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Abstract

We propose a simple general method for analytic determination of the boundaries of the expanding nonlinear oscillation zone
occurring in the decay of a step problem for non-integrable dispersive wave equations. A remarkable feature of the method is
that it essentially uses only the dispersionless limit and the linear dispersion relation of the original nonlinear dispersive wave
system. A concrete example pertaining to collisionless plasma dynamics is considered and complete agreement with the results
of earlier numerical simulations is demonstrated.
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1. Introduction tion laws, such waves in presence of small dissipation
demonstrate global properties characteristic for clas-

Since the discovery by Sagdeev of the oscillatory sical shocks: the Rankine—Hugoniot transition condi-
structure of collisionless shocks in plasma [1], the tlors sr? vq(l;dh for thﬁm andddISSIIF;]atIOT] ggterm|_nes
problem of their analytic description have been attract- only t eir wi th. In ot er words, althoug lISpersion
ing a great deal of attention of both mathematicians dramatically affects the fine structure of stationary col-
and physicists. This interest is partially explained by I|S|on_le_ss shoc_k_s their spee_d of propagatl_on_ anq the
the fact that the phenomenon of generation of nonlin- transition conditions follow directly from inviscid dis-
ear oscillations in the vicinity of the gradient catastro- pers;](_)nlgss COI"ISI;BI’V&tIOI’l Iawls. . d _
phe point is quite ubiquitous in dispersive media and This is _true,. owever, only for a s_tea. y regime
its applications range from space plasma physics to when nonlinearity, d|spers_|on and dissipation balance
bubbly fluid dynamics and fiber optics. Considered in each other and the collisionless shock has constant

the general context of classical theory of conserva- Width. Contrastingly, the case when dispersion pre-
vails over dissipation cannot be treated by a simple

consideration of mass, momentum and energy balance
* Corresponding author. at the shock trans_ition. .The_re.aso.n for that is thgt
E-mail address: g.el@coventry.ac.uk (G.A. El). boundaries of the dispersive dissipationless shock di-
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verge with time, i.e., instead of the shock speedie- markable feature of the method is that it essentially

fined by the balance of mass one has now two differ- uses only the dispersionless limit and the linear dis-

ent speeds; > s determining motion of the disper-  persion relation of the original system.

sive shock boundaries. Thus, such dispersive shocks In the last section, as a concrete example, we

are unsteady and require a separate study. The predomebtain the boundaries of the dispersive shock in a non-

inantly dispersive dynamics is of considerable interest integrable system describing fully nonlinear flows in

by itself and also in many cases it can be considered asa two-temperature collisionless plasma. Our analytic

an unsteady intermediate asymptotics in a general set-results are in a complete agreement with the results

ting when the small dissipation is taken into account. of earlier direct numerical simulations of the same
In a weakly nonlinear case when the original sys- problem in [6].

tem can be approximated by one of exactly integrable

equations, the study of the dispersive shocking phe-

nomenon has lead to discovery of a new class of math- 2. General setting

ematical problems which can be broadly described as

semiclassical limits in the integrable systems. Therig-  We consider a decay of an initial discontinuity

orous methods developed by Lax, Levermore and Ve- problem for a system describing fully nonlinear flows

nakides [2,3] who studied the semiclassical asymp- in dissipationless dispersive medium. In a general

totics in the inverse scattering transform for the KdV form such a system can be conventionally represented

equation allowed to reduce the KdV initial value prob- as

lem to integrating the corresponding Whitham mod-

ulation equations [4] with special matching condi- U =Ky (U,3,U, 02U, ...), (1)

tions (the formulation proposed earlier by Gurevich \\here U and K are vectors andV is the order of

and Pitaevskii [5] on a basis of a more universal, al- he system with respect to the spatial variable. In

beit more heuristic, reasoning). The methods of Lax, this | etter we restrict ourselves with the important
Levermore and Venakides as well as direct formula- g pclass of such systems withi = 4 and the real-

