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Abstract of two pure tones, there is a well known relation be-
tween the interference terms and the sensory notion of
This paper presents a new characterization of musicakpeating” — i.e. the effect caused by amplitude modu-
signals which may lead to better understanding aboufiations resulting from the composition of tones. Since
how such signals are perceived. We first consider somgome measures of sensory dissonance are motivated by
Signal analysis methods which facilitate measures Ofthe rate of such beating' this Suggests basing our disso-

perceived qualities of music. More precisely, we con-nance characterization on the interference structure of
sider a particular representation of signal energy on a musical signal.

which to base a quantitative measuresensory disso-
nance After defining sensory dissonance in section 2.1, 2 Sensorv Dissonance
we describe a well known signal decomposition methooj," y

the matching pursuit. Thereafter, we consider one as- The concept obensory dissonanosas originally
pect of signal energy which has been largely ignored inproposed by Helmholtz (1877), and further developed
the literature — the Wigner-Ville interferences. We ex-by Plomp and Levelt (1965), and Sethares (1997). What
plain why and how these interferences can be used afllows is a description of dissonance that motivates
the basis for a dissonance characterization of a musi-our alternative treatment of this concept.

cal signal. In order to assess the intrinsic dissonance of a mu-
sical signal over a small time interval, the aforemen-
tioned studies employ a function of the signal’s esti-
mated frequency components over that interval. This
often provides a useful quantitative measure. However,

1 Introduction

1.1 DSP for Perception Analysis such a function makes no attempt to account for other
We begin by stating the two main objectives of this widely accepted notions of dissonance. Perhaps the
work. Given a musical signak(t), we wish to: most obvious short-coming results from the point-wise

nature of this dissonance function. That is, because it

1. find useful time-frequency representations for anis well localized in time, there is no way for the dis-

alyzing the information content af(¢), with the  sonance function to account forelodic dissonancef

goal of characterizing perceptual properties ofthe signal. The melodic dissonance of a given segment

the signal; of music depends on that segment’s relation to its con-
text. In our present work, we consider signal analy-
'sis methods that provide for more dynamic dissonance
measures. In particular, we wish to simultaneously ac-
count for local, point-wise dissonance, as well as disso-

In addressing (1), we use tmeatching pursuigl- ~ nance resulting from the melodic contour of the signal.
gorithm (Mallat and Zhang 1993) to perform an atomic
decomposition of the signal. We then use this decom
position as the basis for an energy characterization o
the signal, given by th@vigner-Ville distribution This In later sections, we consider signal analysis meth-

approach is not new. However, the literature employ- s 1ot are particularly well suited to the type of musi-

ing this strategy ignores the interference structure Ofcal analysis we wish to perform. Therefore, we should

the Wigner-Ville distribution. We retain these interfer- first consider some of the musical ideas underlying and
ence terms as they are the focus of our approach to the, i ating our work. The next section presents one

second objective stated above. such notion — musicalonsonanceWe also briefly dis-

_ Thfehnover: cpntrl?utlon of this pafp(re]r 1S _consu:lislrla- cuss some existing quantitative measures of this con-
tion of how the interference terms of the Wigner-Ville cept; the reader can find a more detailed treatment in

decomposition can be used as the basis for a dissonan\q)eethares (1997)
measure of a musical signal. For a simple composition '

2. find measures of qualities related to human per
ception of the signal; in particular derive a “dis-
sonance signature” aof(t).

