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Abstract

In digital libraries, keyphrases are an important instrument for cataloguing and

information retrieval purposes. In literature research, they provide a high-level and

concise summary of the content of textual documents or the topics covered therein,

allowing humans to quickly decide whether a given text is relevant. As the amount

of textual content on desktops grows fast, keyphrases can contribute to manage large

amounts of textual information, for instance by marking up important sections in

documents, for example, to provide increased user experience in document exploration.

However, only few documents, whether authored by the user or retrieved from digital

libraries on the internet, have keyphrases assigned as embedded metadata description,

although vendors have enabled the relevant �le formats with structures capable of

storing such information.

The most popular solution to automatic keyphrase extraction from textual docu-

ments KEA, which utilises machine learning techniques, is not very accessible. Al-

though available as free software component, it requires a training step on a number

of documents, thereby imposing a burden on potential users.

As keyphrases are a description of textual data, the consideration of Natural Lan-

guage Processing (NLP) tools in order to automate the extraction process is obvious.

The goal of this thesis is to demonstrate how linguistic and statistical methods can

be combined to perform automatic keyphrase extraction from textual data, putting

the emphasis on single documents. The proposed software component does not need a

training step, can be utilised o� the shelf, and is applicable for English, German and

French. It is evaluated quantitatively on a medium-sized corpus with a priori assigned

keyphrases, whereas a user study gives insight into the acceptance of the algorithms'

results in a practical setting. Evaluation results show that the approach is comparable

with the current state-of-the-art, while potential for performance improvement still

exists.
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Preface

If you're dull as a napkin, don't sigh;

Make your name as a "deep" sort of guy.

You just have to crib, see,

Any old book by Kripke

And publish in AAAI.

A hacker who studied ontology

Was famed for his sense of frivolity.

When his program inferred

That Clyde ISA Bird

He blamed � not his code � but zoology!

If your thesis is utterly vacuous,

Use �rst-order predicate calculus.

With su�cient formality,

The sheerest banality

Will be hailed by all as miraculous.

If your thesis is quite indefensible,

Reach for semantics intensional.

Over Montague grammar,

Your committee will stammer,

Not admitting it's incomprehensible!

[Henry Kautz]
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Chapter 1

Introduction

Here is Edward Bear, coming downstairs now, bump, bump, bump, on the

back of his head, behind Christopher Robin. It is, as far as he knows, the

only way of coming downstairs, but sometimes he feels that there really is

another way, if only he could stop bumping for a moment and think of it.

A. A. Milne, Winnie the Pooh, 1926

A number of years ago, back in the early 1990's, the value and importance of

keywords � and to be more precise, keyphrases � was undeniable. Literature research

was barely possible without a mixture of freely formed phrasal queries and adhering

to the established controlled vocabularies providing domain-speci�c index terms for

publications and books. The world wide web was still in its infancy, and search engines

only had begun to index web pages. A lot of information did exist, but it required

knowledge of two kinds to retrieve it: where and how.

The change came with the digital revolution. Cheap storage space, increasing

processing power and matured database systems were the technologies that enabled the

creation and maintenance of large data warehouses. Network access and e�cient full

text indexes greatly contributed to exposing information in a unprecedented manner.

Formerly used primarily as a communication medium, the internet had become an

information retrieval instrument. Home pages were created, and the world wide web

started growing at an exponential rate. When Altavista started to get lost in its index,

Google arrived and the �rst hit usually was acceptable. Keyphrases, that once were so

important to identify relevant content, seemed to become redundant as people started

to rely on the new convenience that came along with full text search. However, if

anyone thought that by the end of the 1990's the information explosion would have
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1.1. Motivation

reached its peak, or that thanks to Google any information was only one click away,

he had no clue what was about to begin � things had only just started . . .

A few years later, Google had re-invented itself, and transformed from a pure facil-

itator to an information provider and creator, meanwhile indexing books and making

a large amount of literature electronically available. Traditional publishers, who were

controlling the market before the internet age started to lose ground as the scienti�c

community was seeking for a more direct channel to disseminate its research. The

Web2.0 movement enabled easy content creation and distribution on the �y for every-

body. The wheel of information creation just kept spinning faster and faster.

At the same time, broadband technology had exceeded the critical mass, and in

many households, personal computers resembled entertainment centre and information

hub at the same time, accumulating and reproducing textual content on the local hard

drive. Many applications on the web and the desktop started to provide an interface

between both worlds, e�ectively blending the two into each other, and increasing the

amount of data available even more.

With the growth of information, when searching for content, simple full text search

began to reach its limitations, as now, a single word would �t into the many contexts

existing on the web, and therefore, on the desktop.

What has been lacking over the past years is a method to enrich available documents

of textual content with short, but precise phrases describing the topics covered therein.

This kind of information � if available beyond a critical mass � could enable progress and

solutions for those lost in data: search engines could provide a more precise result set

for a given query, desktop users could organise and retrieve their documents by content

and not by �le-system folders, and recommendations could base their algorithms on an

additional layer of high quality content-related meta-data. All of a sudden, keyphrases

which were thought to be buried in libraries forever, started to become relevant again.

1.1 Motivation

In (digital) libraries, keyphrases are an important instrument for cataloguing and

information retrieval purposes. For someone skimming through a large collection of

textual documents, they provide a high-level, concise description of the content of each

document or the topics covered therein, allowing him to decide whether it is relevant

or not. However, a greater number of application scenarios exist, as the nature of the

functionality is relatively generic. For instance, keyphrases can be utilised in automatic

summarisation tasks, as containing sentences can be extracted and composed to a

2



1.2. Goal & Scope

more natural, prosaic summary of a document in question. In information retrieval,

an additional index of keyphrases could be exploited besides the common TFxIDF

measure to provide document similarity and clustering, thereby yielding more precise

results over single keyword-based approaches, as the latter ones are more vulnerable

to ambiguity.

As the amount of textual content on desktops grows fast, keyphrases can contribute

to manage large amounts of textual information, for instance, by marking up important

sections in documents to provide increased user experience in document exploration.

However, as will be shown later on, only a very limited number of documents, whether

authored by the user or retrieved from digital libraries on the internet, have keyphrases

assigned as metadata description, although vendors have enabled the relevant �le for-

mats with structures capable of storing such information. With the emerging trend

to include semantic web technologies on the desktop, the so-called semantic desktop, a

�rst step is to lift metadata from various �le formats into an explicit form, mostly by

simply accessing embedded vendor or format-speci�c metadata �elds. Unfortunately,

if no content-related metadata for texutal documents is embedded, little can be lifted.

If content-related metadata was existent, embedded in documents and easily retriev-

able, semantic technologies could reach their full potential by exploiting such free-form

metadata as a �rst step, for example, by e�ciently and automatically selecting an ap-

propriate domain ontology based on the topics mentioned in the keyphrases, providing

meaningful, machine-readable and interoperable semantics.

1.2 Goal & Scope

In many libraries, keyphrases and index terms are still assigned manually, ensuring

a high standard of quality, at the expense of time and labour. From a librarian's point

of view, this path is perfectly reasonable, as a quality of service has to be guaran-

teed. On the desktop, however, not providing easily accessible tools facilitating the

(semi)automatic extraction of keyphrase candidates for textual documents has led to

the situation we face today: metadata is actually being mined for use in a number

of scenarios, but for the ever growing mass of textual data, it is non-existent, or still

implicit, and very hard to retrieve.

Existing machine learning solutions to keyphrase extraction rely on a training step,

thereby imposing an additional burden to potential users. As keyphrases are a descrip-

tion of textual data, the consideration of NLP tools in order to automate the extraction

3



1.2. Goal & Scope

process is obvious. While shallow NLP techniques are a long way from language under-

standing, in combination with statistical processing they still can be helpful in many

ways, providing a �rst stop in content-metadata extraction, which then can be used as

input for more sophisticated technologies.

The desktop scenario for keyphrase extraction poses a number of unique challenges.

Not everyone speaks English, and while it is infeasible to provide a solution for every

language possible, the conceived solution should be extendable to a wider variety of

languages with a reasonable amount of e�ort.

In information retrieval, NLP solutions often carry a stigma of being slow and unre-

liable. Typically, as a user is sitting in front of the desktop, waiting for in- and output,

it is important for any application with user interaction to operate within reasonable

runtime parameters, which are acceptable to the user. Therefore, the approach needs

to be able to scale to typical desktop systems, making it possible to provide live and

online processing.

As the extraction process is fully automated, the extraction algorithm is likely

to make mistakes, most obviously resulting in a lack of precision due to spuriously

predicted keyphrase candidates. Hence, it is also a challenge to keep the amount of

error to a minimum while still retaining the best possible recall/coverage, to spare the

user a tedious selection process in a subsequent interaction where he has to con�rm or

reject the proposed candidates.

Although overlapping in some points, and sharing similarities in the techniques

utilised, the approach discussed in this thesis is not concerned with the tasks carried

out in classical Information Extraction (IE) or Automatic Term Extraction (ATE).

The goal of this thesis is twofold: Firstly, it will be demonstrated how linguistic and

statistical methods can be combined to perform automatic keyphrase extraction from

textual data, putting the emphasis on single documents. A quantitative evaluation will

be conducted to assess an objective performance measure for the approach, whereas

a user study will give insight into the acceptance of the algorithms' results in a more

practical setting.

Although NLP techniques have contributed to academic and industrial niche solu-

tions in certain domains 1, the semantic web community has recognised NLP as being

capable of improving the knowledge acquisition bottleneck only to a limited extent 2.

1for example, by providing natural language interfaces to databases [55]
2prominent examples would be information extraction components developed within the KIM plat-

form [56] or question answering in the AquaLog undertaking [43]

4



1.3. Structure

Therefore, it is my personal intent to present how freely available (shallow linguistic)

resources can be composed to a fast, robust, �exible and multilingual NLP middleware

that � if exposed as service on the desktop or uniquely combined with an application �

will be able to automate the tedious process of manual keyphrase assignment to textual

documents on a daily basis. As a result, it will be made easier to explicitly enrich tex-

tual resources with such metadata, thereby creating the foundation for semantic web

and semantic desktop approaches which rely on rich metadata, in order to e�ectively

support computer users, for instance, with intelligent document recommendation or

expert �nding algorithms.

The outcome of this thesis will be a freely-available software component facilitating

the keyphrase extraction process in a real world scenario � the desktop of the user � o�

the shelf, at the same time being able to reliably process real-world data in common

document formats.

1.3 Structure

The following chapter introduces background knowledge in content metadata ac-

quisition, natural language processing, and semantic desktop concepts, situating the

thesis into the context at the interface of metadata extraction for knowledge based

systems where pragmatic solutions from research are applied in practice, before it con-

cludes with a summary of important related and relevant work. Chapter 3 analyses

use-cases and depicts in detail the considerations underlying the approach, giving a

high-level overview of the design decisions that were made and the preprocessing that

is necessary, whereas chapter 4 continues to describe components and aspects speci�c

to implementation. Subsequently, chapter 5 reports on two experiments that were con-

ducted to assess the quality of the implemented tool. The results of a medium scale

quantitative evaluation and of a user study with 47 subjects are being discussed, before

chapter 6 summarises the main contribution of this thesis, speculates on future work

and use-cases and �nally concludes with closing remarks.

5



Chapter 2

Background

The aim of this thesis is to propose a solution for the automatic extraction of

keyphrases from single documents, which is � in some aspects � very much related

to approaches in Automatic Term Extraction (ATE), and thus, also to collocation

extraction. The extracted keyphrases are intended to be used as a �rst-stop, free-form

metadata description for documents, and therefore, the �rst part of this chapter will

introduce the general idea of content-related metadata from textual data and its role in

the semantic web age, and ultimately lead to a sketch of the semantic desktop project

NEPOMUK, providing a real-world scenario as a setting for the thesis. Subsequently,

as the underlying data sources comprise natural language, the enabling NLP techniques

and technologies for content-related metadata acquisition from text will be discussed.

Due to the similar and overlapping nature of keyphrase extraction and ATE, the last

part of this chapter will survey relevant state-of-the-art approaches in both areas.

2.1 Content-Related Metadata on the Desktop

Metadata on contemporary desktop systems exists for many resources and can

take several forms. The Free On-line Dictionary of Computing 1 gives the following

de�nition:

meta-data data

(Or �meta data�) Data about data. In data processing, meta-data is de�nitional

data that provides information about or documentation of other data managed

within an application or environment. For example, meta-data would document

1meta-data. (n.d.). The Free On-line Dictionary of Computing. From Dictionary.com website:
http://dictionary.reference.com/browse/meta-data � retrieved 2008-08-10

6
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2.1. Content-Related Metadata on the Desktop

data about data elements or attributes, (name, size, data type, etc) and data

about records or data structures (length, �elds, columns, etc) and data about

data (where it is located, how it is associated, ownership, etc.). Meta-data may

include descriptive information about the context, quality and condition, or char-

acteristics of the data.

The Oxford Digital Library elaborates on types of metadata 2:

descriptive metadata: information describing the intellectual content of the object,

such as MARC cataloguing records, �nding aids or similar schemes

administrative metadata: information necessary to allow a repository to manage

the object: this can include information on how it was scanned, its storage for-

mat etc (often called technical metadata), copyright and licensing information,

and information necessary for the long-term preservation of the digital objects

(preservation metadata)

structural metadata: information that ties each object to others to make up logical

units (for example, information that relates individual images of pages from a

book to the others that make up the book itself)

On the desktop, a number of tools exist to extract and provide technical metadata

from those proprietary formats and binary data, such that the metadata modelling in

terms of the standards proposed by the semantic web movement (RDF, etc.) can be

performed seamlessly.

However, the acquisition of so-called descriptive or content-related metadata from

resources is still considered problematic, as this sort of information is highly subjective

to the individual. This activity usually involves a human in the loop, who manually

provides such information. For example, in the scenario of personal photo collections,

someone will annotate a picture with the persons appearing on it if they are known to

the annotator. For textual resources, someone will annotate a document with content-

metadata if it is considered pertinent, such as title, authorship information or index

terms. At a later point, this information can be used to retrieve resources enriched in

such a way more easily, as the annotator already is aware of the association between

the resource in question and its annotations. Manually creating this form of metadata

has been considered a burden in the past, as it is a tedious and laborious process

demanding discipline and diligence. However, assisted assignment of metadata � when

2http://www.odl.ox.ac.uk/metadata.htm � retrieved 2008-08-09
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automated to some extent, such that individuals are given the option to choose from

a selected set of recommendations � becomes acceptable, as examples in the Web2.0

world (e.g., collaborative tagging systems) have shown.

2.1.1 Content-Related Metadata

The vast majority of user-centric data, particularly on the desktop computer of

the average user, is encoded in natural language. For a long time already, vendors

have recognised the need to represent content-related metadata descriptions embedded

into documents: Adobe has reserved metadata �elds for PDF documents (title, author,

subject, keywords), Microsoft supports a similar set of metadata �elds in MS Word

documents. The OpenDocument format, and OASIS standardisation e�ort in general,

also propose such a set of content-related metadata descriptions to be integrated into

their document formats. Furthermore, document engineering e�orts have been working

on enriching documents with embedded ontological metadata descriptions based on

suitable domain ontologies, as for instance proposed by Groza et al [32].

Adoption by the Mainstream

Content-related metadata has been recognised as a crucial piece of information by

librarians, although in reality it has barely been embedded into electronic document

formats, neither on the desktop nor by online publishers.

A corpus study of computer science research articles freely available for download

suggests that much of the scienti�c literature in this domain is lacking even the most

simple form of embedded content metadata 3. Of 1,298 PDF documents, only 244

contained embedded authorship and title metadata, and only 16 documents (1.125%)

speci�ed embedded keyword information.

These �ndings give evidence that, despite the fact that the most common document

formats on the desktop � PDF, Microsoft Word and OpenDocument Format � already

specify metadata �elds for such purposes, they are, to a large extent, ignored by the

users. So far embedded metadata has been of little use, not adding incentive for the

users to manually enrich mentioned metadata �elds, which can be a time-consuming

and tedious task, requiring a high level of discipline and diligence. Also, relying on

fulltext search has become a convenient method for information retrieval in general, be

it on the web, in libraries or on the desktop. However, with the increasing amount of

3The corpus was kindly provided by Tudor Groza and Ioana Hulpus, and comprises CIKM, ESWC,
ISWC, WWW, EKAW, K-CAP, DEXA Proceedings within the years 2004 and 2007, and an additional
number of workshops
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digital information, fulltext search will necessarily decrease in precision, as witnessed

since the beginning years of Google when the common credo was �if you don't �nd it

on the �rst result page, there is no use skimming through the rest of them�. Much has

changed since then, and often it is necessary to skim through additional result pages

Google returns for some query. With growing indexes of the search engines, the length

of the search queries had to grow as well to include terms providing additional context

to the query, in order to discriminate the result set: e�ectively, search queries have

become keyphrases.

Back to the desktop and the documents typically encountered there, along with their

(non-existing) metadata: the author �eld is occasionally being populated by values

initially supplied by the licensee of the authoring tool (Microsoft Word/OpenO�ce),

other content related �elds such as title, subject and keywords are mostly left blank,

which is a bad scenario in an era where metadata is mined and lifted from application

speci�c structures into an open, interoperable format that has been proposed by the

semantic web endeavour and pushed forward by the Web2.0 movement. The slowly

emerging success of the semantic web, including the Resource Description Framework

(RDF) [21], and with it, the advance of open, interlinked data 4 is not only changing the

way of information access on the internet, it also is currently changing the landscape

of desktop computing, towards the semantic desktop.

2.1.2 The Social Semantic Desktop

As broadband technology has become reality for many computer users, data avail-

able on the web and on the desktop are merged, streamed over the internet and con-

tinuously updated, as experienced with content syndication like RSS and ATOM.

With the advance of peer-to-peer (P2P) technology, which � besides sharing content

� has also successfully been applied in metadata exchange [74], the vision of the social

semantic desktop [20, 62] has become within close reach, towards a richly interconnected

platform, playing the part of metadata provider and consumer alike.

The semantic web paradigm, that � in order to be interoperable � metadata needs

to conform to open, shared conceptualisations expressed by ontologies [34], explicitly

stating the semantics of the domain in question, also holds for the social semantic

desktop. If information is lifted and expressed explicitly in a uni�ed way, applications

would be able to look beyond their own data model, and integrate their data with

4http://www.w3.org/2008/Talks/0617-lod-tbl/ � retrieved 2008-08-08 � the Linked Open

Data initiative has been named �potentially world changing� by Tim Berners Lee, the inventor of
the World Wide Web and visionary of the Semantic Web
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data yielded from other applications, or even di�erent desktops. The social semantic

desktop helps users to organise, classify and interlink user data, not only on a �le level,

but also on a more �ne-grained resource level, such that emails, address book entries,

pictures, locations, etc., can be interrelated in a meaningful way, and shared among

users in a social context if the need arises. However, since data on the desktop (usually)

has a more personal character than shared data on the web, the underlying mecha-

nisms and ontologies on the semantic desktop should re�ect this di�erence, allowing

for easily adjustable vocabularies and schemas adhering to personal mental models on

an individual basis. As the work described here has been carried out as part of the

EU project NEPOMUK 5, which aims at providing a standardised description and

reference implementation of the social semantic desktop, a brief overview of the pro-

posed architecture, the available knowledge structures and some selected applications

therein will be given next, whereas further speci�cs of the use-case within NEPOMUK

are outlined in section 3.1.3.

The NEPOMUK Reference Implementation of the Social Semantic Desktop

The goal of the NEPOMUK project is threefold: (a) to formulate a standardised

description of a social semantic desktop architecture, (b) to realise its reference imple-

mentation, and (c) to evaluate a number of use cases. In the following, (a) and (b) will

be covered brie�y.

The current (intermediate) implementation of NEPOMUK has been designed as

a Service Oriented Architecture (SOA) with semantic web paradigms in mind, com-

prising of three layers [31]: (i) the presentation layer, providing user interfaces for

applications, (ii) the semantic middleware, o�ering centralised data services and the

core functionalities of the platform, and eventually, (iii) the network communication

layer, realising the social aspect by establishing connections with other NEPOMUK

systems.

Figure 2.1 [31] illustrates the three-layered architecture with its components, which

will be detailed in more depth below.

The presentation layer o�ers user interfaces to functionalities provided by the se-

mantic middleware layer, which are used for data presentation, creation and manipu-

lation. They comprise standard interfaces well-known from common desktop systems

such as a local �le-browser, an instant messaging client, etc., but also cover wikis and

5Networked Environment for Personalized, Ontology-based Management of Uni�ed Knowledge
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Figure 2.1: The General NEPOMUK Architecture

blog tools. In some cases, plugins for popular commercial products such as MS Out-

look have been developed, facilitating seamless integration of email or calendar data

resources to be managed by NEPOMUK.

Providing the core services of the platform, the middleware layer serves under two

aspects: accommodating (meta)data storage and search facilities (which can be either

local or distributed) and exposing functionalities such as text analytics (which includes

the keyphrase extraction described in this thesis, speechact detection and semantic tag-

ging and disambiguation), access control and user pro�ling, and others, where for each

category mentioned, a number of dedicated services are accessible to programmers via

API such that applications for the presentation layer can be built if required.

Eventually, the network communication layer manages the linking to other NEPO-

MUK systems in the network, and the relevant communication aspects such as mes-

saging and data exchange (for distributed search and storage), which is implemented

as peer-to-peer �le and resource sharing system. Figure 2.2 depicts the idea of an in-

terconnected NEPOMUK �universe� in a distributed search scenario.

For more detailed information, see the NEPOMUK deliverables D6.1 [33] 6 and

D6.2.A [60] 7.

6http://nepomuk.semanticdesktop.org/xwiki/bin/download/Main1/D6-1/D6.1_v10_

NEPOMUK_1st_Version_Backbone.pdf � retrieved 2008-08-08
7http://nepomuk.semanticdesktop.org/xwiki/bin/download/Main1/D6-2-A/D6.2.A_v10_

NEPOMUK_Intermediate_Architecture.pdf � retrieved 2008-08-08

11

http://nepomuk.semanticdesktop.org/xwiki/bin/download/Main1/D6-1/D6.1_v10_NEPOMUK_1st_Version_Backbone.pdf
http://nepomuk.semanticdesktop.org/xwiki/bin/download/Main1/D6-1/D6.1_v10_NEPOMUK_1st_Version_Backbone.pdf
http://nepomuk.semanticdesktop.org/xwiki/bin/download/Main1/D6-2-A/D6.2.A_v10_NEPOMUK_Intermediate_Architecture.pdf
http://nepomuk.semanticdesktop.org/xwiki/bin/download/Main1/D6-2-A/D6.2.A_v10_NEPOMUK_Intermediate_Architecture.pdf


2.1. Content-Related Metadata on the Desktop

Figure 2.2: Social Semantic Desktops in a Peer-to-Peer Scenario

In order to enable a mutual understanding between di�erent NEPOMUK systems,

the concepts and entities typically encountered in a desktop environment have to be

modelled explicitly, at the same time allowing for individual customisation of per-

sonal mental representations, addressing user-speci�c needs. Therefore, the ontological

knowledge structure in NEPOMUK adheres to a layering of three levels, with each level

addressing more speci�c needs in personal knowledge management. The three levels

identi�ed are (i) the representational level, (ii) the upper level, and (iii) the lower level,

as depicted in �gure 2.3 [60].

