
Performance of scheduling policies in adversarial networks with non
synchronized clocks

Juan Céspedes∗ Antonio Fernández∗ José Luis López-Presa† M. Araceli Lorenzo‡

Pilar Manzano‡ Juan Martı́nez-Romo∗ Alberto Mozo‡ Anna Puig§ Agustı́n Santos∗

Christopher Thraves∗¶

Abstract

In this paper we generalize the Continuous Adversarial Queuing Theory (CAQT) model [5] by considering the possibility

that the router clocks in the network are not synchronized. We name the new model Non Synchronized CAQT (NSCAQT).

Clearly, this new extension to the model only affects those scheduling policies that use some form of timing. In a first

approach we consider the case in which although not synchronized, all clocks run at the same speed, maintaining constant

differences. In this case we show that all universally stable policies in CAQT that use the injection time and the remaining

path to schedule packets remain universally stable. These policies include, for instance, Shortest in System (SIS) andLongest

in System (LIS). Then, we study the case in which clock differences can vary over time, but the maximum difference is

bounded. In this model we show the universal stability of SISand a family of policies related to LIS (the priority of a packet

in these policies depends on the arrival time and a function of the length of the path traversed). The bounds we obtain in this

case depend on the maximum difference between clocks. We then present a new policy that we call Longest in Queues (LIQ),

which gives priority to the packet that has been waiting the longest in edge queues. This policy is universally stable and, if

clocks maintain constant differences, the bounds we prove do not depend on them. To finish, we provide with simulation

results that compare the behavior of some of these protocolsin a network with stochastic injection of packets.

1 Introduction

Stability is a requirement in a packet switched network in order to be able to provide some quality of service. Stability

means that the amount of traffic that is being routed in the network is always bounded. It is well known that an appropriate

scheduling of packets is fundamental in order to guarantee stability [2]. A fundamental question is to identify scheduling

policies that are able to guarantee stability, and among these, policies that guarantee good quality of service (e.g., latency).

The study of the capability of scheduling policies to guarantee stability under worst-case situations has been done with

adversarial models [6, 8, 9, 2, 7]. In these models, the arrival of packets to the network is controlled by an adversary which

defines, for each packet, the instant and node in the network where it is injected, and very often, its path in the network. To

avoid the overload of links in the network, the number of packets that the adversary can inject is bounded. As we said, the

∗GSyC, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain.
†EUITT, Universidad Politécnica de Madrid, 28031 Madrid, Spain.
‡EUI, Universidad Politécnica de Madrid, 28031 Madrid, Spain.
§Universitat Jaume I, 12071 Castellón, Spain.
¶Corresponding author. Ph: +34-914887054 Fax: +34-914887049 E-mail: cbthraves@gmail.com.

1

main objective of these models is to explore the ability of scheduling policies at the routers to maintain the system stable or

provide good quality of service even in the worst conditions.

Adversarial models. In this general framework two main adversarial models have been defined. In the Permanent Session

Model [8, 9, 7], also known as the(σ, ρ)-regulated injection model, all the traffic in the network isgrouped in sessions, whose

route and maximum packet injection rate are defined by the adversary. The adversary is restricted on the ratesσi that it can

assign to sessions in the sense that the total rate of the sessions that cross a link does not saturate the link. Additionally, the

adversary is in control of the arrival of packets. The adversary always tries to create instability or to increase the maximum

latency experienced by packets. There have been many works exploring this model, and proposing stable policies with

different guarantees of quality of service (e.g., [8, 9, 10,11, 7]). It is also interesting to observe that, in this model, FIFO (or

FCFS), which is the most popular scheduling policy by far, can be made unstable at any constant network load [1].

The Temporary Session Model, commonly known as the Adversarial Queuing Theory (AQT) model [6, 2], relaxes the

restriction that packets are assigned to sessions. This relaxation is similar to allowing the adversary to dynamicallychange

the sessions over time. In this model, each packet is injected with its own path and the only restriction on the adversary is that

it cannot overload any link, in an amortized sense. The AQT model assumes that the network evolves in steps, and in each

step at most one packet crosses each link. The Continuous AQT(CAQT) model, recently presented in [5], is an extension of

the AQT model in which packets can have arbitrary sizes, an links have different bandwidths and propagation delays. This

model is closer to reality than AQT, and due to the fact that AQT is a particular case of CAQT, the instability results obtained

for AQT remain valid for CAQT. Additionally, it was shown in [5] that many positive results under the AQT model also hold

under the CAQT model. The system model we consider in this paper is strongly based on the CAQT model.

Time-based scheduling policies. From all the polices that have been shown to be stable in all networks (which we call

universally stable) under the AQT and CAQT models, those that seem to provide the lowest end-to-end packet delays are

based on timing. In fact, it has been shown by Weinard [14] that for any policy in the family Without-Time-Stamping

strategies, there aren-node under-loaded networks in which the delays and queue sizes are2Ω(
√

n). A policy of this family

is assumed to know the network topology, and it assigns the priority of a packet as a function of its path and the number

of edges it already crossed. This implies that, in general, it is convenient to use some timing information for scheduling.

Unfortunately, the simplest time-based policies, can alsosuffer of large delays. For instance, for Shortest in System(SIS),

the policy that gives the highest priority to the newest packet in the network, there are networks in which the delays and

queue sizes are2Ω(
√

n) [2]. Similarly, for Longest in System (LIS), the policy thatgives the highest priority to the oldest

packet in the network, there are networks with diameterd in which the delays and queue sizes are2Ω(d) [4].

