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Abstract

We propose a simple general method for analytic determination of the boundaries of the expanding nonlinear oscilla
occurring in the decay of a step problem for non-integrable dispersive wave equations. A remarkable feature of the m
that it essentially uses only the dispersionless limit and the linear dispersion relation of the original nonlinear dispers
system. A concrete example pertaining to collisionless plasma dynamics is considered and complete agreement with
of earlier numerical simulations is demonstrated.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Since the discovery by Sagdeev of the oscillat
structure of collisionless shocks in plasma [1], t
problem of their analytic description have been attra
ing a great deal of attention of both mathematicia
and physicists. This interest is partially explained
the fact that the phenomenon of generation of non
ear oscillations in the vicinity of the gradient catast
phe point is quite ubiquitous in dispersive media a
its applications range from space plasma physic
bubbly fluid dynamics and fiber optics. Considered
the general context of classical theory of conser
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tion laws, such waves in presence of small dissipa
demonstrate global properties characteristic for c
sical shocks: the Rankine–Hugoniot transition con
tions are valid for them and dissipation determin
only their width. In other words, although dispersi
dramatically affects the fine structure of stationary c
lisionless shocks their speed of propagation and
transition conditions follow directly from inviscid dis
persionless conservation laws.

This is true, however, only for a steady regim
when nonlinearity, dispersion and dissipation bala
each other and the collisionless shock has cons
width. Contrastingly, the case when dispersion p
vails over dissipation cannot be treated by a sim
consideration of mass, momentum and energy bala
at the shock transition. The reason for that is thatthe
boundaries of the dispersive dissipationless shock di-
.
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verge with time, i.e., instead of the shock speeds de-
fined by the balance of mass one has now two dif
ent speedss1 > s2 determining motion of the dispe
sive shock boundaries. Thus, such dispersive sh
are unsteady and require a separate study. The pre
inantly dispersive dynamics is of considerable inter
by itself and also in many cases it can be considere
an unsteady intermediate asymptotics in a general
ting when the small dissipation is taken into accoun

In a weakly nonlinear case when the original s
tem can be approximated by one of exactly integra
equations, the study of the dispersive shocking p
nomenon has lead to discovery of a new class of m
ematical problems which can be broadly described
semiclassical limits in the integrable systems. The
orous methods developed by Lax, Levermore and
nakides [2,3] who studied the semiclassical asym
totics in the inverse scattering transform for the K
equation allowed to reduce the KdV initial value pro
lem to integrating the corresponding Whitham mo
ulation equations [4] with special matching con
tions (the formulation proposed earlier by Gurev
and Pitaevskii [5] on a basis of a more universal,
beit more heuristic, reasoning). The methods of L
Levermore and Venakides as well as direct formu
tion of Gurevich and Pitaevskii have been extend
to many other integrable equations. The character
feature of both approaches is that owing to the in
grable nature of the problem the determination of
boundaries of the oscillatory zone becomes an int
sic part of constructing the whole solution. In fact,
we show in this Letter, the problem of determinati
of the boundaries can be solved separately using s
very general assumptions about qualitative behav
of the characteristics of the Whitham equations for
problem under study.

In non-integrable case, when exact solution is
available in principle, the possibility to determine t
dispersive shock boundaries allows to put the en
problem of the dispersive shock dynamics in the c
sical setting when the shock is ‘built in’ the solutio
of the Euler equations of ideal hydrodynamics. In t
Letter we, by adopting the asymptotic ‘averaged’ f
mulation of the problem from the integrable syste
theory, propose a simple general method for anal
determination of the boundaries of the expanding n
linear oscillation zone occurring in the decay of a s
for non-integrable dispersive wave equations. A
-

markable feature of the method is that it essenti
uses only the dispersionless limit and the linear d
persion relation of the original system.

In the last section, as a concrete example,
obtain the boundaries of the dispersive shock in a n
integrable system describing fully nonlinear flows
a two-temperature collisionless plasma. Our anal
results are in a complete agreement with the res
of earlier direct numerical simulations of the sam
problem in [6].