Measures of Consonance
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2.1 Consonance and Dissonance different class of time-frequency representation (TFR)

. which is not restricted by the uncertainty principle.
According to Tenney (1988) and Sethares (1997), The Wigner-Ville TFéis computed b))// F():orreII:)ating

th? hlstorlcal_usage_ of th_e 'Femnnsonancean b_e clas- x with a time and frequency translation of itself. (Be-
sified according to five dlstl_nct categorieselodic con- low we refer to the Wigner-Ville TER simply as the
sonancgCDC-1), polyphonic consonan¢€DC-2),con- “Wigner transform.”) Though it yields some remark-
trapuntal consonancCDC-3),functional consonance able properties, the quadratic from of this representa-
(C?r?-'[if])i:ssir;i)()erry ?ﬁgsl% r;ir;((g [Z)iSC)D C-1 and CDC- tio_n is_, also considered a_dra\(vback which limits its ap-
' plication because of the inevitable cross terms that ap-

5, so we d_escnbe only these. Brle_ﬂy!,elodm conso- pear in quadratic forms. An attempt is usually made to
nanceapplies to successive melodic intervals and de-,

. . i ) aftenuate these so-called “interference terms” by per-
scribes these intervals as either consonant or dissona rming a time-frequency averaging, but this procedure
depending on the sgrrounding melodic conte_xt; i refersresults: in a loss of resolution. It is' not hard to show
to relqtedness of pitches sounded successively, or tht%at the spectrogram, the scalogram, and all squared
melodic _contour Sensory consonan@guates conso- time-frequency decompositions can be written as time-
nance with smoothness and the absence of beats, aw%'

equates dissonance with roughness and the presenceMa?ll;??lcg;g)eragmgs of the Wigner transform; see, e.g.,
beats. '
The definition of sensory consonance is based on i
the phenomenon of beats. If two pure sine tones ars-1  Wigner Transform
sounded at almos_t the same frequency, then beating The quadratic form
occurs due to the interference between the tones. The
beating becomes slower as the two frequencies approach o0 . iomry
each other and disappears when they coincide. Typi- "Wx(:V) = / z(t+g)a"(t—3)e dr
cally, slower beats are perceived as gentle and pleasant
while fast beats are perceived as rough and unpleasarit known as théNigner-Ville distribution or Wigner
Observing that any sound can be decomposed into sitransform It is the one-dimensional Fourier transform
nusoidal partials, Helmholtz (1877) theorized that theof ¢, (¢,7) = 2* (t — 3) = (t + 3), with respect tor.
perception of dissonance in a musical tone is deterThe functiong, has a Hermitian symmetry in, so
mined by the presence and quality of beats among théhe Wigner transform is real valued. Also, as the two-
tone’s interacting partials. dimensional Fourier transform of the so caladbigu-
The present research effort is directed at the disity function
covery of a measure which might simultaneously quan- -
tify multiple notions of consonance. In particular, we A (¢, 7) = / z(t+z)a* (t— 1) et gt
would like to exploit the theory ofensoryandtonal —0
consonance (CDC-2 and CDC-5) of Plomp and Lev-the Wianer transform satisfies
elt (1965) as well as its elaboration in Sethares (1997). 9
Briefly, this theory employs functions calleéssonance )
curveswhich measure the “sensory” dissonance, of a  Wa(t,v) = // Ag (& m)e P& dedr - (1)
complex tone at each particular instant in titn@his R2
provides a useful point-wise measure. However, we i ) )
would also like a measure that is dynamic and appeals | "€ Wigner transform localizes the time-frequency
to a melodic sense of consonance, as in CDC-1. For ex3tructures ofe. If the energy of: is well concentrated
ample, a dissonance curve does not account for dissd? ime around, and in frequency aroune, thenW.,

nance due to melodic changes from one complex ton&aS its energy centered @b, o), with a spread equal
to the next. to the time and frequency spreadaof

— 00

. ) 3.2 Interference Structure
3 Energy Distributions

Because the Wigner-Ville transform is a sesquilin-

Wavelet and windowed Fourier transforms are com-ear form of the signal, it does not submit to the princi-
puted by correlating the signal with families of time- ple of linear superposition. Instead, as in the quadratic
frequency atoms. The time and frequency resolution oquation,(a + b)? = a? + b? + ab + ba, it is easy to
these transforms is thus limited by the time-frequencyverify that
resolution of the corresponding atoms. ldeally, one
would like to define a density of energy in atime-frequency ~ We+y (£, v) = Wa(t,v) + Wy (¢, v)
plane with no loss of resolution. This section presents a + Wy (t,v) + Wy (t,v) (2)