tion of Gurevi(_:h and Pitaevski_i have been extenc_ieq valued linear dispersion relation = wo(k), where
to many other integrable equations. The characteristic ,, s the frequency and is the wavenumber. Also

feature of both approaches is that owing to_ the inte- e assume the system (1) to have at least four
grable nature of the problem the determination of the ynservation laws of the form

boundaries of the oscillatory zone becomes an intrin-
sic part of constructing the whole solution. In fact, as 9;P; +3,Q; =0. (2)
we show in this Letter, the problem of rmination . . . _

€ sho t S etter, the problem of dete . atio We define the dispersionless limit of the system (1)
of the boundaries can be solved separately using some. - the following wav. We introduce new independent
very general assumptions about qualitative behaviour g way. b

of the characteristics of the Whitham equations for the Vzrrgrzlgtse)r( a:ngxt,hgnzf;rtr,ngre:g:uf;) 12(';0"" _T_?::
problem under study. P y : :

. N to the leading order we obtain a quasilinear system
In non-integrable case, when exact solution is not S 7 . o
. . o - . which is the dispersionless limit of the system (1). Let
available in principle, the possibility to determine the

dispersive shock boundaries allows to put the entire this "f“” havg the form of the Euler hydrodynamic
problem of the dispersive shock dynamics in the clas- equations for ideal gas

sical setting when the shock is “built in" the solution 5., 4 5. (pv) =0,

of the Euler equations of ideal hydrodynamics. In this 5
Letter we, by adopting the asymptotic ‘averaged’ for- d7v + vaxv + ¢ (P)
mulation of the problem from the integrable systems

theory, propose a simple general method for analytic wherep is the densityp is the velocity, and:;;(p) is
determination of the boundaries of the expanding non- the ‘sound speed’ in the corresponding ‘gas dynam-
linear oscillation zone occurring in the decay of a step ics’. For convenience of explanation we will also sup-
for non-integrable dispersive wave equations. A re- pose that the three first conservative densitie® (2)

8Xp = 07 (3)
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can be associated with the hydrodynamic density, ve- 3. Modulation description of dispersive shocks
locity and momentumP; = p, P> = v, P3 = pv. and natural matching conditions

The described subclass of systems (1) is quite broad
and includes some known integrable models such as Because of lack of integrability for most systems
defocusing nonlinear Schrddinger equation and Kaup— describing finite-amplitude waves the rigorous results
Boussinesq system [7]. As physically important ex- concerning existence and uniqueness of solutions can
amples of non-integrable systems that possess the dehardly be expected in this area. The natural approach
scribed general properties one can indicate the Green-then is to make some plausible assumptions about the
Naghdi system for fully nonlinear shallow water grav- general structure of the solution of our interest and
ity waves [8] which also describes the waves in bub- then, to explore possible consequences of these as-
bly fluids [9], the generalized nonlinear Schrédinger sumptions. The results of such an approach can be val-
equation describing propagation of nonlinear waves in idated by comparison with available direct numerical
photorefractive materials [10], the systems for nonlin- simulations and by consistency of the weakly nonlin-
ear ion-acoustic and magnetoacoustic waves in colli- ear asymptotics of the obtained solution with the exact
sionless plasma [4,11], and many others. In this Letter results for the corresponding integrable system.
we will not be concerned with the integrability proper- We formulate the dispersive shock problem for a
ties of the system under consideration. Instead, we will non-integrable system by adopting the resulting ‘av-
show that having in disposal only the dispersionless eraged’ setting from the theory of integrable systems,
limit and the linear dispersion relation (in a somewhat i.e., by direct application of the Whitham method to
extended form) it is possible to obtain some asymptot- the system (1) in the conservative form (2) and then
ically exact results pertaining to a global dynamics of by postulating appropriate boundary conditions.
fully nonlinear waves in the system (1). The main premise in our construction is that the