The good news are that time-based policies can in fact provide low delay guarantees. For instance, in [2] it is presented

a randomized scheduling algorithm that guarantees delays polynomial on the network parameters. This algorithm basically

uses a longest-in-system strategy with random permutations. The deterministic scheduling algorithm with polynomialdelays

presented in [3] uses a similar approach. Additionally, there are simulation studies [12] which show that LIS may in fact

behave much better in practice than one may expect from the lower bounds mentioned above.

2

Clocks, clock drifts, and clock skews. The above mentioned results for time-based scheduling policies are obtained in

network models in which it is implicitly assumed that each node in the network has a local clock to provide the time, and

that all these clocks are synchronized and provide the same time. However, this latter assumption is not realistic in practice,

since the oscillation frequency of each computer timer is different, what produces differentclock drifts. The consequence

of these drifts is that it is not unusual that different clocks provide different times. The differences between the clock times

is what we callclock skews. In practice, in order to limit the effect of clock drifts, and to bound the clock skews, there are

mechanisms, like the Network Time Protocol (NTP), that allow the resynchronization of clocks.

The Non Synchronized CAQT model. In this paper we propose a model of adversary in which clocks do not need to be

synchronized. We call the new modelNon Synchronized CAQT(NSCAQT), since it is basically the CAQT model with this

additional generalization. Under this model we will study the behavior of different queue scheduling policies which depend

on time and can be affected both by clock skews and clock drifts. To study these policies, we need to make assumptions on

how they use the local clocks. For instance, for LIS and SIS wewill assume that packets are assigned the local clock value

of their injection node at their injection time, value that they carry with them and is used for scheduling.

In this paper we will study two main variations of the NSCAQT model. In the first one we assume that the system has

clock skews but no clock has drifts. Hence, in this model clocks do not have the same time, but their time differences remain

constant. We call this theNSCAQT model with constant skews.The second model we will study is a model in which skews

can vary over time, but there is a bound on the maximum difference between the time of the clocks. We call this model

the NSCAQT model with bounded skews, and is very suited to model a network in which a protocol likeNTP is used to

periodically resynchronize all the clocks. A third naturalmodel which we do not explore here is one in which clock drifts

are present and no resynchronization mechanism guaranteesthat the skews are bounded. This model is left for future study.

Contributions. The main contribution of this work is the detailed definitionof a model in which clocks need not be

synchronized. We have not found a model that considers this possibility in any previous adversarial model. Then, the

first result we provide is on the NSCAQT model with constant skews. We study under this model scheduling policies that

assign priorities to packets based on their injection timesand their remaining paths. For these policies we will show how

the NSCAQT system can be transformed into a CAQT system by changing the topology of the network and the adversary.

As a consequence, we conclude that any such policy that is universally stable under CAQT is also universally stable under

NSCAQT with constant skews.

We then explore universal stability under the NSCAQT model with bounded skews. In this model, we prove the universal

stability of the SIS policy. We also define a family of policies, that include LIS as a particular case, and show that all the

policies in the family are universally stable in this model as well. We call this family of policiesLongest in System considering

Path(LISP). Policies from the LISP family assign packet priorities depending on both the injection time and the number of

edges already traversed by the packet.

Unfortunately, for the universally stable policies that weidentified with the previously mentioned results, all the upper

bounds on delays and queue sizes that we could prove depend onthe clock skews. In fact, in several cases it can be easily

shown that these parameters become larger as the skews grow.Then, the question is whether there are policies whose

3

performance does not depend on the clock skews. We introducea new policy,Longest in Queues(LIQ), which gives priority

to the packet that has been waiting in queues the longest. We show that this policy is universally stable in the NSCAQT

model with bounded skews. More interestingly, we show that in the NSCAQT model with constant skews this policy has an

upper bound on the end-to-end delay that does not depend on the skews and is close to that of LIS in CAQT.

Finally, we present some simulations which try to shed some light on the behavior of LIS, SIS, and LIQ in a network

with stochastic arrival patterns, instead of adversarial,in the NSCAQT model with constant skews. The results show that,

as expected by analysis, LIQ is not affected by the clock skews, and presents the best performance from among the three

policies.

Structure. The structure of the rest of the paper is the following. In Section 2 we define the NSCAQT model in detail and

introduce some notation to be used on the paper. In Section 3 we study stability under the NSCAQT model with constant

skews. In Section 4 we study SIS and the policies in LISP underthe NSCAQT model with bounded skews. In Section 5

we explore the performance of LIQ under both NSCAQT models. Finally, in Section 6 we present the simulations that have

been done.

2 System model

Like most previous adversarial network models, the NSCAQT system model has three major elements: an underlying net-

work G, a scheduling policy usedP , and an adversaryA. With these elements, the evolution of the system can be seenas a

game between the adversary, which injects packets in the network trying to create instability, and the scheduling policy, that

decides which packets move along their paths in the network,trying to prevent instability. The model of system considered

in this paper is a direct extension that presented in [5].

The network. In this model a network is modeled by a directed graphG, formed by a set of nodesV (G), representing the

hosts and routers, and a set of edgesE(G), representing links between the nodes. Each linke of the network has associated

a positive finite bandwidthBe, which determines the transmission speed of the link, and a finite propagation delayPe ≥ 0.

We use a specific notation for the largest propagation delay and smallest bandwidth as follows:Pmax = maxe∈E(G){Pe}

andBmin = mine∈E(G){Be}. (SinceG is finite, these values are well defined.)