2. General setting

We consider a decay of an initial discontinu
problem for a system describing fully nonlinear flow
in dissipationless dispersive medium. In a gene
form such a system can be conventionally represe
as

(1)∂tU = KN

(
U, ∂xU, ∂2

xxU, . . .
)
,

where U and K are vectors andN is the order of
the system with respect to the spatial variable.
this Letter we restrict ourselves with the importa
subclass of such systems withN = 4 and the real-
valued linear dispersion relationω = ω0(k), where
ω, is the frequency andk is the wavenumber. Also
we assume the system (1) to have at least
conservation laws of the form

(2)∂tPj + ∂xQj = 0.

We define the dispersionless limit of the system
in the following way. We introduce new independe
variablesX = εx, T = εt , whereε � 1 is a small
parameter and then formally tendε to zero. Then,
to the leading order we obtain a quasilinear sys
which is the dispersionless limit of the system (1). L
this limit have the form of the Euler hydrodynam
equations for ideal gas

∂T ρ + ∂X(ρv) = 0,

(3)∂T v + v∂Xv + c2
s (ρ)

ρ
∂Xρ = 0,

whereρ is the density,v is the velocity, andcs(ρ) is
the ‘sound speed’ in the corresponding ‘gas dyna
ics’. For convenience of explanation we will also su
pose that the three first conservative densitiesPj in (2)
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can be associated with the hydrodynamic density,
locity and momentum:P1 = ρ, P2 = v, P3 = ρv.

The described subclass of systems (1) is quite br
and includes some known integrable models such
defocusing nonlinear Schrödinger equation and Ka
Boussinesq system [7]. As physically important e
amples of non-integrable systems that possess th
scribed general properties one can indicate the Gre
Naghdi system for fully nonlinear shallow water gra
ity waves [8] which also describes the waves in b
bly fluids [9], the generalized nonlinear Schröding
equation describing propagation of nonlinear wave
photorefractive materials [10], the systems for non
ear ion-acoustic and magnetoacoustic waves in c
sionless plasma [4,11], and many others. In this Le
we will not be concerned with the integrability prope
ties of the system under consideration. Instead, we
show that having in disposal only the dispersionl
limit and the linear dispersion relation (in a somew
extended form) it is possible to obtain some asymp
ically exact results pertaining to a global dynamics
fully nonlinear waves in the system (1).

We consider the initial data for the system (1) in t
form of a step for the variablesρ andv appearing in
the dispersionless limit (3):

(4)t = 0:
{
ρ = ρ1, v = v1, x � 0,
ρ = ρ2, v = v2, x < 0,

whereρ1,2 andv1,2 are some constants.
Since our aim in this work is to study the boun

aries of the dispersive shock it is necessary to ext
for our consideration only the admissible set of d
continuities producinga single dispersive shock as a
result of the decay. For the dispersive shocks mov
to the right (in the frame moving with velocityv2) such
discontinuities are distinguished by the relationship

(5)v1 −
ρ1∫

ρ0

cs(ρ)

ρ
dρ = v2 −

ρ2∫
ρ0

cs(ρ)

ρ
dρ,

where ρ0 is a constant. This transition relationsh
has been for the first time formulated in [6] and th
derived using characteristics in [12,13].
-

3. Modulation description of dispersive shocks
and natural matching conditions

Because of lack of integrability for most system
describing finite-amplitude waves the rigorous res
concerning existence and uniqueness of solutions
hardly be expected in this area. The natural appro
then is to make some plausible assumptions abou
general structure of the solution of our interest a
then, to explore possible consequences of these
sumptions. The results of such an approach can be
idated by comparison with available direct numeri
simulations and by consistency of the weakly non
ear asymptotics of the obtained solution with the ex
results for the corresponding integrable system.

We formulate the dispersive shock problem fo
non-integrable system by adopting the resulting ‘
eraged’ setting from the theory of integrable syste
i.e., by direct application of the Whitham method
the system (1) in the conservative form (2) and th
by postulating appropriate boundary conditions.

The main premise in our construction is that t
dispersive shock is locally described by the one-ph
periodic travelling solution of system (1):

f = f (θ), θ = kx −ωt,

(6)f (θ + 2π)= f (θ),

wherek is the wave number andω is the frequency
The variablef is one of the components of th
vectorU, its choice is obvious in each particular ca
All the remaining components of the vectorU are
expressed in terms off by algebraic expressions. Th
travelling wave solution is parametrized by a num
of independent integrals of motion (four in our cas
which, on a large scale, depend onX = εx, T = εt ,
where ε � 1. Their variations are governed by t
averaged equations

(7)∂T P̄j + ∂XQ̄j = 0, j = 1, . . . ,4.