We consider the initial data for the system (1) in the dispersive shock is locally described by the one-phase
form of a step for the variables andv appearing in periodic travelling solution of system (1):

the dispersionless limit (3): F= 10 D—1i
= R =Kkx — wt,

fO+21)=f(0), (6)
t=0: {p AL vEuL X > 8 (4)  wherek is the wave number and is the frequency.
p=pz v=v2, X=<L The variable f is one of the components of the

vectorU, its choice is obvious in each particular case.

wherep; 2 andv1 2 are some constants. All the remaining components of the vectbr are
Since our aim in this work is to study the bound- expressed in terms gf by algebraic expressions. The

aries of the dispersive shock it is necessary to extract travelling wave solution is parametrized by a number
for our consideration only the admissible set of dis- of independent integrals of motion (four in our case),
continuities producing single dispersive shock as a which, on a large scale, depend &n= ex, T = et,
result of the decay. For the dispersive shocks moving where e « 1. Their variations are governed by the
to the right (in the frame moving with velocityp) such averaged equations
discontinuities are distinguished by the relationship

arl';j-l-aij:O, j=1...,4 (7)
) ) Averaging is done over the solution (6)
1 2
v — / —cs;p) dp =vz — / cs;p) dp, G 1 7
A 4 F(X,T)= > / F(6)db, (8)
0

where pp is a constant. This transition relationship whereF () = F(f(9)). The averaged equations, thus,
has been for the first time formulated in [6] and then describe slow modulations in the travelling wave
derived using characteristics in [12,13]. solution. One more modulation equation, which, of
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course, is consistent with the closed system (7) is In the linear limit this relation assumes the form
provided by the wave number conservation law o
w=awo(k, p, V), (11)
ork + dxw =0, (9) and can be obtained directly from the original sys-
tem (1) by linearization against the slowly varying
which is a compatibility condition in the Whitham the-  mean background:
ory and can be used instead of any of the modulation - ‘
equations (7) [14]. Its consistency with the modulation Uj ~Uj +a;e' ™™, a; < 1. (12)
system (7) can be often verified directly [4].

Now we have to choose an appropriate system Now we apply the following setting, which we
of dependent variables. This choice is crucial in the adopt from the integrable systems theory (see, for
integrable systems theory where a unique system of instance, [15]). There is, of course, an underlying
variables, Riemann invariants, exists, which makes it Pasic assumption that the solution of the problem
possible to effectively integrate the modulation system Of our interest exists in some broad sense which
(see [15] and references therein). In the case when thewill be clear from what follows. For convenience we
Riemann invariants are not available, the advantages€Xplicitly itemize our major assumptions and some
of any distinguished system of variables are not so theirimportantimplications.
decisive although the ‘right’ choice can seriously

facilitate calculations. e We assume the space—time of the asymptotic as
The ‘hydrodynamic’ nature of the system (1) hav- ¢ — 0 solution to the initial value problem (1),

ing Euler equations (3) as a dispersionless limit sug- (4) to be split into three domaing:-oo, X2(T)),

gests natural choice of the basis modulation variables: ~ [X2(T), X1(T)], (X1(T), +00), in which the so-

2,9, A2= pv — pv, k. The variableA? can be viewed lution is governed by different equations;

as a measure of intensity of the oscillations. In the ® Outside the dispersive shock regiofy(1); X1(1)]

absence of oscillations, apparent4? = 0, 5 = p, the solution is governed by the dispersionless limit

= v, and the two first integrals of the Whitham sys- of the modulation system, i.e., by Euler equations

tem should become consistent with the dispersionless ~ Of ideal gas dynamics (3).