The bounded adversary. In a system with networkG, the adversaryA defines the traffic pattern, continuously deciding

which packets are injected. Additionally, for each packetp, the adversary chooses the moment of injectionT0(p), the source

nodev0(p), the destination nodevdp
(p), and the path the packet has to traverseΠ(p) = (e0(p), e1(p), ..., edp−1(p)). (When

clear from the context, we may omit the packetp from the notation.) Notice thatdp represents the length of the path packetp

has to traverse. We assume that a packet path is edge-simple,i.e. it does not contain the same edge more than once, although

it can visit the same node several times1. We denote bydmax the length of the longest path of a packet, which is clearly open

1This assumption does not decrease the generality of the model in terms of universal stability of policies, since it is known that a system in which packets
may traverse the same edge several times can be simulated by another system with only edge-simple paths [1].

4

bounded by the length of the longest edge-simple path in the network. In Figure 1 we represent the path assigned to a packet

p.

......

p

vi(p)v2(p)v1(p)v0(p) vdp
(p)

ei(p)e1(p)e0(p)
vi+1(p)

edp−1(p)ei−1(p)

T0(p)

Figure 1: PathΠ(p) assigned to a packetp in the network.

Although the adversary controls the traffic arrival, it is restricted on the load that it can inject to the system. We assume

that the injection of a packet is instantaneous. Then, ifNe(I) represents the number of bits of the packets which want to

cross edgee injected byA during an intervalI, it must satisfy that

Ne(I) ≤ r|I|Be + b = (1 − ε)|I|Be + b (1)

for every edgee and for every time intervalI. We denote byr, 0 < r ≤ 1, the long term rate (load) the adversary can

impose on the system. For convenience we sometimes use the notationr = 1 − ε, for ε ≥ 0. The parameterb, b ≥ 1, is the

burstiness allowed to the adversary injections, which is the excess of bits allowed to arrive at any time during the complete

game. An adversary that satisfies this condition is called an(r, b)-adversary.

Packets, queues, and buffers. Packets are sequences of bits of possibly different sizes. We denote byLp the size in bits

of a packetp and byLmax the maximum size of a packet. Because of the above restriction (1) on the adversary and the

assumption of instantaneous injection of packets, it can beeasily observed thatLmax ≤ b. Note thatb is also an upper bound

on the number of packets that the adversary can inject instantaneously (which is achieved in the improbable case that all

packets have size 1).

Packets in the system follow their path traversing one edge after the other toward their destination. As explained in [5],

in every node in the network there is a reception buffer for each edge entering the node and an output queue for each edge

leaving the node. The output queue of an edge has unbounded capacity and holds the packets that are ready to cross this

edge. The scheduling policy of the edge’s output queue chooses the next packet to cross the edge from those in this output

queue. The reception buffer is used to store the received portion of a packet until it has been completely received. Then,

the packet is placed instantaneously by a dispatcher in the corresponding output queue or it disappears from the system if it

already reached its destination.

Note that once a packetp starts to cross edgee, it will spend Lp

Be
+ Pe units of time to completely cross it. As parameter

of the network we have the greatest amount of time that a packet can spend crossing an edge, denotedDmax, and defined as

Dmax = max
e∈E(G)

{

Lmax

Be

+ Pe

}

≤
b

Bmin
+ Pmax.

Clocks. As we said, the main difference between the NSCAQT model we propose and previous models [6, 7, 2, 5] is that

we consider here the impact of clocks not being synchronizedon the performance. In order to make the model as general

5

as possible, we assume that the output queue of each edge has its own internal clock, callededge clock(this is clearly more

general than assuming one clock per node). Additionally, weassume there is an external reference clock which is always on

time. We refer to this clock as thereal clockand we say that it provides thereal time. We assume that the adversary has

access to both the edge clocks and the real clock, while the scheduling policy at a given edge has only access to the clock of

that edge.

The difference between the real clock and the edge clock ofe at real timet is what we call theclock skewof e’s edge clock

at timet, and is denoted byφe(t). Then, ifte denotes the value of the edge clock ofe at real timet, we havete = t−φe(t). If

this value changes over time, we say that the edge clock has adrift. If an edge clock has no drift we omit the time and denote

its skew byφe. Note that, at any given time, the skew of an edge clock can be positive or negative. However, for convenience

we assume that these skews are all non-negative if all edge-clock skews are lower bounded. We can do this freely since the

real clock is not available to the scheduling policies and does not interfere in the relation between edge clocks.

We denote byTi(p), 0 ≤ i < dp, the real time at which a packetp arrives to the output queue of the edgeei(p). Due to

clock skews, according to edgeei(p)’s clock, the instant when packetp arrives to the output queue isTi(p) − φei(p)(Ti(p)).

Additionally, we denote byTdp
(p) the time at whichp is completely received at its destination and leaves the system.

Scheduling policies. As we said above, the scheduling policy is in charge of deciding, whenever a linke is available,

which packet from those in the output queue ofe must be sent next acrosse. In this paper we only consider distributed

work-conserving time-based scheduling policies. We say that policies are distributed if they do not use the state (and in

particular the clock) of other edges to make scheduling decisions. Policies are work-conserving (also called greedy) if they

always send a packet across the link as long as the edge’s output queue is not empty. Finally, we only consider time-based

policies, which are policies that use the edge clocks for scheduling. Note that policies that are not time-based are not affected

by clock skews and drifts.

We will only consider in this work systems in which all the queues use the same scheduling policy. The study of systems

under the NSCAQT model in which different queues may use different scheduling policies is left for future work.