Averaging is done over the solution (6)

(8)F̄ (X,T ) = 1

2π

2π∫
0

F(θ) dθ,

whereF(θ)≡ F(f (θ)). The averaged equations, thu
describe slow modulations in the travelling wa
solution. One more modulation equation, which,
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1).
course, is consistent with the closed system (7
provided by the wave number conservation law

(9)∂T k + ∂Xω = 0,

which is a compatibility condition in the Whitham th
ory and can be used instead of any of the modula
equations (7) [14]. Its consistency with the modulat
system (7) can be often verified directly [4].

Now we have to choose an appropriate sys
of dependent variables. This choice is crucial in
integrable systems theory where a unique system
variables, Riemann invariants, exists, which make
possible to effectively integrate the modulation syst
(see [15] and references therein). In the case when
Riemann invariants are not available, the advanta
of any distinguished system of variables are not
decisive although the ‘right’ choice can serious
facilitate calculations.

The ‘hydrodynamic’ nature of the system (1) ha
ing Euler equations (3) as a dispersionless limit s
gests natural choice of the basis modulation variab
ρ̄, v̄, A2 = ρ̄v− ρ̄v̄, k. The variableA2 can be viewed
as a measure of intensity of the oscillations. In
absence of oscillations, apparently,A2 = 0, ρ̄ = ρ,
v̄ = v, and the two first integrals of the Whitham sy
tem should become consistent with the dispersion
limit of the original system (3).

This degeneration can occur in two ways:

(a) through the linear vanishing amplitude wave lim
whenA2 → 0, k =O(1);

(b) through the solitary wave limit, whenA2 → 0,
k → 0,A2/k =O(1).

The first type of transition is realized at the trailin
edge of the dispersive shock, and the second on
at the leading edge (to be definite we imply he
the negative dispersion in the system, in the posi
dispersion case the structure of the dispersive sho
inverted (see, for instance, [16])).

Remark. The travelling wave frequencyω is ex-
pressed in terms of the basis modulation variables
nonlinear dispersion relation

(10)ω = ω
(
k, ρ̄, v̄,A2).
In the linear limit this relation assumes the form

(11)ω = ω0(k, ρ̄, v̄),

and can be obtained directly from the original s
tem (1) by linearization against the slowly varyin
mean background:

(12)Uj ≈ Ūj + aje
i(kx−ωt), aj � 1.

Now we apply the following setting, which w
adopt from the integrable systems theory (see,
instance, [15]). There is, of course, an underly
basic assumption that the solution of the probl
of our interest exists in some broad sense wh
will be clear from what follows. For convenience w
explicitly itemize our major assumptions and so
their important implications.

• We assume the space–time of the asymptotic
ε → 0 solution to the initial value problem (1
(4) to be split into three domains:(−∞,X2(T )),
[X2(T ),X1(T )], (X1(T ),+∞), in which the so-
lution is governed by different equations;

• Outside the dispersive shock region[X2(t);X1(t)]
the solution is governed by the dispersionless li
of the modulation system, i.e., by Euler equatio
of ideal gas dynamics (3).

• Inside the dispersive shock domain[X2(t);X1(t)]
we replace the original equations by the system
the averaged conservation laws (7).

• The solutions of the inner (Whitham (7)) and ou
(Euler (3)) systems are then subject to match
conditions at the (unknown) boundariesX1,2(T ).
We require the natural continuity matching con
tions to be satisfied [12]

X =X1,2(T ): A2 = 0,

(13)ρ̄ = ρE(X,T ), v̄ = vE(X,T ),

subject to additional restrictions reflecting t
different way of transition to the smooth flow
the trailing and the leading edges:

(14)X →X2(T ): k =O(1),

(15)X →X1(T ): A2/k =O(1).

Here (ρE(X,T ), vE(X,T )) stands for the solu
tion of the Euler system (3) with the initial o
boundary conditions for the original system (
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The conditions (13)–(15) represent a natural
tension of the Gurevich–Pitaevskii conditions fo
mulated for the KdV equation in [5], and the
for the defocusing NLS equation and the Kau
Boussinesq system in [16,17].