limit of the original system (3). e Inside the dlsperglv_e shock dgme&mz(t); X1(0)]
This degeneration can occur in two ways: we replace the original equations by the system of

the averaged conservation laws (7).
(a) through the linear vanishing amplitude wave limit, ~® The solutions of the inner (Whitham (7)) and outer

whenA2 - 0,k = O(1): (Euler (3)) systems are then subject to matching
(b) through the solitary wave limit, wheA? — 0, conditions at the (unknown) boundari&s >(7).
k—0,A%/k = 0(1). We require the natural continuity matching condi-

tions to be satisfied [12]

The first type of transition is realized at the trailing
edge of the dispersive shock, and the second one—
at the leading edge (to be definite we imply here p=peX,T), v=ve(X,T), (13)
the negative dispersion in the system, in the positive
dispersion case the structure of the dispersive shock is
inverted (see, for instance, [16])).

X =X12(T): A?=0,

subject to additional restrictions reflecting the
different way of transition to the smooth flow at
the trailing and the leading edges:

Remark. The travelling wave frequency is ex- X = Xo(T): k=0(D), (14)
pressed in terms of the basis modulation variables by X — X1(T): Az/k =0(). (15)

nonlinear dispersion relation
P Here (prp(X,T),vg (X, T)) stands for the solu-

o, tion of the Euler system (3) with the initial or
w=w(k p.v, A%). (10) boundary conditions for the original system (1).
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The conditions (13)—(15) represent a natural ex-
tension of the Gurevich—Pitaevskii conditions for-

mulated for the KdV equation in [5], and then

for the defocusing NLS equation and the Kaup—
Boussinesq system in [16,17].

e We assume hyperbolicity of the modulation sys-
tem (7) for the solutions of our interest. In the
context of the dispersive shock problem the hy-
perbolicity implies the modulational stability of
the dispersive shock. Another implication of hy-
perbolicity is the possibility of using the classical
characteristics method.

e The boundariex(1 > are defined for the solution
of the matching problem by the kinematic condi-

tions:

Xa _ Do (16)
dT 3k |jo_g

dX

2 jim & , an
dT k—)Ok A2/k=0(l)

that is the trailing edge moves with the group
velocity of the trailing linear wave packet while
the leading edge is identified with the position of
the leading solitary wave in the dispersive shock.

Since the order of the Whitham system (7) is equal
to four while the Euler system (3) is of the second
order, the boundaries of the dispersive shotk=
X1 are the multiple (double) characteristics of the
Whitham system. This is why one cannot specify the
values ofk and A2/k at the trailing and the leading
edges correspondingly (see (14), (15)) and only two
functionspg (X, T) andvg (X, T) can be prescribed
at each boundary.

The governing equations (7), (3) and the initial
conditions (4) are invariant with respect to the linear
transformationX — c¢X, T — ¢T. Therefore, the
problem under consideration is self-similar, i.e., we
have only one independent variable- X/T. Hence

the boundaries of the dispersive shock are the straights; = ¢1(p1, v1)

lines

X12=s12T (18)
and the matching conditions (13) assume the form
A%2=0,
A2=0,

19)
(20)

p=p2, V
0 =p1,

s = §2: v2,

s =S1: I_JZU]_.
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Also from (14), (15) we have

k=0(), (21)
s—s1: A%/k=0(). (22)

We note in conclusion that the parameteformally
introduced in the definition of the slow variables
X and T appears naturally in the solution of the
original system (1) as a ratio of the characteristic
scale of oscillations to the oscillation zone width and,
therefore, is proportional to1. Thus our definition of
the edges is asymptotically accurate as co.

s — §2:

4. Determination of the edges

Our task now is to determine the constasitsand
s2, which are the self-similar coordinates (speeds) of
the dispersive shock edges, in terms of the initial
discontinuity parameters; 2, v1.2. Using definitions
of the edges (16)—(18) we obtain

Jdwo
= — (k2, p2, v2), 23
s2 =~ (ke p2, v2) (23)

wherek; is the value of the wavenumber at the trailing
edge, and

l w
sp= lim -~ (€1, 1. 1), (24)
where¢; is the value of the variable = A2/ k at the
leading edge.

