Performance of scheduling policies in adversarial neteavith non
synchronized clocks

Juan Céspedes Antonio Fernandez José Luis Lopez-Presa M. Araceli Lorenzé
Pilar Manzanb Juan Martinez-Ronmfo ~ Alberto Mozd AnnaPui§ Agustin Santos
Christopher Thravés

Abstract

In this paper we generalize the Continuous Adversarial @gelheory (CAQT) model [5] by considering the possibility
that the router clocks in the network are not synchronized.ndme the new model Non Synchronized CAQT (NSCAQT).
Clearly, this new extension to the model only affects thageeduling policies that use some form of timing. In a first
approach we consider the case in which although not synize@nall clocks run at the same speed, maintaining constant
differences. In this case we show that all universally gtqglicies in CAQT that use the injection time and the renmagjni
path to schedule packets remain universally stable. Thelgsgs include, for instance, Shortest in System (SIS)laohest
in System (LIS). Then, we study the case in which clock défees can vary over time, but the maximum difference is
bounded. In this model we show the universal stability of &8 a family of policies related to LIS (the priority of a patk
in these policies depends on the arrival time and a functioheolength of the path traversed). The bounds we obtainisn th
case depend on the maximum difference between clocks. \Wethsent a new policy that we call Longest in Queues (LIQ),
which gives priority to the packet that has been waiting tregest in edge queues. This policy is universally stable iénd
clocks maintain constant differences, the bounds we proveod depend on them. To finish, we provide with simulation

results that compare the behavior of some of these protatalsetwork with stochastic injection of packets.

1 Introduction

Stability is a requirement in a packet switched network ideorto be able to provide some quality of service. Stability
means that the amount of traffic that is being routed in thevowt is always bounded. It is well known that an appropriate
scheduling of packets is fundamental in order to guarantg®lisy [2]. A fundamental question is to identify scheihg
policies that are able to guarantee stability, and amorggth@olicies that guarantee good quality of service (eatenky).

The study of the capability of scheduling policies to guéearstability under worst-case situations has been dore wit
adversarial models [6, 8, 9, 2, 7]. In these models, thearai/packets to the network is controlled by an adversarctvhi
defines, for each packet, the instant and node in the netwekanit is injected, and very often, its path in the network. T

avoid the overload of links in the network, the number of maskhat the adversary can inject is bounded. As we said, the

*GSyC, Universidad Rey Juan Carlos, 28933 Mostoles, Ma8pain.

TEUITT, Universidad Politecnica de Madrid, 28031 Madriga.

fEUI, Universidad Politecnica de Madrid, 28031 Madrid, Bpa

§Universitat Jaume I, 12071 Castellon, Spain.

9Corresponding author. Ph: +34-914887054 Fax: +34-9148B®mail: chthraves@gmail.com.

main objective of these models is to explore the ability dfestuling policies at the routers to maintain the systemetaib

provide good quality of service even in the worst conditions

Adversarial models. In this general framework two main adversarial models haenldefined. In the Permanent Session
Model [8, 9, 7], also known as tHe, p)-regulated injection model, all the traffic in the networlgisuped in sessions, whose
route and maximum packet injection rate are defined by theradvy. The adversary is restricted on the ratethat it can
assign to sessions in the sense that the total rate of therses#sat cross a link does not saturate the link. Additibynéie
adversary is in control of the arrival of packets. The adagralways tries to create instability or to increase the imam
latency experienced by packets. There have been many wrpksriag this model, and proposing stable policies with
different guarantees of quality of service (e.g., [8, 9,111, 7]). Itis also interesting to observe that, in this mo&&FO (or
FCFS), which is the most popular scheduling policy by fan lsa made unstable at any constant network load [1].

The Temporary Session Model, commonly known as the Adviatlsaueuing Theory (AQT) model [6, 2], relaxes the
restriction that packets are assigned to sessions. Thisatin is similar to allowing the adversary to dynamicalhiange
the sessions over time. In this model, each packet is irgegith its own path and the only restriction on the adversatiat
it cannot overload any link, in an amortized sense. The AQTehassumes that the network evolves in steps, and in each
step at most one packet crosses each link. The Continuoug@QQT) model, recently presented in [5], is an extension of
the AQT model in which packets can have arbitrary sizes,rdes Ihave different bandwidths and propagation delays. This
model is closer to reality than AQT, and due to the fact thaTA€a particular case of CAQT, the instability results obéai
for AQT remain valid for CAQT. Additionally, it was shown iB] that many positive results under the AQT model also hold
under the CAQT model. The system model we consider in thiepiagstrongly based on the CAQT model.

Time-based scheduling policies. From all the polices that have been shown to be stable in allarks (which we call
universally stable) under the AQT and CAQT models, thosesham to provide the lowest end-to-end packet delays are
based on timing. In fact, it has been shown by Weinard [14] tbaany policy in the family Without-Time-Stamping
strategies, there arenode under-loaded networks in which the delays and quees sre22(v") . A policy of this family
is assumed to know the network topology, and it assigns tiweifyrof a packet as a function of its path and the number
of edges it already crossed. This implies that, in gener@, donvenient to use some timing information for schedulin
Unfortunately, the simplest time-based policies, can aidter of large delays. For instance, for Shortest in Sygi8I8),
the policy that gives the highest priority to the newest gadk the network, there are networks in which the delays and
queue sizes arg(v) [2]. Similarly, for Longest in System (LIS), the policy thgives the highest priority to the oldest
packet in the network, there are networks with diaméterwhich the delays and queue sizes 2t&? [4].

