK,Reno loses between 300 kB and 500 kB of potential datatransfer capability during slowstart. With Delayed ACK,this value increases to between 650 kB and 900 kB. All ofthe options presented for SACK congestion control performsigni�cantly better than Reno in the cases presented here.Without Delayed ACK, the FACK algorithm alone showspoor performance for a subset of the queue sizes examined.In these cases, FACK is too aggressive following Slow-start,and takes additional packet loss resulting in a retransmissiontimeout. Reno+SACK also shows lower performance acrossall queue sizes than the remaining three variations of FACK.This is the result of additional round trips caused by ACKstarvation immediately following Slow-start (see �gure 3).The two versions of FACK which include the Overdampingalgorithm show poorer performance at low queue lengths.The best and most consistent performer is the FACK algo-rithm with Rampdown alone.With Delayed ACK, the FACK and Reno+SACK casesno longer exhibit the behaviors mentioned above, becauseSlow-start does not push the network as far into congestion.The e�ects of Overdamping are even more pronounced, and17A Delayed ACK receiver sends ACKs less frequently, and at min-imum, sends one ACK for every two MSS of data received. DelayedACK is used by almost all TCP implementations in the Internet.7



The receiver is not using Delayed ACK.
The receiver is using Delayed ACK.Figure 9: Comparison of the behavior of various congestionalgorithms during Slow-start.
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Figure 10: The jitter test topology
TCP forward path utilization as a function of the reverse path utiliza-tion. Note that 7% load on the reverse path causes nearly 45% idlecapacity on the forward path. This example uses a 20 packet queuelength, which is more than su�cient bu�ering for the network.Figure 11: Comparison of FACK, Reno, and Reno+SACKeven at the largest queue sizes we tested, Overdamping istoo conservative compared with the other algorithms.6 Performance ComparisonsWe have investigated the behavior and performance of thevarious congestion control algorithms under several scenar-ios. One scenario, in which TCP is subjected to delay jitterand bursty losses, demonstrates some interesting di�erencesbetween Reno, Reno+SACK, and FACK.In the simulator, we have been able to investigate TCP'sbehavior in this situation with a single, very low bandwidthdata stream in the reverse direction (�gure 10). The reversedata stream is one connection with small, randomly dis-tributed bursts of data at an average rate of two bursts persecond. The bursts are of small constant size for each run,ranging from 1 to 6 kB. This tra�c could be, for example,characteristic of a small NetNews stream or sporadic e-mail.In this environment, we ran each of the algorithms | Reno,Reno+Sack and FACK | and compared their performance.Figure 11 shows the forward path performance versus thereverse path load for each algorithm. Note that with only7% load on the reverse path, Reno leaves almost 50% idlecapacity on the forward path. This re
ects the combined8



In this trace we slightly reduced the bu�ering from �gure 11, to accent interesting detail. All of the behaviors shown in this �gure are present inone or more of the simulations used to generate �gure 11.Figure 12: Reno and Fack with jittere�ects of ACK compression [ZSC91], drop-tail routers andthe high penalty of retransmit timeouts. Note that this ex-ample uses a 20 packet queue length, which is more thansu�cient bu�ering for this network.6.1 Reno vs. FACKFigure 12 shows detailed behavior of Reno and FACK in asituation only slightly di�erent than in �gure 11. The tinyreverse tra�c causes ACK compression and competes forrouter bu�er space, which, in turn, causes clusters of packetloss in the bulk stream.In response to these clusters of loss, Reno behavior ap-pears chaotic, showing multiple window adjustments in asingle congestion episode and timeouts due to loss of itsSelf-clock.The bottom of �gure 12 shows FACK (with Overdampingand Rampdown) in exactly the same situation. Even thoughmany congestion epochs experience clusters of loss, FACKcorrectly performs exactly one multiplicative decrease ofcwnd per congestion epoch, preserves the TCP Self-clock,and avoids all timeouts.18 In this regime FACK appears tobe a stable, well-behaved control system, consistent with theprinciples of ideal congestion control.18Reno+SACK performs as well as FACK in this situation.
6.2 Impact to the InternetIn the Internet, anecdotal evidence suggests that episodes ofmultiple packet loss in one round trip are common. Paxsonobserves the following behavior in roughly 13% of the traceshe collected at major Internet exchange points:...a fast retransmit followed by a retransmittimeout, with the additional condition that thepacket retransmitted after the retransmit time-out had not been previously retransmitted...[FF96]It is most likely that this behavior is the result of minorcongestion episodes which cause multiple packet loss in oneround trip. Note that because only Reno TCP implemen-tations exhibit this particular behavior, the prevalence ofmultiple packet loss within one round trip may be signi�-cantly more common than suggested by this data.On our networks at PSC (a national supercomputing cen-ter with high bandwidth connectivity to the global Internet),the behavior shown in �gure 12 appears regularly for bulkdata transfers over moderately loaded wide area links.19 Thedeployment of any version of SACK should nearly double thethroughput of bulk transfers using TCP for these cases. In19Over a �xed path, Reno's performance can be improved by de-feating TCP's cwnd calculation by setting the maximumwindow sizeto just slightly smaller than needed to �ll the network.9