1Really, a small interval of time is required to ascertain what
pseudo-periodic frequencies are present at a particular instant.
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whereW,,, is thecross Wigner transformof the sig-  discrete periodic function of perioy, defined on the

nalsxz andy, which is defined by group of integerZ /N ~ {0,1,...,N — 1}. In this
special casethe so called\eyl-Heisenbergperator,
Way(t,v) = G . Z/N x Z/N — L(Z/N), is defined as follows:
[ wtrnue- e H(a)e(n) = za(n)

. A ) _ o i2wasn/N
We define thenterference ternof equation (2) by =z(n—a) e, @ € L(Z/N)
Ly (t,v) = Wy (t,0) + Wy (t,v) for anya = (a1,a2) € Z/N x Z/N.
— 2Re[W,, (¢, )] The canonical example used to describe the struc-
AT ture of the cross terms of the Wigner transform begins
This real valued function creates non-zero values at inwith a well localized time-frequency atom(t) cen-

teresting locations of the time-frequency plane. tered at = 0. From this we construct two atoms which

More generally, for any linear combination of sig- are time and frequency shifted versionsc¢f). In par-
nal components, ticular, leta = (a1, a2) andb = (b1, b2) and consider

aza(t) = a z(t —ap) ™2t a>0

= Z ann(t) i2mbat

= Ban(t) =Bt —by) ™ 5 >0

the Wigner transform is The Wigner transform of the composite signalt) +
xp(t) is
W, Z ‘an‘ We, (t,v) 4)

Wapta, (67) = We, (8,1) + Wy, (6,0) + Lo, (£, )

=& The covariance propertyf the Wigner transform en-
Z Z elana; Wa,,a, (£ )] sures that the shifted atoms, taken individually, have
=t k= Wigner representations given by
Hence, for a signal withV components, the Wigner
transform containd/ (N —1) /2 additional components. W, (t,v) = &> W, (t — a1, v — a)
They result from the interaction of different compo- W, (t,v) = B2 W, (t — by, v — by)
nents of the signal, and are called “interference terms”
for two reasons. First, the mechanism of their creationSince the energy o . is centered af0, 0), the energy
is analogous to the usual interferences that can be otsf W, andW,, is concentrated in neighborhoods of
served for physical waves. A second reason for thisa = (a1,a2) andb = (b1, bs), respectively. A direct
terminology lies in the effect that these terms can havecalculation verifies that the interference term is
on the time-frequency diagram of the signal energy. As
they amount to a combinatorial proliferation of addi- Iza.zy (t, V) = 208 Wa(t — tm, v — vim)

tional, “specious” signal components, they can inhibit X cos {27 [(t — ty)Av — (v — v, ) At]}
our ability to discern “true” signal components in the
diagram. where
The presence of cross terms in a Wigner transform
Lo ar + by as + ba
can be regarded as a natural consequence of its bilin- tm = 5 VU, = 5

ear structure. This very structure is also what leads to
most of the good properties of the transform (such as
localization). No matter whether one views the cros
terms as helpful or hindering, it is important to under-
stand fully the mechanism of their creation. This is in

At:al—bl, AV:ClQ—bQ

SThisis an oscillatory waveform concentrated in a neigh-
_borhood of the point in the time-frequency plane that is

i ble for d th Cint tation f " the geometric midpoint between the individual compo-
ispensable for drawing the correct interpretation "OMpents. The frequency of the oscillations is proportional

the representation of an unknown signal, and for SeP3;, the Euclidean distancgAr? + Af2 that separates

_ratlng_ signal com_ponent terms from interference terms(he pointsa andb, where the individual atoms are con-

if desired (Flandrin 1999). . centrated. The direction of these oscillations is perpen-
In the present work, we study the cross terms in or “dicular to the line that joins these two center points.

der to understand how this measure of signal interfer-

ence relates to “musical interference,” i.e. dissonance. 2For a more general, lucid treatment of the theory of time-

frequency representations on finite abelian groups, see Tolimieri and
An (1998).