At the representational level, the foundations and building blocks for the lower

levels are given, in the form of ontology de�nition languages providing vocabulary

that may be used when constructing domain speci�c ontologies. Besides RDF and

RDFS, NEPOMUK relies on the NEPOMUK Representation Language (NRL) [69],

making use of named graphs [11] and allowing open and closed world semantics, e.g., for

privacy and provenance information. At the upper level, the NEPOMUK Information

Elements (NIE) ontology models concepts commonly known from desktop systems �

�les (images, audio, MS Word documents, etc.), address book entries, calendar data,

etc. � integrating vocabulary speci�ed by already existing metadata standards such as

ID3, MPEG7, EXIF, and iCalendar, whereas the NEPOMUK Annotation Ontology

(NAO) provides conceptual structures for integrating annotations and tags, very much

like encountered by the Web2.0 movement. 8

Near the lower level, the Personal Information Model (PIMO) ontology expresses

8see http://www.semanticdesktop.org/ontologies/ � retrieved 2008-08-09 � for more detailed
information on the NEPOMUK ontologies.
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Figure 2.3: Di�erent Levels of NEPOMUK Knowledge Structure

personal information models of individuals. As a consequence, the PIMO has a dy-

namic touch and can be extended and customised on a case-by-case basis. PIMO has

been designed such that the foundations in upper level ontologies prevent inconsis-

tencies to a large extent. In case information modelled by two di�erently customised

PIMOs needs to be interpreted, the ontology mapping service in the middleware of the

architecture attempts to establish a mapping between the two conceptualisations. For

more detailed information about PIMO, see the NEPOMUK PIMO draft deliverable 9.

NEPOMUK has been deployed on a number of systems, as Java implementations

based on the Eclipse platform exist for Microsoft Windows, Mac-OS and Linux. How-

ever, the most exposed implementation is perhaps NEPOMUK-KDE, which has been

bundled o�cially with the popular graphical user interface KDE 10 for Linux since its

4.0 release early in 2008. Also see the NEPOMUK deliverable D7.2 11 and the o�cial

NEPOMUK-KDE website 12 for more recent information.

2.1.3 Bene�ts of Keyphrases on the Semantic Desktop

Now that the scenario has been set, a simple but very valid question might pop up:

9http://dev.nepomuk.semanticdesktop.org/wiki/PimoOntology and http://dev.nepomuk.

semanticdesktop.org/repos/trunk/ontologies/pimo/latex/pimo.pdf � retrieved 2008-08-09
10http://www.kde.org/ � retrieved 2008-08-09
11http://nepomuk.semanticdesktop.org/xwiki/bin/download/Main1/D7-2/D7.2_v11_

NEPOMUK_KDE_Community_Involvement.pdf � retrieved 2008-08-08
12http://nepomuk.kde.org/ � retrieved 2008-08-08
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If there are a couple of documents on the desktop, and the domain vocab-

ulary is already in place, why don't we just walk over each document word

by word and see which terms are matching in the vocabulary?

The problems faced here are (i) uncertainty, and (ii) availability. How is it possible

to decide which domain vocabulary to settle on, if not known a priori?

Ontology libraries like OntoSelect 13 [9] and semantic web search engines such as

Swoogle 14 [22] or Watson 15 [19] have indexed a large number of ontologies and o�er

an interface enabling the retrieval of appropriate schemas that ful�l a given query, for

instance, a matching string value of a class name or label.

One way of estimating the best �t could be testing for each distinct (content)word

whether ontologies containing concepts (or labels) for the word in question exist. In

reality however, this attempt is barely feasible, for two reasons:

(a) given the great number of existing ontologies, it is a huge overhead to query each

of them for each (content)word.

(b) the compositionality of natural language increases the magnitude of complexity,

for example, the querying for single words would ignore more complex terms.

It might also be perfectly possible that no schema is available for the domain in

question (it may be irretrievable at the time, or simply not exist), which would result

in a dead end, and no keyphrase generation at all.

The main idea here is to use the keyphrases as a �rst step to select the appropriate

domain vocabulary. The reduced set of keyphrase candidates will provide a less noisy

summary of the topics mentioned in a document. This reduced set, in fact, does

enable querying mentioned ontology libraries for good-�tting schemas, which then can

be retrieved for further semantic annotation in addition to the free-form metadata

provided by the keyphrases.

Besides, although the primary use-case for this approach to keyphrase extraction

has been the semantic desktop, it is obvious that such free-form metadata could be

immediately very useful to common computer users on the traditional desktop, and a

number of use-cases which are equally applicable to the latter are given in chapter 3.1.

As the input for a keyphrase extraction algorithm is data from textual documents,

the utilisation of natural language processing techniques is an obvious choice. Thus, in

13http://olp.dfki.de/ontoselect � retrieved 2008-08-09
14http://swoogle.umbc.edu/ � retrieved 2008-10-22
15http://watson.kmi.open.ac.uk/WatsonWUI/ � retrieved 2008-08-09
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the following section, a brief overview of the NLP concepts suitable for this undertaking

will be given.

2.2 Natural Language Processing for Multilingual

Keyphrase Extraction

As the keyphrase extraction functionality is to be deployed on the desktop, dealing

with real-world data, in order to be reliable it has to be prepared to process documents

of unrestricted text, varying in size. Short documents however pose a problem for

statistical algorithms, which rely on observations, and low frequencies tend to lead to

unreliable predictions. Here, a shallow linguistic annotation is exploited for a number

of purposes as outlined below, enabling the use of statistical algorithms at a later stage.

2.2.1 Linguistic Pre-Processing & Shallow NLP Components

Often regarded as time and resource savvy, not robust, slow, in�exible, monolithic,

academic and too complicated, NLP has failed to make an impact on the modern desk-

top so far. In the meantime however, shallow linguistic processing can be performed at

an acceptable speed on the data commonly encountered in desktop scenarios, provid-

ing an output that is potentially better suited for content-based extraction purposes.

This section introduces the operations that have commonly been found fundamentally

necessary for shallow NLP. The steps covered here provide a foundation for further

levels of analysis, including the employment of statistical-based algorithms.

Language Detection

In order to sport the component with support for multiple languages, an identi-

�cation of the respective language used is inevitable, as linguistic resources later in

the process need to be adjusted or changed completely according to the �ndings of

the identi�cation. For instance, a Chinese document could be used as input, but the

tokenisation process in Chinese is completely di�erent from Western European lan-

guages.

Systems based on character n-grams, as proposed by Beesley [4], have been found

to be particularly well suited for the task of language identi�cation, as they provide

higher certainty over short input data than word-based systems that perform lexical

look up of characteristic words for a particular language [30].
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The application of word-based systems is also problematic when identifying lan-

guages such as Chinese, where the process of tokenisation is a di�cult one.

Tokenisation & Sentence Splitting

As a text comprises sentence segments, and a sentence is composed of tokens, it is

important to split the larger units into their smaller subunits at the correct position.

This way, an appropriate linguistic analysis can take place, as for each layer (token-

layer, sentence-layer) the set of appropriate linguistic tools may di�er. Hence, the

�rst processing step for a linguistic analysis is to divide a given text into lexical units

(tokens / words) and to detect sentence boundaries.

Part-of-Speech Tagging

Two major categories of part-of-speech-taggers are either probabilistic, using sta-

tistical language models (bi-gram, tri-gram, n-gram, Hidden Markov Models (HMMs))

like the tagger Text and Trigrams (TnT) [6], or they rely upon a large base of rules

and constraints, like CLAWS [42] or the Brill Tagger [8].

Due to idiosyncratic, language-speci�c phenomena, most languages have their indi-

vidual tagset to which part-of-speech taggers provide a mapping, a problem that will

be revisited in chapter 3.2.3 and 3.3.

Besides being a fundamental step in any NLP pipeline, part-of-speech tagging in

keyphrase and term extraction is important for so-called boundary approaches [5],

or approaches applying a linguistic �lter to discriminate the candidate set, thereby

permitting only a number of n-gram patterns determined by constraints on composition

of part-of-speech tags [29, 28, 76].

Stemming / Lemmatisation

In a scenario that ultimately depends on observations, sparse data is always a prob-

lem. In the context of NLP, when looking at wordforms, in�ections introduce sparse-

ness by encoding information such as tense, number, gender or case. While English

is a so-called weakly in�ected language with only plural in�ection for nouns, and four

di�erent types of in�ection for regular verbs, in the moderately in�ected Germanic and

Romance languages a greater variety of in�ection can be observed, which ultimately

contributes to sparse data. In order to overcome this problem to some extent, a re-

duction of the words to their morphological root or lemma (or base form) is usually
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performed, such that observations over varying word forms of the lemma can be col-

lapsed, and increased frequency counts over the lemma can be considered subsequently.

For this purpose, two di�erent techniques exist, lemmatisation and stemming.

Lemmatisation takes the context of a word form into consideration, such as its

part-of-speech tag, and may refer to a lexicon for look up of irregular words.

Stemming reduces and modi�es the su�x of a given word form to its root according

to a list of transformation rules and algorithmic procedures, e.g., by stripping the plural

ending �-s� from the word �apples�, with no underlying linguistic knowledge applied.

Stemming produces a number of invalid words due to errors introduced by over- and

understemming, a fact that has been acknowledged but neglected as a trade-o� for

speed. Two popular stemming algorithms are the Porter [57] stemmer, and the Lovins

stemmer [44].

In Information Retrieval (IR), stemming has been preferred over lemmatisation due

to its fast runtime behaviour, although in an NLP pipeline, lemmatisation should be

considered due to its accuracy in producing valid word types as output.

Noun Chunking

Noun chunking refers to the process of detecting non-recursive and non-overlapping

noun phrases in a sentence, while complex decisions about potentially ambiguous prepo-

sitional phrases can be made at a later stage. The analysis dividing a text into segments

of noun chunks is fairly simple, and often relies only on morphosyntactic categories, ex-

pressed as a grammar, or a �nite state machine over part-of-speech tags. Therefore, in

contrast to parsing (and performing constituency analysis) it can be achieved quickly,

as no deeper analysis needs to take place.

Ramshaw and Marcus have identi�ed chunking as a technique potentially useful for

index term generation [58], which is also similar to keyphrase extraction.

2.2.2 Statistical Processing

Building statistical models usually starts with counting frequencies over a layer

of information, be it tokens, lemmas, part-of-speech tags or head nouns. Statistical

language models based purely on absolute frequencies are not very suitable for de-

scribing content in language precisely, as the information in language is not equally

distributed 16. For instance, short and frequently occurring function words such as

16although the assumption of a random distribution in language has lead to the application of a
number of elegant probabilistic models, i.e Bayes
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Rank Word Frequency Rank Word Frequency

1 the 5776384 51 have 170417

2 of 2789403 52 that 165805

3 and 2421302
...

4 a 1939617 99 years 82878

5 in 1695860 100 way 82343

6 to 1468146 101 our 81997

7 is 892937
...

8 to 845350 1500 excellent 6150

9 was 839964 1501 reality 6148

10 it 834957 1502 winter 6139

12 for 768898
...

13 with 606027 265064 wormhole 3

14 he 605749
...

15 be 603178 322770 undecodable 2
...

...

50 what 173582 443839 sphinx 1
a Total Types in BNC: 921,043

Table 2.1: Word Frequencies in British National Corpus a

prepositions are often used as markers and do not contain much information, an obser-

vation that was made by Zipf [79] and later picked up and formalised by Shannon [68]

in the information theoretic noisy channel model and further discussed by Miller and

Newman [51]. As many other natural phenomena alike, language exhibits a so-called

Zip�an distribution, meaning that in a su�ciently large corpus, the majority of obser-

vations is distributed over only very few words, whereas the majority of words only

accumulate very few observations among them. In terms of frequency f and rank r,

Zipf's observation can be expressed such that there is some constant k which remains

roughly equal as a product of rank and frequency for all words in the corpus: k = r · f .
In other words, the frequency of a word is inversely proportional to its statistical rank,

as table 2.1 and �gure 2.4 document for the British National Corpus, where items at

the top of the table occur overwhelmingly frequent, whereas at the bottom of the table

a very large proportion of low frequent items can be observed.
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Association Measures, Hypothesis Testing & Information Theory

In statistical NLP, Bayesian models combine the probability of combinations of

linguistic features, for instance the probability of the token �rest� being marked up

(in simpli�ed part-of-speech terms) either as noun or as verb. Bayesian statistics is

the basis for so-called Likelihood Estimations, and has been applied to computing

co-occurrence probabilities. Expectations also play an important role in hypothesis

testing, which can be applied to ATE, collocation discovery 17 or co-occurrence prob-

lems.

However, in most linguistic applications employing hypothesis tests, it is not so

much the actual test-value which is important, but rather the fact that those tests pro-

vide a ranking which is used to separate interesting occurrences (that is, combinations

formed not by chance) from uninteresting ones. Examples of hypothesis testing ap-

proaches are the t-test, Pearson's χ2 test [46](chapter 5) or log-likelihood as described

by Dunning [23]. Hypothesis testing methods have been used in combination with

a balanced corpus in order to determine the speci�c terms of a domain corpus, as

well as measures originating in IR such as Term Frequency / Inverse Document Fre-

qency (TF/IDF). Instead of using hypothesis testing, Church and Hanks demonstrate

17A collocation can be described as a unit of combined co-occurring words, where the meaning of
the unit carries more than the pure composition of its parts, which is mostly the case for idioms, but
also for multi-word expressions. In this context, the null hypothesis proposes that the co-occurrence
is merely by chance, and it can be rejected if the result of the hypothesis test exceeds a critical value,
which indicates that a collocation was found.
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how mutual information can be exploited to identify interesting associations between

co-occurring words, given a su�ciently large corpus [13].

However, some problems remain with the afore mentioned statistical measures. Low

frequent observations at the tail of the Zipf Distribution (so-called rare events) and

data-sparseness have always been problematic for statistical methods when computing

the signi�cance of lexical items for a text. For instance, Pearson's χ2 measure or the

log-likelihood statistic become unreliable when applied to data that has been observed

less than 5 times, as Pedersen et al report in [54]. Dunning argues that χ2 dramati-

cally overestimates the signi�cance of rare events [23], while Kilgarri� points out that

in case very frequently occurring events (in the magnitude of 1000s), the whole armada

of hypothesis testing relying on a random probability distribution is used inappropri-

ately [40].

In a typical desktop scenario, it is very unlikely that very frequent events will occur

to the stage where it poses a problem for the work described here, however, sparse data

resulting from short documents are likely, such that appropriate counter measures have

to be considered, as further described in chapter 4.1.

2.3 Keyphrase & Term Extraction: State of the Art

At �rst glance, keyphrase extraction and Automatic Term Extraction (ATE) (also

referred to as Automatic Term Recognition (ATR)) seem to deliver largely the same

product: relevant terms for textual data. However, some subtle, but important dif-

ferences exist, and this section intends to point out those di�erences between the two

disciplines, before going on with reviewing relevant work in both �elds.

ATE as such is very much concerned with the identi�cation of domain speci�c

(and possibly unknown) terminology from large data collections, whereas keyphrase

extraction takes a more document-centric attitude, emphasising the descriptiveness

of the extracted phrases with respect to the originating text. Turney [75] notes the

di�erence in speci�city between keyphrase extraction and IE, to the point that the

output of keyphrase extraction is much less restricted by categories and types than in

IE. Given these characterisations, two dimensions can be identi�ed such that keyphrase

extraction and ATE are situated at opposite ends of the scales, as �gure 2.5 and

table 2.2 illustrate.

1. Input Data: ATE operates on large amounts of domain speci�c data, whereas

keyphrase extraction considers a single document as data source.
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Figure 2.5: Distinctive Dimensions for Keyphrase Extraction, Automatic Term
Extraction and Information Extraction

Corpus Size Domain Speci�city
Keyphrase Extraction single document none
Information Extraction single document moderately speci�c
Collocation Extraction large corpus barely speci�c
Term Extraction large corpus very speci�c

Table 2.2: Distinctive Dimensions for Keyphrase Extraction, Automatic Term
Extraction and Information Extraction

2. Domain: ATE often is performed around some sort of domain speci�c vocabulary,

and either such vocabulary is used as background knowledge, or the approach is

aimed at creating/enriching such knowledge structures.

Additionally, in ATE, online processing becomes unfeasible as a typical user appli-

cation, whereas keyphrase extraction should provide a result for a requested document

in a � for the user � acceptable amount of time, which goes along with the necessarily

very large data set ATE is operating on. As Bourigault explains [5],

The appearance of a new terminological unit is most often a parallel process

to that of the birth of the concept which it represents. This �birth� is marked

by the consensus of a certain scienti�c community. This consensus is at-

tested only when the occurrences of this linguistic expression, or term-to-be,

shows a stable correlation to the same object in the subject �eld, uniquely

and completely, in the writings of the agents of this scienti�c community.

At the same time, a large proportion of methods used in ATE have been found

working very well for collocation testing, and both �elds share a considerable amount

of characteristics such as the large quantity of underlying data and low constraints

in terms of processing time as experiments are usually carried out in a sequence of
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batch jobs. Keyphrase extraction on the other hand is not (as much) concerned with

conforming to a pre-de�ned vocabulary, and it is the mere descriptiveness of the output

with respect to the topics apparent in the underlying document which de�nes the

success of the approach.

While the output of ATE � word sequences referring to specialised nomenclature or

terminology � certainly has descriptive character and therefore could be seen as what

keyphrase extraction should provide, the opposite does not hold. Extracted keyphrases

are not meant to conform to some controlled vocabulary (which would be keyphrase

assignment), they are meant to give a brief, concise summary of the occurring topics

in a text.

However, still a number of techniques in both �elds are similar, and as a substantial

amount of the considerations made in ATE could be useful for keyphrase extraction

as well, I will survey the most relevant approaches of both �elds subsequently, starting

with the corpus oriented terminology extraction, before � �nally � turning to single

document oriented keyphrase extraction.

2.3.1 Corpus Oriented Terminology Extraction

With the advent of available large amounts of machine readable textual data, a

number of approaches for ATE and collocation extraction have been proposed over the

past 15 years, in a variety of settings.

Bootstrapping the creation of terminological structures from large, domain speci�c

corpora has been one of the purposes, as exercised by Daille [17] and Feldman et al [24],

whereas the continuous (semi)automatic update of existing terminological databases

has been the focus of Bourigault [5] and Collier and colleagues [15].

Both settings are also closely related to the e�orts undertaken by those parts of the

ontology learning community concerned with the acquisition of ontological/conceptual

structures from text, as witnessed by the recent workshops and activities in the context

of OntoLex2000 18, OntoLex2002 19, OntoLex2004 20, OntoLex2005 21, OntoLex2006 22,

and OntoLex2007 23.
18http://www.ontotext.com/OntoLex/index2000.html � retrieved 2008-08-07
19http://www.ontotext.com/OntoLex/OntoLex02.html � retrieved 2008-08-07
20http://www.loa-cnr.it/ontolex2004.html � retrieved 2008-08-07
21http://www.ilc.cnr.it/ontolex2005/ � retrieved 2008-08-07
22http://www.loa-cnr.it/ontolex2006 � retrieved 2008-08-07
23http://olp.dfki.de/OntoLex07/ � retrieved 2008-08-07
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Linguistic Approximation to Term Extraction: C-Value/NC-Value

Frantzi et al [29] present an approach to ATE, combining linguistic and statistical

information. They assume the availability of shallow linguistic information (part-of-

speech tags and a stopword marking), and experiment with di�erent linguistic �lters

to extract candidates (mostly noun chunks) exhibiting speci�c category patterns, such

as NounNoun+, Adj∗Noun+ and a more liberal �lter accepting a greater variety of

patterns.

Their algorithm, C-value/NC-value, is split into three stages, where (1.) C-value

assigns an initial, linguistically and statistically inspired measure of termhood to candi-

dates, (2.) a context weight is determined for content words (noun, verb and adjective)

found at the boundary (directly before or after) a term, and (3.) NC-value revisits the

termhood values obtained by (1.) and re-ranks the candidate list by a contextually

enriched measure, as obtained by (2.), combined with C-value .

The three steps will be covered in more detail here:

1. C-value starts by extracting a set of term candidates from a corpus by the pre-

viously mentioned linguistic �lter. Before a termhood score for a candidate a

is computed, an important distinction � whether a appears as a nested term in

other candidates (a is substring of another candidate) or not � is made, triggering

a dedicated treatment of nested terms.

In case of non-inclusion, the termhood value is simply the logarithm with base

2 of the length in terms of words of the candidate 24 log2(|a|), multiplied by the

observed frequency of f(a).

However, in case a is a nested term, the authors reduce the importance of the

frequency, as the distribution of a is wider spread among di�erent (larger) candi-

dates, denoted by the set Ta. The amount of the frequency reduction equals the

sum of the observations of every element in Ta, scaled by the cardinality of Ta:

C-value(a) =

{
log2(|a|) · f(a) a is not nested

log2(|a|) · (f(a)− 1
P (Ta)

·
∑

b∈Ta
f(b)) otherwise

2. To incorporate a weight re�ecting contextual information, the authors assemble

a list of important term context words (words directly preceding or succeeding

a term), to have a mechanism at hand for promoting terms which additionally

combine with lexical items that are important for the given domain. The list of

24slightly boosting terms with sequences of more than 2 words
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context words is yielded by extracting the top 33% of the ranked list obtained

by C-value in the previous step, considering the term candidates found there as

true terms. For each term contained, nouns, verbs and adjectives in preceding

and succeeding position are extracted from the corpus, as these are the morpho-

syntactic categories carrying lexical meaning � however, the assumption here is

that C-value already gives a satisfactory ranking in the top 33% of the resulting

list. Now, for each context word candidate w, a context weight weight(w) is

computed, by calculating the relative frequency of the number of terms the con-

text word combines with t(w), still in the context of the top 33% of the ranking

provided by C-value:

weight(w) =
t(w)

n

3. With the previous two steps, the list yielded by C-value is revisited, re-ranking

a term a by incorporating contextual knowledge, considering all context terms

b ∈ Ca it is appearing with:

NC-value(a) = 0.8 · C-value(a) + 0.2 ·
∑
b∈Ca

fa(b) · weight(b)

C-value/NC-value has been evaluated and applied in di�erent languages and a

number of di�erent domains, most prominently in the biomedical domain [28] using

English datasets and in a Japanese AI setting [1].