• We assume hyperbolicity of the modulation sy
tem (7) for the solutions of our interest. In th
context of the dispersive shock problem the h
perbolicity implies the modulational stability o
the dispersive shock. Another implication of h
perbolicity is the possibility of using the classic
characteristics method.

• The boundariesX1,2 are defined for the solutio
of the matching problem by the kinematic con
tions:

(16)
dX2

dT
= ∂ω0

∂k

∣∣∣∣
A2=0

,

(17)
dX1

dT
= lim

k→0

ω

k

∣∣∣∣
A2/k=O(1)

,

that is the trailing edge moves with the gro
velocity of the trailing linear wave packet whi
the leading edge is identified with the position
the leading solitary wave in the dispersive shoc

Since the order of the Whitham system (7) is eq
to four while the Euler system (3) is of the seco
order, the boundaries of the dispersive shockX =
X1,2 are the multiple (double) characteristics of t
Whitham system. This is why one cannot specify
values ofk andA2/k at the trailing and the leadin
edges correspondingly (see (14), (15)) and only
functionsρE(X,T ) andvE(X,T ) can be prescribe
at each boundary.

The governing equations (7), (3) and the init
conditions (4) are invariant with respect to the line
transformationX → cX, T → cT . Therefore, the
problem under consideration is self-similar, i.e.,
have only one independent variables = X/T . Hence
the boundaries of the dispersive shock are the stra
lines

(18)X1,2 = s1,2T

and the matching conditions (13) assume the form

(19)s = s2: A2 = 0, ρ̄ = ρ2, v̄ = v2,

(20)s = s1: A2 = 0, ρ̄ = ρ1, v̄ = v1.
Also from (14), (15) we have

(21)s → s2: k =O(1),

(22)s → s1: A2/k =O(1).

We note in conclusion that the parameterε formally
introduced in the definition of the slow variabl
X and T appears naturally in the solution of th
original system (1) as a ratio of the characteris
scale of oscillations to the oscillation zone width a
therefore, is proportional tot−1. Thus our definition of
the edges is asymptotically accurate ast → ∞.

4. Determination of the edges

Our task now is to determine the constantss1 and
s2, which are the self-similar coordinates (speeds
the dispersive shock edges, in terms of the ini
discontinuity parametersρ1,2, v1,2. Using definitions
of the edges (16)–(18) we obtain

(23)s2 = ∂ω0

∂k
(k2, ρ2, v2),

wherek2 is the value of the wavenumber at the traili
edge, and

(24)s1 = lim
k→0

ω

k
(ζ1, ρ1, v1),

whereζ1 is the value of the variableζ = A2/k at the
leading edge.

As we have already mentioned, owing to the f
that the edges of the dispersive shock are the do
characteristics of the Whitham system, the val
k2, ρ2, v2 as well asζ1, ρ1, v1 are not independen
Thus our task of obtainings1,2 is reduced to finding
dependencies

k2 = k2(ρ2, v2) for any givenρ1, v1

and

ζ1 = ζ1(ρ1, v1) for any givenρ2, v2

compatible with the modulation system considered
the limitsA2 → 0, k = O(1) andA2 → 0, ζ = O(1),
correspondingly.

Additional restrictions on possible values of t
modulation parameters at the edges of the self-sim
dispersive shock are imposed by the transition r
tionship (5), which implies at the trailing edge:v2 =
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v2(ρ2) for givenρ1, v1; and at the leading edge:v1 =
v1(ρ1) for givenρ2, v2.

4.1. Trailing edge

We consider the reduction of the modulation s
tem in the limit when intensity of oscillationsA2 =
ρ̄v̄ − ρ̄v̄ vanishes, while the wave numberk remains
finite (see (19), (21)). Then, according to general pr
erties described in Section 3 the modulation sys
becomes consistent with the dispersionless limit
and assumes the degenerate form

(25)∂T ρ̄ + ∂X(ρ̄v̄)= 0,

(26)∂T v̄ + v̄∂Xv̄ + c2
s (ρ̄)

ρ̄
∂Xρ̄ = 0,

(27)∂T k + ∂Xω0(k, ρ̄, v̄) = 0.