3.3 Examples

For simplicity, suppose that € L(Z/N) repre-
sents an elementary signal component, so thit a
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Physical Interpretation. Itis possible to attach phys- Our dictionary will comprise periodic, scaled, trans-
ical meaning to the interference structure of the Wignenated, and modulated versions $f So we first peri-
transform. For the most basic case, in which the sig-odize f. DefinePerg f € L(A) by the formula

nal is a simple superposition of pure frequencies, the

cross term can be regarded as a signature obéat Perp f(a) = Z fla+ ), ac€ A
frequencyresulting from the interaction between the ©€B

individual frequencies. To see this from the preceed- N

ing example, let: be a pure sinusoidal wave(t) — gnd caIIPer_B f theperiodizationof f over B. Perg f
ei2mmt gt the (mid-point) frequency,,, and suppose '° B-periodic. _ _ _
a=(0,—22), b = (0,2). Thenz, anday, are the _If f(n), f_orn €Z, is a (_jlsc_rete version of (7), we
frequency shifted versions af define the discret&/-periodic windowg as follows:

za(t) = ez’27r(um—%)t’ ap(t) = ei27r(um+%)t g(n) =Pernyz f(n) = Z fln+m), neZ
meENZ
The Wigner transform of the composite signal+ xy,

is given by Next, for any scale, let g5 denote the functiory

scaled bys; that is,

0=z (%) ®)

+6(v — Vi) 2 cos(2mAvt) (5) For any translationg,, and frequency modulation,
Now let us relate this expression to the physical phe<2. |6ty = (s, a1, a2), and define a typical atom in the
nomenon of beats, which are perceived most easily whéfgtionaryI’ by
the distance between signal components is small. To do

Wl‘a-i-wb (t7 V) = Wl‘a (t7 V) + Wl‘b (tv V) + Ilawb (t’ V)

= (v — (Um — 8%)) + 0(v — (Vm + 4%))

so, we write the signal as follows: 91(t) = gsa(t) = gs(t — a1)(t, az)
1 t— aq :
alt) + an(t) = o2Tn AN 4y (n A1 = () e
+ cos(2mart) ei2mvm?t (6)

The indexy is an element of the sEt= Re" xRexRe.
When the components,(¢) andzy,(t) are close to- If the original window functionf(t) is even, which is
gether in frequency — that is, wheXw is small — the  generally the case, then the energyyoft) is mostly
cosine term is slowly varying as compared to the expo-concentrated in a neighborhood(af;, a2 ), whose size
nential term, and the resulting signal can be viewed ass proportional tos.
a simple tone of frequency,, with a modulated am- For discrete matching pursuits, in order to describe
plitude envelope, with modulation frequendy.. The  the dictionary parameters of which the gets com-
term “beating” refers to such amplitude modulations. prised, we find the notation of Tolimieri and An (1998)
Comparing (6) with (5), it is clearly the interfer- extremely helpful. Suppose the signal of interest,
ence term of the Wigner transform which specifies thehas lengthV = 2K+1. Let an arbitrary element df
existence and nature of beats in the composite signal.be denoteds, a1, a2). For eachyj € {1,2,..., K}, set
s = 27, and let successive translation parameters,
. be separated by an interval bf = 27~! samples. De-
4 Energy Separation fine M, = 2K-i+2 so thatN = L, M;. The set of
translation parameters is then given by
4.1 Matching Pursuit