Extending C-Value/NC-Value: SNC-Value

Building on the foundations of C-value/NC-value, Maynard & Ananiadou propose

an extra layer on top, the so-called SNC-value, incorporating syntactic cues, further

contextual information and domain speci�c semantic knowledge [50, 49].

To achieve this, an additional measure, Information Weight IW is introduced,

comprising of (i) syntactic knowledge (boundary probabilities, boundary designators),

(ii) terminological knowledge yielded by the NC-Value approach, and (iii) semantic

knowledge provided by the Uni�ed Medical Language System (UMLS) 25 .

Syntactic knowledge is encoded in terms of (so-called) boundary words, or designa-

tors, by examining the syntactic category of words occurring directly before and after

a known term or its context words (c.f. C-value/NC-value above). These observations

are captured in a statistical model, and based on this, di�erent weights are assigned to

25http://www.nlm.nih.gov/pubs/factsheets/umls.html � 2008-08-19
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di�erent syntactic categories, intuitively expressing that, for instance, a verb with an

assigned weight 1.2 is a better designator for a true term than an adjective with weight

0.7 would be. Here, the syntactic weights syn determined for the categories, given as

〈category, weight〉 are {〈V erb, 1.2〉, 〈Prep, 1.1〉, 〈Noun, 0.9〉, 〈Adj, 0.7〉}.
Terminological knowledge is derived from the output of the NC-value approach,

similar to step 2 in the C-value/NC-value procedure, but this time focussing on terms

instead of words, such that the weight CT obtained here is de�ned as sum of all context

terms Ta appearing at the boundaries of each candidate term a:

CT (a) =
∑
d∈Ta

fa(d)

Again, it shall be noted that the top-33% of NC-value term candidates are treated as

true terms here.

Semantic knowledge relies on structures provided by the UMLS metathesaurus 26

and semantic network 27. Here, it is calculated to determine the semantic proximity

between a candidate term and its context terms. Intuitively, a closely related context

term should be more signi�cant to a candidate term than an unrelated context term. If

for a context term and a candidate term concepts in the hierarchy have been identi�ed,

two measures become relevant to compute the semantic similarity sim: the vertical

position and horizontal distance, de�ned here as positional weight pos and commonality

weight com, respectively, where pos is given as the combined depth in the hierarchy

tree, and com is de�ned as the number of shared common ancestors multiplied by the

number of words. The semantic similarity sim is given as

sim(w1 . . . wn) =
com(w1 . . . wn)

pos(w1 . . . wn)

where w1 . . . wn refers to the concepts identi�ed in the knowledge structure, which

correspond to the terms for which sim should be computed.

Now, armed with these measures, the information weight IW (a) combining con-

textual syntactic, terminological, and semantic insights for a term can be de�ned as

IW (a) =
∑
b∈Ca

syna(b) +
∑
d∈Ta

fa(d) · sima(d)

26http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html � retrieved 2008-08-19
27http://www.nlm.nih.gov/pubs/factsheets/umlssemn.html � retrieved 2008-08-19
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Similar to what NC-value does to an output yielded by C-value (re-ranking), SNC-

value merely re-ranks the output obtained by NC-value, such that

SNC-value(a) = NC-value(a) + IW (a)

thereby enriching NC-Value with information calculated as importance weight IW .

SNC-value has been evaluated on a corpus of 800,000 eye-pathology records, and

a direct comparison with the NC-value method con�rms that the incorporation of the

additional knowledge sources mostly yields an improvement in the ranking.

Exploiting Modi�ability Characteristics of Terms

In a series of corpus linguistic experiments, Wermter & Hahn explore algorithms ex-

ploiting the so-called limited and paradigmatic modi�ability of collocations and domain-

speci�c terms [76, 77, 78].

In [76] the authors argue that despite the repeatedly proven suitability of statistical

methods for identifying collocations (log-likelihood, t-test, etc.), there has been a lack

of acknowledging and incorporating underlying linguistic assumptions into algorithms

for collocation testing. The assumption here is that (parts of) collocations are not

substitutable (as, for instance, in 'to spill gut', 'gut' cannot be replaced by 'intestine'),

or only to a limited extent modi�able (e.g., in 'to kick the bucket', 'bucket' cannot be

modi�ed by 'green', or 'plastic', as in 'to kick the plastic bucket'), without losing the

meaning of the collocation.

To demonstrate their hypothesis that a linguistic oriented measure for collocation

testing should perform well among the state-of-the-art statistical methods, Wermter &

Hahn consider collocations adhering to the surface pattern verb-prepositional phrase,

extracted from a 114-million-word German language newspaper corpus which had un-

dergone part-of-speech tagging, sentence splitting and NP/PP-chunking. The extracted

verb-prepositional phrases were represented as <P,N,V>-triples, where P corresponds

to the preposition, N to the headnoun and V to the verb contained in each extracted

construction. Additional lexical tokens such as determiners, adjectives, numerals, etc.

associated with each triple were de�ned as supplements. Only <P,N,V>-triples which

exceeded a frequency count f ≥ 10 were taken into consideration, yielding 8,644 dif-

ferent candidate types, distributed over 279,350 candidate tokens. The candidate types

were manually classi�ed by three human judges as representing a collocation or not,

which led to a set of true collocations comprising of 1180 triples, to be used as gold-

standard.
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To capture their linguistic assumption, that a true collocation should be associ-

ated with a very characteristic supplement pattern (ideally, the only supplement pat-

tern), the authors de�ne the modi�ability measureMOD for a given <P,N,V>-triple

PNVtriple, which is based on the relative frequency of the most often observed supple-

ment, expressed as probability P(PNVtriple, Suppk):

P(PNVtriple, Suppk) =
f(PNVtriple, Suppk)∑n
i=1 f(PNVtriple, Suppi)

where f is the absolute frequency and n is the total number of distinct supplements.

Intuitively, for a true collocation, one would expect very few supplements. Now, the

modi�ability for a given <P,N,V>-triple MOD is de�ned by the most likely supple-

ment:

MOD(PNVtriple) = argmaxP(PNVtriple,Suppk
)

Thus, for <P,N,V>-triples where only few variations in the supplement can be ob-

served, MOD is expected to be signi�cantly higher than for <P,N,V>-triples with

wildly varying supplement.

In order to justify the classi�cation of a given <P,N,V>-triple as collocation, a

signi�cant amount of observations of the triple have to be made throughout the data

collection, as currently the MOD measure is (so to speak) triple-internal, and does

not re�ect the frequency within the corpus (leaving the possibility open for it being a

systematic mistake, specialised language, or a newly-coined term that has not yet found

acceptance on a large scale, which would not justify the classi�cation as collocation).

To guard against this, a measure of collocativity COLL is being de�ned, based on the

relative frequency of the <P,N,V>-triple in question in the corpus, again, expressed as

probability:

P(PNVtriple) =
f(PNVtriple)∑t

j=1 f(PNVtriplej
)

where t corresponds to the total number of distinct triple-types, and

COLL(PNVtriple) =MOD(PNVtriple) · P(PNVtriple)

Thus, COLL is expected to rank true collocations at the very top of the list of candi-

dates, whereas non-collocations should obtain a very low COLL-value, pushing them

towards the bottom.

A sequence of evaluation experiments, where the new algorithm is compared against

established statistical methods (t-test, log-likelihood) and pure frequency, con�rms the
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hypothesis, accomplishing signi�cantly better results in terms of recall and precision

in each single segment of the result set.

In a follow up study, operating on a 104-million word corpus of 513,000 English

Medline 28 abstracts, Wermter & Hahn introduce the P-Mod measure [77] in order to

identify biomedical terminology, exploiting the (so-called) paradigmatic modi�ability

of domain speci�c terms. After a shallow linguistic analysis including morphological

normalisation (lemmatisation) of the nominal head, they consider noun-chunks of word

lengths 2, 3 and 4, exceeding a cut-o� frequency threshold of 10, 8 and 6, respectively,

as candidate terms.

Their intuition � a true terminological sequence of words remains more 'frozen',

or 'static' than a non-terminological one � is modelled by the binomial coe�cient(
n
k

)
, where n is the number of words in the sequence (i.e. the n of n-gram),

and k is the number of slots which can be �lled. For instance, a particular n-

gram of size n=3 written as 〈w1, w2, w3〉 can have di�erent slots k �lled with k=1

〈k1, w2, w3〉, 〈w1, k2, w3〉, 〈w1, w2, k3〉 and k=2 〈k1, k2, w3〉, 〈k1, w2, k3〉, 〈w1, k2, k3〉, which
are called selections sel. With k acting as a wildcard in any slot, the authors de�ne a

measure of limited modi�ability k-modi�ability modk for each number of k (the number

of open slots) such that

modk(n-gram) =
s∏

i=1

f(n-gram)

f(seli, n-gram)

re�ecting the probability of a modi�cation taking place, which, based on the underlying

intuition, should not happen in case of a true terminological sequence of words, resulting

in a fairly high value of modk, whereas for wildly varying modi�cations in case of an

open slot, modk is expected to be close to 0.

The paradigmatic modi�ability, P-Mod for an n-gram is then given as the product

of all its k-modi�abilities

P -Mod(n-gram) =
n∏

k=1

modk(n-gram)

resulting in a ranked list of candidates where n-grams exhibiting very limited modi�a-

bility are ranked at the top, whereas n-grams heavily varying in the combinations with

other elements are ranked near the bottom.
28http://www.nlm.nih.gov/pubs/factsheets/medline.html � retrieved 2008-08-07
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In an evaluation of P-Mod against UMLS, at the same time comparing their results

with the commonly used ATE approaches C-Value and t-test, the authors report on a

signi�cant increase of performance in terms of precision and recall.

2.3.2 Document Oriented Keyphrase Extraction

Compared to ATE and collocation detection, keyphrase extraction has not received

as much attention in the scienti�c literature, partly because ATE o�ers greater po-

tential for continued research, partly because the output of keyphrase extraction has

limited immediate scienti�c value, and as such, is treated more as an engineering ex-

ercise. Still, as motivated in chapter 1.1, the added value to the common user cannot

be underestimated in an era of digital information over�ow, where fast and simple

methods to summarise textual content are needed urgently.

Taking noun phrase information into consideration, Barker & Cornacchian pro-

pose a simplistic keyphrase extraction implementation based merely on head-noun

frequency and phrase length [3]. They conduct an evaluation relying only on human

judges, however have to report 'spectacularly low kappa values' for inter-annotator

agreement, before concluding that nevertheless their algorithm performs comparable

with the Turney's Extractor algorithm [75] which is described in more detail below.

Matsuo & Ishizuka present an approach based on co-occurrence statistics of frequent

words within the same sentences, using similarity and pairwise clustering methods [48].

They evaluate their algorithm in a user study on 20 technical documents where judges

were asked to rate the top-15 predicted keyphrase candidates, with the possibility to

supply a set of 5 indispensable keyphrases used for coverage calculation. The evaluation

performance in terms of precision reached 51%, whereas coverage is reported at 62%.

Although mainly concerned with terminology extraction, Sclano & Velardi propose

an algorithm performing well on single documents [67]. They introduce three di�erent

measures domain pertinence, domain consensus and lexical cohesion, which are incor-

porated into a single weight expressing the relevance of a term candidate. The use

of such measures suggests the existence of a substantial knowledge base in the back-

ground, holding (lexical and statistical) information about di�erent domains which is

required for calculating the values proposed by mentioned measures. Unfortunately, it

remains unclear how the authors determine the set of term candidates, a fact that is

of great interest as a lot of noise is usually cancelled out by reducing the number of
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word sequences considered as candidates. A website 29 provides additional information

about the ongoing interactive large-scale evaluation of the approach, and the algorithm

is exposed as a web application for demo and testing purposes.

In a (semantic) desktop scenario, Chirita et al [12] present a keyword extraction

approach taking into consideration the information stored on a user's computer, with

the aim of producing context-relevant predictions to the user when browsing web pages.

They conduct an evaluation comparing di�erent standard methods from various �elds

(frequency, log-likelihood, lexical compounds), reporting on relatively high precision

scores between 70% and 80%. However, the basis for precision values are only the

�rst n=4 tags returned by the system, and as only precision is reported, it leaves much

room for speculation about the performance of the algorithm for generating all possible

relevant tags, a measure usually computed by recall. Although the authors give some

details according to implementation, it appears there is no freely available software

component providing the functionality that has been reported on.

Next, two important machine learning oriented approaches to keyphrase extraction

(GenEx and KEA) will be presented in a more detailed manner. It is interesting to

note that, unlike the ATE e�orts outlined in the previous subsection, neither of them

makes use of programmatic shallow linguistic processing such as part-of-speech tagging

or chunking.

Keyphrase Extraction as Learning Problem Using a Genetic Algorithm

Turney presents the keyphrase extraction problem from a machine learning per-

spective [75], reporting on the performance of two di�erent learning algorithms.

Keyphrase extraction here is encoded as a supervised classi�cation problem, where

the task is to predict whether a given sequence of words is a positive or a negative

example for a keyphrase. The two machine learning algorithms are the more general

C4.5 decision tree classi�er, and GenEx, a symbiosis of the genetic algorithm Genitor

and Extractor, a parametrised extraction algorithm encoding specialized procedural

domain knowledge.

A series of experiments is conducted on �ve small-sized corpora, each corpus con-

sisting of documents varying in length 30. To demonstrate the general purpose nature of

both classi�ers, the document collections were assembled from di�erent domains, and

only documents were taken into consideration that had author-assigned keyphrases at-

tached. Along those lines, the �ve compiled corpora consisted of (i) 75 Journal articles

29http://lcl2.uniroma1.it/termextractor/ � retrieved 2008-08-02
30Document length is de�ned in terms of words throughout this thesis.
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(from 5 di�erent journals) (ii) 311 Email (institute internal) messages, (iii) 90 web

pages indexed by Aliweb 31, (iv) 141 web pages taken from NASA Research 32, and

(v) 35 documents taken from the FIPS 33 web page . For the two learning algorithms, 3
4

of the email and journal corpora were used as separate training data, with the purpose

of creating di�erent classi�ers, generalising to shorter documents (trained by the email

subset) and longer ones (trained by the journal subset).

Turney's approach operates internally on stemmed phrases using the Lovins stem-

mer [44] for C4.5 and stemming by truncation for GenEx, both more aggressive stem-

ming techniques than the well-known Porter stemmer [57]. A phrase here is treated as

an n-gram of varying size between 1 and 3 words, that does not contain any stopwords.

In both learning tasks (C4.5 and GenEx ), 12 phrase parameters were identi�ed, such

as the number of words per phrase, the �rst occurrence of a phrase in the given docu-

ment, the frequency of a phrase in an underlying document, etc., encoding the features

of a given phrase.

The C4.5 algorithm was trained on 9 of the 12 parameters, ignoring 2 features

and using 1 feature as class prediction value. The input for the decision tree training

was the whole set of possible phrases (stemmed n-grams not containing stopwords)

of each training set, resulting in a very large proportion of feature vectors used as

negative examples, compared to the very small amount of feature vectors used as

positive examples, a problem that gave rise to the GenEx approach, a combination of

two algorithms, Genitor and Extractor.

To reduce the amount of negative training examples, Turney integrated so-called

procedural domain knowledge captured by the Extractor algorithm with Genitor, a

genetic steady-state algorithm. Extractor is a parametrised 10-step extraction algo-

rithm for stemmed keyphrases from a document, and its parameters are essentially the

same 12 as the ones previously used by the C4.5 approach. The procedure pursued by

Extractor is a complex orchestration of steps, ranging from noise �ltering, stemming

words by truncation, counting frequency of stems and observing their �rst occurrence,

31http://www.aliweb.com/ � retrieved 2008-08-04 � Aliweb was one of the �rst internet search
engines, and it was possible to specify a URL accompanied by keyphrases which were stored in the
Aliweb index. Unfortunately, most of the Aliweb index is out-of-date and many URLs ceased to exist.

32the originally given URL http://tag-www.larc.nasa.gov/tops/tops_text.html has ceased to
exist

33http://www.itl.nist.gov/div897/pubs/ � retrieved 2008-08-04 � The US Government Fed-
eral Information Processing Standards (FIPS) comprise a number of resources documenting various
guidelines to be followed by government institutions when dealing in the �elds of security, authenti-
cation and interoperability.
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ranking stems by frequency, selecting top-n stems to be used as cue-stems for con-

sidering a reduced set of phrases (n-grams), computing scores for considered phrases,

�ltering phrases after linguistic criteria, eventually resulting in a greatly discriminated

set of candidates predicted as keyphrases. Most of the steps in this procedure are gov-

erned by the parameters given at start time of the algorithm (e.g., truncation-length,

various thresholds and boosting factors, etc.), and it is the task of the genetic algorithm

Genitor to �nd an optimal population of parameters for the Extractor algorithm, �ne-

tuning each feature to maximise its �t on the training data. Throughout the Extractor

algorithm, only very weak and simplistic linguistic assumptions are made, as it appears

regular expressions on word endings are used to detect adjectives (for instance, words

with su�xes '-al', '-ic', '-ible'), and a list of common verbs is used to distinguish nouns

from verbs.

Turney reports on evaluation results where the GenEx approach consistently

achieves better results than the best performing setup of the C4.5 algorithm when

applied on the test set of the 5 corpora, raising precision between 2% and 10%, de-

pending on the corpus. However, the overall average precision in this experiment varies

between 11.8% and 29% (with average mean at 19.58% and median at 19.15%). In

an anonymous, web-based user evaluation of the GenEx approach over a seven month

time period, annotators were asked to provide web pages and gauge the quality of the

top-7 predicted keyphrases, ultimately achieving a 62% rate of predictions rated as

good.

Unfortunately, the referenced web site containing a demo version and further infor-

mation 34 was defunct and could not be retrieved at the time of writing 35.

Keyphrase Extraction by Naive Bayes Classi�cation: KEA

In another machine learning approach, Frank et al de�ne keyphrase extraction as a

naive Bayes classi�cation problem [27]. The classi�er is trained on a document collec-

tion with author assigned keyphrases which are considered positive example instances,

and after training is expected to be able to predict the probability of a candidate phrase

being a keyphrase.

Phrases in this context are essentially n-grams of up to size n=3, and they possess

a binary feature � the so-called a priori probability � stating whether they should

be considered as keyphrase candidates or not, which helps to greatly discriminate the

number of phrases considered, reducing the vast amount of negative examples during

34http://extractor.iit.nrc.ca/ � unretrievable
35August 4th, 2008
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training and testing, a problem also encountered in the C4.5 application of Turney.

The a priory probability for each phrase from the list of all phrases is determined

by (i) eliminating those phrases (n-grams) that have a stopword pre�x or su�x, (ii) dis-

carding phrases consisting only of a single proper noun, (iii) converting the phrases to

lower case and performing Lovins stemming [44] on each word contained, and eventu-

ally (iv) eliminating those stemmed phrases occurring only once in the document 36.

The remaining list of phrases are assigned an a priori probability of 1, all excluded

phrases obtain a priori probability of 0.

Now, to encode each phrase as feature values, only two properties (besides a pri-

ori probability) are used: (i) the TFIDF value of a phrase phr with respect to the

underlying document doc and the training corpus (training collection) C given as

tfidf(phr, doc) = P (phr|doc) · −log(P (phr|C))

and (ii) the relative position dist de�ned as the �rst occurrence of phrase phr starting

at word wk in document of length |doc| = {w0, . . . , wn} given as

dist =
wk

|doc|

These features were converted to discrete values with the purpose of yielding better

results, as it was easier for the Bayes classi�er to generalise over discrete nominal data

than over real numbers. The probability of a phrase phr being classi�ed as a keyphrase

is thus given as

P (phr|tfidf ∩ doc) =
P (tfidf |phr) · P (dist|phr) · P (phr)

P (tfidf ∩ dist)

where tfidf and dist are the discrete values of the observations described above, and

P (phr) is the a priori probability of the phrase being a keyphrase candidate.

In a later revision, this model is extended to accommodate domain speci�c knowl-

edge, by observing how often a speci�c phrase phr has appeared as author-assigned

keyphrase in the training data C, again using discretized values:

P (phr|tfidf ∩ doc ∩ C) =
P (C|phr) · P (tfidf |phr) · P (dist|phr) · P (phr)

P (tfidf ∩ dist ∩ C)

However, the authors recognise that training on a speci�c domain requires substantial

e�ort in terms training data size to yield signi�cant improvements.

36so-called hapax legomena
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In a direct comparison with the GenEx algorithm on largely the same document

collections, and with output scaled to the same number of phrases as in Turney's

experiment (output size=7 keyphrases), KEA and GenEx are found to behave equiva-

lently in terms of the amount of author-assigned keyphrases which have been predicted

correctly.

KEA has been applied in a number of settings, such as in interactive document

summarisation [37] and keyphrase extraction in a digital library scenario [38]. In the

latter experiment, which also includes a detailed qualitative and quantitative eval-

uation, the proximity in terms of performance of KEA and Turney's approach was

con�rmed again. For quantitative evaluation, matching KEA's output against author

assigned keyphrases, depending on classi�er model and output con�guration, precision

values between 6% and 28% are reported (with mean at 12.43% and median 11%),

whereas recall values vary between 5% and 32% (with mean at 16.38% and median

at 17%). Qualitative evaluation results, where human judges were asked to rate pre-

dictions make by KEA for a number of documents, vary between 50% and 64.6% for

approved keyphrases predicted by the system.

The KEA package is available for download as free software 37, however the required

training step, where at least 20 documents with assigned keywords have to be used as

training collection in order to obtain useful results increases the burden for out-of-the-

box application by the ordinary user.

2.4 Summary

At the beginning of this chapter, the relevance of keyphrase extraction for metadata

creation from textual documents has been outlined, and the scenario of the semantic

desktop has been introduced. Subsequently, NLP techniques crucial for statistical

processing on small textual data have been summarised.

Keyphrase extraction has been characterised and distinguished from Automatic

Term Extraction (ATE) and Information Extraction (IE), and the state-of-the-art has

been reviewed. The discussed ATE-based approaches are not document-centric, and

thus operate on large corpora to extract collocations and domain-speci�c terms. How-

ever, they do consider shallow linguistic information extensively, and their statistical

algorithms are linguistically inspired.

