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Abstract

This paper presents a new characterization of musical
signals which may lead to better understanding about
how such signals are perceived. We first consider some
signal analysis methods which facilitate measures of
perceived qualities of music. More precisely, we con-
sider a particular representation of signal energy on
which to base a quantitative measure ofsensory disso-
nance. After defining sensory dissonance in section 2.1,
we describe a well known signal decomposition method,
the matching pursuit. Thereafter, we consider one as-
pect of signal energy which has been largely ignored in
the literature – the Wigner-Ville interferences. We ex-
plain why and how these interferences can be used as
the basis for a dissonance characterization of a musi-
cal signal.

1 Introduction

1.1 DSP for Perception Analysis

We begin by stating the two main objectives of this
work. Given a musical signal,x(t), we wish to:

1. find useful time-frequency representations for an-
alyzing the information content ofx(t), with the
goal of characterizing perceptual properties of
the signal;

2. find measures of qualities related to human per-
ception of the signal; in particular derive a “dis-
sonance signature” ofx(t).

In addressing (1), we use thematching pursuital-
gorithm (Mallat and Zhang 1993) to perform an atomic
decomposition of the signal. We then use this decom-
position as the basis for an energy characterization of
the signal, given by theWigner-Ville distribution. This
approach is not new. However, the literature employ-
ing this strategy ignores the interference structure of
the Wigner-Ville distribution. We retain these interfer-
ence terms as they are the focus of our approach to the
second objective stated above.

The novel contribution of this paper is considera-
tion of how the interference terms of the Wigner-Ville
decomposition can be used as the basis for a dissonance
measure of a musical signal. For a simple composition

of two pure tones, there is a well known relation be-
tween the interference terms and the sensory notion of
“beating” – i.e. the effect caused by amplitude modu-
lations resulting from the composition of tones. Since
some measures of sensory dissonance are motivated by
the rate of such beating, this suggests basing our disso-
nance characterization on the interference structure of
a musical signal.

1.2 Sensory Dissonance

The concept ofsensory dissonancewas originally
proposed by Helmholtz (1877), and further developed
by Plomp and Levelt (1965), and Sethares (1997). What
follows is a description of dissonance that motivates
our alternative treatment of this concept.

In order to assess the intrinsic dissonance of a mu-
sical signal over a small time interval, the aforemen-
tioned studies employ a function of the signal’s esti-
mated frequency components over that interval. This
often provides a useful quantitative measure. However,
such a function makes no attempt to account for other
widely accepted notions of dissonance. Perhaps the
most obvious short-coming results from the point-wise
nature of this dissonance function. That is, because it
is well localized in time, there is no way for the dis-
sonance function to account formelodic dissonanceof
the signal. The melodic dissonance of a given segment
of music depends on that segment’s relation to its con-
text. In our present work, we consider signal analy-
sis methods that provide for more dynamic dissonance
measures. In particular, we wish to simultaneously ac-
count for local, point-wise dissonance, as well as disso-
nance resulting from the melodic contour of the signal.

2 Measures of Consonance

In later sections, we consider signal analysis meth-
ods that are particularly well suited to the type of musi-
cal analysis we wish to perform. Therefore, we should
first consider some of the musical ideas underlying and
motivating our work. The next section presents one
such notion – musicalconsonance. We also briefly dis-
cuss some existing quantitative measures of this con-
cept; the reader can find a more detailed treatment in
Sethares (1997).
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2.1 Consonance and Dissonance

According to Tenney (1988) and Sethares (1997),
the historical usage of the termconsonancecan be clas-
sified according to five distinct categories:melodic con-
sonance(CDC-1),polyphonic consonance(CDC-2),con-
trapuntal consonance(CDC-3),functional consonance
(CDC-4),sensory consonance(CDC-5).

In this paper, the focus is on CDC-1 and CDC-
5, so we describe only these. Briefly,melodic conso-
nanceapplies to successive melodic intervals and de-
scribes these intervals as either consonant or dissonant
depending on the surrounding melodic context; it refers
to relatedness of pitches sounded successively, or the
melodic contour. Sensory consonanceequates conso-
nance with smoothness and the absence of beats, and
equates dissonance with roughness and the presence of
beats.