The good news are that time-based policies can in fact pedeid delay guarantees. For instance, in [2] it is presented
a randomized scheduling algorithm that guarantees delaya@mial on the network parameters. This algorithm bdlsica
uses a longest-in-system strategy with random permugatitime deterministic scheduling algorithm with polynondialays
presented in [3] uses a similar approach. Additionallyrehere simulation studies [12] which show that LIS may in fact

behave much better in practice than one may expect from ter loounds mentioned above.

Clocks, clock drifts, and clock skews. The above mentioned results for time-based schedulingipslare obtained in
network models in which it is implicitly assumed that eaclid@an the network has a local clock to provide the time, and
that all these clocks are synchronized and provide the samee However, this latter assumption is not realistic incicze,
since the oscillation frequency of each computer timer ffeidint, what produces differentock drifts The consequence
of these drifts is that it is not unusual that different clegkovide different times. The differences between thekctooes

is what we callclock skewsIn practice, in order to limit the effect of clock drifts, @mo bound the clock skews, there are

mechanisms, like the Network Time Protocol (NTP), thatwaltbe resynchronization of clocks.

The Non Synchronized CAQT model. In this paper we propose a model of adversary in which clocksat need to be
synchronized. We call the new modébn Synchronized CAQINSCAQT), since it is basically the CAQT model with this
additional generalization. Under this model we will stutlg behavior of different queue scheduling policies whicheshel

on time and can be affected both by clock skews and clocksdiit study these policies, we need to make assumptions on
how they use the local clocks. For instance, for LIS and SISwlleassume that packets are assigned the local clock value
of their injection node at their injection time, value thia¢y carry with them and is used for scheduling.

In this paper we will study two main variations of the NSCAQDawel. In the first one we assume that the system has
clock skews but no clock has drifts. Hence, in this modelkdato not have the same time, but their time differences nemai
constant. We call this thdSCAQT model with constant skew$ie second model we will study is a model in which skews
can vary over time, but there is a bound on the maximum diffiezebetween the time of the clocks. We call this model
the NSCAQT model with bounded skewsd is very suited to model a network in which a protocol IKEP is used to
periodically resynchronize all the clocks. A third naturadel which we do not explore here is one in which clock drifts

are present and no resynchronization mechanism guardahtgeke skews are bounded. This model is left for futureystud

Contributions. The main contribution of this work is the detailed definitioha model in which clocks need not be
synchronized. We have not found a model that considers thgsilpility in any previous adversarial model. Then, the
first result we provide is on the NSCAQT model with constargvek We study under this model scheduling policies that
assign priorities to packets based on their injection tiares their remaining paths. For these policies we will show ho
the NSCAQT system can be transformed into a CAQT system biygihg the topology of the network and the adversary.
As a consequence, we conclude that any such policy that versaily stable under CAQT is also universally stable under
NSCAQT with constant skews.

We then explore universal stability under the NSCAQT mod#i wounded skews. In this model, we prove the universal
stability of the SIS policy. We also define a family of polisjehat include LIS as a particular case, and show that all the
policies in the family are universally stable in this modeiheell. We call this family of policiekongest in System considering
Path (LISP). Policies from the LISP family assign packet pri@stdepending on both the injection time and the number of
edges already traversed by the packet.

Unfortunately, for the universally stable policies that itentified with the previously mentioned results, all thgpep
bounds on delays and queue sizes that we could prove depdhd olock skews. In fact, in several cases it can be easily

shown that these parameters become larger as the skews @iwm, the question is whether there are policies whose

performance does not depend on the clock skews. We intranew policylongest in Queue@ |Q), which gives priority
to the packet that has been waiting in queues the longest.hdig that this policy is universally stable in the NSCAQT
model with bounded skews. More interestingly, we show thahé NSCAQT model with constant skews this policy has an
upper bound on the end-to-end delay that does not depen@&a@kelwvs and is close to that of LIS in CAQT.

Finally, we present some simulations which try to shed sagte bn the behavior of LIS, SIS, and LIQ in a network
with stochastic arrival patterns, instead of adversainaihe NSCAQT model with constant skews. The results showy tha
as expected by analysis, LIQ is not affected by the clock skamd presents the best performance from among the three

policies.

Structure. The structure of the rest of the paper is the following. IntBec2 we define the NSCAQT model in detail and

introduce some notation to be used on the paper. In Sectioa &wdy stability under the NSCAQT model with constant
skews. In Section 4 we study SIS and the policies in LISP utiteNSCAQT model with bounded skews. In Section 5
we explore the performance of LIQ under both NSCAQT modadlsalfy, in Section 6 we present the simulations that have

been done.

2 System mode

Like most previous adversarial network models, the NSCA@Siesn model has three major elements: an underlying net-
work G, a scheduling policy use, and an adversary. With these elements, the evolution of the system can beaean
game between the adversary, which injects packets in teorletrying to create instability, and the scheduling pglibat
decides which packets move along their paths in the netvingtikg to prevent instability. The model of system conséter

in this paper is a direct extension that presented in [5].