37http://www.nzdl.org/Kea/download.html � retrieved 2008-08-04

34

http://www.nzdl.org/Kea/download.html


2.4. Summary

Both reviewed approaches to keyphrase extraction utilise machine learning tech-

niques, and only to a limited extent linguistic information, to achieve optimal perfor-

mance, however only KEA is available as freely usable tool. Because of its machine

learning nature it requires training before it can be used with reasonable results, which

imposes a high burden for common computer users. Therefore, in order not to hamper

adoption, one of the characteristics for the tool presented here must be its simple use,

not requiring user action such as training on documents before it can be used.

The following two chapters constitute the main contribution of this thesis. Chap-

ter 3 presents use-cases, underlying assumptions, design decisions and implementation

of the various necessary linguistic preprocessing steps, before chapter 4 elaborates in

detail on the mechanisms found in the keyphrase extraction algorithm.
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Chapter 3

Design

This chapter will introduce a number of real-world scenarios which could bene�t

from an approach of content-based keyphrase extraction on the document level. After

an analysis of those use cases, a number of desired properties for the tool are extracted.

Based on these desiderata, the implementation of necessary preprocessing modules is

discussed, as they provide some of the data consumed by the keyphrase extraction

component, which is described later in chapter 4.

3.1 Use Cases on the Desktop

As introduced in chapter 1, the exponential increase of storage capacity due to

a�ordable pricing is leading to an information overkill not only on the web, but also

on the desktop. Textual documents, rather small in their nature (compared to digital

music or video data), easily are lost and scattered across folders on the �le system,

with only the �lename remaining as an anchor as a quick, �rst-stop description. Once

the location of the �le is forgotten, it is increasingly hard to retrieve at a later point

in time. Early adopters of desktop search tools such as Google desktop 1, Strigi 2 or

Beagle 3 are able to experience an improvement in the retrieval of certain documents

storing textual data, however mentioned tools are limited to the task of searching and

retrieving, while keyphrases are used to provide a condensed way of describing content,

a so-called content footprint. Thus, the two techniques are applied in complementary

scenarios, information retrieval and content description.

Retrieval is commonly achieved via an inverted full text index over a document

1http://desktop.google.com/ � retrieved 2008-07-29
2http://strigi.sourceforge.net/ � retrieved 2008-07-29
3http://www.beagle-project.org/ � retrieved 2008-07-29
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collection (corpus), and the signi�cance of the contained documents with regard to

some query is established by measuring their similarity (TFIDF). While structures

underlying search can do little in terms of describing content, the structures underlying

description could greatly enhance search capabilities: For humans, it is not feasible to

browse over the (inverted) full-text index trying to gain some understanding about some

document � however providing a view on a list of given keyphrases is easy to implement

(given the restrictions of screen size, etc.) and will help the user signi�cantly to gain

a �rst understanding about the content. Adding keyphrases as index terms to the

metadata description (of a document) would allow search engines to harvest precisely

this metadata, adding a layer of exact content description to their index, which could

claim priority during ranking of the resultset when a search is performed.

As described in chapter 2.1.2, with the advent of semantic web technologies on

the desktop, the so-called semantic desktop, lifted and formalised content metadata

pave the way for a number of interesting application scenarios, enabling an increase

in user experience, ranging from simple semi-automatic meaningful indexing over

visualisation to new ways of recommendation and collaboration.

3.1.1 Content-based Indexing & Tagging Recommendation

With the rise of the Web2.0 movement, tagging 4 has become the quasi-standard

for categorising content for internet media such as blogs and web-pages. Tags are

manually assigned by the author, and increasingly used on desktop systems, to describe

a diversity of desktop items such as textual �les, digital music, and so on.

Recently, with the 4.0 release of the popular Linux KDE system, it is possible to

assign tags (and ratings) to any desktop resource. Tag metadata are modelled in RDF

and persist in a global datastore, where applications can access them in order to produce

generic views with associated metadata, so-called (s)mashups such as Konduit [52].

For example, a scienti�c article carries metadata about its author, who also happens

to have an entry in the user's address book and has been tagged as appearing on one

of the user's photos. As address book entries and photo tags are also persistent in the

metadata store, a third application could provide a gallery view of all collaborators the

user knows 5.
4loosely associated terms (free form descriptions of content)
5where knows is interpreted implicitly by the fact that persons know each other if they have

established a form of correspondence such as per email.
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Semantic Notetaking Tool: Semn

The semantic note taking tool Semn 6 builds on the semantic desktop release

Nepomuk-KDE 7 for KDE4 8, and has been designed to accommodate a number of

brief, personal interlinked records. With access to the metadata store, it is capable of

consuming and interlinking available information, as well as contributing to the meta-

data store by creating its own metadata. The nature of the tool � handling textual

information � and the need to brie�y annotate the data with a small number of de-

scriptive terms suggested the use of the keyphrase extraction application. The amount

of information stored on each individual note is rather small, thereby creating a par-

ticular challenge for the keyphrase extraction component. When the user requests the

generation of keyphrases for a particular note, she is presented with a list of relevant

terms describing the content, and it is up to her which suggestions to accept. Accepted

keyphrases are stored as tags in the system wide metadata store and can be used to

generate views of notes which have been associated with a given term, very much in

the fashion of the well-known blog interfaces, as seen in �gure 3.1.

Figure 3.1: Semantic Notetaking Tool Screenshot

6http://smile.deri.ie/projects/semn � retrieved 2008-08-19
7http://nepomuk.kde.org/ � retrieved 2008-07-29
8http://www.kde.org/ � retrieved 2008-07-29
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Here, the keyphrase extraction tool acts as a middleware service on the operation

system, communicating with Semn via DBus 9, a popular message-bus for Linux, pro-

viding an implementation of an interprocess protocol (IPC). In theory, this approach

enables other applications and desktop resources on Nepomuk-KDE to easily consume

the keyphrase extraction service.

sClippy

As discussed in chapter 2.1, it is of great interest to transform implicit content-

related metadata to its explicit state, lifting it to expressed, embedded metadata as

a �rst step. Achieving this will result in a number of advantages, most importantly

can the metadata be simply looked up if desired, leaving it much easier for metadata

harvesters to make the data accessible in the systemwide RDF store. The desktop tool

sClippy is one such lifting application, utilising the keyphrase extraction tool under

the hood. Desktop �les such as PDF documents are simply dragged and dropped into

the application, and the user may start a batch job which analyses each document and

generates metadata suggestions, which need to be con�rmed by the user before they

are permanently added to the document as embedded metadata.

While the scenarios described here predominantly deal with lifting keyphrases as de-

scriptive content-metadata from their implicit state (within documents) to an explicit

form, storing them either in the respective metadata �elds of the document structure

or the metadata repository of the desktop, the following scenarios build up on that in

such a way that they make use of the process that has been described along these lines.

3.1.2 IVEA: Information Visualisation

The information visualisation tool for exploratory document collection analysis

(IVEA) is a desktop application aiming to aid the user in the process of informa-

tion gathering on a corpus of textual documents [72]. It adopts a user-centric stance

by considering the person-speci�c interests, which also may change over time. Along

those lines, IVEA operates under the assumption that a PIMO ontology (cf. sec-

tion 2.1.2) exists, specifying the predominant concepts relevant for a given user. Those

concepts are modelled as classes in the PIMO ontology. Class instances are used as

queries against the corpus, the result of such queries is displayed as visual distribu-

tion over matching documents. Finer grained information, such as the distribution of

9http://www.freedesktop.org/wiki/Software/dbus � retrieved 2008-07-29
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given instances within a given document is also available. Additional matrix-based

displays representing instance views over documents can be generated, supporting the

user in his exploratory data analysis. Also, during the information gathering process,

the PIMO ontology can be enriched with additional classes or instances, in the latter

case grounding it to the textual content of the documents.

In a previous version, IVEA proposed nouns and noun chunks as candidates purely

based on their frequency, to be considered for ontology enrichment, which generated a

number of unwelcome predictions, such as highly ranked short generic terms. Recently,

the keyphrase extraction approach described here has been integrated with IVEA,

with the hope of improving the candidates proposed for extending the PIMO, and

�rst experiments have been encouraging. Figure 3.2 displays a screenshot of a recent

Figure 3.2: Information Visualisation Screenshot

version of the tool, giving an exemplary overview of the work�ow when exploiting

the keyphrase candidates for ontology enrichment. More information about IVEA is

available on its dedicated web page 10.

3.1.3 Embedding into the Semantic Desktop

The keyphrase extraction has also been deployed as a service for NEPOMUK-

Eclipse 11, a reference implementation of the social semantic desktop as proposed by

10http://smile.deri.ie/projects/ivea � retrieved 2008-08-19
11http://nepomuk-eclipse.semanticdesktop.org/ � retrieved 2008-08-19
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the NEPOMUK consortium 12. Section 2.1.2 has already given a general introduction of

NEPOMUK and its architecture, for more detailed information also see the NEPOMUK

deliverables D6.1 [33] and D6.2.A [60].

The keyphrase extraction functionality is part of the TextAnalytics component,

which o�ers a wider spectrum of NLP-based services, such as information extraction

and speech act detection. The functionality can be accessed in a very simple way by any

component residing on the desktop, for suggestion of free-form associated keyphrases

for textual documents. The approach stands in contrast to a knowledge driven com-

ponent for information extraction, which only recognises instances of classes that are

already contained in the knowledge base, suggesting a use-case on the NEPOMUK

desktop where the two approaches complement each other. Moreover, the output of

the keyphrase extraction could be used as input for automatic summarisation algo-

rithms.

3.2 Design Decisions

Based on the discussion in the previous section, it is now possible to derive a number

of desired properties to be considered when implementing the tool.

3.2.1 Desiderata

Multilinguality

Although the English language is widespread and commonly used in academia and

information technology, it is not exclusively apparent on the desktop. Localisation

e�orts in software give evidence that there is a need to provide services also to languages

di�erent than English, and academia should not have the luxury to choose which path

to follow for convenience reasons. To address this issue, the approach undertaken here

aims at providing a keyphrase extraction service to an audience not only restricted by

the English language. However, it is increasingly hard to �nd free linguistic resources

that are applicable o� the shelf to di�erent languages 13. In the case of statistical or

machine learning algorithms, it is often the case that models need to be trained for

unsupported languages which means a considerable amount of know-how and annotated

data is required.

12http://nepomuk.semanticdesktop.org/ � retrieved 2008-08-19
13given the observation that for non-NLP persons it is already di�cult to �nd (and utilise) free

linguistic resources in their language of choice
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From a cost-bene�t perspective, for any given NLP component it seems utopical to

achieve true multilinguality, however it can be approximated by supporting as many

languages as possible at a time, and by designing the component in a clever way so it

is easy to add further support for languages later on.

Single Documents, Multiple Formats & Cross Domain

The desktop scenario is radically di�erent from most approaches in automatic term

extaction which operate on large document collections, and often are restricted to a

particular domain. Here, all sorts of single documents in the common �le formats

receive the focus of attention, meaning a signi�cant reduction of data and a dramatic

increase of noise. Input data is not cleanly prepared as are the large corpora available

for conducting experiments in term extraction. The approach proposed here should be

working on an everyday basis, on a largely unrestricted set of input data in the open

domain. Therefore, it is expected to put signi�cant e�ort into (i) �ltering out noise at

various stages of the processing, and (ii) to recognise circumstances where the standard

way of treating input data is inappropriate (for instance, when data is too sparse to

employ statistical algorithms ) and an alternative path has to be chosen.

Robust, Forgiving & Cooperative

NLP components have successfully obtained the stigma of being slow and unreliable.

While speed often is an issue, in particular when it comes to processing very large

amounts of data, it can be an acceptable compromise if � at the end of the day � a

superior result can be achieved. However, language data is highly irregular, and NLP

components are notoriously known to exhibit non-deterministic behaviour at times

when unexpected data sneaks in through the backdoor or the surrounding conditions

change to an unde�ned state. Here, it is necessary to guard against a number of possible

problems � for instance a linguistic resource could not be available for the language of

the document. In such a case, either a controlled way of notifying the user needs to

take place (graceful exit), or an alternative solution has to be found, with a possible

decline in quality, but at least not leaving the user stranded.

3.2.2 Why Use GATE?

A framework making it easy to satisfy most of the previously discussed desider-

ata is the General Architecture for Text Engineering, or GATE 14 [16]. Besides its

14http://gate.ac.uk � retrieved 2008-08-19
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system independent implementation, it provides document readers for the most pop-

ular �le formats acting as container of textual content on the desktop, such as PDF,

Microsoft Word, plain text, and so on, which is a huge advantage as it makes the

utilisation of a dedicated text extraction component unnecessary. Moreover, a number

of linguistic resources are readily available (sentence splitting, English part-of-speech

tagger, morphological analyser, etc.), which signi�cantly lowers the burden of starting

out. Additional functionality can be implemented in a plugin-based fashion, which is

important for distributing complex tasks into several units (plugins), each responsible

for the solution of an isolated problem. The plugins can be loosely coupled into a

processing pipeline in order to accomplish the original complex task, thereby relying

and accessing persistent structures provided by the framework.

In the game for more than ten years, GATE has enjoyed a large user base, and it

has been adopted by many industrial and academic projects, as a collection of GATE-

related news headlines documents 15. As a last, but nevertheless important point,

GATE's liberal license scheme via the GNU Library General Public License 16 makes

it possible to be deployed in a variety of projects without forcing hard decisions on the

licensing scheme upon the actual project itself.

3.2.3 Addressing Multilinguality

Language Identi�cation

As pointed out in chapter 2.2.1, in a pipeline of multilingual linguistic process-

ing resources varying in complexity, language identi�cation must be performed at the

very beginning, as subsequent steps need to re�ect the proper handling of the detected

language resource. While there is not so much di�erence within Western European lan-

guages concerning less complex linguistic operations such as tokenisation and sentence

splitting, with increasing complexity, appropriate decisions need to be made, as for

instance substituting English Part-of-Speech Tagger with the French or German one,

or loading respective grammars and dictionaries. Hence, for the reasons mentioned, it

is obvious that a language identi�cation has to be the �rst step done before any other

linguistic components are applied.

15http://gate.ac.uk/projects.html, http://gate.ac.uk/news.html � retrieved 2008-08-19
16http://www.gnu.org/licenses/old-licenses/library.html � retrieved 2008-07-12
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Part-of-Speech Tag Mapping

As introduced in section 2.2, part-of-speech tags are annotations at token level,

assigning morphosyntactic categories to given words, such as determiner, noun, verb,

adjective, etc.

Problematic when applied in a multilingual environment is the fact that di�erent,

non-overlapping tagsets have been established for di�erent languages. The tagset map-

ping problem has been recognised elsewhere as witnessed by a number of contributions

by the EAGLES 17 initiative, in particular the recommendations for the morphosyn-

tactic annotation of corpora 18 and in the literature such as [71], and in particular [2].

Thus, in order to conveniently treat/access this data at a later stage, a mapping to

a common, cross-language vocabulary has to be performed.

Multilingual Frequency Lists for Statistical Relevance Criteria

Section 2.2.2 introduced the notion of statistical NLP by computing association

measures. In many corpus similarity and relevance ranking experiments, the British

National Corpus has been chosen as a reference corpus 19. Obviously, for such an

approach to succeed in a multilingual setting, frequency lists for more languages are

needed.

3.3 Making Use of the Framework

The GATE framework is pluggable, which means it o�ers core services and a uni�ed

data model, whereas most of the linguistic functionality is provided via plugins which

embed their output into the structures provided by the framework. GATE plugins

can be implemented as resources of 3 di�erent sorts: (i) Language Resources (LR),

(ii) Processing Resources (PR) and (iii) Visual Resources (VR).

3.3.1 GATE Data Structures

In GATE, a Language Resource has the sole purpose of storing and providing

access to NLP relevant data (e.g., corpora, documents, lexicons or ontologies), whereas

a Processing Resource typically performs data manipulation, using LRs as source (and

17Expert Advisory Group on Language Engineering Standards
18http://www.ilc.cnr.it/EAGLES96/annotate/annotate.html � retrieved 2008-07-15
19or more precisely, the lemma frequency lists compiled by Adam Kilgarri�, also see http://www.

kilgarriff.co.uk/bnc-readme.html � retrieved 2008-10-22
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possibly, as target or sink). Visual Resources provide a view for the graphical user

interface, and shall not be treated in detail here.

In order to support the developer with a sca�old, GATE provides the so-called boot-

strap wizard. A screenshot of the bootstrap wizard dialogue is presented in �gure 3.3.

After specifying the required �elds and con�rming the dialogue, a fully functional but

Figure 3.3: Bootstrap Wizard Dialogue

empty plugin skeleton is created from where rapid development of the plugin can start.

The resulting structure yields the main class for the plugin and the so-called CREOLE

XML �le 20, which can be described as an access layer for resources shared between

framework and plugin. The creole.xml also speci�es the init-time and runtime pa-

rameters of the plugin, for which accessor methods have to be implemented, enabling it

to be treated very much like a Java Bean 21 by the GATE framework. Furthermore, lib

and resources folders exist, where 3rd party libraries and resources can be included

and bundled together with the plugin, a feature that will be used for a number of plu-

gins as described in the remainder. The main Java class of the GATE PR plugin has

to implement two methods, namely init() and execute(), and additionally specify

so-called init-time parameters and run-time parameters, which re�ect the speci�cation

given in the CREOLE �le of the plugin.

20an acronym for Collection of REusable Objects for Language Engineering
21http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html � re-

trieved 2008-07-15
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3.3.2 Implementing Preprocessors

All components described here have been implemented over the course of this un-

dertaking. They have been deployed as a Processing Resource plugin for GATE, and

in the following more details about the underlying techniques/technologies are given.

Language Identi�er

As discussed in chapter 2.2 and chapter 3.2, achieving multilinguality implies identi-

fying the language of a given input text at the very beginning of the processing pipeline

so that appropriate linguistic processing resources can be selected at later stages.

The open source 22 library ngramj 23, implemented in Java and available under

Lesser GNU Public License 24 provides a mapping from input text (given as string)

to a sorted list of language identi�ers (for example, 〈en, de, fr, pl, . . . , zh〉), where the
returned list is given in descending order of con�dence for the languages available. The

library relies on character n-grams and a competitive scoring algorithm over readily

available n-gram pro�les for a large number of European languages, among others

(please see Appendix A.1 for all out-of-the-box supported languages).

In order to make this functionality available in GATE, a plugin implementing a

ProcessingResource in form of wrapper has been created around the ngramj library.

As the ngramj-approach only needs very few characters (θ(103)) of input text to

stabilize on a prediction and produce a ranking of best-matching languages, the Lan-

guageIdenti�er drives e�ciency even further: To save runtime, only 1000 consecutive

characters from the input text are selected from an arbitrary o�set, preferably from

a central section of the document. The top element from the resulting ranked list

of language identi�ers is stored in the document model as language feature for easy

access of succeeding ProcessingResources consuming the language feature, such as

the StopwordAnalyser, POSTagMapper (both described in the remainder) and

KeywordAnalyser (chapter 4). It should also be noted that during this e�ort, two

additional n-gram pro�les have been built from internet corpora for Irish and Chinese.

Stopword Analyser

Stopwords are a closed class of words that mainly ful�l syntactic functions, and

as such barely are carrying lexical meaning. They comprise determiners, pronouns,

22http://www.opensource.org/ � retrieved 2008-07-14
23http://ngramj.sourceforge.net/ � retrieved 2008-07-13
24http://www.gnu.org/copyleft/lesser.html � retrieved 2008-07-14
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prepositions, auxiliary verbs etc. and make up a large amount of the most frequently

occurring wordforms in a given text. Due to their limited distinctive nature, stopwords

have mostly been disregarded in information retrieval, where it has been common

practice to skip them, only indexing so-called content words, as Manning et al point

out in [45](chapter 2.2.2). Recently however, the big players in the search engine market

such as Google or Yahoo! changed their policy towards inclusion of stopwords. 25

From a term extraction point of view, where terms to be extracted consist of mul-

tiword phrases and not only of single words, it is important to maintain stopwords and

not disregard them. This is motivated by the fact that stopwords might be included in

terms to be found of descriptive nature for a given document, as for instance �the Earl

of Essex�, and with losing information about all stopwords it would be impossible to

retrieve the term as a whole. It is however very useful to mark up a term as stopword,

as this information can be utilised at a later stage when counting the frequency of

phrases: For instance, the use of determiners for a given phrase might vary, result-

ing in signi�cant data-sparseness especially in short texts. In this regard, marking up

stopwords and carrying them along, but disregarding them when they only introduce

noise results in a way of abstraction which is desired for certain actions.

To achieve this, available multilingual stopword lists have been acquired 26. The

lists have been utilised by Jacques Savoy and colleagues for a number of experiments

for CLEF 27 submissions [63, 64], and were constructed following the guidelines given

in [26].

The stopword lists are stored in one �le per language. During processing, the

language feature of the document is read initially, and on this basis the appropriate

stopword list is selected. A simple iteration over the text tokens combined with a

string comparison yields an additional binary feature for each token marking whether

it is a stopword or not. A speci�c performance feature of the StopwordAnalyser

is the dynamic loading behaviour of the stopword lists: in case a document collection

is processed as a corpus, for each new document processed only the previously used

stopword list is kept in memory. As corpora in the context encountered here usually are

mono-lingual (meaning the appropriate stopword list is loaded only once), the result

is a disk access of θ(1) at best-case, and θ(n) worst case, where n is the number of

documents processed in the corpus.

The information introduced here at token level is consumed and exploited by the

25see also closely related blog discussion about Google policy change regarding stopword inclusion
at http://www.seofaststart.com/blog/stop-words-are-dead � retrieved 2008-10-14

26http://members.unine.ch/jacques.savoy/clef/index.html � retrieved 2008-10-14
27Cross Language Evaluation Forum, http://www.clef-campaign.org/ � retrieved 2008-07-15
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components FrequencyAnalyser and KeywordAnalyser. More information

about the stopword lists used by the plugin is given in the appendix B.1.

POS-Tag Mapper

As pointed out in the previous chapter, part-of-speech tags are not uniformly as-

signed for multiple languages English, French and German: The Hepple tagger [35] 28

used for English texts is based on a slightly enriched version of the Penn Treebank

tagset [61, 47], as also documented in the dedicated page of the GATE documenta-

tion 29. For German and French texts, the Tree Tagger [66] 30 is employed, and for

German it relies on the Stuttgart-Tübingen tagset [65], whilst the French tagger pro-

duces annotations only speci�ed in its accompanying documentation 31. Luckily, for

Figure 3.4: Mapping of language speci�c �ne grained tags to coarse, uni�ed categories

the approach described here, a fully �edged mapping of all possible tags is not neces-

sary: it is su�cient to map the various �ne grained content word tags (such as NN,

NNP) for each language onto their respective coarse categories as sketched in �gure 3.4.