The system (25)–(27) has three different famil
of characteristics. Two of them are the usual Eu
hydrodynamics characteristicsdX/dT = V± defined
by the characteristic velocities [14]

(28)V± = v̄ ± cs(ρ̄),

while the third one is the linear wave characteris
dX/dT = ∂ω0/∂k, which is the double characterist
of the full Whitham system in the linear limit. I
is important that this characteristic depends not o
on the wave numberk but also on the mean flow
parameters̄ρ, v̄ owing to the general form of the linea
dispersion relation (11).

Now we are looking for the integralk = k(ρ̄, v̄)

of the system (25)–(27) subject to the additio
restriction

(29)v̄ −
ρ̄∫

ρ0

cs(ρ)

ρ
dρ = v1 −

ρ1∫
ρ0

cs(ρ)

ρ
dρ ≡ C,

which in view of the boundary conditions (19), (2
provides consistency with the dispersive shock con
tion (5).

First we note that the restriction (29) coincid
with the relationshipv̄(ρ̄) between the density an
the velocity in the simple compression wave solut
(r−(ρ̄, v̄) = C) of the Euler equations (25), (26) [14
So, substituting (29) into (25), (27) we obtain

(30)∂T ρ̄ + V (ρ̄)∂Xρ̄ = 0,

(31)∂T k + ∂XΩ0(k, ρ̄)= 0,
where

V (ρ̄)= V+
(
ρ̄, v̄(ρ̄)

)= cs(ρ̄)+
ρ̄∫

ρ0

cs(ρ)

ρ̄
dρ +C,

(32)Ω0(k, ρ̄) = ω0
(
k, ρ̄, v̄(ρ̄)

)
.

Thus, the characteristic integral we are looking
has the formk = k(ρ̄, v̄(ρ̄))≡ k0(ρ̄). Substituting this
into the system (30), (31), we arrive at the ordina
differential equation

(33)
dk0

dρ̄
= ∂Ω0/∂ρ̄

V (ρ̄)− ∂Ω0/∂k
, k0(ρ1)= 0.

The initial condition k0(ρ1) = 0 follows from the
boundary conditions (19), (20) and implies that
dispersive shock is generated if the boundary va
at both edges are equal (ifρ2 = ρ1 then automatically
v2 = v1 by (5)). Integrating (33) we findk0(ρ̄).
Then the self-similar coordinate of the trailing ed
according to (23) is found as

(34)s2 = ∂Ω0

∂k
(k2, ρ2),

wherek2 = k0(ρ2). We note that the valuesρ1, v1 enter
the expression (34) via the constantC in (32) and the
initial condition fork0(ρ̄) in (33).

4.2. Leading edge

The position of the leading edge (24) can be,
principle, determined in a similar way by conside
ing the limit of the modulation system atA2 → 0
ζ = O(1), whereζ = A2/k. The chosen system o
modulation variables̄ρ, v̄, ζ , however, is not as con
venient for this purpose, since obtaining the equa
for ζ from the modulation system (7) in the solita
wave limit is a technically cumbersome problem (s
[12]), which, in addition, does not shed much light
the limiting structure of the Whitham equations.

This complexity can be bypassed by introduc
a new system of the basis modulation variables
which, as we will see, the theory of the leading ed
will become in essence equivalent to that for
trailing edge. Although it might look as a technic
task we will see that the method we are propos
is quite general and leads to an elegant and c
description of the modulated finite-amplitudesolitary
wave trains in terms of thelinear dispersion relation.
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Fig. 1. Potential curveR(λ): (a) general configuration, (b) solitar
wave configuration.

First we recall that the modulation variables loca
represent a set of independent parameters speci
the travelling wave solution (6) of the original sy
tem (1). This solution is usually specified by the
dinary differential equation of the form

(kfθ )
2 =R(f ), θ = kx −ωt,

(35)f (θ + 2π)= f (θ),

wheref is a component of the vectorU and all the
remaining components are expressed in terms off by
algebraic expressions. To be definite, we assume
potential curveR(λ) to have three real rootsλ1 < λ2 <

λ3 (see Fig. 1(a)):

R(λ) = −(λ− λ1)(λ− λ2)(λ− λ3)G
2(λ),

(36)G(λ) �= 0,

whereG(λ) is a ‘good’ function. Then the 2π -periodic
solution of (35) oscillate between the rootsλ2 andλ3.
The wavenumber and the mean values in this travel
wave are given by the integrals

k = π

( λ3∫
λ2

dλ√
R(λ)

)−1

,

(37)F̄ = k

π

λ3∫
λ2

F(λ) dλ√
R(λ)

.