Thenetwork. In this model a network is modeled by a directed grépformed by a set of nodés(G), representing the
hosts and routers, and a set of edgg¢), representing links between the nodes. Eachdiokthe network has associated
a positive finite bandwidttB,., which determines the transmission speed of the link, anadita foropagation delay, > 0.
We use a specific notation for the largest propagation detdysanallest bandwidth as follows?,,.x = max.cpg){ P}

and Buin = min.eg(g){ B.}. (Sinceg is finite, these values are well defined.)

The bounded adversary. In a system with network, the adversaryl defines the traffic pattern, continuously deciding
which packets are injected. Additionally, for each pagkehe adversary chooses the moment of injeciibfp), the source
nodewy(p), the destination nodey, (p), and the path the packet has to traveigg) = (eo(p), e1(p), ..., €q,-1(p)). (When
clear from the context, we may omit the packétom the notation.) Notice that, represents the length of the path pagket
has to traverse. We assume that a packet path is edge-sirapiegdoes not contain the same edge more than once, althoug

it can visit the same node several tirhed/e denote byl,,.., the length of the longest path of a packet, which is cleargrop

1This assumption does not decrease the generality of theliinagems of universal stability of policies, since it is kmo that a system in which packets
may traverse the same edge several times can be simulatedtneasystem with only edge-simple paths [1].

bounded by the length of the longest edge-simple path ingheark. In Figure 1 we represent the path assigned to a packet

@ alp) @ o () _gil<p> ci(p) ._gd“(p)
1 To(p)

p.

Figure 1: PatHI(p) assigned to a packgtin the network.

Although the adversary controls the traffic arrival, it istrected on the load that it can inject to the system. We agsum
that the injection of a packet is instantaneous. TheN.ifI) represents the number of bits of the packets which want to

cross edge injected by.4 during an interval, it must satisfy that
N.(I)<r|I|Be+b=(1—¢)/I|Bc+b (1)

for every edge: and for every time interval. We denote by, 0 < r < 1, the long term rate (load) the adversary can
impose on the system. For convenience we sometimes usetdit®ne = 1 — ¢, fore > 0. The parameter, b > 1, is the
burstiness allowed to the adversary injections, whichésetkcess of bits allowed to arrive at any time during the cetepl

game. An adversary that satisfies this condition is calle@-gr-adversary.

Packets, queues, and buffers. Packets are sequences of bits of possibly different sizesdé&Mote byL,, the size in bits
of a packetp and by L., the maximum size of a packet. Because of the above restri¢tipon the adversary and the
assumption of instantaneous injection of packets, it cagelsédy observed thdt,,.x < b. Note that is also an upper bound
on the number of packets that the adversary can inject itstaously (which is achieved in the improbable case that all
packets have size 1).

Packets in the system follow their path traversing one eftge the other toward their destination. As explained in [5]
in every node in the network there is a reception buffer fmheadge entering the node and an output queue for each edge
leaving the node. The output queue of an edge has unboungadityaand holds the packets that are ready to cross this
edge. The scheduling policy of the edge’s output queue @wothe next packet to cross the edge from those in this output
gueue. The reception buffer is used to store the receivetibpasf a packet until it has been completely received. Then,
the packet is placed instantaneously by a dispatcher indiresponding output queue or it disappears from the sydtém i
already reached its destination.

Note that once a packgtstarts to cross edge it will spendg—i + P, units of time to completely cross it. As parameter

of the network we have the greatest amount of time that a paekespend crossing an edge, dendigd., and defined as

Lmax b
Doy = P.; < Prax-
Pgléa(}é) { Be * } Bmin N

Clocks. As we said, the main difference between the NSCAQT model wpgse and previous models [6, 7, 2, 5] is that

we consider here the impact of clocks not being synchronirethe performance. In order to make the model as general

as possible, we assume that the output queue of each eddge bamiinternal clock, calleddge clocKthis is clearly more
general than assuming one clock per node). Additionallyaggime there is an external reference clock which is always o
time. We refer to this clock as threal clockand we say that it provides thieal time We assume that the adversary has
access to both the edge clocks and the real clock, while tiedsding policy at a given edge has only access to the clock of
that edge.

The difference between the real clock and the edge cloelabfeal timet is what we call thelock skevof e’s edge clock
attimet, and is denoted by. (¢). Then, ift. denotes the value of the edge clocklt real time, we have, =t — ¢, (t). If
this value changes over time, we say that the edge clock tia.df an edge clock has no drift we omit the time and denote
its skew byop.. Note that, at any given time, the skew of an edge clock carobgiye or negative. However, for convenience
we assume that these skews are all non-negative if all eldgk-skews are lower bounded. We can do this freely since the
real clock is not available to the scheduling policies anesduot interfere in the relation between edge clocks.

We denote byl’;(p), 0 < i < d,, the real time at which a packgtarrives to the output queue of the edgép). Due to
clock skews, according to edgg(p)’s clock, the instant when packetarrives to the output queueds(p) — é., ;) (Ti(p))-

Additionally, we denote b{l’;, (p) the time at whiclp is completely received at its destination and leaves thiesys

Scheduling policies. As we said above, the scheduling policy is in charge of dagidivhenever a link is available,
which packet from those in the output queuecahust be sent next across In this paper we only consider distributed
work-conserving time-based scheduling policies. We say plolicies are distributed if they do not use the state (and i
particular the clock) of other edges to make schedulingsi@mts. Policies are work-conserving (also called greeidyney
always send a packet across the link as long as the edgestautpue is not empty. Finally, we only consider time-based
policies, which are policies that use the edge clocks foedaling. Note that policies that are not time-based areffiexdttad

by clock skews and drifts.