28using a modi�ed algorithm of the Brill tagger [8], such that learned transformation rules do not
interact with each other

29http://gate.ac.uk/sale/tao/splitap4.html � retrieved 2008-07-16
30also see: http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/ � retrieved

2008-10-14
31http://www.ims.uni-stuttgart.de/~schmid/french-tagset.html � retrieved 2008-10-14
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As the coarse grained categories comprise the cross-language elements 32 noun, verb,

verbauxmod, adjective, adverb and determiner_or_pronoun, the mapping

to be performed is of a many-to-one nature. Instead of rewriting the original pos-tags,

an approach of knowledge accumulation has been chosen � the mapping to the respec-

tive coarse category is simply added to the annotations at token level that are already

present. Consumers of the here introduced coarse tags are FrequencyAnalyser and

KeywordAnalyser, as outlined further below. The complete tagsets including their

mappings for English, French and German are given in the appendix B.2.

English Noun Chunker

In draft 5963 on Documentation � Methods for examining documents, determining

their subjects, and selecting indexing terms 33, the International Standardization Or-

ganisation (ISO) de�nes an indexing term as follows:

3.4 indexing term: The representation of a concept in the form of either

• a term derived from natural language, preferably a noun or noun phrase, or

• a classi�cation symbol.

Here, the concept of a noun phrase has to be clari�ed, as from a linguistic point of view,

noun phrases can be complex: they include a so-called head-noun, the semantic core

which determines morphosyntactic features such as gender and agreement. The head

noun may be further speci�ed by determiners (a, the, these, etc.), numerals (one, two,

ten, etc.), quanti�ers (no, some, all, etc. ), premodi�ers and complex post-modi�ers

which can be of recursive structure and include phrases themselves as the following

example illustrates:

DET PREMOD HEADNOUN POSTMOD

The doctor performed
the magnetic induction tomography quickly.

the magnetic induction tomography in the hospital.

As in most of the cases it does not make sense to assign index terms that include

determiners, numerals or quanti�ers or even post-modi�ers 34, it is assumed that the

32for the vast majority of languages
33http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=

12158 � retrieved 2008-07-16
34unless the head-noun forms a semantic unit with the numeral/quanti�er/post-modi�er, as in the

Seven Dwarfs, or Lawrence of Arabia, however such phenomena usually denote so-called (named)
entities whose identi�cation is not targeted by the work described here
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term noun phrase as it is used in the ISO de�nition should be interpreted primarily

as head-noun including its premodi�cation. An investigation of articles from PubMed

Central 35 that have assigned index terms con�rms this assumption: from 20 randomly

selected documents, of the 98 overall index terms, 97 were premodi�ed head-nouns,

whereas only 1 index term had the characteristics of a complex noun phrase (An au-

tomated drug infusion system) 36. This insight is important from a computational

perspective, as head-nouns including premodi�ers can be yielded by so-called chunking

techniques, which is signi�cantly less complex than constructing noun phrases. 37 The

GATE distribution is shipped with a plugin that performs noun chunking on English

text, however, the resource has runtime performance issues. Therefore, an alternative

GATE plugin yielding noun chunks has been implemented which runs signi�cantly

faster than the originally provided chunking plugin. The noun chunks generated by

the original GATE component correspond almost in 100% of the cases to the noun

chunks generated by the new plugin, which has been realized using a GATE �nite

state transducer by specifying a JAPE grammar with 11 macros and only 1 rule. The

grammar introduces a new annotation type for noun chunks, whose instances are added

to the default annotation set, e�ectively enriching the document with a higher-level

structure between token and sentence annotations. The here implemented approach is

a 1-to-1 adoption of the chunking strategy described in the LingPipe 38 part-of-speech

tutorial, where a chunking implementation is covered brie�y 39. The only consumer of

the annotations introduced at this stage is the KeywordAnalyser plugin. Please

see appendix B.3 for the full speci�cation of the JAPE grammar.

Frequency Analyser

Raw frequencies are the basis for any statistical calculation. In the context of

statistical NLP, this implies counting lexical items such as word and lemma occurrences,

which can be seen as a �rst approximation towards determining the most signi�cant

words in a given text.

However, raw frequencies have to be handled with care, as words in natural language

exhibit a Zipf distribution [51] (cf. section 2.3).

35http://www.pubmedcentral.nih.gov � retrieved 2008-08-19
36http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1705490

� retrieved 2008-07-16
37A thorough discussion of the nature and shape of noun phrases is out of the scope of this thesis,

however this example should be su�cient to motivate the use of chunking techniques.
38http://alias-i.com/lingpipe/index.html � retrieved 2008-07-16
39http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html � the paragraph in

question starts at 3
4 of the webpage and is titles "Noun and Verb Chunking" � retrieved 2008-07-16
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This is precisely the reason why here, exclusively (lemmas of) content words � and

more speci�cally, nouns � are regarded as input for hypothesis testing, thereby disre-

garding problematic items at the top of the Zipf distribution, whereas rarely occurring

lemmas/words with frequencies below 5 are also not chosen. Frequencies are counted

for a number of di�erent observations and stored as a document feature in a sorted

HashMap (ordered by descending frequency), each representing a dedicated view over

the word/lemma occurrences in the document: a) overall token frequency, b) overall

lemma frequency, c) noun lemma frequency, d) verb lemma frequency, e) adjective

lemma frequency .

Also, the document size in terms of word forms is counted and stored as a document

feature as well as the lexicon size, which is the total number of di�erent word types (or

lemmas, cf. 2.2).

The sole consumer of the here generated frequency lists is again the Keyword-

Analyser.

3.3.3 The Linguistic Food Chain: Who Consumes What?

This section gives a high level overview of the various components necessary for the

proposed approach of keyphrase extraction.

As discussed before, it is inevitable to start the process with the identi�cation

of the language of any given document, in order to select subsequent processing

resources appropriately. Following, the input text needs to be tokenised and split

into sentences. This procedure is very much the standard in information retrieval. A

stopword analyser marks up the tokens in the document structure with information

whether they represent a stopword or not, rather than eliminating tokens found to be

stopwords.

Arriving at a �rst junction now, it needs to be decided which part-of-speech

tagger is used, depending on the information the language identi�er has provided.

In case of an English document, the Brill tagger shipped with GATE is utilised, in

case of French and German the Tree Tagger is employed. This decision will also

in�uence which component is used for morphological analysis / lemmatisation,

as this functionality is also provided by the Tree Tagger in case of German and French

texts. For English, the morphological analyser shipped with GATE as an additional

plugin is used. Either way, tokens are now enriched with part-of-speech and lemma

information. As the part-of-speech tags are heterogeneous and di�er from language

to language, a mapping plugin enriches the tokens with their coarse morphosyntactic
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Figure 3.5: Plugin Architecture & Work�ow

category, in order to be able to treat tokens in a uni�ed way in the later stages of

frequency and keyphrase analysis. Now, larger syntactic units are identi�ed by the

noun chunker, which again is dependent on the information provided by the language

identi�er, as di�erent rule sets are loaded for English, German or French. Here, for

German and French texts the MuNPEx chunker 40 is employed, whereas for English

documents, a noun chunker implemented for this thesis is used. A frequency analysis

step producing frequency lists of overall wordform and lemma occurrence is carried out.

Besides the overall observations, frequency lists for all coarse grained morphosyntactic

categories representing content words (nouns, verbs, adjectives) are also created, which

is useful for convenient lookup during the lexical/statistical part of the keyphrase

analysis.

The work�ow as a whole is also depicted in �gure 3.5, where the white boxes

embody components or plugins that have (partly) been implemented as part of this

thesis, whereas the grey boxes represent components that were available o� the shelf

as part of the GATE framework.

In the next chapter, the internal process of the keyphrase analysis is described in

more detail.

40http://www.semanticsoftware.info/munpex � retrieved 2008-08-19
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Chapter 4

Implementation

This chapter outlines in a detailed way the implementation of various steps under-

taken to engineer a knowledge-poor keyphrase extraction mechanism suitable for single

documents, possibly varying signi�cantly in length, for a number of di�erent languages.

To achieve reasonable results for a wide variety of possible input types (di�erent

document formats, very short/very long texts, use of di�erent languages), the Key-

wordAnalyser plugin for GATE is consuming most of the aggregated information,

represented as annotations in the GATE document structure, which were added by the

previously described preprocessors. The component is divided into a number of sub-

packages, each of which are responsible for di�erent aspects of the keyword analysis

process. The distributed responsibilities include

1. the (statistical) lexical analysis to determine the most signi�cant single word

terms,

2. the extraction of the previously identi�ed single-word terms including

their immediate contexts to form complex terms,

3. the grouping (or clustering) of similar complex terms, and selecting a

representative for each group (cluster) as a keyphrase candidate, and eventually

4. the analysis of the extracted keyphrase candidates in order to determine

a con�dence score in the context of the document in question.

Figure 4.1 o�ers a high-level overview of the �rst two parts of the keyword analysis

(statistical computation over lexical items & extraction of complex terms), whereas the

process of grouping (or clustering of) the complex terms and determining a candidate

for each cluster is sketched in �gure 4.2.
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Figure 4.1: Keyword Analysis � Statistical Processing & Extraction of Complex Terms

4.1 Lexical Items & Important Words

Establishing a ranking of words/lemmas ordered by their signi�cance for a given

document can be achieved in multiple ways. The naïve way would be to sort the

contained words by their number of occurrence, as done by the FrequencyAnalyser,

and consider the top-n elements as important. As discussed in section 2.3, the most

frequently occurring words in natural language are not at all signi�cant for the content

of a document, and more sophisticated methods exist, exploiting likelihood estimations

and probability distributions. Unfortunately, statistical tests are not always applicable,

and great care has to be taken to avoid statistical skewing, in particular if the data

that is being tested (also called sample size) is sparse. As this tool should be used as

a black box, deployed as a desktop component, it is of uttermost importance to make
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Figure 4.2: Keyword Analysis � Clustering, Labelling & Choosing a Candidate

the process robust and reliable for all possible variations of input.

The algorithm consumes the frequency lists for noun lemmas introduced by the

FrequencyAnalyser.

The list nounLemmaFrqList is processed and its elements are aggregated into a uni-

�ed list of candidate lemmas, called candidateLemmaFrqList, whereby the elements

undergo a �ltering procedure such that

(a) a selected element must have a frequency of 5 or more

(b) no more than the upper 25% or top 25 elements of the list (whichever comes �rst)

are aggregated

This selection policy ensures that the aggregated list contains only elements which are

suitable for statistical processing, up to a maximum of 25 elements. In the following,

the statistical component is being described.
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4.1.1 Statistical Processing

Here, the statistical component relies on Pearson's chi-square test [46](chapter 5),

which belongs to the family of hypothesis tests. Other notable hypothesis tests are the

t-test and likelihood ratios such as log-likelihood [23].

Hypothesis testing is frequently applied as standard measure when investigating

phenomena observed in large corpora, and it has been found useful when establishing

a signi�cance ranking, e.g, for determining co-occurrence behaviour or identifying im-

portant words in a corpus. In essence, hypothesis testing formulates a so-called null

hypothesis H0, postulating that an event observed in a sample occurs more often than

by chance, which in this context means to test whether a word that has an observed

high frequency is really important: as shown in section 2.2.2, table 2.1, frequency alone

is not always a reliable indicator of importance. Computing the statistic accounts for

this, resulting in a ranking that, if sorted by the χ2 just obtained, shall indicate the

more important words at the top of the list (see also table 4.1 and 4.2).

Here, Pearson's χ2 test is applied to assess the degree of corpus similarity when

given two corpora, where the �rst corpus is the sample and the second corpus is a

balanced reference corpus of signi�cantly larger size.

To address concerns about the suitability of hypothesis testing for phenomena ob-

served in natural language due to its non-random character � one of the core as-

sumptions of hypothesis testing is a random distribution in the samples � raised by

Kilgarri� [39] and recently re-iterated in [40], it shall be noted that here, the outcome

of the test is not compared to a chi-squared distribution table, as the test is not used

for maintaining or rejecting the null hypothesis. Instead, a list ranked by χ2-value

is produced which illustrates the di�erence in expected word frequencies between the

sample and the reference corpus, as also pointed out by Kilgarri� and Rose [41]. Al-

ternative statistical methods applied for similar purposes include log-likelihood [59],

information theoretic measures such pointwise mutual information 1 [13] and relative

frequency ratios as demonstrated by Damerau [18].

The underlying frequency lists for this calculation have been derived from a number

of large, balanced corpora which have been compiled from the internet in context of

the Web as Corpus initiative (WaCky) 2, and are available for various languages from

Leeds University 3.

The χ2 value for lemmas in candidateLemmaFrqList for sample cSample of size

1a variation is known as pointwise Kullback-Leibler divergence
2http://wacky.sslmit.unibo.it/ � retrieved 2008-07-20
3http://corpus.leeds.ac.uk/list.html � retrieved 2008-07-19
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Corpus a Medium-sized Sample b

Lemma Frequency Frequency χ2

theory 27885 44 3278.51

�eld 40897 33 1226.86

law 80553 29 450.56

equation 3941 21 5362.19

system 134403 15 54.08

nature 30154 13 246.65

mechanic 2748 12 2509.15
a Large balanced internet corpus compiled by Leeds University; size 181,376,006 tokens;
also see http://corpus.leeds.ac.uk/list.html � retrieved 2008-07-19

b http://nobelprize.org/nobel_prizes/physics/laureates/1921/

einstein-lecture.pdf � retrieved 2008-07-19

Table 4.1: Lemma Frequency in Reference Corpus and medium Sample

N1 and the reference corpus cRef of size N2 is calculated as follows:

1. treat cSample and cRef as random samples from the same population

2. for each lemma l in candidateLemmaFrqList with frequency observation

ol,cSample in cSample and ol,cRef in cRref ,

(a) compute the expected values for both corpora:

el,cSample =
NcSample · (ol,cSample + ol,cRef )

NcSample +NcRef

el,cRef =
NcRef · (ol,cRef + ol,cSample)

NcRef +NcSample

(b) summing up the squared error between observation ol,cSample, ol,cRef and

expectation el,cSample, el,cRef (normalised by expectation) yields χ2:

χ2 =
∑ (ol,i − el,i)

2

el,i

Table 4.1 and 4.2 show how the ranking would adjust for the displayed lemmas

of two documents if they were ordered by χ2, promoting words/lemmas that are very

speci�c to the respective document and penalising those which are used very commonly.
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Corpus a Small-sized Sample b

Lemma Frequency Frequency χ2

sector 19850 8 680.07

machine 20758 7 495.68

beam 27885 6 3022.14

particle 40897 6 1780.39

ring 30154 5 610.40

week 2748 5 75.91
a Large balanced internet corpus compiled by Leeds University; size 181,376,006 tokens;
also see http://corpus.leeds.ac.uk/list.html � retrieved 2008-07-19

b http://newsvote.bbc.co.uk/mpapps/pagetools/print/news.bbc.co.uk/2/hi/

science/nature/7512586.stm � retrieved 2008-07-19

Table 4.2: Lemma Frequency in Reference Corpus and small Sample

The lemmas obtained in this fashion are aggregated as so-called CueTokens in a

LexicalCandidateStore, which is used later on to extract larger, more complex terms,

such as chunks or n-grams. The scenario might arise that χ2 cannot be computed

because the lemma in question is not contained in the reference frequency list. In such

a case, the lemma is assumed to be of some relevance if its frequency in the sample is

above an empirically determined threshold of 5, and it is aggregated into the Lexical-

CandidateStore as well.

The reference frequency lists have been integrated into the plugin, and to save mem-

ory the same dynamic loading procedure is used as for the StopwordAnalyser,

described in section 3.3.2. Appendix B.4 elaborates more on statistics about the lists

and the corpora they were derived from.

Next, the method for the fallback procedure is sketched, which is employed in case

frequency observations in the document are consistently low to guard against inappro-

priate use of the statistical method.

4.1.2 Guarding Against Sparse Data: Fallback to Frequency

If, as a result of a short input document (or data sparseness in general), the ag-

gregated list candidateLemmaFrqList turns out to contain less than 10 elements 4,

the statistical analysis is not performed. Instead, a new list of candidate lemmas is

4which means there were insu�cient observations of lexical items with frequency 5 or more
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constructed by repeating step (b) as described in section 4.1 � this time, no frequency

�ltering is applied as it is of importance to retain all possible content lemmas for fre-

quency analysis. After all, in sparse data, a frequency of 3 or 4 might be su�ciently

outstanding to be selected as a good candidate, and losing this information at the

beginning of the undertaking might be severe.

Either way (via statistical signi�cance indication or mere frequency), the result at the

end of this stage is a structure containing the lexical (single word) candidates that have

been found to be important in the context of the given input document. These lexical

candidates will be used as input by the procedure extracing more complex units of text

(chunks or n-grams), which will be described next.

4.2 Moving to Complex Units

Here, more complex units of words are composed and assembled in a list of com-

plex terms. The previously yielded lexical candidates from LexicalCandidateStore are

treated as cue tokens, in such a way that only complex units are considered which

contain one or more cue tokens. Two di�erent strategies for assembling complex terms

have been implemented, making use of either noun chunks or n-grams. In case the

linguistic annotation produced noun chunks in a previous step, the noun chunk strat-

egy is employed as it is more accurate, otherwise the n-gram strategy is utilised. Both

strategies are discussed subsequently.

4.2.1 Noun Chunk Strategy

Noun chunks containing one or more lexical candidates are considered for further

processing, however they are transformed (or even rejected) according to a number of

heuristics, a) to avoid a larger degree of data sparseness than necessary,

b) to guard against possible errors made by preceding linguistic components

and

c) to prune garbage or junk that has been introduced as part of textual artifacts

(mostly non alpha-numeric characters such as [, ", /, (, etc.).

The heuristics can be classi�ed i) as constraints and transformations on the token

level, controlling the assembly of the chunk, and ii) as restrictions on the chunk level

to determine whether to cancel an assembled chunk or not.
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Token level: As mentioned in 3.3.2, in most contexts, nouns are introduced by de-

terminers (the new shoes) or pronouns (her new shoes), which, when counting

observations over noun chunks, leads to an increase in observable types, at the

expense of frequency counts. The result is sparse data which is problematic to

interpret. 5 Therefore, the following constraints are imposed on tokens when

assembling a chunk, and non-conforming tokens are not being used as building

blocks. Chunk-initial tokens must not be

• a numeral or number

• a determiner or pronoun

• a stopword

• a non-word to �lter out punctuation symbols.

Furthermore, a number of restrictions have been introduced, constraining the

tokens in chunk-�nal position, mostly correcting a slight overgeneration of the

noun chunker. Again, tokens not adhering to the following rules are not included

into the chunk under construction: Chunk-�nal tokens must not be

• an adverb

• a stopword

• a determiner or pronoun

• a non-word to �lter out punctuation symbols.

Elsewhere in Automatic Term Extraction, harder morphosyntactic constraints

on the formation of extraction candidates (such as �xed sequences of part-of-

speech patterns) have been imposed, most notably by [29, 28], where only noun-

�nal chunks are considered, and [76], who only extract preposition-noun-verb

combinations (PNV). This greatly decreases the amount of chunk candidates, a

side-e�ect that is particularly harmful when dealing with small amounts of data.

Additionally, a negative side e�ect from a multilingual point of view is introduced,

as languages vary in their syntactic composition:

English French German

military base base militaire Militärbasis

ADJ NOUN NOUN ADJ NOUN

5 It could be argued that the frequency should be counted over the head-nouns only, however
unfortunately head-noun information was not available at the time of implementation and would have
required additional e�ort.
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Settling on dedicated extraction patterns would mean enumerating acceptable

compositions for each supported language, which tends to become unmanageable

and in�exible with an increasing number of languages. Hence, to allow for �exible

cross-language use, morphosyntactic restrictions are kept at a minimal, universal

level, allowing complex terms composed of any combination of content words

(noun, adjective, verb, adverb), transferring the responsibility of promoting and

demoting candidates to the con�dence scoring functions described later in this

chapter. Also performed on token level is a token-repair-procedure, with the aim

of gluing together words that have been separated by hyphenation.

Chunk level: All of the constraints imposed on chunk level are for the purpose of

pruning / preventing an assembled chunk to be carried on, largely addressing

imperfect input such as junk characters or errors made by preceding components.

A chunk is not further considered if it does not satisfy all of the restrictions

introduced here.

They include the requirement to be composed of a minimal number of char-

acters (2, by default) for each word contained in a chunk, to bypass orphaned

letters or characters. Furthermore, only an extended set of alpha-numeric

characters is accepted, consisting of letters, digits, whitespace and dash �

also speci�ed by the following Perl regular expression /\w\s\d-/ � to properly

handle string artifacts such as (, /, ], and so on. Finally, the scenario might

arise where a preceding linguistic component made a mistake, having missed a

sentence boundary which led to the erroneous assignment part-of-speech tags,

resulting in unreasonably lengthy noun chunks. This error is predominantly en-

countered when processing web pages from the internet, where for instance the

HTML is being stripped from a menu structure, resulting in a number of consecu-

tive nouns which are processed as one sentence. The outcome is often a candidate

similar to Search term Explore the BBC BBC News Updated every minute. To

guard against such error types, noun chunks are restricted in the amount of

tokens they can carry 6, to a maximum amount of 5 tokens.

As the various lookups between di�erent levels of annotations in the GATE-internal

document data structure resulted in an unacceptable speed penalty, look-up has been

6From a linguistic perspective this might cause raising eyebrows as even noun chunks can go on
inde�nitely: Peter's expensive new big . . . red shiny car, cf. pumping lemma, Hopcroft & Ullman,
chapter 3 [36], however it has been found a pragmatic solution here.
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re-implemented using a number of hash tables. The outcome was a signi�cant perfor-

mance gain so that a look-up could be achieved which was up to 50 times faster than

the naïve GATE-lookup.

4.2.2 Lacking Linguistic Resources: Fallback to N-Grams

In case no linguistic resource for noun chunking is available, an n-gram strategy is

automatically selected for constructing units of more complex shape. Here, n-grams of

tokens/lemmas containing one or more cue tokens are generated, varying in size from

n=2 up to n=4. Essentially, the constructed n-grams must satisfy the same constraints

introduced for the chunk strategy, and the same type of transformations are carried out

in order to keep the candidate set clean.

Either way (via chunk strategy or n-gram strategy), the result at the end of this stage

is a list containing instances of the complex term candidates that have been extracted

as described above.

4.2.3 Partitioning the Candidate Space by String Similarity

The challenge now is to divide these instances into clusters, such that each cluster

holds instances that are more similar to each other than to any of the members of any

other cluster. The similarity criterion that has been chosen and is used for comparison

considers the lemmas of the complex terms, hence the similarity sought is string-based,

which makes string-similarity metrics the appropriate tools to be applied here. Popular

string-similarity metrics include the Levenshtein Distance 7, the L1 Distance 8 and

Dice's Coe�cient 9.