Two of the most studied distributed work-conserving time-based scheduling policies are Longest in System (LIS) and

Shortest in System (SIS). The LIS policy gives the highest priority to the packet that has been in the system for the longest

time, while the SIS policy gives the highest priority to the packet that has been in the system for the shortest time. These

definitions do not clearly show the use these policies make ofthe edge clocks. For that, we need to look at the natural

implementation of these policies: upon arrival of a packetp into the system, it is assigned a timestamp,TS (p), which p

carries with it. Then, the LIS and SIS policies only compare the timestamps of the packets to decide which to schedule next.

The edge scheduler in LIS gives the highest priority to the packet with the smallest timestamp, while in SIS it gives the

highest priority to the packet with the largest timestamp. Note that when clocks are not synchronized, these timestampsare

not accurate, since the timestamp for a packetp is

TS (p) = T0(p) − φe0(p)(T0(p)).

These two policies have been proved to be universally stablein [5] for the CAQT model, whereφe = 0 for all e ∈ E(G).

In addition to these two well-known policies, we will study afamily of policies derived from LIS, that we call Longest in

6

System considering Path (LISP). In the policies of this family, packets carry their timestamp and the length of the traversed

path, so that at its edgeei(p), packetp is assigned a priority label of the form

PL(p, i) = TS (p) + f(i),

wheref(i) is a function which assigns a real number to eachi ∈ {0, 1, . . . , dmax − 1}, beingi the number of crossed edges.

A policy Pf is in LISP if at each queue it gives the highest priority to thepacketp with the smallest valuePL(p, i). Notice

that whenf(i) = 0 for all i, Pf is equivalent to LIS. Since the functionf is defined over the finite set of number of edges

crossed by a packet, it has a maximum and a minimum values, that we denote byfmax andfmin, respectively.

Finally, we will consider a new policy named Longest in Queues (LIQ). In this policy the highest priority is assigned to

the packet that has been waiting the longest in all the outputqueues it has visited. In our model NSCAQT, in which clocks

are not synchronized, we assume that the time in queues is measured locally at each output queue. The time a packetp waits

at the edgee’s queue is the difference between the value of the edge clockwhen the packet arrives and the value when it

starts being transmitted, or the current value of the edge clock if it is still waiting. The time used to schedulep is the sum of

these waiting times in all the visited queues.

System stability. To study stability and performance in packet switching networks, we introduce the concept of a(G,P ,A)

system to represent the game played between an adversaryA and the packet scheduling policyP over the networkG. In the

NSCAQT model, a system(G,P ,A) is stable if the maximum number of packets (or bits) present in the system is bounded

at any time by a constant that may depend on system parameters: the network, the adversary or the policy. A policyP is

universally stableif the system(G,P ,A) is stable on every networkG and against every(r, b)-adversaryA with r < 1 and

b ≥ 1.

3 Stability of policies for constant clock skews

In this section we study the case in which all the edge clocks have zero drift, so thatφe is constant. This framework allows to

assure the stability in a non synchronized system if there isstability in a synchronized system for many policies, in particular

for those policies that only depend on the injection time andthe remaining path of the packets.

We present a proof by transformation of this case. We start from a (G,P ,A) system with non synchronized clocks,

whereA is an(r, b)-adversary,r ≤ 1. Then, we vary the networkG and the adversaryA to obtain a synchronized system

(G′,P ,A′), whereA′ is an(r, b′)-adversary, so that if(G′,P ,A′) is stable, then(G,P ,A) is also stable.

Construction of G′. As we explained in the previous section, since we arbitrarily fix the real clock, we can do it so that

all the clock skews are non-negative. Then, letG = (V, E) be a directed graph in the NSCAQT model with constant skew

φe ≥ 0 for each edge clock. We constructG′ starting fromG as shown in Figure 2.

For each edgee ∈ E(G) with φe > 0, letKe = ⌈b + rBeφe/2⌉. Then, we addLmax ×Ke edges andLmax ×Ke nodes.

New edges and nodes are denotedel,j andvl,j , respectively, wherel ∈ {1, 2, . . . , Lmax} andj ∈ {1, 2, . . . , Ke}. For all l

7

eLmax,Ke

e1,1

vLmax,Ke

e e

v1,1

Figure 2: Basic process to transformG intoG′.

and for allj, we place edgeel,j from nodevl,j to the tail of edgee. For every edgeel,j, we set the bandwidth toBel,j = 2l
φe

and the propagation delay toPel,j = φe

2 .

Remark 1 With this construction process, a packetp of sizeLp takesφe

2 units of time to be fully sent andφe units of time to

be fully received across any edgeeLp,j, j ∈ {1, 2, . . . , Ke}.

Construction of A′. We now construct the adversaryA′ fromA. A packet that is injected byA at edgee of G with φe = 0

is injected exactly in the same edge at the same time inG′ byA′. Now, letp be a packet of sizeLp that was injected inG by

A at timet, such thatφe0(p) > 0. Then,A′ will inject a packetp′ in G′ at timet − φe0(p). The size ofp′ will be Lp′ = Lp

and its path will be

Π(p′) = (e
Lp,j

0 (p), e0(p), e1(p), . . . , edp
(p)),

wheree
Lp,j

0 (p) is an edge corresponding to the construction described above. This edge must satisfy that no other packet has

been injected in it in the previousφe/2 time. SinceKe is clearly an upper bound on the number of packets of lengthLp that

can be injected in any interval ofφe/2 time, and there areKe edges for eachLp, there is always a suitable edge to be used.

Under these circumstances, if packet is injected byA in time t in the queue of edgee, and labeled with an timestamp

of t − φe, a corresponding packet injected byA′ will arrive to the same queue at the same timet, labeled with the same

timestamp. Let us now bound the parameters of the adversaryA′.