We will only consider in this work systems in which all the gies use the same scheduling policy. The study of systems
under the NSCAQT model in which different queues may usefit scheduling policies is left for future work.

Two of the most studied distributed work-conserving tinasdxd scheduling policies are Longest in System (LIS) and
Shortest in System (SIS). The LIS policy gives the highestrijty to the packet that has been in the system for the langes
time, while the SIS policy gives the highest priority to thecket that has been in the system for the shortest time. These
definitions do not clearly show the use these policies makib®fedge clocks. For that, we need to look at the natural
implementation of these policies: upon arrival of a pagketito the system, it is assigned a timestarfifs,(p), which p
carries with it. Then, the LIS and SIS policies only compaeetimestamps of the packets to decide which to schedule next
The edge scheduler in LIS gives the highest priority to thekpaiwith the smallest timestamp, while in SIS it gives the
highest priority to the packet with the largest timestampte\that when clocks are not synchronized, these timestaneps

not accurate, since the timestamp for a pagkst

TS(p) = To(p) — beo(p)(To(p))-

These two policies have been proved to be universally staljtg for the CAQT model, where, = 0 forall e € E(G).

In addition to these two well-known policies, we will studyeenily of policies derived from LIS, that we call Longestin

System considering Path (LISP). In the policies of this fgnpiackets carry their timestamp and the length of the tisa
path, so that at its edge(p), packetp is assigned a priority label of the form

PL(p,i) = TS(p) + [(i),

wheref (i) is a function which assigns a real number to eaeh{0, 1, . .., dmax — 1}, being: the number of crossed edges.
A policy Py is in LISP if at each queue it gives the highest priority to plaeketp with the smallest valu€’L(p,). Notice
that whenf (i) = 0 for all 4, P; is equivalent to LIS. Since the functighis defined over the finite set of number of edges
crossed by a packet, it has a maximum and a minimum valugsyéhdenote byf,,ax and fiin, respectively.

Finally, we will consider a new policy named Longest in Que(ldQ). In this policy the highest priority is assigned to
the packet that has been waiting the longest in all the oufpeties it has visited. In our model NSCAQT, in which clocks
are not synchronized, we assume that the time in queues sumeeblocally at each output queue. The time a pgeketits
at the edge’s queue is the difference between the value of the edge elden the packet arrives and the value when it
starts being transmitted, or the current value of the edgekdf it is still waiting. The time used to schedylgs the sum of

these waiting times in all the visited queues.

System stability. To study stability and performance in packet switching reeks, we introduce the concept of@, P, A)
system to represent the game played between an advetsarg the packet scheduling poli®&/over the networlg. In the
NSCAQT model, a systertG, P, A) is stable if the maximum number of packets (or bits) presettié system is bounded
at any time by a constant that may depend on system paramttensetwork, the adversary or the policy. A poligyis
universally stablef the system(G, P, A) is stable on every netwoi& and against evergr, b)-adversary4 with » < 1 and
b>1.

3 Stability of policiesfor constant clock skews

In this section we study the case in which all the edge cloeks lzero drift, so that,. is constant. This framework allows to
assure the stability in a non synchronized system if thestatsility in a synchronized system for many policies, irticaftar
for those policies that only depend on the injection time tredremaining path of the packets.

We present a proof by transformation of this case. We starhfa (G, P,.A) system with non synchronized clocks,
whereA is an(r, b)-adversaryr < 1. Then, we vary the networ and the adversaryl to obtain a synchronized system
(G, P, A"), whereA’ is an(r, b')-adversary, so that {fG’, P, A’) is stable, theriG, P, A) is also stable.

Construction of G’. As we explained in the previous section, since we arbitrdiil the real clock, we can do it so that
all the clock skews are non-negative. Thendet (V, E) be a directed graph in the NSCAQT model with constant skew
¢. > 0 for each edge clock. We constrytstarting fromg as shown in Figure 2.

For each edge € E(G) with ¢. > 0, let K. = [b+ rB.¢./2]. Then, we add.,,.x X K. edges and.,,x X K. nodes.

New edges and nodes are denatetandv’7, respectively, wheré € {1,2,..., L.} andj € {1,2,...,K.}. For alll

Figure 2: Basic process to transfogrinto G’.

21

and for allj, we place edge’ from nodev/ to the tail of edge. For every edge’’, we set the bandwidth tB,..; = =

and the propagation delay 1&..; = %

Remark 1 With this construction process, a pacletf sizeL,, takes% units of time to be fully sent antl units of time to

be fully received across any edger/, j € {1,2,..., K.}.

Construction of A’. We now construct the adversady from .A. A packet that is injected hyl at edge: of G with ¢. = 0
is injected exactly in the same edge at the same tingg by .A’. Now, letp be a packet of sizé,, that was injected iy by
A at timet, such thatp,) > 0. Then, A" will inject a packet’ in G" at timet — ¢, (). The size ofp’ willbe L, = L,
and its path will be

(') = (eg™ (p), eo(p), e1(p)s - - - ea, (D)),

whereeép’j (p) is an edge corresponding to the construction describedealidws edge must satisfy that no other packet has

been injected in it in the previoys /2 time. SinceK. is clearly an upper bound on the number of packets of lefgtthat

can be injected in any interval gf /2 time, and there ar&’. edges for eacl,,, there is always a suitable edge to be used.
Under these circumstances, if packet is injected4oin time ¢ in the queue of edge, and labeled with an timestamp

of t — ¢., a corresponding packet injected iy will arrive to the same queue at the same timébeled with the same

timestamp. Let us now bound the parameters of the adversary

Remark 2 The packets injected by during an interval of sizel| + ¢..x are injected by4’ during an intervall’ with
maximum sizel|. So, sinced is an(r, b)-adversary,A’ is an (r, b’)-adversary, wheré’ = b + dmaxBmax, and ¢max =

maxee p(g){Pe}-

We can now state the main result of this section.