For similarity clustering, the Monge-Elkan Distance, modi�ed for recursive match-

ing [53] was chosen, as � in a survey and evaluation paper by Cohen et al [14] � it was

found to be among the highest scoring metrics for the type of task at hand.

Monge & Elkan de�ne their algorithm as �eld matching problem, where a string

strA to be compared with a second string strB comprises so-called �elds, which again

may contain sub�elds, determined by designators such as comma or whitespace. A

7also Edit Distance, as it computes the number of edit-operations that are needed to transform a
source string strA to a target string strB

8also Manhattan (or Block) Distance, as it can be described using a grid in 2-dimensional space,
thereby resembling the street layout of Manhattan

9here, similarity between two terms is de�ned as the number of strings common to both divided
by the sum of strings in both terms
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scoring function between two strings takes into account the amount of sub�elds in

strA that are maximally similar to sub�elds in strB, recursively applying a matching

function, thereby considering the semantic similarity of corresponding sub�elds, such

that

sim(strA, strB) =
1

|strA|

|strA|∑
i=1

|strB |
max
j=1

sim(strAi, strBj)

The achievement here is a proximity degree between strA and strB within the range of

0 and 1, re�ecting the amount of overlapping sub�elds and atomic strings, resulting in

higher con�dence even for string pairs where Levenshtein assigns a low score. Naturally,

the outcome of the Levenshtein Distance calculation is an integer, but � for ease of

comparison � here it is scaled to a decimal number between 0 and 1 by

1− levenshtein(strA, strB)

max(length(strA), length(strB))

as shown in the table below:

String A String B Monge-Elkan Levenshtein

arithmetical computation complex arithmetical computations 1.000 0.727

intertial frame local intertial frames 1.000 0.682

pure gravitational �eld homogeneous gravitational �eld 0.800 0.677

Here, a recursive version of the Monge-Elkan algorithm is used, and complex terms

which exceed an empirically determined similarity threshold of 0.8 are grouped into

the same cluster, using the SecondString package/library 10 developed by Cohen and

colleagues from Carnegie Mellon University.

It could be argued that su�x tries are the better choice for this clustering procedure,

as they show more potential in grouping phrases by their head-noun, which could lead

to a low-hanging crop in terms of yielding a hierarchical structure. However, using su�x

tries with this motivation fails for languages which do not necessarily exhibit a noun-

�nal-position in noun chunks, such as French. As constructing hierarchical structures

was not the concern of this undertaking in the �rst place, the course of action pursued

here was mainly driven by pragmatic decisions, and using string metrics seemed a

reasonable choice.

The comparison procedure over the list of complex terms Lct has been implemented

to run in θ(n) = n · log(n) time, where n = |Lct|, avoiding quadratic runtime.
10http://secondstring.sourceforge.net/ � retrieved 2008-07-29
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4.2.4 Folding a Cluster and Selection of its Representative

Now that the chunk candidates have been partitioned into clusters (or groups), it

is important to stress that they are similar, but not equal. A cluster may consist of

such di�erent complex terms as 〈Central America, northern Central America, Central

America, Central America, lower Central America, Central America〉 or 〈gravity �eld

free, gravitational �eld, gravitational �eld, homogeneous gravitational �eld, pure grav-

itational �eld, gravitational �eld, gravitational �eld, gravitational �eld〉 where items

may occur more than once, re�ecting their appearance in the document.

So now the question arises how to represent this diversity in a meaningful way. It

seems reasonable to select one element from the cluster that best represents the other

elements, a so-called representative. As the concern here is keyphrase extraction,

priority should be given to terms consisting of more than one word � otherwise, the

standard corpus linguistic methods which are working well to identify relevant single

words � as elaborated on in section 2.3 could simply be applied. To achieve this, a

similarity maximisation is calculated, where a cluster is represented as the set C of

complex terms ct: C = ct0, · · · , ctn−1. To �nd the complex term ctmax that resembles

the remaining elements most closely, a pairwise string metric comparison 11 over the

elements of the cluster is performed, competitively maximising similarity:

∀ct ∈ C : msimi =

n=|C|∑
j=0

sim(cti, ctj)

However, this similarity maximisation aggressively selects short (one word) terms, as

they are more likely to be similar to the mutual cluster elements. Here, it is important

to repeat the invariant that the elements of a cluster already are similar. To promote

a term cti made up of more than one word, a simple boosting of msimi by the number

of words |cti| is a �rst approximation, however this leads to an aggressive selection of

the longest terms in a cluster, even when their similarity compared to their mutual

elements is not so high, and some sort of control is needed: During the calculation of

the intra-cluster similarities for cti, an observation o′i is made, recording how often the

outcome of the Monge-Elkan metric resulted above an empirically determined threshold

of 0.8, re�ecting very high correspondence. In combination with word count |cti|, it is
now possible to control the similarity maximisation algorithm, and at the same time

promoting multi-word phrases without over-estimating the importance of very long

11again, the Monge-Elkan distance is used, as described in the previous paragraph
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phrases. The function

boosti = log(|cti| · o′i)

was found to be suitable for boosting, and thus,

∀ct ∈ C : msimi = boosti ·
n=|C|∑
j=0

sim(cti, ctj)

and following, the complex term maximising the result is chosen as representative of

the cluster:

ctrep = max(msim0, . . . ,msimn−1)

Central America : 〈Central America, northern Central America, Central America,

Central America, lower Central America, Central America〉,
or

gravitational �eld : 〈gravity �eld free, gravitational �eld, gravitational �eld, homoge-

neous gravitational �eld, pure gravitational �eld, gravitational �eld, gravitational

�eld, gravitational �eld〉

The representative yielded by this procedure is aggregated into the set of main

keyphrase candidates. For these, a con�dence score is being calculated, considering a

number of features such as signi�cance and scope, which is described next.

4.2.5 Regarding Positioning

Scope is one of the more important attributes of a term in relation to the document

it appears in. Frequently appearing phrases might occur in a particular area of a

document (e.g., in a book chapter), having local scope only, whereas phrases observed

with a lower frequency might occur more evenly distributed over the whole document

space, claiming global scope over the document. Also, phrases occurring from the very

beginning of the document have a larger in�uence than phrases that are only observed

in some section at the end.

Scope is implemented here as a function of observations over document segments

(also called partitions), and the outcome is an assignment of either global, local or

none, where phrases with assigned scope none are considered rare events, typically

scattered over the whole document space such that there is no observation of relevance

accumulated in one partition.
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The following formula re�ects the outlined considerations regarding scope over a

document. It is computed for each representative r (as determined before) by �rstly

dividing the document into an ordered set P of n equally sized partitions, where n has

been chosen as n = 10 for the implementation.

P = {p0, p1, . . . , pn−1}

Now,

1. For each partition pi ∈ P

(a) count the number of observations obs(pi) of cluster elements belonging to

representative r contained in pi

(b) de�ne a binary mapping from obs → obs′ recording whether elements were

observed at all in pi:

obs′(pi) =

{
1 i� obs(pi) > 0

0 otherwise

2. compute g′(P ), resulting in the binary value of 1 i� an observation was made

(obs′(pi) = 1) in half or more of the partitions, and at the same time, an obser-

vation was made more than once in the partitions representing the �rst half of

the document (|b
n
2
c

i=0pi):

g′(P ) =


1 i�

∑n
i=0 obs

′(pi) ≥ b i
2
c

∧
∑bn

2
c

i=0 obs
′(pi) > 1

0 otherwise

3. compute l′(P ), resulting in the binary value of 1 i� an observation was made in

two consecutive partitions (obs′(p) = 1 for one pair 〈pi, pi+1〉), or at least one of
the partitions has an observation of greater than 1 (obs(pi) > 1):

l′(P ) =


1 i� ∃pi obs(pi) > 1

∨ (∃pi [obs′(pi) = 1 ∧ obs′(pi+1) = 1])

0 otherwise
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4. use the previously computed values g′ and l′ for scope assignment:

scope(g′, l′) =


global if g′ = 1

local if g′ = 0 ∧ l′ = 1

none otherwise

Figure 4.3 illustrates the scope assignment process for a number of examples, e.g.,

�inertial frame� occurs often and fairly distributed over the whole document, thereby

claiming global scope, whereas �gravitational �eld� satis�es the �rst option of the local

scope requirement, and �identical clocks� satis�es the second option.

Figure 4.3: Scope Assignment Illustrated

The position analysis for each of the previously determined representatives ad-

dresses the scope factor, such that the �ndings can in�uence the con�dence scoring

functions outlined in the next section.

4.3 Ranking Keyphrase Candidates

Now that a number of factors in�uencing the degree of descriptiveness have been

isolated and can be programmatically determined, it is time to combine them into a

meaningful, singular value which can be used for an overall ranking of the selected

representatives.

The here engineered scoring function takes into account three di�erent aspects, each

contributing with a dedicated, carefully selected weight such that the overall con�dence
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score remains within the boundary of zero and one.

The aspects focused on here are

1. signi�cance of cue tokens in the representing candidate: CtS

2. scope, as determined by the distribution of the candidate cluster over the docu-

ment: SoC

3. number of words contained in the candidate / representative: NoW

Their combination results in a con�dence score for a representative / keyphrase candi-

date

conf = CtS + SoC +NoW

Subsequently, each of the contributing aspects are motivated, de�ned and brie�y

discussed:

4.3.1 Cue-token Signi�cance in Representing Candidate (CtS)

Here, the signi�cance (or strength) of the cue token(s) contained in the represen-

tative is considered, as it was assigned at the end of the lexical analysis. This could

either be a χ2 score, or the mere frequency in case no statistical computation was made

for the reasons mentioned in section 4.1. As frequency of the cue token in�uences the

χ2 score to some extent, it is possible to say that here, it is indirectly incorporated.

The outcome of this particular contribution should achieve the following:

• penalise candidates containing a weak cue token signi�cance

• promote candidates containing highly signi�cant cue tokens

• expected result: a numerical contribution re�ecting the importance of the

contained cue token in a candidate

With these requirements speci�ed, let weightCtS = 0.3 be the scaling constant,

and sig′(ct) =

{
sig(ct) if a signi�cance value was assigned for ct

scale · freq(ct) otherwise, where scale = 10

Note that the frequency value is scaled by 10 in case no signi�cance value was

assigned. The most important case of an occasion is the following: The cue token

was not contained in the lemma list of the reference corpus, as a result χ2 was not

computed and pure frequency is carried on. The implication here is that if the cue
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token is not represented in the reference list (which ranks only the 5,000 most frequent

noun lemmas), it can be assumed that it will be found at a lower rank, resulting in a

relatively high χ2 score 12.

The signi�cance contribution function CtS is de�ned as

CtS = weightCtS −
1

1 + ln(1 + sig′(ct))

Then, theoretically, CtS must fall within range [-0.7;0.3]. However, for negative

values to be computed here, it would imply a con�dence score well below signi�cance

threshold as described in 4.1. Typically, CtS will be observed within the range [0;0.18],

as the selected logarithm-function (ln) wears o� asymptotically, restricting the formula

to assume larger values.

4.3.2 Scope Contribution of Candidate Cluster (SoC)

To properly control the in�uence of the scope of a cue token ct as discussed before,

the following desiderata for this part of the formula have been derived: global scope

shall have priority over local scope, and local scope shall have priority over no scope,

such that a partial order wrt scope priority sp(scope) can be given as

sp(global) � sp(local) � sp(none)

Thus, sp(scope) is a simple mapping from scope to a decimal number within the range

[0;1].

In case of small input documents, it is most likely to observe a larger proportion

of phrases that have no scope. In anticipation of this scenario, the following policy is

proposed:

• neutral stance towards phrases of scope none 13

• mild promotion of phrases with assigned local scope

• considerable promotion of phrases showing global scope

Having discussed these issues, a formula was chosen, with the outcome of scaling a

scope assignment to a value within the boundaries [0;0.5].

12of course, a typo could be responsible for the cue token not being represented by the reference list,
however the typo would have to be systematic as a signi�cant amount of observations have already
been made, which is ensured by the selection of the appropriate lexical strategy

13i.e. which are scarcely distributed over document space
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Let weightSoC = 0.5 be the constant controlling the scale of the overall assignment,

and sp(scope) the mapping from scope to a decimal number

sp(scope) =


1 ct has global scope
1
2

ct has local scope

0 otherwise

as discussed above, then the �nal scope contribution is de�ned as

SoC = weightSoC · scope(ct)

4.3.3 Number of Words (NoW)

So far, statistical signi�cance has only been determined for single words, leading

to a list of interesting lexical candidates. To distinguish the approach and tailor it

towards prediction of multiword candidates, a boosting is performed for those candi-

dates consisting of more than one word. As commonly a single term is expected as

prediction, those cases should not be penalised explicitly, but rather, on a number of

occasions when a prediction happens to consist of multiple words, these ones should

be promoted.

In this fashion, let weightNoW = 0.2 be the constant in charge of the scale of the

overall assignment, and |r| the number of words contained in the representative r, then

NoW = weightNoW −
weightNoW

|r|

Again, the choice of the constant weightNoW ensures the scaling to an upper limit,

between [0;0.2].

As |r| > 0 always holds, the function maintains neutrality towards candidates con-

siting of one word only, and in other cases, mildly boosts candidates comprising of 2

words or more.

It shall be noted that neither of the three contribution subformulæ are orthogonal to

each other, however they have been engineered in such a way that for each subformula,

the individual aspect is commanding the outcome of the result, which allows for control

on an abstract, yet �ne-grained level, leading to a con�dence score comparable to other

candidates extracted from the same document.
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4.4 Summary

The last two chapters covered the main contribution of this thesis. In chapter 3,

the emphasis was on discussing a number of use-cases, and based on them, deriving

requirements that in�uence the main design decisions. The chosen framework, GATE,

was brie�y introduced, and the implementation and orchestration of necessary linguistic

preprocessing steps was outlined.

This chapter elaborated in detail on the various aspects and stages central to the

actual keyphrase extraction algorithm. To summarise, the keyphrase candidate selec-

tion procedure is as follows: A statistical χ2 measure is computed over lemmas of

lexical items found in the document in relation to a large, general reference corpus to

assess their signi�cance in the context of the given document. The top 25% (or top 25,

whichever comes �rst) signi�cant lemmas of the document are considered cue tokens,

and noun chunks (or n-grams, in absence of a noun chunker) containing them are ex-

tracted and used to construct complex terms. Subsequently, the list of complex terms is

partitioned into clusters by the Monge-Elkan string-similarity metric, in order to form

clusters containing similar complex terms. For each cluster, one representative is de-

termined, exhibiting the maximal boosted intra-cluster similarity. This representative

corresponds to a keyphrase candidate, and its scope over the document is assessed. A

con�dence-scoring function is computed for each candidate, relying on signi�cance of

cue token contained, scope contribution of representing cluster, and number of words

of the candidate. The result is a ranked list of keyphrase candidates, each one with an

assigned con�dence score between zero and one.

In the following chapter, the experiments that have been conducted to evaluate the

algorithm will be described.
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Chapter 5

Evaluation

If your experiment needs statistics, you ought to have done a better experi-

ment.

Ernest Rutherford, British Chemist, Nobel Prize in 1908, 1871�1937

The literature on the evaluation of keyword extraction systems for single docu-

ments has been scarce, and little has been reported on quantitative assessment. This

is re�ected for instance in [3], [67] and [12], where only qualitative evaluation by

conducting user studies is reported. The problem is partly related to the di�culty of

applying proper evaluation metrics, as it is debatable whether the classic metrics com-

monly used in Information Retrieval such as recall and precision apply. Researchers

who tried to provide a quantitative evaluation are struck with low precision as a result

of a complete gold standard, as for instance pointed out in [75] and [38]. Those met-

rics would imply a dataset to be used as gold standard (or ground truth) which clearly

provides a number of items for each document that are marked as true positives and

true negatives.

Acknowledging the importance to assess the performance in a quantitative and

qualitative way, this chapter reports on the attempt to perform both types of eval-

uation, and the results obtained. As Bourigault points out, an automatic extraction

system cannot be expected to provide perfect precision (it will necessarily overgener-

ate), and although his study was carried out in Automatic Term Extraction (ATE),

his observation applies equally here:

It is not possible to expect [a] program to extract terminological units and

nothing else, given the basically referential semantic function of occurrences

of terminological units: this means that the results obtained can only be

considered, a priori, as likely terminological units. [5]
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Besides assessing the performance of the system, a very strong emphasis of the

evaluation is to identify the major drawbacks of the approach in order to be able to

address them at a later development cycle.

5.1 Strategy

The evaluation of the keyphrase extraction algorithm is divided into a quantitative

assessment performed on a dataset obtained from PubMed Central, and a qualitative

assessment in form of a user study. In the following, the rationale behind those choices

will be motivated.

5.1.1 A Highly Subjective Task

The extraction of descriptive terms from a document is a highly subjective task,

as Maynard comments [50]. Di�erent persons have diverse mental representations of a

given document, depending on their domain, the depth of knowledge of the document in

question, and their attitude/stance towards its content. In this respect, the extraction

of keyphrase candidates very much resembles the characteristics of a learning problem,

as the distinction of �right� and �wrong� can barely be described in absolute terms,

and the notion of correctness is rather de�ned on a gradual scale. This problematic

attribute of evaluating learning problems has been noted before, and Brewster et al

point out:

Precision and recall depend on a clear set of items concerned, for example

Parts of Speech. There is no clear set of 'knowledge to be acquired' because

the same set of facts can give rise to very di�erent interpretations and

therefore di�erent kinds of 'knowledge'. [7]

An evaluation of the keyphrase extraction algorithm based solely on objective mea-

sures is meaningful only to some extent, partly because the question arises what actu-

ally constitutes a gold standard, and partly because it is debatable whether such an

experiment can be set up as a selection experiment for human judges. The task may

be too subjective for subjects to end up with a su�cient amount of inter-annotator

agreement over selected keywords/keyphrases (Barker & Cornacchia report on spec-

tacularly low kappa values [3]), an issue also encountered in gold standard annotations

for the GENETAG dataset [73].

In order to account for this, the evaluation procedure has been carefully set up into

a quantitative assessment and a user study, as reported next.
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5.2 Quantitative Evaluation

In order to be able to conduct a meaningful quantitative evaluation of acceptable

scale on document level, it was necessary to obtain a gold standard/ground truth that

has keywords attached to its documents. The open digital archive PubMed Central 1

currently hosts literature from 644 di�erent journals of the biomedical domain and the

life-sciences. A subset of its literature is provided as an XML dataset 2 for NLP and

data mining purposes, which has been utilised for construction of the ground truth.

The following will describe the procedure of creating a gold standard against which the

qualitative evaluation can be performed.

5.2.1 Experimental Setup & Dataset Preparation

The dataset obtained from PubMed Central 3 comprises 77,496 peer-reviewed arti-

cles. Its XML schema o�ers a �ne grained distinction of various aspects of publication-

related metadata (journal, authors, a�liation, index-terms/keywords), full text and

references. From these articles, only those containing assigned keywords were consid-

ered, reducing the number of articles used as evaluation dataset to 1,323, consisting of

4,921,583 words in total. The 1,323 articles were distributed across 254 di�erent jour-

nals published by PubMed Central, ranging from Abdominal Imaging toWorld Journal

of Urology. The text entered into the keyphrase extraction algorithm did not contain

the keyphrases assigned to the articles. The work�ow of the dataset construction and

quantitative evaluation is given in �gure 5.1.

Filter
Documents

Containing
Keywords

Assess
MatchingTypes

DokumentDokumentDokumentDokumentGoldStandardGoldStandardEvaluation
Set

DokumentDokumentDokumentDokumentDokumentDokumentDokumentDokumentPubMedXMLPubMedXMLPubMedXMLPubMedXMLPubMedXMLPubMedXML

FullText
Article

Document
Gold

Standard

Extracted
Keyphrase
Candidates

Parse Given
Keyphrases

Extract
Keyphrases

Figure 5.1: Quantitative Evaluation Work�ow

1http://www.pubmedcentral.nih.gov � retrieved 2008-06-30
2http://www.pubmedcentral.nih.gov/about/ftp.html#XML_for_Data_Mining � retrieved

2008-06-30
3ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/articles.tar.gz � retrieved 2008-06-30
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Average document length was at 3,720 words (median: 3,473 words), with the

longest document at 15,782 words, and the shortest document at 6(!) words. The total

number of assigned keywords in this dataset was 6,931, such that the average mean of

assigned keywords/keyphrases per document was just above 5, with the median at 5 as

well. The maximal number of keyphrases assigned a priori to a document was 29, the

minimum was 1. Document size and amount of assigned keyphrases were not found to

be corresponding to each other.

5.2.2 Considerations & Metrics

Before settling upon evaluation metrics, it is important to consider the scenarios

that may be encountered when assessing the predictions of the algorithm against the

gold standard. A naïve approach would consider the gold standard as non-forgiving

ground truth, that only permits predictions that fully match to be counted as posi-

tives, whereas predictions matching partly would be regarded as negatives (or errors).

Other approaches to keyphrase extraction have relaxed the matching criterion in their

evaluations by stemming both the gold standard terms and the predictions with the

Lovins [44] stemmer before assessment [75, 27].

Often it is the case that partial matches are too close to the gold standard to be

treated as error, as very commonly encountered in Biomedical NLP scenarios [25, 73].

The following introduces such types of partial matches by typical examples found in

the dataset and discusses their proper treatment.

The Perfect Match, Partial Hits & Misses

Here, matching is done ignoring upper and lower case. It shall be noted that a

match is only considered as such in case of word containment of some sort, namely

when a gold standard term contains the predicted term or vice versa, ruling out false

partial matches of the type fascinating � fascism 4. Although this strategy permits

direct antagonists such as fascism and anti-fascism, this is only valid as it is hard to

argue against the fact that the �rst term has semantically nothing in common with the

second term.

The following discussion of partial matches is also depicted in �gure 5.2, and cor-

responds fairly to match criteria surveyed in [70].

Full Match: A full match is a one-to-one mapping between a predicted term and a

term contained in the gold standard for a respective document.
4a more absurd example can be found in German: Fasching vs. Faschismus (carnival vs. fascism)

75



5.2. Quantitative Evaluation

Source Example

Gold Standard Cerebral cortex

Prediction cerebral cortex

Class1 Su�xMatch (Right-Boundary Match): Partial matches of this type share

the common su�x, which in the vast majority of the cases is the head noun of

the term. Thus, these matches are considered as very important. The mismatch

here is the modi�er which is lacking in the prediction, resulting in an inclusion

of the predicted term in the gold standard term. Semantically, the gold standard

term is more speci�c than the predicted term.