HereF(f ) ≡ F(θ(f )) (cf. (8)), whereF is any func-
tion of the vectorU considered for the solution (35
All modulation variables in the system such asρ̄, v̄,
A2, ζ , etc., are expressed in terms of the integrals (
The following general asymptotics are valid in t
solitary wave configuration:

(38)

λ2 → λ1: k ∼
∣∣∣∣ 1

ln(λ2 − λ1)

∣∣∣∣→ 0, F̄ → F(λ2).

Now we introduce an alternative (conjugated) syst
of modulation variables which is more convenie
when studying the solitary wave limitλ2 → λ1 in
the modulation system. We define the conjuga
wavenumber and the conjugated mean value as

k̃ = π

( λ2∫
λ1

dλ√−R(λ)

)−1

,

(39)〈F 〉 = k̃

π

λ2∫
λ1

F(λ) dλ√−R(λ)
.

As a matter of fact, any of these quantities can
taken as a modulation variable instead of any one f
the set (37). The corresponding asymptotics for
conjugated variables are (cf. (38))

(40)λ2 → λ1: k̃ → k̃s =O(1), 〈F 〉 → F(λ2).

One can see then that in the limit considered

(41)λ2 → λ1: 〈F 〉 → F̄ .

The new set of independent modulation parameter
are going to use in the solitary wave limit is:k̃s , ρ̄, v̄.
Considered in the context of the leading edge of
dispersive shock (i.e., for a specific solution) the
parameters, similarly to the trailing edge case, beco
subject to two restrictions:
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(i) a simple wave relationship (cf. (29))

(42)v̄ −
ρ̄∫

ρ0

cs(ρ)

ρ
dρ = v2 −

ρ1∫
ρ0

cs(ρ)

ρ
dρ ≡ C,

imposed by the dispersive shock transition con
tion (5), and

(ii) the characteristic relationship̃ks = k̃s(ρ̄, v̄) which
should take place since the leading edge is
double characteristics of the modulation syste
As a result, the relationship to be found shou
have the form

(43)k̃s = k̃s(ρ̄).

Now we consider the modulation system (7) in t
solitary wave limitλ2 → λ1. We recall that in this limit
the intensity of oscillationsA2 vanishes and two firs
integrals of the modulation system become those
the dispersionless limit (3) exactly as it happens in
zero-amplitude configurationλ3 → λ2 considered in
the trailing front theory.

Using the restriction (42) we again get the sim
wave equation (30) for̄ρ. The wave number conserv
tion law (9) requires a bit more detailed analysis.
represent it in the form

(44)∂T (k̃Λ)+ ∂X(ω̃Λ)= 0,

whereΛ = k/k̃ and the conjugated frequency is d
fined asω̃ = ωk̃/k and has the limit̃ω → ω̃s = O(1)
as λ2 → λ1. Since there are only three independ
variables left whenλ2 = λ1, then ω̃s = ω̃s(k̃s, ρ̄, v̄)

(cf. (11)). This relationship, which is yet to be foun
can be called asolitary wave dispersion relation.

It is convenient to rewrite equation (44) in the for

(45)Λ(∂T k̃ + ∂Xω̃)+ k̃

(
∂T Λ+ ω̃

k̃
∂XΛ

)
= 0.

In the solitary wave configuration,λ2 → λ1, we have
the asymptoticsΛ ∼ |1/ ln(λ2 − λ1)| → 0. Assuming
then∂T Λ ∼ ∂XΛ� Λ we get to the leading order:

(46)λ2 = λ1 at
dX

dT
= ω̃s

k̃s
,

which defines the leading edge in terms of conjuga
variables. The constants1 (see (18)) is then evaluate
as

(47)s1 = ω̃s

k̃s

∣∣∣∣
ρ̄=ρ1,v̄=v1

.

Note that owing to the definition of̃ω formula (47)
is equivalent to our original expression (24) fors1
in terms of the frequencyω and the wavenumberk.
Expression (47), however, is much more simple
actual calculations since it does not contain a
singular limiting transitions.