The definition of sensory consonance is based on
the phenomenon of beats. If two pure sine tones are
sounded at almost the same frequency, then beating
occurs due to the interference between the tones. The
beating becomes slower as the two frequencies approach
each other and disappears when they coincide. Typi-
cally, slower beats are perceived as gentle and pleasant
while fast beats are perceived as rough and unpleasant.
Observing that any sound can be decomposed into si-
nusoidal partials, Helmholtz (1877) theorized that the
perception of dissonance in a musical tone is deter-
mined by the presence and quality of beats among the
tone’s interacting partials.

The present research effort is directed at the dis-
covery of a measure which might simultaneously quan-
tify multiple notions of consonance. In particular, we
would like to exploit the theory ofsensoryand tonal
consonance (CDC-2 and CDC-5) of Plomp and Lev-
elt (1965) as well as its elaboration in Sethares (1997).
Briefly, this theory employs functions calleddissonance
curveswhich measure the “sensory” dissonance, of a
complex tone at each particular instant in time.1 This
provides a useful point-wise measure. However, we
would also like a measure that is dynamic and appeals
to a melodic sense of consonance, as in CDC-1. For ex-
ample, a dissonance curve does not account for disso-
nance due to melodic changes from one complex tone
to the next.

3 Energy Distributions

Wavelet and windowed Fourier transforms are com-
puted by correlating the signal with families of time-
frequency atoms. The time and frequency resolution of
these transforms is thus limited by the time-frequency
resolution of the corresponding atoms. Ideally, one
would like to define a density of energy in a time-frequency
plane with no loss of resolution. This section presents a

1Really, a small interval of time is required to ascertain what
pseudo-periodic frequencies are present at a particular instant.

different class of time-frequency representation (TFR)
which is not restricted by the uncertainty principle.

The Wigner-Ville TFRis computed by correlating
x with a time and frequency translation of itself. (Be-
low we refer to the Wigner-Ville TFR simply as the
“Wigner transform.”) Though it yields some remark-
able properties, the quadratic from of this representa-
tion is also considered a drawback which limits its ap-
plication because of the inevitable cross terms that ap-
pear in quadratic forms. An attempt is usually made to
attenuate these so-called “interference terms” by per-
forming a time-frequency averaging, but this procedure
results in a loss of resolution. It is not hard to show
that the spectrogram, the scalogram, and all squared
time-frequency decompositions can be written as time-
frequency averagings of the Wigner transform; see, e.g.,
Mallat (1998).

3.1 Wigner Transform

The quadratic form

Wx(t, ν) =
∫ ∞
−∞

x (t+ τ
2 )x∗ (t− τ

2 ) e−i2πτν dτ

is known as theWigner-Ville distribution, or Wigner
transform. It is the one-dimensional Fourier transform
of φx(t, τ) = x∗ (t− τ

2 )x (t+ τ
2 ), with respect toτ .

The functionφx has a Hermitian symmetry inτ , so
the Wigner transform is real valued. Also, as the two-
dimensional Fourier transform of the so calledambigu-
ity function,

Ax(ξ, τ) =
∫ ∞
−∞

x (t+ τ
2 )x∗ (t− τ

2 ) ei2πξt dt

the Wigner transform satisfies

Wx(t, ν) =
∫∫
R2

Ax(ξ, τ)e−i2π(ξt+ντ) dξ dτ (1)

The Wigner transform localizes the time-frequency
structures ofx. If the energy ofx is well concentrated
in time aroundt0 and in frequency aroundν0 thenWx

has its energy centered at(t0, ν0), with a spread equal
to the time and frequency spread ofx.

3.2 Interference Structure

Because the Wigner-Ville transform is a sesquilin-
ear form of the signal, it does not submit to the princi-
ple of linear superposition. Instead, as in the quadratic
equation,(a + b)2 = a2 + b2 + ab + ba, it is easy to
verify that

Wx+y(t, ν) = Wx(t, ν) + Wy(t, ν)
+ Wxy(t, ν) + Wyx(t, ν) (2)
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whereWxy is thecross Wigner transformof the sig-
nalsx andy, which is defined by

Wxy(t, ν) = (3)∫ ∞
−∞

x (t+ τ
2 ) y∗ (t− τ

2 ) e−i2πντ dτ

We define theinterference termof equation (2) by

Ixy(t, ν) = Wxy(t, ν) + Wyx(t, ν)
= 2 Re[Wxy(t, ν)]

This real valued function creates non-zero values at in-
teresting locations of the time-frequency plane.