Theorem 1 Let (G, P, A’) be the synchronized system in the CAQT model obtained fremdh synchronized system
(G, P, A) through the above process. LBtbe a scheduling policy which considers only the time of tigacof the packets
and the paths that the packets still have to traverse. TH&?, A) is stable if and only ifG’, P, A’) is stable.

Proof. Note that the stability ofG, P, .4) must occur for any value of the clock skews, including theeéasvhich all skews

are zero. Then, it trivially follows that ifG, P, A) is stable(G’, P, A’) is stable as well.

In the other direction, we first have that the queues of theedyes:"/ in system(G’, P, A’) never present contention
since, from Remark 1 and by the construction of the adverdarpy the time a packet arrives the previous packet (if any)
was already sent. Then, if we observe the output queues efithes thag’ andG have in common, we find that similar sets
of packets arrive at the same times, with the same timestaanpswith the same remaining paths to cross in both systems
(G,P,A) and(G',P, A'). Since these are the parameters use@®hy schedule the packets, we have that the behavior of
these queues in systerfi, P, .A) and(G’, P, A’) is exactly the same. So, if there is no bound on the numberakgtaiin
(G, P, A), there is no bound either on the number of packetg/inP, .4"). Then we have that ifG, P, A) is unstable then
(G, P, A" is unstable or, equivalently, {’, P, A’) is stable theriG, P, A) is stable. [

Corollary 1 The scheduling policies that are universally stable in CA&p@ only consider the times of injection and the

paths that the packets still have to traverse are univeysstble in the NSCAQT model with constant clock skews.

4 Stability of policies for bounded clock skews

In this section we will study the case in which clocks may eigee drifts. Hence, we assume here that the clock skews are
not necessarily constant. However, the maximum differéret@een real time and any edge clock is bounded. As we said,
this model fits naturally with a system in which edge clocks@riodically resynchronized, for instance via NTP.

In this section we will again adapt the real time referenoek| in order to simplify the analysis and the presentation.
Like in the previous section, we will assume that all clockwk are non-negative, i.e., for any edgand any timet,
¢(t) > 0. Additionally, since we assume that skews are bounded, weaily defin@,,.x = maxe {de(t)}.

Under these assumptions, we show first that the SIS poliayiietsally stable (universal stability for CAQT was proved
in [5]). Then we consider the family of policies LISP, to whitlS belongs, and we also show its universal stability fer th

NSCAQT model, and consequently, for CAQT (which was presipunknown in general).

4.1 Universal stability of SIS

As we said above, the SIS scheduling policy gives the highegtity to the packet which has been in the system for the
shortest time. Additionally, we assume that SIS is implete@ty making the first edge in the path of a pagkéd attach
the arrival time to the packet. Since this arrival time isadted from the local edge clock, SIS can be affected by clock
skews.

The proof of universal stability of SIS we present is veryitamto that presented in [5] for the CAQT model. We first
recall a lemma proved there, which limits the time spent baekpt in the queue of an edgéf there arek — 1 bits in the
system with higher priority to cross that edge. The asswmptand the proof of this lemma do not depend on whether the

clocks are synchronized. Hence, it can be applied direstbur model.

Lemmal ([5]) Letp be a packet that, at real timg is waiting in the queue of edge At that instant, lek — 1 be the total
size in bits of the packets in the system that also want tserasd that may have priority over. Thenp will start crossing

e in at most(k + b)/(eB.) units of time.

Recall that, when a packegtstarts crossing an edge it spendsP. + L, /B, < Duax Units of time until it crosses it
completely. Then, using this and the previous lemma reeeissive can prove the following result. The proof can be found

in the Appendix.

Lemma?2 Letky = rémaxBmax + b, andk; = k;_1 +r M 4+ Dmax) Bmax + b, for 0 < i < dpax. When a packet
B

€D min

arrives to the output queue of edggp), no more thak; — 1 bits can have priority over it in any edge(p), for j > 4.

Using these definitions df; and the previous lemma, we can limit the size of the queuestadmount of time that
a packet spends in the network as it was done in [5]. The prbttieotheorem is verbatim to the the final part of the

corresponding theorem in [5] and is hence omitted.

Theorem 2 LetG be a network and,,.. the length of its longest edge-simple directed pathAdie an(r,b)-adversary
withr =1 — ¢ < 1 andb > 1. Then the systeri§j, S15,.A) is stable under the NSCAQT model with bounded clock skews,

no queue ever contairks; .1 + Lax bits, and no packet spends more than

max
dmax—1
dmaxb + 2728 k’b

+ dmaxDmax
sBmin

units of time in the system.
Hence the main result of the section.

Corollary 2 SIS is universally stable in the NSCAQT model bounded claaks

4.2 Universal stability of L1SP

In this subsection we explore the stability of the new fanoifypolicies LISP defined in Section 2, which is based on the
injection time and the number of edges already crossed bglkepaAs described there, a poli@y in LISP assigns to each
packetp at the queue of its edgg(p) a priority labelPL(p, i) = TS(p) + f(i), and gives the highest priority to the packet
with the smallest label.