Remark 2 The packets injected byA during an interval of size|I| + φmax are injected byA′ during an intervalI ′ with

maximum size|I|. So, sinceA is an (r, b)-adversary,A′ is an (r, b′)-adversary, whereb′ = b + φmaxBmax, andφmax =

maxe∈E(G){φe}.

We can now state the main result of this section.

Theorem 1 Let (G′,P ,A′) be the synchronized system in the CAQT model obtained from the non synchronized system

(G,P ,A) through the above process. LetP be a scheduling policy which considers only the time of injection of the packets

and the paths that the packets still have to traverse. Then,(G,P ,A) is stable if and only if(G′,P ,A′) is stable.

Proof. Note that the stability of(G,P ,A) must occur for any value of the clock skews, including the case in which all skews

are zero. Then, it trivially follows that if(G,P ,A) is stable,(G′,P ,A′) is stable as well.

8

In the other direction, we first have that the queues of the newedgesel,j in system(G′,P ,A′) never present contention

since, from Remark 1 and by the construction of the adversaryA′, by the time a packet arrives the previous packet (if any)

was already sent. Then, if we observe the output queues of theedges thatG′ andG have in common, we find that similar sets

of packets arrive at the same times, with the same timestamps, and with the same remaining paths to cross in both systems

(G,P ,A) and(G′,P ,A′). Since these are the parameters used byP to schedule the packets, we have that the behavior of

these queues in systems(G,P ,A) and(G′,P ,A′) is exactly the same. So, if there is no bound on the number of packets in

(G,P ,A), there is no bound either on the number of packets in(G′,P ,A′). Then we have that if(G,P ,A) is unstable then

(G′,P ,A′) is unstable or, equivalently, if(G′,P ,A′) is stable then(G,P ,A) is stable.

Corollary 1 The scheduling policies that are universally stable in CAQTand only consider the times of injection and the

paths that the packets still have to traverse are universally stable in the NSCAQT model with constant clock skews.

4 Stability of policies for bounded clock skews

In this section we will study the case in which clocks may experience drifts. Hence, we assume here that the clock skews are

not necessarily constant. However, the maximum differencebetween real time and any edge clock is bounded. As we said,

this model fits naturally with a system in which edge clocks are periodically resynchronized, for instance via NTP.

In this section we will again adapt the real time reference clock, in order to simplify the analysis and the presentation.

Like in the previous section, we will assume that all clock skews are non-negative, i.e., for any edgee and any timet,

φe(t) ≥ 0. Additionally, since we assume that skews are bounded, we can safely defineφmax = maxe,t{φe(t)}.

Under these assumptions, we show first that the SIS policy is universally stable (universal stability for CAQT was proved

in [5]). Then we consider the family of policies LISP, to which LIS belongs, and we also show its universal stability for the

NSCAQT model, and consequently, for CAQT (which was previously unknown in general).

4.1 Universal stability of SIS

As we said above, the SIS scheduling policy gives the highestpriority to the packet which has been in the system for the

shortest time. Additionally, we assume that SIS is implemented by making the first edge in the path of a packetp to attach

the arrival time to the packet. Since this arrival time is obtained from the local edge clock, SIS can be affected by clock

skews.

The proof of universal stability of SIS we present is very similar to that presented in [5] for the CAQT model. We first

recall a lemma proved there, which limits the time spent by a packet in the queue of an edgee if there arek − 1 bits in the

system with higher priority to cross that edge. The assumptions and the proof of this lemma do not depend on whether the

clocks are synchronized. Hence, it can be applied directly to our model.

Lemma 1 ([5]) Letp be a packet that, at real timet, is waiting in the queue of edgee. At that instant, letk − 1 be the total

size in bits of the packets in the system that also want to crosse and that may have priority overp. Then,p will start crossing

e in at most(k + b)/(εBe) units of time.

9

Recall that, when a packetp starts crossing an edgee, it spendsPe + Lp/Be ≤ Dmax units of time until it crosses it

completely. Then, using this and the previous lemma recursively we can prove the following result. The proof can be found

in the Appendix.

Lemma 2 Letk0 = rφmaxBmax + b, andki = ki−1 + r
(

ki−1+b

εBmin
+ Dmax

)

Bmax + b, for 0 < i < dmax. When a packetp

arrives to the output queue of edgeei(p), no more thatki − 1 bits can have priority over it in any edgeej(p), for j ≥ i.

Using these definitions ofki and the previous lemma, we can limit the size of the queues andthe amount of time that

a packet spends in the network as it was done in [5]. The proof of the theorem is verbatim to the the final part of the

corresponding theorem in [5] and is hence omitted.

Theorem 2 Let G be a network anddmax the length of its longest edge-simple directed path, letA be an(r, b)-adversary

with r = 1 − ε < 1 andb ≥ 1. Then the system(G, SIS,A) is stable under the NSCAQT model with bounded clock skews,

no queue ever containskdmax−1 + Lmax bits, and no packet spends more than

dmaxb +
∑dmax−1

i=0 ki

εBmin
+ dmaxDmax

units of time in the system.

Hence the main result of the section.

Corollary 2 SIS is universally stable in the NSCAQT model bounded clock skews.

4.2 Universal stability of LISP

In this subsection we explore the stability of the new familyof policies LISP defined in Section 2, which is based on the

injection time and the number of edges already crossed by a packet. As described there, a policyPf in LISP assigns to each

packetp at the queue of its edgeei(p) a priority labelPL(p, i) = TS (p) + f(i), and gives the highest priority to the packet

with the smallest label.