A matching pursui{Mallat and Zhang 1993) is an
iterative algorithm that decomposes the signal @er  |f we let the modulation parameters;, be separated
tionary vectors. A dictionary is a family of vectors by intervals of M; samples, then our parameter set
D = {g,}yer included in a Hilbert spack/, with unit  would consist of translation-modulation paiis,, a)

ay € {O,L1,2L1, ey (M1 — 1)L1} ~ le/N

norms||g,|| = 1. Such a family can be constructed from the following set
by scaling, translating and modulating a single window
functiong(t) € L?(R). We suppose tha(t) is real, LyZ/N x MWZ/N = L1Z/N x (L1Z/N).
continuously differentiable and)(ﬁ). We further
impose that|g|| = 1, that the integral of(t) is non-  This is acritical sampling subgroupf Z/N x Z/N.
zero, and thag(0) # 0. Instead, we choos&l, = 257, and let(a;, ay) range

Supposef is the Gaussian windaiv over theinteger oversampling subgroup

flt) = 91/4,—mt? 7) Ay = IL1Z/N x MyZ /N

3See, e.g., Mallat and Zhang (1993). 4Thedual of a groupA is denotedA...



Proceedings ICMC, September 2002 5

It often simplifies expressions, and the correspond- However, in at least that part of the literature deal-
ing algorithms, if we write the translation-modulation ing with musical signals, e.g. Gribonval al. (1996),
pair as(ay, as) = (x1L1,x2M>s) where as well as more generally, we consistently find that the

signal energy is reduced to
(x1,22) € {0,1,..., My — 1} x {0,1,..., Ly — 1}

For each scale parameteythe foregoing describes Ey(t,v) = Z (R"2,gy,) |2 W, (t,v)
a Weyl-Heisenberg (W-H) systery,, A;). Follow- n=0
ing Mallat and Zhang (1993), in addition to the&®  As such, only the first term of (10) appears in the defi-
W-H systems, we add to the dictionary of atoms com-pition of E,, the idea being that this term accounts for
plex exponentials (the Fourier basis) and the se¥of  the energy of the “true” signal components. Since this
discrete Diracs. is usually the primary concern of signal analyses, the
The matching pursuit algorithm iteratively decom- typjcal definition of a signal’s energy leaves out the in-
poses a signal over dictionary vectors as follows. Leterference terms.
R°x(t) = x(t), and suppose that we have computed  penoting the cross terms of (10) by(#, v) we can
then'” orderresidue R"x, for n > 0. We then choose \yrite the Wigner transform as
an elementg, , which closely “matches” the residue

in the following sense: W (t,v) = Ex(t,v) + L(t,v)
|C(R"z, g.,)| = sup |C(R"z, g,)| whereFE, (¢, v) is thesignal energyand we calll. (¢, v/)
yer theinterference energy

Computing and retaining a cross Wigner transform
among two time-frequency atoms costs roughly the same
as computing a single (auto) Wigner transform. How-
ever, for a matching pursuit decomposition involving
N atoms, there ar&/(N — 1)/2 cross Wigner terms

R"a(t) = C(R"x, g-,)g-, (t) + R a(t) required for the computation of,. Assuming a fast
implementation of the cross Wigner transform based on
which defines the residue for steg-1, and fully spec-  the FFT, and assuming that our decomposition doesn'’t
ifies the algorithm recursion. involve thousands of atoms, the computational burden

With the usual inner product as the correlation func-is still manageable, as we show for a simple example
tion, it can be shown (Mallat 1998) that the magnitudein the following section.
of the residue|| R"«||, converges to 0 exponentially as

whereC(z, g) is a correlation function which mea-
sures the similarity betweenandg,. An example is
the usual inner producty, g,). Next, decompose the
residue as

decomposition: by adding a constant tone to a tone with a frequency
oo that increases linearly. The latter is called a “linear
z(t) = Z C(R"z,g.,)g-, (t) (9)  chirp.” We set the starting frequency of the chirp to
ne0 be equal to the frequency of the constant tone. It then
increases linearly until it reaches a frequency double
4.2 Interference Energy that of the constant tone. Though this is a very simple

) ) ] ) _signal, it makes for a useful example because it shows
In this work, we consider the special case in whichhow a constant, “tonic” tone interacts with a tone that
the correlation function is simply the inner product:  jncreases continuously from the tonic up through one
m _ /pm octave above the tonic.
CIR"Z, 9y, ) = (R, g,.) Figure 1 shows what we have termed the interfer-

From the matching pursuit decomposition above, weeNce energy of the signal. Figure 2 shows the Wigner

have transform of the signal.
< The next section describes how we use the inter-
2(t) = > (R",95,)9y, () ference energy to derive a dissonance measure of the
n=0 signal.