Now we prove that every policy in LISP is universally stalidhe NSCAQT model when the clock skew is bounded by

dmax- We start with the following simple lemma.

Lemma3 Letp andq be two packets. fy(q) > To(p) + fmax — fmin + Pmax, theng never has higher priority thap in

any queue.

Proof. Let us assume thatandq meet at the output queue of edgep) = e;(q). Note thatd,.x — ¢, (q) > 0 and that
f() — fmin > 0. Hence,

PL(q,j) = To(q) — ¢eo(q) + f(7) > To(p) + fmax — fmin + Pmax — ¢eo(q) + f(j) = To(p) + fmax = PL(p,1),

and thenPL(q, j) > PL(p,) for all and;. [|

10

Let p be a packet in the system and tedenote some real time iy (p), Ta, (p)]. We denote by() the real injection
time of the oldest packet in the system at timiVe defineC’, = maxe |z, ()7, (»)){t —9(t)}. Notice that, represents the
age of the oldest packet in the system while present. For convenience we use the abbrevidtion fi,.x — fuin + @max-

In the following lemma we start by bounding the amount of tiffie.; (p) — 73 (p), thatp takes to move from the queue

of ¢, to the queue o#; 1, which allows us to bound the timeis in the system. The proof can be found in the Appendix.

Lemma4 The time packet is in the system is at most

Tu,(0) — To(p) < (1 <% <K+ €y + T) .

Now, we have bounded the time that a packet spends in thersyiste our bound depends @h,. To finish the proof we
need the following lemma. The proof can be found in the Append

Lemma5 For any packep we have that

1-— €dmax Dnnx
c,<— (K =) = ¢
P —= Edmax (+]_ — 6)

Now we can enunciate the final theorem of this section. Thefpsdy Lemmas 4 and 5, and the definitionof

Theorem 3 LetG be a network and,,,.x the length of its longest edge-simple directed pathAdie an(r, b)-adversary,
withr =1 —¢ < 1andb > 1, and letP; be a policy in LISP. Then the systém, P, A) is stable under the NSCAQT

model with bounded clock skew, and no packet spends more than

1 — gdmax

Dmax
(fmax - fmin + ¢max +)

gdmax]_ — £

units of time in the system.

Corollary 3 Any protocol in LISP, and in particular LIS, is universallgble under the NSCAQT model with bounded clock

skew, and hence under the CAQT model.

5 Universal stability of LIQ

In previous sections we have shown how several policies @irersally stable in the NSCAQT models with constant and
bounded clock skews, respectively. Unfortunately, thendsion end-to-end packet latencies we derived were depeoilen
the maximum clock skew that can occur in the system. This sidat in a system with high maximum skew, the latencies
can be very high. Itis easy to construct examples for paitke SIS and LIS in which this can be observed.

In this section we study a new policy named LIQ, which givess llighest priority to the packet that has been waiting
in output queues for the longest time. We prove that LIQ isersally stable in the NSCAQT model with but bounded
clock skews. The bad news is that in this case the end-toagaddy bound we obtain depends also on the maximum skew.
The good news is that for the NSCAQT model with constant ckdaws LIQ is universally stable, and the bound does not

depend on the maximum skew, and it is similar to that obtaméuLIS in a synchronized system.

11

As in previous sections, we assume thiatt) > 0 for all e and¢. Then, we defin@y(e) = min{¢.(¢)} and
Pmax(€) = maxi{p.(t)}. Finally, letA¢ = max.{¢pmax(€) — dmin(e)}. Observe that in the model of constant skews,
A¢p=0.

Let W; +(p) be the amount of real time which packehas waited in output queues when at titrieis at the queue of

edgee;(p). We have that

i—1
L
t=To(p) + Wir(p) +) (B L+ Pek(p))
k=0 er(p)

and, hence,
t— TO(P) - dmaxDmax S Wz,t(P) S t— TO(P) (2)

Recall that measuring the waiting time of a packet at a quedene by taking the local time when the packet arrives
and the local time when it leaves (or the current local timeid still in the queue). Then the measured time at one queue
can have an error of up taA¢. Hence, the measured waiting time of a pagkétat at timet is in queuee;(p), denoted
M, (p), is avalue in the intervalV; , (p) — iA¢, W, 1 (p) + iAg].

The proof we have is similar to the proof for the LISP familypafiicies. We first prove a lemma analogous to Lemma 3.

Lemma6 Letp andq be two packets. [fy(q) > To(p) + dmax(2A¢ + Diax), theng never has higher priority thap in

any queue.

Proof. Let us assume that and ¢ meet at the output queue of edggp) = e;(q) at timet. We need to show that

M, +(q) < M, (p) is satisfied for any, j, andt. The largest valud/; ;(q) can take is
M;i(q) < Wii(q) + jAG < Wji(q) + dmaxA¢.

Similarly, M; +(p) > Wi +(p) — dmax2A¢, and therefore we are left with the problem of showing fhat (¢) < Wi .(p) —

)

2dmaxA¢. Then, by using Equation (2) and the assumption of the lemadave
Wj,t(q) S t— TO(Q) < t— To(p) - dmax(2A¢ + Dmax) S VVi,t(p) - 2dmaxA¢

which completes the proof. |

Now, definingK = dax(2A¢+ Dinax), we have that Lemmas 4 and 5 are also valid in this case. Thecamenunciate

the following theorem.