More generally, for any linear combination of sig-
nal components,

x(t) =
N∑
n=1

anxn(t)

the Wigner transform is

Wx =
N∑
n=1

|an|2 Wxn(t, ν) (4)

+ 2
N−1∑
n=1

N∑
k=n+1

Re[ana∗k Wxnxk(t, ν)]

Hence, for a signal withN components, the Wigner
transform containsN(N−1)/2 additional components.
They result from the interaction of different compo-
nents of the signal, and are called “interference terms”
for two reasons. First, the mechanism of their creation
is analogous to the usual interferences that can be ob-
served for physical waves. A second reason for this
terminology lies in the effect that these terms can have
on the time-frequency diagram of the signal energy. As
they amount to a combinatorial proliferation of addi-
tional, “specious” signal components, they can inhibit
our ability to discern “true” signal components in the
diagram.

The presence of cross terms in a Wigner transform
can be regarded as a natural consequence of its bilin-
ear structure. This very structure is also what leads to
most of the good properties of the transform (such as
localization). No matter whether one views the cross
terms as helpful or hindering, it is important to under-
stand fully the mechanism of their creation. This is in-
dispensable for drawing the correct interpretation from
the representation of an unknown signal, and for sepa-
rating signal component terms from interference terms
if desired (Flandrin 1999).

In the present work, we study the cross terms in or-
der to understand how this measure of signal interfer-
ence relates to “musical interference,” i.e. dissonance.

3.3 Examples

For simplicity, suppose thatx ∈ L(Z/N) repre-
sents an elementary signal component, so thatx is a

discrete periodic function of periodN , defined on the
group of integersZ/N ' {0, 1, . . . , N − 1}. In this
special case2 the so calledWeyl-Heisenbergoperator,
H : Z/N × Z/N → L(Z/N), is defined as follows:

H(a)x(n) = xa(n)

= x(n− a1) ei2πa2n/N , x ∈ L(Z/N)

for anya = (a1, a2) ∈ Z/N × Z/N .
The canonical example used to describe the struc-

ture of the cross terms of the Wigner transform begins
with a well localized time-frequency atomx(t) cen-
tered att = 0. From this we construct two atoms which
are time and frequency shifted versions ofx(t). In par-
ticular, leta = (a1, a2) andb = (b1, b2) and consider

α xa(t) = α x(t− a1) ei2πa2t, α ≥ 0

β xb(t) = β x(t− b2) ei2πb2t, β ≥ 0

The Wigner transform of the composite signalxa(t) +
xb(t) is

Wxa+xb
(t, ν) = Wxa(t, ν) + Wxb

(t, ν) + Ixaxb
(t, ν)

The covariance propertyof the Wigner transform en-
sures that the shifted atoms, taken individually, have
Wigner representations given by

Wxa(t, ν) = α2 Wx(t− a1, ν − a2)

Wxb
(t, ν) = β2 Wx(t− b1, ν − b2)

Since the energy ofWx is centered at(0, 0), the energy
of Wxa andWxb

is concentrated in neighborhoods of
a = (a1, a2) andb = (b1, b2), respectively. A direct
calculation verifies that the interference term is

Ixa,xb
(t, ν) = 2αβWx(t− tm, ν − νm)

× cos {2π [(t− tm)∆ν − (ν − νm)∆t]}

where

tm =
a1 + b1

2
, νm =

a2 + b2
2

∆t = a1 − b1, ∆ν = a2 − b2

This is an oscillatory waveform concentrated in a neigh-
borhood of the point in the time-frequency plane that is
the geometric midpoint between the individual compo-
nents. The frequency of the oscillations is proportional
to the Euclidean distance

√
∆ν2 + ∆t2 that separates

the pointsa andb, where the individual atoms are con-
centrated. The direction of these oscillations is perpen-
dicular to the line that joins these two center points.

2For a more general, lucid treatment of the theory of time-
frequency representations on finite abelian groups, see Tolimieri and
An (1998).
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Physical Interpretation. It is possible to attach phys-
ical meaning to the interference structure of the Wigner
transform. For the most basic case, in which the sig-
nal is a simple superposition of pure frequencies, the
cross term can be regarded as a signature of thebeat
frequencyresulting from the interaction between the
individual frequencies. To see this from the preceed-
ing example, letx be a pure sinusoidal wave,x(t) =
ei2πνmt at the (mid-point) frequencyνm, and suppose
a = (0,−∆ν