Referring to equation (4), we see that the correspond-

ing Wigner-Ville representation is )
5 Dissonance Measures

oo

fry n 2 . .

Wt v) = nzo (R"z,gy,)]" Wy, (t,v) + 5.1 A Simple Dissonance Measure
" . . We first consider perhaps the simplest of the many

2Re Y (R"z,9,,)(R"2,9,,)" Wy, 4, (V) possible dissonance measures based on the informa-
m=0 tion provided by the interference energy of the Wigner

n>m
(10)  transform.
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Wigner Interference
T

Figure 1: Wigner-Ville interference energy of a con-
stant frequency modulation plus a linear chirp.

Wigner Transform
T T T

Figure 2: Wigner-Ville transform of a constant fre-
guency modulation plus a linear chirp.

6
Name Just| Pythagorean Equal
m2 16/15 256/243| 21/12
M2 9/8 9/8 | 22/12
m3 6/5 32/27| 23/12
M3 5/4 81/64 | 24/12
P4 4/3 4/3 | 25/12
Tritone | 64/45 729/512| 26/12
P5 3/2 3/2 | 27/12
mé6 8/5 128/81| 28/12
M6 5/3 27/16| 29/12
m7 7/4 16/9 | 210/12
M7 15/8 243/128| 211/12
octave 2 2 | 212/12

Table 1: Frequency ratios used to delimit the horizontal
axis in the figures.

Section 3.1 introduced the functiaf. (¢, 7). Let's
generalize this slightly by defining

By g (BT) =Gy, (E+3) g5, (E—3)

By definition of the cross Wigner transform in equa-
tion (3),W,, . isthe Fouriertransformaf, ., (t,7)
with respect tar. Therefore, the inverse Fourier trans-
formofW, . is¢, , . Thatis,

/Wg’Ymg’Yn (t7 I/)eiQﬂyT dv = ¢97m 9vn (t7 T)

Suppose that, at any given point in time, we integrate
Wy 4. (t,v) over all frequenciesy. This is equiva-
lent to evaluatings, , ~atT = 0:

/Wgw,gwn (t,v) dv = ‘lsgw Gvm (t,0)
= g'Wn (t)g:/" (t)

As a first proposal, we consider measuring the dis-
sonance at time of the signale by integrating the in-
terference energy.. (¢, ) over all frequencies. The

result is
/ I.(t,v) dv

=2Re Z (R™, gy, ) (R"T, g, )" G (1) 5, ()

m>0
n>m

The lower graph in Figure 3 shows how the function
7.(t) behaves for the constant tone plus linear chirp.
The top graph is there for reference and represents the
value of the instantaneous frequencies of the signal.
Figure 4 also shows the valueBf(¢) for the example
signal. However, in this figure the time axes are delim-
ited by tick marks representing just and Pythagorean
tunings. Table 1 presents the frequency ratios corre-
sponding to these tick marks.

We first note that, in all three tuning systems, the
perfect 5th falls in roughly the same place, and that

(11)

Z.(t) (12)
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I I
m3 M3 P4 T P5 mé M6
Frequency Intervals (equal temperament)

this interval consistently corresponds to local minima
of Z.(t). Other significant intervals, such as the major
3rd and the tritone, also correspond to a local minimum
of Z,.(t).