Now we prove that every policy in LISP is universally stable in the NSCAQT model when the clock skew is bounded by

φmax. We start with the following simple lemma.

Lemma 3 Let p andq be two packets. IfT0(q) > T0(p) + fmax − fmin + φmax, thenq never has higher priority thanp in

any queue.

Proof. Let us assume thatp andq meet at the output queue of edgeei(p) = ej(q). Note thatφmax − φe0(q) ≥ 0 and that

f(j) − fmin ≥ 0. Hence,

PL(q, j) = T0(q) − φe0(q) + f(j) > T0(p) + fmax − fmin + φmax − φe0(q) + f(j) ≥ T0(p) + fmax ≥ PL(p, i),

and thenPL(q, j) > PL(p, i) for all i andj.

10

Let p be a packet in the system and lett denote some real time in[T0(p), Tdp
(p)]. We denote byg(t) the real injection

time of the oldest packet in the system at timet. We defineCp = maxt∈[T0(p),Tdp(p)]{t−g(t)}. Notice thatCp represents the

age of the oldest packet in the system whilep is present. For convenience we use the abbreviationK = fmax−fmin +φmax.

In the following lemma we start by bounding the amount of time, Ti+1(p) − Ti(p), thatp takes to move from the queue

of ei to the queue ofei+1, which allows us to bound the timep is in the system. The proof can be found in the Appendix.

Lemma 4 The time packetp is in the system is at most

Tdp
(p) − T0(p) ≤ (1 − εd)

(

K + Cp +
Dmax

1 − ε

)

.

Now, we have bounded the time that a packet spends in the system, but our bound depends onCp. To finish the proof we

need the following lemma. The proof can be found in the Appendix.

Lemma 5 For any packetp we have that

Cp ≤
1 − εdmax

εdmax

(

K +
Dmax

1 − ε

)

= C.

Now we can enunciate the final theorem of this section. The proof is by Lemmas 4 and 5, and the definition ofK.

Theorem 3 LetG be a network anddmax the length of its longest edge-simple directed path, letA be an(r, b)-adversary,

with r = 1 − ε < 1 andb ≥ 1, and letPf be a policy in LISP. Then the system(G,Pf ,A) is stable under the NSCAQT

model with bounded clock skew, and no packet spends more than

1 − εdmax

εdmax

(

fmax − fmin + φmax +
Dmax

1 − ε

)

units of time in the system.

Corollary 3 Any protocol in LISP, and in particular LIS, is universally stable under the NSCAQT model with bounded clock

skew, and hence under the CAQT model.

5 Universal stability of LIQ

In previous sections we have shown how several policies are universally stable in the NSCAQT models with constant and

bounded clock skews, respectively. Unfortunately, the bounds on end-to-end packet latencies we derived were dependent on

the maximum clock skew that can occur in the system. This means that in a system with high maximum skew, the latencies

can be very high. It is easy to construct examples for policies like SIS and LIS in which this can be observed.

In this section we study a new policy named LIQ, which gives the highest priority to the packet that has been waiting

in output queues for the longest time. We prove that LIQ is universally stable in the NSCAQT model with but bounded

clock skews. The bad news is that in this case the end-to-end latency bound we obtain depends also on the maximum skew.

The good news is that for the NSCAQT model with constant clockskews LIQ is universally stable, and the bound does not

depend on the maximum skew, and it is similar to that obtainedwith LIS in a synchronized system.

11

As in previous sections, we assume thatφe(t) ≥ 0 for all e and t. Then, we defineφmin(e) = mint{φe(t)} and

φmax(e) = maxt{φe(t)}. Finally, let ∆φ = maxe{φmax(e) − φmin(e)}. Observe that in the model of constant skews,

∆φ = 0.

Let Wi,t(p) be the amount of real time which packetp has waited in output queues when at timet it is at the queue of

edgeei(p). We have that

t = T0(p) + Wi,t(p) +

i−1
∑

k=0

(

Lp

Bek(p)
+ Pek(p)

)

and, hence,

t − T0(p) − dmaxDmax ≤ Wi,t(p) ≤ t − T0(p). (2)

Recall that measuring the waiting time of a packet at a queue is done by taking the local time when the packet arrives

and the local time when it leaves (or the current local time ifit is still in the queue). Then the measured time at one queue

can have an error of up to±∆φ. Hence, the measured waiting time of a packetp that at timet is in queueei(p), denoted

Mi,t(p), is a value in the interval[Wi,t(p) − i∆φ, Wi,t(p) + i∆φ].

The proof we have is similar to the proof for the LISP family ofpolicies. We first prove a lemma analogous to Lemma 3.

Lemma 6 Let p andq be two packets. IfT0(q) > T0(p) + dmax(2∆φ + Dmax), thenq never has higher priority thanp in

any queue.

Proof. Let us assume thatp and q meet at the output queue of edgeei(p) = ej(q) at time t. We need to show that

Mj,t(q) < Mi,t(p) is satisfied for anyi, j, andt. The largest valueMj,t(q) can take is

Mj,t(q) ≤ Wj,t(q) + j∆φ ≤ Wj,t(q) + dmax∆φ.

Similarly, Mi,t(p) ≥ Wi,t(p) − dmax∆φ, and therefore we are left with the problem of showing thatWj,t(q) < Wi,t(p) −

2dmax∆φ. Then, by using Equation (2) and the assumption of the lemma,we have

Wj,t(q) ≤ t − T0(q) < t − T0(p) − dmax(2∆φ + Dmax) ≤ Wi,t(p) − 2dmax∆φ

which completes the proof.