Source Example 1 Example 2

Gold Standard Traumatic brain injury Head and neck cancer

Prediction brain injury neck cancer

Class2 Su�xMatch (Right-Boundary Match): These partial matches show the

opposite inclusion characterstics compared to Class1 Su�xMatches, as here it is

the gold standard term which is contained in the predicted term, but still sharing

the su�x. Mostly, this implies the prediction being more speci�c than the gold

standard term.

Source Example 1 Example 2

Gold Standard Epilepsy Lymphoma

Prediction temporal lobe epilepsy Bcell lymphoma

Class1 Pre�xMatch (Left-Boundary Match): In this case, often a singular form

is predicted where a plural form constitutes the gold standard (example 1). How-

ever, another � slightly less frequently observed � partial match is the �rst part

of a compound noun, lacking the head noun (example 2). While the �rst case

nearly is a full match, the second case is more problematic, as the head noun

(in most western languages) assigns the semantics to a noun phrase, resulting in

di�erent meanings of the terms in example 2 � the prediction is solely about the

cell cycle, whereas the gold standard term is about its control.

Source Example 1 Example 2

Gold Standard Distal radial fractures Cell cycle control

Prediction distal radial fracture cell cycle
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Class2 Pre�xMatch (Left-Boundary Match): Matches of this sort show a similar

characteristic as the relation between Class1 and Class2 Su�xMatches: here,

typically the ground truth term is singular whereas a plural term is predicted,

as seen in example 1. Example 2 however shows a variation of the gold standard

term is predicted, resulting in this type of partial match.

Source Example 1 Example 2

Gold Standard Biological agent Haloarchaea

Prediction biological agents haloarchaeal genomes

The introduced di�erences in partial matching are graphically displayed in �gure 5.2,

and can be characterised in the contingency matrix of table 5.1. As discussed, Class1

Gold Standard Term

Prediction Penalty: 0.9

Prediction Penalty: 0.5

Left
Boundary

Right
Boundary

Suffix
Match

Prefix
Match

Class 1 Boundary Match

Gold Standard Term

Prediction Penalty: 0.7

Left
Boundary

Right
Boundary

Suffix
Match

Prefix
Match

Class 2 Boundary Match

Prediction Penalty: 0.8

Figure 5.2: Boundary Matching Types

su�x matches typically widen the scope of the meaning conveyed by the target term,

thereby deviating very little (and only in a more general way), which should be re�ected

in a very low penalty when deciding the grade of correctness, as in the context of the

whole set of predictions, the more generic phrases are grounded again. Also, typical

Class2 errors are still very close to the target and should only be slightly penalised,

whereas Class1 pre�x matches often imply a slight semantic transfer in case of a lacking

head noun compared to the gold standard. While such a deviation is not desireable,

the proximity of the predicted term to the gold standard term is still close, and thus

it should be re�ected in a medium penalty.

Pre�x (Left Boundary) Su�x (Right Boundary)

Class1 Semantic Transfer
medium penalty

Widening Scope
very low penalty

Class2 Syntactic Variation
low penalty

Narrowing Scope
low penalty

Table 5.1: Contingency Matrix for Partial Matching Classes
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This scoring philosophy is closely related to the one used in GENETAG evaluation

e�orts as reported in [70] and to the evaluation scheme for Named Entity Recognition

used by the Message Understanding Conference (MUC-4) 5 in 1995.

Now, with these considerations in mind, it is possible to de�ne a partial order over

the previously introduced matching classes as depicted in �gure 5.3, which also re�ects

the degree of correctness when evaluating for recall, where 1.0 means a full match, and

0.0 means no match at all:

FullMatch

1.0
� C1Su�x

0.9
� C2Pre�x

0.8
� C2Su�x

0.7
� C1Pre�x

0.5
� NoMatch

0.0

Figure 5.3: Partial Order over Partial Matching Classes

If Recall Only Means so Much, What About Precision?

The previously de�ned order o�ers a reasonable instrument for applying the stan-

dard information retrieval metrics recall and precision in a fair evaluation, despite

the problems pointed out at the beginning of this section.

Recall is given as the correlation of the amount of correctly predicted keyphrases and

the amount of keyphrases speci�ed by the gold standard:

recall =
# of correctly predicted keyphrases

# of gold standard keyphrases

Precision is de�ned by the correlation between the amount of correctly predicted

keyphrases and the number of total predictions:

precision =
# of correctly predicted keyphrases

# of total predictions

To put the fair evaluation into a context, two additional assessments were consid-

ered, (i) a strict evaluation, treating all partial matches as negatives (or errors),

and (ii) a relaxed evaluation, analysing all partial matches as positives .

It is important to note that the introduction of partial matching also opens the

door for ambiguity : In a document, multiple candidates could be mapped to the same

single target keyphrase with the same matching type. For instance candidate ac and

candidate bc could both be assigned a Class1 Su�xMatch for gold standard phrase cc.

5http://www.aclweb.org/anthology-new/M/M92/M92-1002.pdf � retrieved 208-07-22 � a de-
scription of the MUC-4 evaluation scheme
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In such a case, in order to maintain correct counts for positives and negatives, only

the candidate with the highest con�dence value is considered a true bearer of such a

matching type, rendering the other equally matching candidates to NoMatch.

At the same time, a candidate cc could also be found for target cc. In such a case,

preference is given to the match type with higher priority, which is derived from the

de�ned partial order, such that FullMatch overrides Class1 Su�xMatch, and as a result,

only the highest match type retains its status, whereas the disfavoured candidate will

be assigned a NoMatch in turn. This ensures that at maximum one true positive

per gold standard item is being accounted for when it comes to calculating

precision and recall.

5.2.3 Results & Discussion

For the 1,323 documents, the total amount of generated keyphrase predictions was

52,825. The maximum number of keyphrase predictions for a document was 99, and the

minimum number was 0 (on 13 occasions, for very short documents of average length

64 words / median 29 words ). On average, just under 40 keyphrases were extracted

per document, with median at 40.

Distribution Prediction Ratio Target Ratio
FullMatch 2065 0.039 0.298
C1Su�x 959 0.018 0.138
C1Pre�x 517 0.010 0.075
C2Pre�x 322 0.006 0.046
C2Su�x 204 0.004 0.029
NoMatch 47243 n/a 0.413
Prediction Total 52825 (Target Total: 6931)

Table 5.2: Distribution of Matching Types in Fair Evaluation

Table 5.2 displays the matching distribution for the fair evaluation, which are the

main results obtained for this quantitative evaluation, and referred to unless otherwise

stated. Prediction ratio gives a view on the matching distribution relative to the total

number of predictions, whereas target ratio displays the matching distribution relative

to the gold standard. The actual precision and recall values for strict, fair and relaxed

assessment can be derived directly therefrom, and are displayed in table 5.3.

Given these values, the �rst thing to note is that precision is very low. The problem

faced here is the large amount of keyphrase predictions constituting the NoMatch set.

As mentioned above, on average 40 predictions are competing for only assigned 5 target
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Precision Recall
Fair 0.077 0.518
Strict 0.039 0.298
Relaxed 0.089 0.587

Table 5.3: Fair, Strict & Relaxed Evaluation
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Figure 5.4: Assigned vs Predicted Keyphrases Relative to Document Length

keyphrases, and looking at �gure 5.4 reveals that the amount of predictions increases

dynamically with document size, whereas the number of a priori assigned keyphrases

constituting the gold standard remains more or less stable around 5 regardless of doc-

ument length.

It shall clearly be noted that instead of restricting the result set to a number

of n-best items as commonly observed ( [75], [12]), here all identi�ed keyphrase

candidates are presented to the judges, o�ering a larger degree of vulnerability

for a decline in precision.

Moreover, Turney [75] and Jones et al [38] observe that not necessarily all a priori

assigned keyphrases are actually contained in the document, as frequently recurring

phrases in the text body may be rephrased for keyword assignment, empirically de-

termining the average proportion of containment at roughly 75%. The implication of

this observation is that a recall expectation of 100% is an unrealistic one. A good

example from this evaluation is found in the article �Biomechanics of Traumatic Brain
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Figure 5.5: Keyphrase Matches in Candidate List

Injury: In�uences of the Morphologic Heterogeneities of the Cerebral Cortex� (Pub-

MedID 2413127) 6, where the index term �Inhomogeneities� is given, but never actually

mentioned in the full text. Instead, �heterogeneities� is used quite often in the article,

and extracted as a keyphrase candidate, unfortunately with a NoMatch result. 7

Further focussing on the results obtained from the fair evaluation, �gure 5.5 dis-

plays that on average, nearly 2 a priori keyphrases could be matched after the top-40%

of the candidate list. Taking into consideration that the average number of assigned

keyphrases is 5, and that possibly not all are containted in the document, the average

recall with 51.8% does quite well when compared to the KEA evaluation, where recall

on author assigned keyphrases is reported on average at 17% [38].

Eventually, an investigation into the distribution of matching types, and their con-

tribution relative to the position in the candidate list (which is ordered by con�dence)

revealed that candidates of type FullMatch are commonly found at the top segments

of the list, as �gure 5.6 reveals. This is a positive sign, as it shows that the ranking

function for score assignment � as elaborated on in section 4.3 � does its job reasonably

well, accumulating the most contributing (and therefore, important) candidates at the

beginning of the list. It is also notable that this �nding is con�rmed in the qualitative

evaluation results discussed in the next section.
6http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2413127

� retrieved 2008-08-14
7It was quite easy to �nd this very example by manual inspection, which could simply be bad

luck, however the suspicion remains that a non-neglectable proportion of assigned keyphrases are
non-retrievable from the full text.
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Figure 5.6: Matching Type Distribution

Figure 5.6 also exposes that the impact of the partial matching types is low through-

out the prediction space, except for the C1 Su�xMatch, which also is a major con-

tributor and stands out when considering partial matches only, a fact that will be

interesting to look back to when examining the results of the user study.

5.3 Qualitative Evaluation

As reported in the last section, a quantitative evaluation � even if performed in

a fair manner � only yields a lower estimate of the system performance as it is gold-

standard centric. In this case however, the gold-standard can only be seen as a weak

approximation of the truth. Most likely, more terms exist to describe a scienti�c article

of several thousand words than the 5 keyphrases assigned to it on average. While partial

matches can � to some extent � be handled quantitatively in a meaningful manner,

it is incredibly di�cult to programmatically gauge the goodness of predictions that

are not even partly contained in the gold standard. The ground truth only includes

positives, whereas negatives are not given, and the assumption that every non-positive

automatically should be treated as negative is unrealistic in the context of keyphrase

extraction, where the quality of keyness for a term is more of gradual matter than a

strict binary classi�cation. At the same time, the grade of keyness assigned to a given

candidate may vary wildly when considering di�erent judges. This again, leaves the

evaluation in a debatable state, which is precisely what any form of assessment aims
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to avoid in the �rst place.

Therefore, a user study was conducted, where the self-selected judges are preferably

authors of the documents used as evaluation dataset. As the judges were free to choose

documents of their liking 8, inter-annotator agreement such as Kappa [10] � which

seemed to be problematic for this kind of task in previous experiments [3] � became

irrelevant for this qualitative evaluation. Furthermore, as human interaction takes

place in most use-cases where the tool has been deployed, this form of user study

resembles a real-world scenario more closely. Next, the considerations underlying the

experiment are outlined, and the path taken to conduct the user study are described.

5.3.1 Setup & Experiment

Each judge taking part in the experiment was asked to provide the system with

a freely chosen number of documents he knows very well, preferably documents that

have been (co-)authored by him. It is the judge's task to accept or reject any predicted

keyphrase for the documents presented to the system, where in case of a rejection, the

details for the reason of rejection were sought, from a set of 3 options:

too general : predictions that are too general to have distinctive character for the

document

too speci�c : predictions that are too speci�c to make a statement about the docu-

ment as a whole

nonsense : predictions that are not related to the content of the document, because

they are not relevant, or because they constitute mistakes accumulated by the

linguistic preprocessors during candidate formation

Besides giving a more realistic view on precision and user-acceptance, the experi-

ment is also regarded as insightful for possible adjustments of the system in a future

development cycle, particularly when considering the distribution of reasons for rejec-

tion.

The experiment was conducted via a web-application speci�cally developed for this

undertaking, presenting the self-selected judges with an interface to the keyphrase

extractor and an upload mechanism for the documents. The predictions were also

presented via a web-interface in such a way that judges were able to conveniently �ll

out the generated forms and submit their assessment, as depicted in �gure 5.7. The

full text of the instructions for the experiment is given in appendix C.
8modulo some restrictions for language, �le format and some suggestions regarding size
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Figure 5.7: Evaluation Form for Qualitative Assessment of Keyword Extraction

5.3.2 Results & Discussion

Overall, 47 users signed up for the experiment, which was running for 10 days. In

total 94 documents were used as input, with the largest document at 81,668 words,

whereas the smallest document consisted of only 4 words 9. The average document

length was 7,671 words, the median was determined at 5,128 words per document, and

it took an average of just over 3 minutes to determine the �good� and �bad� candidates

per user, per document.

No restrictions were imposed on the document content, and judges were encouraged

to use documents from all sorts of domains, ranging from scienti�c articles, technical

records such as RFCs, contemporary writing and news, to personal communication.

Documents however were required to be written in English, and of type PDF, Microsoft

Word, plain text or HTML. The judges came from a multitude of backgrounds, ranging

from PhD students and researchers (mostly in computer science) to IT professionals,

engineers, as well as persons employed in the �nancial sector.

An overview of the evaluation runs per judge is given in table 5.4(i), and table 5.4(ii)

9the instructions suggested to use reasonably sized documents, if possible consisting of at least 500
words
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shows a breakdown of the average acceptance ratio per document length, which has

been partitioned into segments of individual size. Table 5.5(i) gives the overall scores

Judges Documents

1 10
1 9
1 8
2 4
3 3
13 2
27 1

Total: 47 94

Size in Words Documents Accept %

0 � 500 8 41.8
501 � 1,000 7 49.3

1,001 � 2,000 10 42.6
2,001 � 10,000 55 49.4
10,001 � 25,000 8 46.8
25,001 � 50,000 3 32.4
50,001 � 100,000 3 70.6
Total: 721,157 94

Table 5.4: Breakdown of (i) Evaluation Runs per Judge, (ii) Document Length

for accept and reject assessment, stating that acceptance with 49% almost matches

the amount of rejection. This �nding is about 13% below from what has reported

by Turney [75], however in his experiment only top-7 keyphrases are presented to the

judges, whereas in the experiment described here all identi�ed keyphrase candi-

dates are considered, without postprocessing them and excluding phrases below

a certain threshold or rank, which is also partly responsible for the increase of the

candidate set at increased document length.

Most evaluation runs were performed on documents between 2,001 and 10,000

words, as table 5.4(ii) indicates, which corresponds to the size of average scienti�c

conference articles. In this segment, accept ratio was with 49.4% almost even up with

reject ratio. Instructions suggested not to use documents with less than 500 words,

nevertheless this was the case on 8 occasions. Figure 5.8 presents a view on evaluation

% Absolute
Accept 49.0 1,273
Reject 51.0 1,327
Total 100.0 2600

Reject % Absolute
too general 52.2 693
too speci�c 13.6 181
nonsense 34.1 453

Table 5.5: (i) Qualitative Evaluation Result, (ii) Breakdown of Reasons for Rejection

runs, documenting the amount of overall acceptance per run, over segments of 10%.

As can be seen, most runs were completed with an acceptance ratio between 20% and

60%, altogether accumulating the major distribution of runs with 69%.

Now, focusing on the document length, and segments between 501 and 50,000 words,

which have accumulated most evaluation runs, a slight trend is observable. Accept and

reject votes are in close proximity near 50%, with rejection slightly superior, as also
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Figure 5.8: Document/Evaluation Run Distribution over Acceptance

depicted in �gure 5.9, except for the segment denoting documents of 1,001�2,000 words,

where acceptance declines more, to 42.6%. An inspection of the respective segment

gave no concluding answers, and a comparison with the next smaller segment (501�

1,000 words) � as documents in both segments are likely to have similar character �

only revealed that the amount of rejections classi�ed as nonsense by the judges was

twice as high in the 1,001�2,000 section.

A more detailed analysis revealed that out of 39 rejections of class nonsense, 18

were due to text conversion problems or mistakes in the linguistic preprocessing stage:

(a) On 3 occasions, hyphenation from PDF �les could not be undone, and ligatures

were not correctly converted to letters (i.e. � 7→ fi, � 7→ ff did not succeed, resulting

in unknown or garbled words such as le-based o ine editing from originally

��le-based o�ine editing�).

(b) Sentence boundary mismatches were responsible for mistakes on 5 occasions, as in

many scienti�c articles, the ending of a section heading is not marked by a sentence

delimiter, and as such not recognised due to formatting loss. The following sentence,

which begins directly after the heading, is treated as the continuation of the sentence

that was started by the heading itself, a�ecting the noun chunker as a result, leading

to examples such as �Database Representation The database representation�.

(c) Textual artifacts from tables, �gure captions or formulae in tables/captions con-

tributed 5 times as did artifacts from non-coherent text (such as text for menu structure

in web pages).
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Figure 5.9: Breakdown of Accept Distribution per Document Length

Other segments were not a�ected that much by such problems, however, inspecting

the overall nonsense-based rejections uncovered that the proportion of the above men-

tioned errors was about 28%, from a total of 453, a discovery that will be revisited in

chapter 5.4.

Looking more closely at the overall distribution of rejections relative to the position

in the candidate list, as depicted in �gure 5.10, the top-2 segments clearly contain

more acceptable keyphrases than the other segments, while in the last segment of the

candidate list (90�100%) a sharp decline of acceptable items is observable. This is in

line with what has been found in the quantitative evaluation (cf. �gure 5.6), where

clearly the top of the candidate list accumulates most matches, including partial ones.

Investigating the data of the rejections directly, supported by the distribution over the

rejection reasons displayed in �gure 5.11, as an overall trend, the proportion of rejected

items where the reason was given as �too general� is outstanding in all segments of the

candidate list. Additionally, rejections classi�ed as �too speci�c� remain more or less

stable and with a rather low impact over the whole list, but a relatively large proportion

of �nonsense� rejections is observable in the segment of 0�10% . Therefore, this segment

shall be isolated and examined in more detail, with the hope that such an investigation

will uncover the reasons for the strong presence of mentioned �nonsense� rejections.

From 61 occurrences of �nonsense� annotations in the �rst 10% of the candidate

list, 26 were due to the text-conversion mistakes and sentence boundary mismatches

as pointed out above. This is with 42% a considerably larger proportion than the 28%
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overall ratio of nonsense-based errors introduced by such types, as reported above. A

number of examples from this segment for sentence boundary mismatches are �Face

Recognition Face recognition�, �Semantic Data Semantic data�, �Scheduling Events

Scheduling events� and �speci cation� 7→ specification, �bu ers� 7→ buffers and

�work ows� 7→ work flows for text conversion errors. A reduction of these errors

would mean that the �nonsense� proportion in this segment drops to a value that

more smoothly resembles the behaviour observed in the following three segments for

�nonsense� rejections.

Given the results as reported and discussed here, the next section will o�er more

detailed explanations on a number of observations, and to some extent speculate on

actions potentially leading to an improvement of the algorithm.

5.4 Interpretation

Starting with the positive �ndings, in both experiments it could be observed that

the majority of �good� keyphrase predictions was distributed at the beginning of the

candidate list. This makes it feasible to implement simplistic measures such as cutting

o� at a certain position, while still retaining a greater number of acceptable keyphrases.

Considering the information obtained by �gure 5.6, at around 40% of the candidate

list the contribution of �good� candidates starts to fall below signi�cant values. The

qualitative evaluation suggests that �bad� candidates begin to gain ground on the
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�good� ones after 20% as shown in �gure 5.10, however an outnumbering does not take

place until after 90% of the candidate list. Thus, a good position for a cut-o� will lie

somewhere in between 20% and 90%, however in reality it will depend on the practical

setting and the luxury to include a number of misses.

As discussed before, one problem for both experiments has been the large number

of unmatched / not accepted predictions, leading to a sharp decline in precision. The

second experiment also gave further insights into the nature of rejections, and the large

proportion of rejections was rated as �too general� to be used as an index term. This

may be true when each single one is viewed in isolation, although when the whole set

of produced candidates is taken into consideration, it could be argued that the general

phrases receive their context from the candidates that have been found acceptable.

However, this still does not help to use the general terms for indexing, or further

automatic processing such as ontology selection (e.g., as outlined in chapter 2.1.3).

About one third of the general candidates were single-word phrases, thus it would

be possible to exclude such predictions altogether. Unfortunately, around 43% of all

accepted candidates consisted of a single word, which would mean those would also

be lost. As in a number of cases, single-word candidates found as too general were

already included in keyphrase predictions of larger word-cardinality, a post-processing

step could be implemented that discards the proposal of such single-word phrases in

case they are already part of another keyphrase.
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Barker & Cornacchia reported on using head-noun information when counting fre-

quencies [3]. This information is not used in this approach, as the noun phrase chun-

ker employed here does not provide head-noun annotation o� the shelf. However, if

head-noun information could be implemented and exploited at the stage of similarity

grouping instead of using the Monge-Elkan string metric (cf. section 4.2.3), a larger

number of complex terms would be merged into fewer clusters at that level, resulting

in a reduced number of candidates, as at most one representative of each cluster is

presented as candidate.

A detailed examination of the rejections classi�ed as �nonsense� revealed that a

considerable amount resulted from text-conversion errors and mistakes at the very

beginning of the linguistic processing pipeline. While it is very di�cult to undo mis-

takes caused by ligature-to-text conversion as a preprocessing step, phrases garbled

and broken by hyphenation could be bypassed easily. Moreover, heuristics could be

implemented to correct in particular the errors introduced by the sentence boundary

mismatches. Most of the time, these errors exhibit a �repetitive pattern�, as seen in the

examples. Currently, a complex term constructed as a result of the described sentence

boundary mismatch is assigned a very high similarity with the other cluster members,

which is not diminished by repetitions � furthermore, due to its length, the complex

term receives an additional boost, making it likely to be chosen as a representative. A

simple string-based test for repetition could be su�cient to reduce this error class in its

entirety. If the latter operation would be implemented and executed before complex

term formation (cf. section 4.2.3), less complex terms would enter the cluster, and the

similarity maximisation function which chooses the best representative for the given

cluster would not be eluded.