addition, we believe SACK TCP will be less biased againstATM than Reno TCP. For more typical Internet transfers,the bene�ts of SACK will likely be more moderate, but stillresult in overall improvements to both latency and goodput.7 Future WorkWe are currently working on an implementation of SACKTCP which will include FACK.20 Once implemented, FACKshould be evaluated in both a testbed environment and inthe Internet, to verify the performance of the algorithmsand to look for any adverse side e�ects. These investigationsshould also explore the data recovery aspects of SACK.There are several unresolved issues surrounding the al-gorithms presented in this paper. We are investigating asingle, simple algorithm to replace the Overdamping andRampdown, as well as several methods for addressing per-sistent congestion (when halving is not a su�cient windowreduction). We have been moderately successful at derivingclosed-form mathematical models for FACK TCP perfor-mance in some topologies and believe that this techniquedeserves further exploration.The new state variable snd:fack might also be used tostrengthen Round Trip Time Measurements (RTTM) andProtection Against Wrapped Sequence (PAWS) algorithms[JBB92] during recovery.The FACK algorithm was �rst implemented in TReno,an Internet performance metric [Mat96]. Tools to measureInternet performance should track the evolution of TCP[Mat].The production Internet still lacks adequate attention toissues of congestion and congestion detection. Many routersare incapable of providing full bandwidth�delay bu�eringand do not signal the onset of congestion through mecha-nisms such as Random Early Detection (RED) [FJ93]. Al-though the FACK algorithm is designed to help in times ofcongestion, it is not a substitute for these signals at the In-ternet layer. The transport and internet layers must worktogether to improve the behavior of the Internet under highload.Other current research into TCP congestion is largelyindependent of FACK. The Congestion Avoidance Mech-anism (CAM) of TCP Vegas [BOP94, DLY95] attemptsto avoid unnecessary in
ation of the congestion windowthrough delay sensing techniques. Hoe has done extensivework in analyzing the e�ects of congestion during Slow-start[Hoe95, Hoe96], where there can be signi�cant performanceproblems. The implementation of SACK and/or FACKmayreduce the gravity of these problems, but will not eliminatethem. Both of these e�orts address di�erent aspects of theTCP congestion control problem. Hoe also discusses a formof Rampdown, which was the inspiration for this part of ourwork. It should be possible to incorporate all of these con-cepts in a single TCP implementation, allowing for study oftheir combined bene�ts.Finally, applications which do not use TCP are becomingmore prevalent in the Internet, and many of these applica-tions pay little or no attention to congestion control issues.The more predictable behavior and better understanding ofTCP congestion control may be a step toward a standardizedtransport layer congestion behavior for use by all Internetapplications.20This implementation will be made publicly available whencompleted.

8 ConclusionIn this paper, we have presented the FACK algorithm forcongestion control, the Overdamping algorithm to o�setSlow-start overshoot, and the Rampdown algorithm fortransmission smoothing. In our investigations, we have dis-covered that both FACK and Reno+SACK provide majorperformance improvements over existing Reno implementa-tions, due primarily to the avoidance of retransmission time-outs. Eventually, Reno users will perceive SACK implemen-tations as having a signi�cant advantage; this will provideincentive for the rapid widespread deployment of SACK inthe Internet.The FACK algorithm has several bene�ts overReno+SACK. Since FACK more accurately controls theoutstanding data in the network, it is less bursty thanReno+SACK, and can recover from episodes of heavy lossbetter than Reno+SACK. Because FACK uniformly adheresto basic principles of congestion control, it may be possi-ble to produce formal mathematical models of its behaviorand to support further advances in congestion control the-ory. Furthermore, based on our experience in implementingFACK in the simulator, it is more straightforward to codeand less prone to subtle bugs than Reno+SACK.For the additional algorithms presented, Overdampingand Rampdown, we obtained mixed success. The Over-damping algorithm is too conservative in the general case.The Rampdown algorithm, however, appears to work quitewell. Based on the results in this paper, future work shouldexplore variations on the Rampdown algorithm which incor-porate the ideas included in the Overdamping algorithm.Finally, we had di�culties developing realistic simula-tions of the Internet's observed clustered packet loss. Cur-rent simulation technologies do not accurately model theInternet with its vast complexity and huge populations ofusers, hosts, connections and packets.21 This limitationmakes it di�cult to predict the operational impact of de-ploying new protocols in the Internet. Limited simulationsand tra�c playback approaches are not likely to reveal phe-nomena resembling turbulent coupling between protocols.We hope to investigate new simulation paradigms in the fu-ture.9 AcknowledgementsWe would like to thank Sally Floyd and Steve McCannefor making the LBNL simulator publicly available, withoutwhich we would have been unable to complete this work. Weare especially grateful to the �ve anonymous reviewers fortheir insightful comments on our initial draft of this work,as well as to Sally Floyd and Craig Partridge for their in-valuable assistance in moving it to �nal form. We would liketo thank Susan Blackman and Karen Fabrizius for repeatedreadings and markups on our grammar and spelling. Finally,we would like to acknowledge our management at PSC forencouraging our research activities on TCP performance.21In our experiments, we did not take advantage of the capabilitiesof tcplib [DJ91], which models some of these complexities.10
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