5.2 A General Dissonance Measure

As stated at the outset, we want to find not only
a point-wise measure of dissonance, but also a mea-
sure that could account for melodic context. The func-
tion Z,.(t) is essentially the sum over of the func-
tion I,,(t,v). Sincel,(t,v) is a measure of interfer-
ences among signal components centeredaat well
as those centered at times surroundirigappears that
the functionZ,(t) accounts for melodic context. On
the other hand, the form of equation (12) suggests that
Z.(t) only measures interferences among signal com-
ponents at the single time instant In any case, the
results for our simple example show that this measure
may provide a useful point-wise dissonance character-

Figure 3: (a) Normalized instantaneous frequenciesijzation of a signal.

(b) Instantaneous interference — the sum of interfer-

We can generalize the foregoing by considering the

ences at each point in time; the time axis of (b) is de-inverse Fourier transform of the interference energy:

limited by the ratio of the two frequencies in figure (a),
with tick marks illustrating points of an equal tempered

scale.

i i
m3 M3 P4 Tri P5 mé M6
Frequency Intervals (just temperament)

| f ﬁ\ /\ w} \Q ;\\ | P /’\ ﬂ /ﬁ‘\ /w\
i ‘\ ’\\ |
i ‘”’1(\‘}\’

i

P I S I 1 i H i
m2 Mz m3 M3 P4 Tii P5 mé Ms
Frequency Intervals (Pythagorean temperament)

Figure 4:

T.(t,7) = /Im(t,y)ei%” dv

=2Re> (R™z,9,,)(R"x,9,,) g, g, (t,7)

m>0
n>m

Recall,

¢g~ymg~m (t,7) = 9vm (t+3) gj;n (t—13)

The functionZ, (¢, 7) leads to dissonance measures based
on interferences between signal components at differ-
ent points in time. For instance, a measure of interfer-
ences among signal components that are separated by
not more tharrg units of time is

0
/ Z.(t,7) dr
0

= 2Re 3" (R"a, ., ) ("2, g5,

m>0
n>m

T0
/ go (t43) g0 (t— 3) dr
0

() = (13)

Of course, we can vary, depending on the extent to
which we wish to account for interferences among sig-
nal components across time.

More generally, put a distribution on the domain

Instantaneous interference for just andof time differences among signal components. This

Pythagorean tunings. This figure is the same as thadlistribution describes the relative importance of the in-
of 3 (b), except that the tick marks illustrate points of aterferences across various time intervals. Then define,

just (a) and Pythagorean (b) scale

) - [ T Lr)dur) ()

The definition ofZ, in equation (12) and° in
equation (13) are special cases of (14). We arrive at
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Z70 by setting various time intervals. Generalizirg, is this way en-
ables the interference function to account for melodic
dp(T) = X[0,70) () dT context, and this provides heuristic justification for the
. . . use ofZ¥ as a measure of melodic dissonance.
wherex(o,r) (7) is the characteristic function, equal to We have shown that the measures presented above

1whenr € [0,7) and O elsewhere. In this caselsa o, hipit interesting behavior for our simple example.
uniform distribution of widthry. Thereforeu assigns However, it is as yet unclear exactly how useful, as

equal importance to interferences among COMPONeNty, o asures of dissonance, are such functions. We expect

separate.d byfat mosj units of time, and zero |mpor—d that further research, and experience with these func-
tance {o interferences among components separated jy,q in musical situations, will at least demonstrate
more thanr, units. Clearly, by setting, = 0 in the

foregoing, we return to the simplest measuig, with
which we began.

Figure 5 shows how the functidhil® behaves for
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Figure 5: Interference measuré®; the sum of inter-
ferences over the given time intervals.

6 Conclusion

We have described the functiof,, representing
the sum of the interference terms of the Wigner trans-
form of a signal. Based on this function we derived
a measureZ°, of interference among signal compo-
nents over a given interval of timeg;. Finally, we pro-
posed a general interference measdrg, by putting
a distributiony on the domain of time differences be-
tween signal components.

The dissonance measure that results from the fore-
going depends on the functign) which represents the
relative importance we place on interferences across