Now, definingK = dmax(2∆φ+Dmax), we have that Lemmas 4 and 5 are also valid in this case. Then, we can enunciate

the following theorem.

Theorem 4 LetG be a network withdmax the length of its longest edge-simple directed path, letA be an(r, b)-adversary

with r = 1 − ε < 1. Then

1. the system(G, LIQ,A) is stable under the NSCAQT model with bounded clock skews, and no packet spends more

than
1 − εdmax

εdmax

(

dmax(2∆φ + Dmax) +
Dmax

1 − ε

)

units of time in the system, and

12

2. the system(G, LIQ,A) is stable under the NSCAQT model with constant clock skews, and no packet spends more than

1 − εdmax

εdmax

(

dmaxDmax +
Dmax

1 − ε

)

units of time in the system.

Corollary 4 LIQ is universally stable under the NSCAQT model with bounded clock skews, and hence under the CAQT

model.

6 Simulations

In order to partially evaluate the theoretical results we have developed several simulation experiments. All the experiments

in this article have been carried out using the J-Sim discrete event simulator [13]. J-Sim has been designed to simulate

network behaviors in a realistic way, including propagation delays, packet processing times, etc. The J-Sim package has

been modified in several ways, mainly to adapt it to our model.First, the traffic generator has been modified in order

to ensure that destinations are uniformly distributed overall nodes in the network. Then, the sink monitor has also been

changed in order to log several parameters that are not stored by J-Sim by default (e.g., the mean and the variance of the

packet delay and the queue size, and samples of these values chosen at random). Also, the routing algorithm has been

replaced and some scheduling policies discussed in this paper have been implemented.

The network topology used in all the experiments is an11 × 11 torus, in which every node is, at the same time, router,

source, and sink of packets. Each node periodically generates new packets, whose destination is chosen randomly and

uniformly among the nodes of the network. The routing is deterministic, so that the traffic is balanced among all the links.

We have adjusted the average load of the network to 99% in the simulations because we are interested on the response of the

network with high load levels. In our experiments all the queues are of unbounded size, links have no propagation delays,

the link bandwidth is set to 100 Kbps and the packet size is 105bytes. The simulation experiments have been run for 6000

seconds, ignoring the first 1000 seconds in the analysis of the results.

We assign to local node clocks (all output edge clocks in a node are the same) different skews following a normal distri-

bution with a mean value of 0 seconds and a standard deviationof up to105 milliseconds. Before starting the experiment,

each node randomly chooses a constant skew for its clock fromthe above distribution.

Figure 3 shows the mean and maximum latencies experienced bypackets that cross 10 links when, as said before, the

distribution of clock skews have standard deviations ranging from0 to 105 milliseconds. As expected, LIQ is not affected by

clock skews, since it does not consider injection time (which could be affected by clock skews), but waiting time, which is

always correctly computed since all clocks run at the same speed (there are no drifts). It is also noticeable that the meanand

the maximum latencies of LIQ are very low, which is not the case for the other policies, especially when clock skews grow.

At first sight, it seems a bit paradoxical the fact that the mean latency with SIS decreases when skews grow. However, this

behavior may be attributed to the fact that increasing skewsrandomizes the behavior of the policy. Note that the maximum

latency with SIS does not seem to be significantly affected bythe skew variation. LIS suffers from increasing clock skews,

since its effectiveness relies on the accuracy of clocks. When skews grow, LIS clearly degrades its performance. Finally, we

13

T
im

e
(s

ec
on

ds
)

Means with Hops=10 (Logarithmic)

SIS
LIS
LIQ

8

10 103x10 3x10 3x10
2 2 3 3 4 4

10

0

12

14

Skew (milliseconds)

4

6

10
5

10

T
im

e
(s

ec
on

ds
)

Max with Hops=10 (Logarithmic)

SIS
LIS
LIQ

50

10 103x1010 3x10 3x10
22 3 3 4 4 5

100

200

500

1000

2000

0

Skew (milliseconds)

10

20

10

Figure 3: Latency experienced by packets that cross 10 linkswith policies LIS, SIS, and LIQ under distribution of skews
with different standard deviations.

SIS (0)
SIS (10 5)
LIS (0)
LIS (10 5)
LIQ

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

10
.0

0

T
im

e
(s

ec
on

ds
)

Means (Logarithmic)

0.
02

2 4 6 8 10

Hops

1e
−

01

SIS (0)
SIS (10 5)
LIS (0)
LIS (10 5)
LIQ

1e
+

00
1e

+
01

1e
+

02
1e

+
03

Max (Logarithmic)

T
im

e
(s

ec
on

ds
)

6 8 10

Hops

2 4

Figure 4: Latency experienced by packets with policies LIS,SIS, and LIQ under normal distribution of skews with standard
deviations of 0 and 100000.

want to emphasize the great distance between the mean and themaximum in the case of SIS, and in the case of LIS for large

skews.

Figure 4 shows how the number of hops a packet needs to reach its destination affects the latency. Here we see that LIS

when all clocks are synchronized (no skews) and LIQ give analogous results, and behave quite uniformly on the number of

hops. It is again noticeable that the mean and the maximum aremuch closer in the cases of LIS with no skews and LIQ, than

in the other cases (between one and two orders of magnitude).Observe that, while with LIS the slope of the curve increases

with the skew, with SIS the slope decreases.

References

[1] Matthew Andrews. Instability of fifo in the permanent sessions model at arbitrarily small network loads. InSODA.

ACM Press, 2007.