As we have already mentioned, owing to the fact
that the edges of the dispersive shock are the double
characteristics of the Whitham system, the values
ko, p2,v2 as well as¢i, p1, v1 are not independent.
Thus our task of obtainings 2 is reduced to finding
dependencies

k2 = k2(p2,v2) forany givenps, v1

and

for any givenps, v2

compatible with the modulation system considered in
the limits A2 — 0,k = 0(1) andA? — 0,¢ = O(1),
correspondingly.

Additional restrictions on possible values of the
modulation parameters at the edges of the self-similar
dispersive shock are imposed by the transition rela-
tionship (5), which implies at the trailing edgesi =
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v2(p2) for given p1, v1; and at the leading edgej =
v1(p1) for given po, va.

4.1. Trailing edge

We consider the reduction of the modulation sys-
tem in the limit when intensity of oscillationa? =
pv — pv vanishes, while the wave numberemains
finite (see (19), (21)). Then, according to general prop-
erties described in Section 3 the modulation system
becomes consistent with the dispersionless limit (3)
and assumes the degenerate form

arp + dx(pv) =0, (25)
2 —

ar+ooxi+ 2P o5 =0, (26)

ork 4+ dxwo(k, p,v) =0. 27)

The system (25)-(27) has three different families
of characteristics. Two of them are the usual Euler
hydrodynamics characteristiesX/dT = V. defined

by the characteristic velocities [14]

Vi=1%cs(p), (28)

while the third one is the linear wave characteristic
dX/dT = dwg/dk, which is the double characteristic
of the full Whitham system in the linear limit. It
is important that this characteristic depends not only
on the wave numbek but also on the mean flow
parameterg, v owing to the general form of the linear
dispersion relation (11).

Now we are looking for the integrad = k(p, v)
of the system (25)—(27) subject to the additional
restriction

(29)

which in view of the boundary conditions (19), (21)
provides consistency with the dispersive shock condi-
tion (5).

First we note that the restriction (29) coincides
with the relationshipu(p) between the density and
the velocity in the simple compression wave solution
(r—(p, v) = C) of the Euler equations (25), (26) [14].
So, substituting (29) into (25), (27) we obtain

(30)
(31)

arp + V(p)oxp =0,
drk + dxS20(k, p) =0,

531
where
o
V(p) = Vi (5, 55) = s (5) + / &) 454 c,
00
2ok, ) = wolk, 5, 5(5). (32)

Thus, the characteristic integral we are looking for
has the fornk = k(p, v(p)) = ko(p). Substituting this
into the system (30), (31), we arrive at the ordinary
differential equation
dko 0820/0p

dp — V(p) — 3%20/3k’
The initial conditionkg(p1) = 0 follows from the
boundary conditions (19), (20) and implies that no
dispersive shock is generated if the boundary values
at both edges are equal (i$ = p1 then automatically

v2 = v1 by (5)). Integrating (33) we findkg(p).
Then the self-similar coordinate of the trailing edge
according to (23) is found as

0820
=—k7 )
52 8k(zpz)

ko(p1) =0. (33)

(34)

wherek, = ko(p2). We note that the valugs, vy enter
the expression (34) via the const&hin (32) and the
initial condition forko(p) in (33).

4.2. Leading edge

The position of the leading edge (24) can be, in
principle, determined in a similar way by consider-
ing the limit of the modulation system a2 — 0
¢ = 0(1), where¢ = A?/k. The chosen system of
modulation variableg, v, ¢, however, is not as con-
venient for this purpose, since obtaining the equation
for ¢ from the modulation system (7) in the solitary
wave limit is a technically cumbersome problem (see
[12]), which, in addition, does not shed much light on
the limiting structure of the Whitham equations.