In a gold standard based evaluation, both Turney [75] and Frank et al [27] re-

port average extraction of 1.35�1.46 �good� keyphrases when scaling their output to

5 candidates, and 2.20�2.75 �good� keyphrases when scaling the candidate list to 15

predictions, conducting their experiments on the same dataset. In a separate experi-

ment on rather noisy data, Frank et al [27] however report only 0.8 and 1.7 matching

keyphrases per 5 and 15 candidates output. Looking at �gure 5.5, with an average of

40 keyphrases extracted per document and relying on the fair evaluation metrics (as

de�ned in section 5.2.2), the algorithm described here reaches the �rst mark, set by

Turney and Frank et al, on average by predicting 10 keyphrases, and the second mark

by predicting 25 candidates.

In terms of user acceptance, Turney reports on a proportion of 62% predictions

rated as �good�, when scaling the output to 7 candidates. When considering only the
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�rst 20% of the candidates (corresponding to roughly 6 predictions) generated in the

user experiment by the approach described here, an average acceptance proportion of

58% can be observed.

Despite mentioned �aws, the work described here performs comparable with state-

of-the-art keyphrase extraction approaches outlined in section 2.3.2.

At this stage, it is very hard to estimate a projection in terms of improvement on

acceptance percentage or recall for a best-case scenario, where the sentence-boundary

error class is eliminated completely. Too many variables have to be considered for a

projection, and a speculation � whether enthusiastic or not � would not do justice to

the e�ort put into this evaluation, to the anonymous judges who contributed in their

free time, and to this approach as a whole. For instance, complex terms introduced

as a result of a repair mechanism for sentence boundary mismatches could end up as

seperate keyphrase candidates, or not, depending on their status as representative of a

cluster. Even if they are proposed as candidate they could be rejected for a number of

di�erent reasons. However, with a realistic indication of a good cut-o� position, with a

number of weaknesses identi�ed (sentence-boundary error type), and with a strategy for

improvements (consideration of head nouns, modi�cation of similarity clustering step),

it should be obvious that number games are not necessary unless they can provide a

clear indication, or truthful estimation, which is not the case here. Thus, it will be

interesting to see how the implementation of the discussed potential improvements in

another development cycle are re�ected in the overall performance of the algorithm.
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Conclusion

This thesis has described the underlying assumptions and the development of a

software component capable of extracting keyphrases from textual documents. Next,

the contribution will be summarised, along with its limitations, before an outline of

future work, which is expected to lead to performance improvement, will conclude the

thesis.

6.1 Contribution

The focus of this thesis was the conceptual development, implementation and evalu-

ation of a software component facilitating the identi�cation of keyphrases, which targets

the initial creation of free-form metadata from textual documents. Thus, the approach

is not concerned with the tasks carried out in classical Information Extraction or Auto-

matic Term Recognition, which nevertheless overlap in some points, and share similar-

ities in the techniques utilised. The underlying considerations have been outlined and

the steps undertaken have been described in detail. The resulting software artifact has

been implemented in Java as a number of GATE plugins, thereby making extensive use

of resources the framework provides o� the shelf. Where necessary, the framework has

been extended appropriately by additional plugins (language identi�cation, stopword

analyser, frequency analyser, etc.), which can also be used independently.

The keyphrase extraction has already been deployed in a number of di�erent scenar-

ios. It has been integrated into the information visualisation workbench for exploratory

document collection analysis (IVEA) 1, where it helps to extract prominent phrases

1http://smile.deri.ie/projects/ivea � retrieved 2008-08-19
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that are not yet part of an underlying ontology for semantic annotation. It has been de-

ployed on the KDE-NEPOMUK semantic desktop as part of the semantic note taking

tool Semn 2, and as component of the TextAnalytics service 3 in the NEPOMUK-

Eclipse Social Semantic Desktop 4. The component is described online 5, where it is

available in a variety of customised packages, including a library API for integration

into other projects. A web-interface exposes the functionality for testing and demo

purposes, and is accessible from the project page.

It was the aim to produce a knowledge poor solution capable of multilingual text

processing � so far, the keyphrase extraction can deal with English, German and French

documents. Many of the linguistic resources (stopword and frequency lists) necessary to

support additional languages have been put in place, such that the burden of integrating

extra languages is lowered to some degree. The approach has been extensively evaluated

for English documents, both against a gold standard, where recall was determined at

51.8%, and as a user study, with an average acceptance rate of 49%. Both experiments

revealed that a bigger proportion of �good� keyphrases is found at the beginning of

the candidate list, con�rming the suitability of the con�dence ranking function. These

initial �ndings are encouraging and suggest that the algorithm has the potential of

outperforming state-of-the-art approaches such as KEA and Extractor/GenEx, given

the identi�ed �aws are eliminated and mentioned ideas for improvements are realised.

6.1.1 Limitations

However, not all is well, and a number of problems have been isolated, �rst and

foremost the large amount of not acceptable keyphrase predictions. This poses insofar

a problem as users have to choose their preferred keyphrases from an extended set of

candidates. It has been shown that this problem is partly caused by the open scenario

the application is targeted at: real-world textual data � even on the desktop � is scru�y,

and the utilisation of linguistic preprocessors makes the algorithm vulnerable to non-

linguistic phenomena, such as unknown characters or words introduced by ligatures

or hyphenation, caused by malfunctioning text conversion from PDF documents. The

bene�t however is a layer of linguistic information that can be well exploited for the

task at hand, and as Bourigault observes,

2http://smile.deri.ie/projects/semn � retrieved 2008-08-19
3http://dev.nepomuk.semanticdesktop.org/wiki/doc/ServiceDescription/TextAnalysis �

retrieved 2008-08-18
4http://nepomuk.semanticdesktop.org/,http://dev.nepomuk.semanticdesktop.org/ � re-

trieved 2008-08-18
5http://smile.deri.ie/projects/keyphrase-extraction � retrieved 2008-08-18
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[. . . ] limitations come from the strong hypotheses and the methodological

choices which have already been outlined. But in the �eld of Linguistic En-

gineering, exceptions do not have the same status as in Linguistic Science;

it is here a question of compromise. [5]

Some of the underlying problems will be revisited as part of further work, and

outlined subsequently, which also will conclude this thesis.

6.2 Future Work

The analysis of the data gathered during the evaluation process has yielded valuable

leads, which should be followed in order to improve the algorithm in one particular

aspect: the reduction of text-conversion errors and sentence-segmentation mistakes. As

already described in section 5.4, primarily sentence-segmentation errors could be easily

eliminated by scanning for a repetitive pattern at complex term formation. Further,

complex terms where de-hyphenation did not succeed, should be bypassed altogether

in order to reduce noise which eventually would be classi�ed as �nonsense�-rejection.

While such an e�ort contributes little to produce more acceptable keyphrases, it reduces

the amount of �bad� keyphrases generated, which is also most welcome as the user is

not confronted with a large number of unacceptable candidates to choose from.

Moreover, as brie�y outlined in section 5.4, while the Monge-Elkan string metric

does a good job from a cost-bene�t perspective, using headnoun information instead

would lead to better results at the stage of similarity grouping (cf. section 4.2.3). This

however would require the adjustment of the (so far, very simple) noun chunker, but

the bene�t of one additional exploitable linguistic property makes this path a high

priority on the list of things to do next. With clusters containing semantically closer

related phrases, the bene�t of �nding modi�ability characteristics could be explored in

order to identify the least varying candidate and select it as representative of the cluster

(cf. section 4.2.4), similar to the strategies proposed by Wermter & Hahn [76, 77](cf.

section 2.3.1). Still, the problem of sparse data needs to be overcome in order to

be successful along those lines, as the Wermnter & Hahn approach operates on very

large corpora whereas here, only one single document is considered as input. However,

while an investigation into such methods could prove helpful to reduce the amount of

single-word predictions, it is too early to say which impact it would have on the large

proportion of candidates classi�ed as �too general�, and therefore purely speculative.

After releasing the keyphrase extraction component to a small number of individ-

uals, the support for more languages other than English, German or French has been
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requested, i.e. for Polish. Therefore, an additional path to follow is certainly the ex-

tension of multilingual capability, which implies the incubation of additional linguistic

processing resources into the GATE framework. Here, mainly part-of-speech tagger

and lemmatiser (and to a lesser degree, noun chunker) need to be provided as GATE

plugins for further target languages.

Strictly speaking, the adoption of new use-cases for keyphrase extraction is not

so much concerned with the approach as such, it is instead a new stage for di�erent,

more sophisticated approaches operating on textual data, enabled by reliable prediction

of keyphrases, which is now available o� the shelf. Therefore, future work will also

see further integration of keyphrase extraction with expertise mining 6 and ontology

selection as described in section 2.1.3. Bene�cial to this work is its rather generic

nature, enabling its utilisation in very diverse use-cases. With my hands dirty now

it may be time to move on, but keeping these new frontiers in mind, it will be most

intriguing to observe how the work described in this thesis can positively contribute to

the success of those mentioned application scenarios.

6http://purl.oclc.org/projects/expert � retrieved 2008-08-18
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Appendix A

Third Party Software

Here, third party software libraries are listed which are included in the currently

shipped version of the keyphrase extraction component. This does not involve packages

that are used with the version deployed as web-interface or web service.

A.1 ngramj

• Languages supported:

Bulgarian (bg), Czech (cz), Danish (da), German (de), Ewe (ee), Greek (el),

English (en), Spanish (es), Estonian (et), Finnish (�), French (fr), Hungarian

(hu), Icelandic (is), Italian (it), Lithuanian (lt), Latvian (lv), Maltese (mt), Dutch

(nl), Norwegian (no), Polish (pl), Portugese (pt), Romanian (ro), Russian (ru),

Slovak (sk), Slovenian (sl), Swedish (sv), Thai (th), Ukrainian (uk) 1

• Language pro�les generated additionally:

Irish (ie), Chinese (zh)

• License:

Lesser GNU Public License http://www.gnu.org/copyleft/lesser.html � re-

trieved 2008-07-14

• Location:

http://ngramj.sourceforge.net/ � retrieved 2008-07-13

1however, Ukrainian is represented as �ua� internally
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A.2 SecondString

• Location http://secondstring.sourceforge.net/ � retrieved 2008-08-20

• License: University of Illinois/NCSA Open Source License http://www.otm.

uiuc.edu/faculty/forms/opensource.asp � retrieved 2008-08-20
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Appendix B

Lexical Resources

B.1 Stopword Lists

• Languages available:

Arabic (ar), Bulgarian (bg), Czech (cz), German (de), English (en), Spanish (es),

Finnish (�), French (fr), Hungarian (hu), Italian (it), Polish (pl), Portugese (pt),

Romanian (ro), Russian (ru), Slovak (sk)

• Location:

http://members.unine.ch/jacques.savoy/clef/index.html � retrieved 2008-

08-20
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B.2 Tagsets and Mapping

The English tagset uses a slightly enriched version of the Penn Treebank tagset.

The following is the mapping:

B.2.1 English

CC

CD --> DETERMINER_OR_PRONOUN

DT --> DETERMINER_OR_PRONOUN

EX

FW

IN

JJ --> ADJECTIVE

JJR --> ADJECTIVE

JJS --> ADJECTIVE

JJSS --> ADJECTIVE

-LRB-

LS

MD --> VERBAUXMOD

NN --> NOUN

NNP --> NOUN

NNPS --> NOUN

NNS --> NOUN

NP --> NOUN

NPS --> NOUN

PDT

POS

PP --> DETERMINER_OR_PRONOUN

PRPR$ --> DETERMINER_OR_PRONOUN

PRP --> DETERMINER_OR_PRONOUN

PRP$ --> DETERMINER_OR_PRONOUN

RB --> ADVERB

RBR --> ADVERB

RBS --> ADVERB

RP

STAART

SYM

TO

UH

VBD --> VERB

VBG --> VERB

VBN --> VERB
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VBP --> VERB

VB --> VERB

VBZ --> VERB

WDT

WP$

WP

WRB

::

,

$

-

-

-

(

.

#

)

-

B.2.2 French

The tagset for French tags is shipped with the TreeTagger and without further
documentation. The following is the mapping:

ABR

ADJ --> ADJECTIVE

ADV --> ADVERB

DET:ART --> DETERMINER_OR_PRONOUN

DET:POS --> DETERMINER_OR_PRONOUN

INT

KON

NAM --> NOUN

NOM --> NOUN

NUM --> DETERMINER_OR_PRONOUN

PRO --> DETERMINER_OR_PRONOUN

PRO:DEM --> DETERMINER_OR_PRONOUN

PRO:IND --> DETERMINER_OR_PRONOUN

PRO:PER

PRO:POS --> DETERMINER_OR_PRONOUN

PRO:REL

PRP

PRP:det

PUN

PUN:cit
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SENT

SYM

VER:cond --> VERB

VER:futu --> VERB

VER:impe --> VERB

VER:impf --> VERB

VER:infi --> VERB

VER:pper --> VERB

VER:ppre --> VERB

VER:pres --> VERB

VER:simp --> VERB

VER:subi --> VERB

VER:subp --> VERB

B.2.3 German

The Stuttgart-Tübingen Tagset (STTS) is used for German part-of-speech tags.
The following is the mapping:

ADJA --> ADJECTIVE

ADJD --> ADJECTIVE

ADV --> ADVERB

APPR

APPRART

APPO

APZR

ART --> DETERMINER_OR_PRONOUN

CARD --> DETERMINER_OR_PRONOUN

FM

ITJ

KOUI

KOUS

KON

KOKOM

NN --> NOUN

NE --> NOUN

PDS --> DETERMINER_OR_PRONOUN

PDAT --> DETERMINER_OR_PRONOUN

PIS

PIAT --> DETERMINER_OR_PRONOUN

PIDAT --> DETERMINER_OR_PRONOUN

PPER

PPOSS

PPOSAT --> DETERMINER_OR_PRONOUN
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PRELS

PRELAT

PRF

PWS

PWAT --> DETERMINER_OR_PRONOUN

PWAV

PAV

PTKZU

PTKNEG

PTKVZ

PTKANT

PTKA

TRUNC

VVFIN --> VERB

VVIMP --> VERB

VVINF --> VERB

VVIZU --> VERB

VVPP --> VERB

VAFIN --> VERB

VAIMP --> VERBAUXMOD

VAINF --> VERBAUXMOD

VAPP --> VERBAUXMOD

VMFIN --> VERBAUXMOD

VMINF --> VERBAUXMOD

VMPP --> VERBAUXMOD

XY

$,

$.

$(
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B.3 JAPE Grammar for Noun Chunking

The JAPE grammar which is used to implement noun chunking as GATE plugin:

/********************************************************************

* JAPE Grammar for a simple Noun Chunker.

* This approach is actually a 1-to-1 adapation of the chunking

* strategy described in the LingPipe [1] part-of-speech tutorial,

* where a chunking implementation is also covered briefly [2].

*

* The Java-code described as mentioned above is simply translated

* into a bunch of JAPE macros and rules, for NounChunks.

*

* Furthermore, the part-of-speech tags of the Brown-Corpus had

* to be adjusted/mapped to the tagset used by the GATE part-of-speech

* tagger resource.

*

* [1] http://alias-i.com/lingpipe/index.html

* [2] http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html

*

* author: Alexander Schutz (alex.schutz@deri.ie)

* last change: 2008-10-14

********************************************************************/

Phase: NounChunker

Input: Token Phrase

Options: control=appelt

// Nouns:

// NN, NN$, NNS, NNS$, NP, NP$, NPS, NPS$

// ---> POS-Tags of Hepple Tag Set

Macro: NOUN

(

{Token.category == "NN"}

| {Token.category == "NNP"}

| {Token.category == "NNPS"}

| {Token.category == "NNS"}

| {Token.category == "NP"}

| {Token.category == "NPS"}

)

// Adverbs:

// RB, RB$, RBR, RBT, RN (not RP, the particle adverb)

// ---> POS-Tags of Hepple Tag Set
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Macro: ADVERB

(

{Token.category == "RB"}

| {Token.category == "RBR"}

| {Token.category == "RBS"}

)

// Determiners & Numerals:

// ABN, ABX, AP, AP$, AT, CD, CD$, DT, DT$, DTI, DTS, DTX, OD

// ---> POS-Tags of Hepple Tag Set

Macro: DETERMINER

(

{Token.category == "CD"}

| {Token.category == "DT"}

| {Token.category == "PDT"}

)

// Adjectives:

// JJ,JJ$,JJR,JJS,JJT

// ---> POS-Tags of Hepple Tag Set

Macro: ADJECTIVE

(

{Token.category == "JJ"}

| {Token.category == "JJR"}

| {Token.category == "JJS"}

| {Token.category == "JJSS"}

)

// Pronoun:

// PN,PN$,PP$,PP$$,PPL,PPLS,PPO,PPS,PPSS

// ---> POS-Tags of Hepple Tag Set

Macro: PRONOUN

(

{Token.category == "PP"}

| {Token.category == "PRP"}

| {Token.category == "PRP$"}

| {Token.category == "PRPR$"}

)

// Punctuation:

// ', ``, '', ., (, ), *, --, :, ,

// ---> POS-Tags of Hepple Tag Set

Macro: PUNCT
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(

{Token.category == ","}

| {Token.category == "."}

| {Token.category == "'"}

| {Token.category == "("}

| {Token.category == ")"}

| {Token.category == "::"}

| {Token.category == "-"}

| {Token.category == "#"}

)

Macro: NOUNCHUNK_START

(

DETERMINER | ADJECTIVE | NOUN | PRONOUN

)

Macro: NOUNCHUNK_CONT

(

NOUNCHUNK_START | ADVERB

)

Rule: NounChunk1

Priority: 2

(

(NOUNCHUNK_START)

(

(NOUNCHUNK_CONT)

)*

):nounchunkref

-->

{

gate.FeatureMap features = Factory.newFeatureMap();

gate.AnnotationSet nounchunk = (gate.AnnotationSet)bindings.get("nounchunkref");

gate.Annotation nounChunkAnn = (gate.Annotation) nounchunk.iterator().next();

features.put("rule", "NounChunk1");

annotations.add(nounchunk.firstNode(), nounchunk.lastNode(), "NounChunk", features);

}
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B.4 Multilingual Frequency Lists from Internet Cor-

pora

• Languages available:

German (de), English (en), Spanish (es), Finnish (�), French (fr), Italian (it),

Japanese (jp), Portugese (pt), Russian (ru), Chinese (zh)

• Location:

http://corpus.leeds.ac.uk/list.html � retrieved 2008-08-20

German (de) :

• corpus size: 187,789,449

• lexicon size: 3,932,190

• list elements: 5,000

English (en) :

• corpus size: 181,376,006

• lexicon size: 1,701,333

• list elements: 5,000

Spanish (es) :

• corpus size: 143,567,378

• lexicon size: 1,579,383

• list elements: 15,000

Finnish (�) :

• corpus size: 168,256,557

• lexicon size: 2,656,018

• list elements: 5,000

French (fr) :

• corpus size: 185,102,375

• lexicon size: 1,476,288
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• list elements: 5,000

Italian (it) :

• corpus size: 12,113,422

• lexicon size: 261,566

• list elements: 10,000

Japanese (jp) :

• corpus size: 253,071,774

• lexicon size: 124,489

• list elements: 15,000

Portugese (pt) :

• corpus size: 193,321,224

• lexicon size: 2,170,013

• list elements: 5,000

Russian (ru) :

• corpus size: 156,534,391

• lexicon size: 791,311

• list elements: 5,000

Chinese (zh) :

• corpus size: 281,660,631

• lexicon size: 1,268,440

• list elements: 15,000
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Appendix C

Evaluation Form

C.1 Instructions

Email Instructions

The following instructions were given to the anonymous, self-selected judges, per

email, sent to various mailing lists:

1. Point your browser to the URL

http://srvgal66.deri.ie:8080/keyword-evaluation-webapp

2. Enter a nickname - no worries, it will be encrypted, so not even I can see what

name you originally entered. This is used for associating evaluations with each

other in case you liked it so much that you want to do another one (yes yes yes

please!).

3. Pick a document you know very well, i.e. that you are (co-)author of

• Documents should be in English for now, we can try di�erent languages at

another time

• Documents can be of type PDF, HTML, PlainText. Sometimes even Mi-

crosoft Word works but that is a bit of a gamble.

• For optimal results, the document should have reasonable size. Whatever

you �nd on you desktop, your favourite paper of the life sciences, the re-

jection you got because none of the reviewers really understood what you

were doing, or that essay you wrote back in the days about Georgie Best's

magical dribblings which is ok not to have heard about or one of the BBC
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news stories. Just don't pick books of the size of the Holy Bible, or ANSI

Common Lisp, or very short documents consisting of very few words.

As a rule of thumb, anything in between 500 and 50,000 words shall be �ne.

4. Upload the document you have settled on via the web interface. Alternatively,

you may also point to a URL.

5. Once you submit, the extraction process starts and it may take a little while, de-

pending on the size of the document. It should be really fast for short documents

(<=5,000 words) though.

6. You are presented with an interface which enables you to accept or reject the

predictions. Every prediction is marked as accept by default, so please take a look

at each one and give your nod. In case of rejection, please select the (somewhat)

more detailed options which will be enabled only then (too general, too speci�c,

nonsense). The instructions on the website will also give examples as a guideline.

Too general : for instance, a predicted keyphrase time refers to a very generic

concept, which could be applied in almost any context. Therefore, the reason

for rejection would be too general

Too speci�c : at the other end of the scale, if, for instance, a document talks

about digital cameras, in particular about model IUXS, and on one occa-

sion makes a reference to another model Superphoto, then if the latter is

predicted as keyphrase, it is obviously too speci�c.

Nonsense : the third option, nonsense, should be used if a prediction does

not seem to make sense, either because the words are ill-formed (cut-o� at

hyphenation, suspiciously long, etc.), mostly resulting from �ltering errors

in the underlying process.

7. Once you are �nished, hit the submit button again, your results will be trans-

mitted. and you have o�ered a big service to me.
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Glossary

ANNIE A Nearly New Information Extraction system

API Application Programming Interface

ATE Automatic Term Extraction

ATR Automatic Term Recognition

BNC British National Corpus

CLAWS Constituent Likelihood Automatic Word-tagging System

FSA Finite State Automata

GATE General Architecture for Text Engineering

GNU GNU's Not Unix

HMM Hidden Markov Model

IE Information Extraction

IR Information Retrieval

LT Language Technology

MEDLINE MEDlars onLINE

MUC Message Understanding Conference

NAO NEPOMUK Annotation Ontology
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NER Named Entity Recognition

NIE NEPOMUK Information Elements

NLP Natural Language Processing

NRL NEPOMUK Representation Language

OWL Web Ontology Language

PoS part-of-speech

P2P peer-to-peer

PIMO Personal Information Model

PP Prepositional Phrase

RDF Resource Description Framework

RDFS RDF Schema

SOA Service Oriented Architecture

TF/IDF Term Frequency / Inverse Document Freqency

TnT Text and Trigrams

UMLS Uni�ed Medical Language System
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