14

[2] Matthew Andrews, Baruch Awerbuch, Antonio Fernández,Frank Thomson Leighton, Zhiyong Liu, and Jon M. Klein-

berg. Universal-stability results and performance boundsfor greedy contention-resolution protocols.J. ACM, 48(1):39–

69, 2001.

[3] Matthew Andrews, Antonio Fernández, Ashish Goel, and Lisa Zhang. Source routing and scheduling in packet net-

works. J. ACM, 52(4):582–601, 2005.

[4] Matthew Andrews and Lisa Zhang. The effects of temporarysessions on network performance.SIAM J. Comput.,

33(3):659–673, 2004.

[5] Maria J. Blesa, Daniel Calzada, Antonio Fernández, Luis López, Andrés L. Martı́nez, Agustı́n Santos, and Maria J.

Serna. Adversarial queueing model for continuous network dynamics. In Joanna Jedrzejowicz and Andrzej Szepi-

etowski, editors,MFCS, volume 3618 ofLecture Notes in Computer Science, pages 144–155. Springer, 2005.

[6] Allan Borodin, Jon M. Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P. Williamson. Adversarial queuing

theory.J. ACM, 48(1):13–38, 2001.

[7] Jean-Yves Le Boudec and Patrick Thiran.Network calculus: a theory of deterministic queuing systems for the internet.

Springer-Verlag New York, Inc., New York, NY, USA, 2001.

[8] R. L. Cruz. A calculus for network delay, Part I: Network elements in isolation.IEEE Transactions on Information

Theory, 37(1):114 – 131, 1991.

[9] R. L. Cruz. A calculus for network delay, Part II: Networkanalysis. IEEE Transactions on Information Theory,

37(1):132 – 141, 1991.

[10] A. K. Parekh and R. G. Gallager. A generalized processorsharing approach to flow control in integrated services

networks: The single-node case.IEEE/ACM Transactions on Networking, 1(3):344 – 357, 1993.

[11] A. K. Parekh and R. G. Gallager. A generalized processorsharing approach to flow control in integrated services

networks: The multiple-node case.IEEE/ACM Transactions on Networking, 2(2):137 – 150, 1994.

[12] Agustı́n Santos, Antonio Fernández, and Luis López.Evaluation of packet scheduling policies with applicationto

real-time traffic. InActas de las V Jornadas de Ingenierı́a Teleḿatica, JITEL 2005, Vigo, Spain, 2005.

[13] J-Sim simulator.

http://www.j-sim.org/.

[14] Maik Weinard. The necessity of timekeeping in adversarial queueing. In Sotiris E. Nikoletseas, editor,WEA, volume

3503 ofLecture Notes in Computer Science, pages 440–451. Springer, 2005.

15

A Proof of Lemma 2

Proof. Let us first consider the casei = 0. When a packetp, arrives into the system, the packets that may have priority

over it have been injected at mostφmax (maximum clock skew) units of time earlier thanp, because, although they maybe

arrived to the system beforep, they have a greater timestamp due to their initial edge’s clock skew. The total size of these

packets is at mostrφmaxBmax + b − 1 = k0 − 1 bits (sinceLp ≥ 1). Let us now assume as induction hypothesis that

the claim holds for0 ≥ i < dp − 1. Then, from Lemma 1,p will arrive at the output queue of edgeei+1(p) at most

(ki + b)/(εBmin) + Dmax time units after arriving at the output queue of edgeei(p). During this time at most packets

with r((ki + b)/(εBmin) + Dmax)Bmax + b bits are injected that can blockp at any edge. Hence packets with at most

(ki − 1) + r((ki + b)/(εBmin) + Dmax)Bmax + b = ki+1 − 1 bits can blockp in any edgeej(p), j ≥ i + 1.

B Proof of Lemma 4

Proof. Observe that the oldest packet in the system whenp arrives at the queue ofei at timeTi(p) was injected at most at

timeTi(p)−Cp. Then, from Lemma 3 we have thatp, and all the packets with higher priority thanp in the queue ofei, were

injected during the interval[Ti(p) − Cp, T0(p) + K]. Since the packets injected in this interval can have at most

(1 − ε)(T0(p) + K − Ti(p) + Cp)Bei
+ b

bits, we know that all of them crossei in at most

(1 − ε)(T0(p) + K − Ti(p) + Cp) +
b

Bei

+ Pei
≤ (1 − ε)(T0(p) + K − Ti(p) + Cp) + Dmax

units of time. Then, we have that

Ti+1(p) ≤ Ti(p) + (1 − ε)(T0(p) + K − Ti(p) + Cp) + Dmax

= εTi(p) + (1 − ε)(T0(p) + K + Cp) + Dmax,

and solving the recurrence forTdp
(p) we getTdp

(p) − T0(p) ≤ (1 − εd) (K + Cp + Dmax/(1 − ε)) .

C Proof of Lemma 5

Proof. By contradiction, let us assume there are packets that spendin the system more thanC time. Lett be the first time at

which a packet has been in the system more thanC time, and letp be one packet that satisfies this. ThenTdp
(p) − T0(p) ≥

t − T0(p) > C. Note that beforet no packet in the system has age older thanC. Hence, by Lemma 4 withCp = C we have

that

Tdp
(p) − T0(p) ≤ (1 − εdp)

(

K + C +
Dmax

1 − ε

)

≤ (1 − εdmax)

(

K + C +
Dmax

1 − ε

)

= C + εdmaxC + (1 − εdmax)

(

K +
Dmax

1 − ε

)

= C,

which is a contradiction.

16