Theorem 4 LetG be a network withi,,,.. the length of its longest edge-simple directed pathAdte an(r, b)-adversary

withr =1 —¢e < 1. Then

1. the systentG, LIQ, A) is stable under the NSCAQT model with bounded clock skewsnampacket spends more

than
1— Edlnax

gdmax

Dmax
<dmax(2A¢ + Dmax) + 1_ E)

units of time in the system, and

12

2. the systentg, LIQ, A) is stable under the NSCAQT model with constant clock skewlsy@apacket spends more than

1- €dmax Dmax
di dmaxDmax +
E max 1 _ E

units of time in the system.

Corollary 4 LIQ is universally stable under the NSCAQT model with boundeckctkews, and hence under the CAQT

model.

6 Simulations

In order to partially evaluate the theoretical results weehdeveloped several simulation experiments. All the drpemts

in this article have been carried out using the J-Sim discegent simulator [13]. J-Sim has been designed to simulate
network behaviors in a realistic way, including propagatitelays, packet processing times, etc. The J-Sim package ha
been modified in several ways, mainly to adapt it to our modetst, the traffic generator has been modified in order

to ensure that destinations are uniformly distributed @lenodes in the network. Then, the sink monitor has also been
changed in order to log several parameters that are notdsbyrd-Sim by default (e.g., the mean and the variance of the
packet delay and the queue size, and samples of these valogssncat random). Also, the routing algorithm has been

replaced and some scheduling policies discussed in thir fregye been implemented.

The network topology used in all the experiments islanx 11 torus, in which every node is, at the same time, router,
source, and sink of packets. Each node periodically geseragw packets, whose destination is chosen randomly and
uniformly among the nodes of the network. The routing is deiristic, so that the traffic is balanced among all the links
We have adjusted the average load of the network to 99% irirthdations because we are interested on the response of the
network with high load levels. In our experiments all the ge are of unbounded size, links have no propagation delays,
the link bandwidth is set to 100 Kbps and the packet size ishy@&s. The simulation experiments have been run for 6000
seconds, ignoring the first 1000 seconds in the analysisaktsults.

We assign to local node clocks (all output edge clocks in @&raod the same) different skews following a normal distri-
bution with a mean value of 0 seconds and a standard deviatiop to 10°> milliseconds. Before starting the experiment,
each node randomly chooses a constant skew for its clocktfierabove distribution.

Figure 3 shows the mean and maximum latencies experiencpddiets that cross 10 links when, as said before, the
distribution of clock skews have standard deviations nagpfiomo0 to 10° milliseconds. As expected, LIQ is not affected by
clock skews, since it does not consider injection time (Wwhiould be affected by clock skews), but waiting time, whigh i
always correctly computed since all clocks run at the samedthere are no drifts). It is also noticeable that the nagain
the maximum latencies of LIQ are very low, which is not theecBs the other policies, especially when clock skews grow.
At first sight, it seems a bit paradoxical the fact that the mlagency with SIS decreases when skews grow. However, this
behavior may be attributed to the fact that increasing skewdomizes the behavior of the policy. Note that the maximum
latency with SIS does not seem to be significantly affectethbyskew variation. LIS suffers from increasing clock skews

since its effectiveness relies on the accuracy of clocksemékews grow, LIS clearly degrades its performance. Binat

13

Means with Hops=10 (Logarithmic) Max with Hops=10 (Logarithmic)

14 1
2000
12 4
10004
10 1
500-|
s
Té‘ A SIS 7_.2‘ 200 A SIS
S * LIS S * LIS
& ool & 1004 o oLQ
Py P
£ £
= =
50 |
4
201
10|
S— .
: : : : : : : : : : : : : : : :
0 1@ ad 160 3¢ 10% aad 10° 0 10° 3x10 2 10° axa0 3 10? 3x10 4 10°

Skew (milliseconds) Skew (milliseconds)

Figure 3: Latency experienced by packets that cross 10 iinttspolicies LIS, SIS, and LIQ under distribution of skews
with different standard deviations.

Means (Logarithmic) Max (Logarithmic)

5.00 10.00
I
1e+03
L

1e+02
L

0.50 1.00 2.00
I

Time (seconds)
Time (seconds)
1e+01
I

5] o
o 2 |
R + sIs(0) = + sIs(0)
2 s <& sIs(10°)
- < SIS(10°) o Ls(0)
g e Lis(0) El o Ls(10°)
o LIS(10%) '
3 * LIQ

g | * LIQ
S

T T T T T T T T T T

2 4 6 8 10 2 4 6 8 10

Hops Hops

Figure 4: Latency experienced by packets with policies SIS, and LIQ under normal distribution of skews with stadar
deviations of 0 and 100000.

want to emphasize the great distance between the mean am@i@um in the case of SIS, and in the case of LIS for large
skews.

Figure 4 shows how the number of hops a packet needs to reagdstination affects the latency. Here we see that LIS
when all clocks are synchronized (no skews) and LIQ giveagwls results, and behave quite uniformly on the number of
hops. Itis again noticeable that the mean and the maximumacé closer in the cases of LIS with no skews and LIQ, than
in the other cases (between one and two orders of magnit@tserve that, while with LIS the slope of the curve increases

with the skew, with SIS the slope decreases.