To the first order, taking into account (43) and (3
Eq. (45) yields

(48)
dk̃s

dρ̄
= ∂Ω̃s/∂ρ̄

V (ρ̄)− ∂Ω̃s/∂k̃s
, k̃s(ρ2)= 0,

where

(49)Ω̃s(k̃s, ρ̄) = ω̃s

(
k̃s , ρ̄, v̄(ρ̄)

)
.

The initial condition in (48) follows from the bounda
conditions (19), (20) and implies that there is
dispersive shock generated if the boundary value
both edges are equal.

One cannot help noticing that Eqs. (33) and (48)
scribing relationships between the variables in the
ear and the solitary wave trains are identical in term
the dispersion relationsΩ0(k, ρ̄) andΩ̃s(k̃s, ρ̄). The
latter, however, is yet to be found.

To obtain the solitary wave dispersion relati
ω̃s(k̃s, ρ̄, v̄) we observe that expressions (39) can
viewed as analogs of (37) for the conjugated travell
wave given by the equation

(k̃f̃θ̃ )
2 = −R(f̃ ), θ̃ = k̃x̃ − ω̃t̃ ,

(50)f̃ (θ̃ + 2π)= f̃ (θ̃ ),

wherex̃, t̃ are new independent variables. This tra
elling wave is associated with the same (but invert
potential curveR(λ) (36) so that the oscillations no
occur between the rootsλ2 andλ1. For problems asso
ciated with polynomial potential curves, the functio
f (θ) andif̃ (iθ̃) represent the same analytic functi
in the complexθ -plane, which is an elliptic function
with the periods 2π and 2πi along the real and th
imaginary axes.

The next observation is that the solitary wave lim
λ2 → λ1 in the original travelling wave (35) corre
sponds to the vanishing amplitude limit in the co
jugated travelling wave equation (50) (see Fig. 1(
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and, therefore,̃ωs and k̃s must satisfy thelinear dis-
persion relation for the dispersive hydrodynamics sy
tem conjugated to (1). This conjugated system is
tained from the original system (1) by the change
variablesx̃ = ix, t̃ = it ,

(51)i∂t̃ Ũ = KN

(
Ũ, i∂x̃Ũ,−∂2

x̃x̃Ũ, . . .
)
,

which is equivalent to a mere change of the dispers
sign in the original system (1). The conjugated line
dispersion relation of our interest is obtained
linearizing the system (51) in a way similar to (12
i.e., about the mean background

(52)Ũj ≈ 〈Ũj 〉 + ãj e
i(k̃s x̃−ω̃s t̃), ãj � 1,

and has the form

(53)ω̃s = ω̃s

(
k̃s , 〈ρ̃〉, 〈ṽ〉).

Since the components of the vectorU are expresse
in terms of the variablef (as well as the componen
of Ũ in terms off̃ ) by relationships not containingθ
explicitly and the operatorKN is the same in (1) an
(51), the functionsρ(f ), v(f ) andρ̃(f̃ ), ṽ(f̃ ) should
be identical, i.e.,ρ(z) = ρ̃(z), v(z) = ṽ(z). Then it
follows from (41) that in the limit

(54)λ2 → λ1: 〈ρ̃〉 → ρ̄, 〈ṽ〉 → v̄.

Therefore, the solitary wave dispersion relation has
form ω̃s = ω̃s(k̃s, ρ̄, v̄) and can be obtained from th
original linear dispersion relation (11) by the form
change

(55)k → ik̃s, ω0 → iω̃s .

Remark. We emphasize that all the obtained relatio
ships between original and conjugated averaged v
ables essentially represent algebraic identities betw
integrals of the form (37) and (39) associated w
given potential curveR(λ) and do not imply any con
nection between their spatio-temporal dynamics in
original and the conjugated systems (1) and (51).

Now integrating (48) we find̃ks(ρ̄) and thens1 by
formula (47):

(56)s1 = Ω̃s(k̃1, ρ1)

k̃1
,

where k̃1 = k̃s(ρ1). Analogously to the trailing edg
case, the valuesρ2, v2 enter the expression (56) v
the constantC in the characteristic velocity (32) an
the initial condition fork̃s(ρ̄) in (48).

5. Example: fully nonlinear ion-acoustic waves in
collisionless plasma

As an example of effective evaluation of the d
persive shock boundaries in a non-integrable sys
we make use of the classical system describing fin
amplitude ion-acoustic waves in two-temperat
(Te � Ti ) collisionless plasma (see, for instance, [1

∂tρ + ∂x(ρv) = 0,

∂tv + v∂xv + ∂xφ = 0,

(57)∂2
xxφ = eφ − ρ.