2 ), b = (0, ∆ν
2 ). Thenxa andxb are the

frequency shifted versions ofx,

xa(t) = ei2π(νm−∆ν
2 )t, xb(t) = ei2π(νm+ ∆ν

2 )t

The Wigner transform of the composite signalxa +xb

is given by

Wxa+xb
(t, ν) = Wxa(t, ν) + Wxb

(t, ν) + Ixaxb
(t, ν)

= δ(ν − (νm − ∆ν
2 )) + δ(ν − (νm + ∆ν

2 ))

+δ(ν − νm) 2 cos(2π∆νt) (5)

Now let us relate this expression to the physical phe-
nomenon of beats, which are perceived most easily when
the distance between signal components is small. To do
so, we write the signal as follows:

xa(t) + xb(t) = 1
2 e

i2π(νm−∆ν
2 )t + 1

2 e
i2π(νm+ ∆ν

2 )t

+ cos(2π∆ν
2 t) e

i2πνmt (6)

When the componentsxa(t) andxb(t) are close to-
gether in frequency – that is, when∆ν is small – the
cosine term is slowly varying as compared to the expo-
nential term, and the resulting signal can be viewed as
a simple tone of frequencyνm with a modulated am-
plitude envelope, with modulation frequency∆ν. The
term “beating” refers to such amplitude modulations.

Comparing (6) with (5), it is clearly the interfer-
ence term of the Wigner transform which specifies the
existence and nature of beats in the composite signal.

4 Energy Separation

4.1 Matching Pursuit

A matching pursuit(Mallat and Zhang 1993) is an
iterative algorithm that decomposes the signal overdic-
tionary vectors. A dictionary is a family of vectors
D = {gγ}γ∈Γ included in a Hilbert spaceH, with unit
norms‖gγ‖ = 1. Such a family can be constructed
by scaling, translating and modulating a single window
function g(t) ∈ L2(R). We suppose thatg(t) is real,
continuously differentiable andO( 1

t2+1 ). We further
impose that‖g‖ = 1, that the integral ofg(t) is non-
zero, and thatg(0) 6= 0.

Supposef is the Gaussian window3

f(t) = 21/4e−πt
2

(7)

3See, e.g., Mallat and Zhang (1993).

Our dictionary will comprise periodic, scaled, trans-
lated, and modulated versions off . So we first peri-
odizef . DefinePerB f ∈ L(A) by the formula

PerB f(a) =
∑
x∈B

f(a+ x), a ∈ A

and callPerB f theperiodizationof f overB. PerB f
isB-periodic.

If f(n), for n ∈ Z, is a discrete version of (7), we
define the discreteN -periodic windowg as follows:

g(n) = PerNZ f(n) =
∑
m∈NZ

f(n+m), n ∈ Z

Next, for any scales, let gs denote the functiong
scaled bys; that is,

gs(t) =
1√
s
g

(
t

s

)
(8)

For any translation,a1, and frequency modulation,
a2, let γ = (s, a1, a2), and define a typical atom in the
dictionaryΓ by

gγ(t) = gsa(t) = gs(t− a1)〈t, a2〉

=
1√
s
g

(
t− a1

s

)
ei2πa2t

The indexγ is an element of the setΓ = Re+×Re×Re.
If the original window functionf(t) is even, which is
generally the case, then the energy ofgγ(t) is mostly
concentrated in a neighborhood of(a1, a2), whose size
is proportional tos.

For discrete matching pursuits, in order to describe
the dictionary parameters of which the setΓ is com-
prised, we find the notation of Tolimieri and An (1998)
extremely helpful. Suppose the signal of interest,x,
has lengthN = 2K+1. Let an arbitrary element ofΓ
be denoted(s, a1, a2). For eachj ∈ {1, 2, . . . ,K}, set
s = 2j , and let successive translation parameters,a1,
be separated by an interval ofL1 = 2j−1 samples. De-
fineM1 = 2K−j+2, so thatN = L1M1. The set of
translation parameters is then given by

a1 ∈ {0, L1, 2L1, . . . , (M1 − 1)L1} ' L1Z/N

If we let the modulation parameters,a2, be separated
by intervals ofM1 samples, then our parameter set
would consist of translation-modulation pairs(a1, a2)
from the following set4

L1Z/N ×M1Z/N = L1Z/N × (L1Z/N)∗

This is acritical sampling subgroupof Z/N × Z/N .
Instead, we chooseM2 = 2K−j , and let(a1, a2) range
over theinteger oversampling subgroup,