This complexity can be bypassed by introducing
a new system of the basis modulation variables in
which, as we will see, the theory of the leading edge
will become in essence equivalent to that for the
trailing edge. Although it might look as a technical
task we will see that the method we are proposing
is quite general and leads to an elegant and clear
description of the modulated finite-amplitus#itary
wave trainsin terms of thdinear dispersion relation.
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R The wavenumber and the mean values in this travelling
wave are given by the integrals

- )"

VRO
A2

A3

/\ > _ k [FO)dA
/11\/2 AKK = ;)/ \/m : (37)
2
@)

Here F(f) = F(0(f)) (cf. (8)), whereF is any func-
tion of the vectorU considered for the solution (35).
All modulation variables in the system such @asv,

A A?, ¢, etc., are expressed in terms of the integrals (37).

R The following general asymptotics are valid in the
solitary wave configuration:
1
INn(h2 — A1)

-0, F— F(2).
(38)
Now we introduce an alternative (conjugated) system
N /1> of modulation variables which is more convenient
\

A — A1: k~

when studying the solitary wave limit; — A1 in
the modulation system. We define the conjugated
wavenumber and the conjugated mean value as

(b)

A2 -1
i di
Fig. 1. Potential curveR (1): (a) general configuration, (b) solitary =7 —R(L) ’
wave configuration. e

A

~ 2
First we recall that the modulation variables locally -, _ K [ FR)dr (39)
represent a set of independent parameters specifying 7 J V=R
A1

the travelling wave solution (6) of the original sys-

tem (1). This solution is usually specified by the or- As a matter of fact, any of these quantities can be

dinary differential equation of the form taken as a modulation variable instead of any one from
2 _ the set (37). The corresponding asymptotics for the

(kfe)” = R(f), 0 =kx —ot, conjugated variables are (cf. (38))

7O+ 20 =70, (35) A= a1 k—>ks=0(), (F)— F( 40

where f is a component of the vectds and all the 22> M k=>k =0, (F) = FO2). (40)

remaining components are expressed in termg by One can see then that in the limit considered

algebraic expressions. To be definite, we assume the _

potential curveR (1) to have three real roolg < Ao < A2—r (F)—> F. (41)

A3 (see Fig. 1(a)): The new set of independent modulation parameters we

ROV = —( — A0 — A2) (A — A3)G2(0), are gping to use in the solitary wave Iimit i, 0, V.
Considered in the context of the leading edge of the

G() #0, (36)

dispersive shock (i.e., for a specific solution) these
whereG (1) is a ‘good’ function. Then thes2-periodic parameters, similarly to the trailing edge case, become
solution of (35) oscillate between the roatsandis. subject to two restrictions:
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(i) a simple wave relationship (cf. (29)) as
_ Wy
0 o1 §1=— . 47
70— / M dp =vy — / ¢s(p) dp=C, (42) ks | g=p1,5=v1
P P

Note that owing to the definition ab formula (47)
is equivalent to our original expression (24) for
in terms of the frequency and the wavenumbek.
Expression (47), however, is much more simple for
actual calculations since it does not contain any

00 00

imposed by the dispersive shock transition condi-
tion (5), and

(i) the characteristic relationshig = k, (5, v) which
should take place since the leading edge is the singular limiting transitions.
double charactensﬂcg of the modulation system. To the first order, taking into account (43) and (30),
As a result, the relationship to be found should Eq. (45) yields
have the form

dks 382,/0p N
i k(D T = T T = = k = O, 48
ks = ks(0). (43) dp V(5) — 082, /0ks s(02) ( )
where

Now we consider the modulation system (7) in the
solitary wave limitio — A1. We recall that in this limit 5 5 SN~ (f 5 s(=
the intensity of oscillationst2 vanishes and two first 2uths, p) =05 (ks. 5. 9(7)). (49)
integra|s of the modulation System become those of The initial condition in (48) follows from the bOUndary
the dispersionless limit (3) exactly as it happens in the conditions (19), (20) and implies that there is no
Zero_amp"tude Configuratio}qs — X considered in dispersive shock generated if the boundary values at
the trailing front theory. both edges are equal.