Here ρ and v are ion density and velocity andφ
is the electric potential; all dependent variables
dimensionless. The system (57) possesses all
general properties described in Section 1. In
dispersionless limitφ = lnρ and, therefore,cs = 1
in (3), while the linear dispersion relation has the fo

(58)ω0(k, ρ̄, v̄)= k
[
v̄ + (1+ k2/ρ̄)−1/2].

The dispersive shock transition condition (5) th
takes the formv2 − lnρ2 = v1 − lnρ1. Without loss of
generality we putv1 = 0,ρ1 = 1. Then the relationshi
(29) betweenρ̄ and v̄ in the degenerate modulatio
system (25)–(27) assumes the form̄v = ln ρ̄. As a
result, we get all the necessary ingredients (32) for
basic differential equation (33):

V (ρ̄)= ln ρ̄ + 1,

(59)Ω0(k, ρ̄) = k
[
ln ρ̄ + (1+ k2/ρ̄)−1/2].

Eq. (33) then, after elementary transformations,
sumes the form with separated variables

(60)ρ̄
dα

dρ̄
= − (1+ α)2α

2(1+ α + α2)
, α(1)= 1,

whereα = (1+ k2
0/ρ̄)

−1/2. Integrating (60) we get

(61)ln ρ̄ + 2 lnα + 2

1+ α
− 1= 0.

Now, using (34) we obtain a simple implicit formu
determining velocity of the trailing edges2 in terms of



G.A. El et al. / Physics Letters A 318 (2003) 526–536 535

The
m

he

2
s of
ial
].
an
g

ue
m

4)

ex-
m

n-
ri-
in-

s-
h-
li-
n-
ini-

ing
tter

nn
m
ore

or

of
68,

36

36

36

91.
84)

3

64

ga-

ve
Fig. 2. Boundaries of the dispersive shocks1,2 versus density jump
∆: 1—leading edge, 2—trailing edge.

the density jump∆= ρ2/ρ1 = ρ2,

(62)ln∆+ 2

3
ln(s2 − ln∆)= (s2 − ln∆)1/3 − 1

(s2 − ln∆)1/3 + 1
.

The leading edge is handled in the same way.
solitary wave dispersion relation (49) is obtained fro
(59) by the change (55) and has the form

(63)Ω̃s(k̃s, ρ̄)= k̃s
[
ln ρ̄ + (1− k̃2

s /ρ̄)
−1/2].

Then, integrating (48) we obtaiñks(ρ̄) (it is convenient
to introduceα̃ = (1 − k̃2

s /ρ̄)
−1/2 instead ofk̃s , cf.

(60)) and substituting it into (56) eventually get for t
leading edge

(64)
1− s1

1+ s1
+ 2 lns1 = ln∆.

Both curvess1(∆) ands2(∆) are presented in Fig.
and demonstrate complete agreement with result
direct numerical simulation of the decay of an init
discontinuity for the system (57) obtained in [6
From the theoretical point of view this agreement c
be viewed a strong indication of validity of usin
the modulation theory in non-integrable initial val
problems where rigorous derivation of the Whitha
asymptotics is not available.

The weakly nonlinear asymptotics of (62) and (6
for η ≡∆− 1 � 1:

(65)s2 ≈ 1− η, s1 ≈ 1+ 2

3
η,

corresponds to the boundaries in the well-known
act analytic solution for the modulation KdV syste
found by Gurevich and Pitaevskii [5], which is a
other confirmation of validity of our approach. Cu
ously, as is clearly seen from Fig. 2, the fully nonl
ear dynamics of the leading (solitary wave) edges1 is
quite well approximated by the weakly nonlinear a
ymptotics (65) while the speed of the trailing (vanis
ing amplitude) edges2 demonstrates significant qua
tative and quantitative deviations from its weakly no
linear analog even for quite moderate values of the
tial jump.

In conclusion we note that the method of obtain
the dispersive shock boundaries proposed in this Le
is consistent with the concept of ‘local Riema
invariant transport’ for the solutions of the Whitha
systems proposed in [12] but is considerably m
transparent and effective.
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