References

[1] Matthew Andrews. Instability of fifo in the permanent siems model at arbitrarily small network loads. $®DA
ACM Press, 2007.

14

[2] Matthew Andrews, Baruch Awerbuch, Antonio Fernandaank Thomson Leighton, Zhiyong Liu, and Jon M. Klein-
berg. Universal-stability results and performance bododgreedy contention-resolution protocalsACM 48(1):39—
69, 2001.

[3] Matthew Andrews, Antonio Fernandez, Ashish Goel, aimshlZhang. Source routing and scheduling in packet net-
works. J. ACM 52(4):582-601, 2005.

[4] Matthew Andrews and Lisa Zhang. The effects of temporsysions on network performanc8IAM J. Compuf.
33(3):659-673, 2004.

[5] Maria J. Blesa, Daniel Calzada, Antonio Fernandezsllibpez, Andrés L. Martinez, Agustin Santos, and Maria J
Serna. Adversarial queueing model for continuous netwgriachics. In Joanna Jedrzejowicz and Andrzej Szepi-
etowski, editorsMFCS volume 3618 of ecture Notes in Computer Scienpages 144-155. Springer, 2005.

[6] Allan Borodin, Jon M. Kleinberg, Prabhakar Raghavandila Sudan, and David P. Williamson. Adversarial queuing
theory.J. ACM 48(1):13-38, 2001.

[7] Jean-Yves Le Boudec and Patrick Thir&etwork calculus: a theory of deterministic queuing systémthe internet
Springer-Verlag New York, Inc., New York, NY, USA, 2001.

[8] R. L. Cruz. A calculus for network delay, Part I: Networlements in isolation|IEEE Transactions on Information
Theory 37(1):114 —131, 1991.

[9] R. L. Cruz. A calculus for network delay, Part 1l: Netwodnalysis. IEEE Transactions on Information Theory
37(1):132-141,1991.

[10] A. K. Parekh and R. G. Gallager. A generalized processaring approach to flow control in integrated services
networks: The single-node cad&EE/ACM Transactions on Networking(3):344 — 357, 1993.

[11] A. K. Parekh and R. G. Gallager. A generalized processaring approach to flow control in integrated services
networks: The multiple-node casé&eEE/ACM Transactions on Networking(2):137 — 150, 1994.

[12] Agustin Santos, Antonio Fernandez, and Luis Lop&xaluation of packet scheduling policies with application
real-time traffic. InActas de las V Jornadas de Ingerigifelenética, JITEL 2005Vigo, Spain, 2005.

[13] J-Sim simulator.
http://www.j-sim.org/.

[14] Maik Weinard. The necessity of timekeeping in advaedayueueing. In Sotiris E. Nikoletseas, editdfEA volume
3503 ofLecture Notes in Computer Scienpages 440-451. Springer, 2005.

15

A Proof of Lemma?2

Proof. Let us first consider the cage= 0. When a packep, arrives into the system, the packets that may have priority
over it have been injected at mast,.. (maximum clock skew) units of time earlier thanbecause, although they maybe
arrived to the system befoge they have a greater timestamp due to their initial edgeskckkew. The total size of these
packets is at mostpmaxBmax + b — 1 = ko — 1 bits (sinceL, > 1). Let us now assume as induction hypothesis that
the claim holds fol0 > ¢ < d, — 1. Then, from Lemma 1p will arrive at the output queue of edge,:(p) at most

(k; +b)/(eBmin) + Dmax time units after arriving at the output queue of edg@). During this time at most packets
with 7((k; + b)/(eBmin) + Dmax)Bmax + b bits are injected that can blogkat any edge. Hence packets with at most
(ki — 1)+ r((ki +b)/(eBmin) + Dmax)Bmax + b = ki1 — 1 bits can blockp in any edgez;(p), j > i + 1.]

B Proof of Lemma4

Proof. Observe that the oldest packet in the system wharrives at the queue ef at timeT;(p) was injected at most at
timeT;(p) — C,. Then, from Lemma 3 we have thatand all the packets with higher priority tharin the queue o¢;, were
injected during the intervall;(p) — C,,, To(p) + K]. Since the packets injected in this interval can have at most

(1=&)(To(p) + K = Ti(p) + Cp) Be, +b

bits, we know that all of them cross in at most

(1 —=¢e)(To(p) + K —Ti(p) + Cp) + Bb + Pe, < (1 —¢)(To(p) + K — Ti(p) + Cp) + Dimax

e

units of time. Then, we have that

Tiva(p) < Tilp) + (1 —¢e)(To(p) + K —Ti(p) + Cp) + Dmax
= eTi(p)+ (1 —e)(To(p) + K + Cp) + Diax,

and solving the recurrence f@;, (p) we getT, (p) — To(p) < (1 — %) (K 4+ Cp 4 Dpax/(1 —€)) . [|

C Proof of Lemmab

Proof. By contradiction, let us assume there are packets that Spehed system more thafi time. Lett be the first time at
which a packet has been in the system more tiidime, and lepp be one packet that satisfies this. THen(p) — To(p) >
t —To(p) > C. Note that before no packet in the system has age older tharHence, by Lemma 4 withy}, = C' we have
that

Dmax Dmax
Ty, (p) —To(p) < (1—e™) <K+C+ —1_g> < (1 —ghme) <K+c+ —1_5)

Dmax
= C+elmC + (1 —gloe) (K+ 1_8> =C,

which is a contradiction. []

16