Using the restriction (42) we again get the simple ~ One cannot help noticing that Egs. (33) and (48) de-
wave equation (30) fob. The wave number conserva-  Scribing relationships between the variables in the lin-
tion law (9) requires a bit more detailed ana|ysis_ We e€ar and the SOlitary wave trains are identical in terms of

represent it in the form the dispersion relation®q(k, p) and £2,(ks, ). The
latter, however, is yet to be found.
a7 (kA) + dx (@A) =0, (44) To obtain the solitary wave dispersion relation

. ) _ &5 (ks, p, v) We observe that expressions (39) can be
where A = k/k and the conjugated frequency is de- yjewed as analogs of (37) for the conjugated travelling
fined asw = wk/k and has the limito — &, = O (1) wave given by the equation
as A — A1. Since there are only three independent _ L
variables left whem, = A1, then @, = @ (ks, p, D) kf)?=—-R(f), 6=ki—ar,

(cf. (11)). This relationship, which is yet to be found, 7@ +2m) = F(), (50)
can be called aolitary wave dispersion relation. _
It is convenient to rewrite equation (44) in the form Wherex,  are new independent variables. This trav-
elling wave is associated with the same (but inverted)

potential curveR (1) (36) so that the oscillations now
occur between the roots andi1. For problems asso-
ciated with polynomial potential curves, the functions
f(®) andi f(if) represent the same analytic function
in the complexg-plane, which is an elliptic function
with the periods 2 and 2ri along the real and the
dX & imaginary axes.
(46) The next observation is that the solitary wave limit
A2 — A1 in the original travelling wave (35) corre-
which defines the leading edge in terms of conjugated sponds to the vanishing amplitude limit in the con-
variables. The constant (see (18)) is then evaluated jugated travelling wave equation (50) (see Fig. 1(b))

A(3T1€+axd))+1€<am+ %am) —0. (45)

In the solitary wave configurationp — A1, we have
the asymptoticsA ~ |1/In(A2 — A1)| — 0. Assuming
thendr A ~ dx A > A we get to the leading order:



534 G.A. El et al. / Physics Letters A 318 (2003) 526-536

and, therefore@, andk, must satisfy thdinear dis- the constanC in the characteristic velocity (32) and
persion relation for the dispersive hydrodynamics sys-  the initial condition fork, (5) in (48).

tem conjugated to (1). This conjugated system is ob-

tained from the original system (1) by the change of

variablest = ix, 7 = it, 5. Example: fully nonlinear ion-acoustic wavesin

i8,~0=KN(0,i8,;0,—a§i0,_._), (51) collisionless plasma

which is equivalent to a mere change of the dispersion  As an example of effective evaluation of the dis-

sign in the original system (1). The conjugated linear persive shock boundaries in a non-integrable system
dispersion relation of our interest is obtained by we make use of the classical system describing finite-
linearizing the system (51) in a way similar to (12), amplitude ion-acoustic waves in two-temperature

i.e., about the mean background (T, > T;) collisionless plasma (see, for instance, [11])
and has the form 9V 4+ vd v+ 0, =0,
&5 = oy (ks (B). (D). (53) =’ —p. (57)

Since the components of the vectdrare expressed Here p and v are ion density and velocity angd
in terms of the variablg’ (as well as the components  is the electric potential; all dependent variables are
of U in terms of f) by relationships not containing dimensionless. The system (57) possesses all the
explicitly and the operatoK y is the same in (1) and  general properties described in Section 1. In the
(51), the functiong (f), v(f) ands(f), v(f) should dispersionless limitp = Inp and, therefore¢, = 1
be identical, i.e.,0(z) = 6(2), v(z) = ¥(z). Then it in (3), while the linear dispersion relation has the form
follows from (41) that in the limit

wok, p, ) = k[v+ (1 +k%/p)"Y2]. (58)

The dispersive shock transition condition (5) then
takes the form — In p2 = v1 — In p1. Without loss of
generality we put1 = 0, p1 = 1. Then the relationship
(29) betweeno andv in the degenerate modulation
system (25)—(27) assumes the foim=Inp. As a
k— iks, wo— idy. (55) result, we get all the necessary ingredients (32) for the
basic differential equation (33):

Ao — a1 ()= B, (D) — . (54)

Therefore, the solitary wave dispersion relation has the
form &, = & (ks, p, v) and can be obtained from the
original linear dispersion relation (11) by the formal
change

Remark. We emphasize that all the obtained relation- _ _
ships between original and conjugated averaged vari- Vip)=Inp+1,
ables essentially represent algebraic identities betweeng2g(k, 5) = k[In 5 + (1 + k%/5)~Y/2]. (59)
integrals of the form (37) and (39) associated with
given potential curve’ (1) and do not imply any con-
nection between their spatio-temporal dynamics in the
original and the conjugated systems (1) and (51). da 1+ )2

Pa5 = 20+a+ad)

Eq. (33) then, after elementary transformations, as-
sumes the form with separated variables

) a(l) =1, (60)
Now integrating (48) we find; (o) and thens1 by
formula (47): wherea = (1+ k2/p)~Y/2. Integrating (60) we get

$2; (k1. p1)
S1=—>, (56) Inpg+2In
k1 P ot 1+«

—1=0. (61)

wherek; = ks(p1). Analogously to the trailing edge  Now, using (34) we obtain a simple implicit formula
case, the valuesgy, v2 enter the expression (56) via determining velocity of the trailing edge in terms of
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Fig. 2. Boundaries of the dispersive shogk versus density jump
A: 1—leading edge, 2—trailing edge.

the density jumpA = p2/p1 = p2,

(s2—Inayl/3—-1
(so—InA)/341°
The leading edge is handled in the same way. The

solitary wave dispersion relation (49) is obtained from
(59) by the change (55) and has the form

@y ks, p) = ks[In 5 + (L — k2/5)~Y2].

Then, integrating (48) we obtain(p) (itis convenient
to introduced = (1 — k2/p)~Y/? instead ofk;, cf.
(60)) and substituting it into (56) eventually get for the
leading edge

1- l+2In InA
S1 = .
1+s1 !

Both curvess1(A) ands2(A) are presented in Fig. 2
and demonstrate complete agreement with results of
direct numerical simulation of the decay of an initial
discontinuity for the system (57) obtained in [6].
From the theoretical point of view this agreement can
be viewed a strong indication of validity of using
the modulation theory in non-integrable initial value
problems where rigorous derivation of the Whitham
asymptotics is not available.

The weakly nonlinear asymptotics of (62) and (64)
forn=4A-1«1:

InA+ gln(sz— InA) = (62)

(63)

s

(64)

2
51%1-’_—7/’ (65)

3
corresponds to the boundaries in the well-known ex-
act analytic solution for the modulation KdV system

52%1_77,
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found by Gurevich and Pitaevskii [5], which is an-
other confirmation of validity of our approach. Curi-
ously, as is clearly seen from Fig. 2, the fully nonlin-
ear dynamics of the leading (solitary wave) edgés
quite well approximated by the weakly nonlinear as-
ymptotics (65) while the speed of the trailing (vanish-
ing amplitude) edge, demonstrates significant quali-
tative and quantitative deviations from its weakly non-
linear analog even for quite moderate values of the ini-
tial jump.

In conclusion we note that the method of obtaining
the dispersive shock boundaries proposed in this Letter
is consistent with the concept of ‘local Riemann
invariant transport’ for the solutions of the Whitham
systems proposed in [12] but is considerably more
transparent and effective.
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