∆s = L1Z/N ×M2Z/N

4Thedualof a groupA is denotedA∗.
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It often simplifies expressions, and the correspond-
ing algorithms, if we write the translation-modulation
pair as(a1, a2) = (x1L1, x2M2) where

(x1, x2) ∈ {0, 1, . . . ,M1 − 1} × {0, 1, . . . , L2 − 1}

For each scale parameter,s, the foregoing describes
a Weyl-Heisenberg (W-H) system, 〈gs,∆s〉. Follow-
ing Mallat and Zhang (1993), in addition to theseK
W-H systems, we add to the dictionary of atoms com-
plex exponentials (the Fourier basis) and the set ofN
discrete Diracs.

The matching pursuit algorithm iteratively decom-
poses a signal over dictionary vectors as follows. Let
R0x(t) = x(t), and suppose that we have computed
thenth orderresidue,Rnx, for n ≥ 0. We then choose
an element,gγn , which closely “matches” the residue
in the following sense:

|C(Rnx, gγn)| = sup
γ∈Γ
|C(Rnx, gγ)|

whereC(x, gγ) is a correlation function which mea-
sures the similarity betweenx andgγ . An example is
the usual inner product,〈x, gγ〉. Next, decompose the
residue as

Rnx(t) = C(Rnx, gγn)gγn(t) +Rn+1x(t)

which defines the residue for stepn+1, and fully spec-
ifies the algorithm recursion.

With the usual inner product as the correlation func-
tion, it can be shown (Mallat 1998) that the magnitude
of the residue,‖Rnx‖, converges to 0 exponentially as
n increases. This yields the following atomic signal
decomposition:

x(t) =
∞∑
n=0

C(Rnx, gγn)gγn(t) (9)

4.2 Interference Energy

In this work, we consider the special case in which
the correlation function is simply the inner product:

C(Rmx, gγm) = 〈Rmx, gγm〉

From the matching pursuit decomposition above, we
have

x(t) =
∞∑
n=0

〈Rnx, gγn〉gγn(t)

Referring to equation (4), we see that the correspond-
ing Wigner-Ville representation is

Wx(t, ν) =
∞∑
n=0

|〈Rnx, gγn〉|
2 Wgγn (t, ν) +

2 Re
∑
m≥0
n>m

〈Rmx, gγm〉〈Rnx, gγn〉∗Wgγmgγn (t, ν)

(10)

However, in at least that part of the literature deal-
ing with musical signals, e.g. Gribonval,et al. (1996),
as well as more generally, we consistently find that the
signal energy is reduced to

Ex(t, ν) =
∞∑
n=0

|〈Rnx, gγn〉|
2 Wgγn (t, ν)

As such, only the first term of (10) appears in the defi-
nition ofEx, the idea being that this term accounts for
the energy of the “true” signal components. Since this
is usually the primary concern of signal analyses, the
typical definition of a signal’s energy leaves out the in-
terference terms.

Denoting the cross terms of (10) byIx(t, ν) we can
write the Wigner transform as

Wx(t, ν) = Ex(t, ν) + Ix(t, ν)

whereEx(t, ν) is thesignal energyand we callIx(t, ν)
the interference energy.

Computing and retaining a cross Wigner transform
among two time-frequency atoms costs roughly the same
as computing a single (auto) Wigner transform. How-
ever, for a matching pursuit decomposition involving
N atoms, there areN(N − 1)/2 cross Wigner terms
required for the computation ofIx. Assuming a fast
implementation of the cross Wigner transform based on
the FFT, and assuming that our decomposition doesn’t
involve thousands of atoms, the computational burden
is still manageable, as we show for a simple example
in the following section.

Example As a simple example, we construct a signal
by adding a constant tone to a tone with a frequency
that increases linearly. The latter is called a “linear
chirp.” We set the starting frequency of the chirp to
be equal to the frequency of the constant tone. It then
increases linearly until it reaches a frequency double
that of the constant tone. Though this is a very simple
signal, it makes for a useful example because it shows
how a constant, “tonic” tone interacts with a tone that
increases continuously from the tonic up through one
octave above the tonic.

Figure 1 shows what we have termed the interfer-
ence energy of the signal. Figure 2 shows the Wigner
transform of the signal.

The next section describes how we use the inter-
ference energy to derive a dissonance measure of the
signal.

5 Dissonance Measures

5.1 A Simple Dissonance Measure

We first consider perhaps the simplest of the many
possible dissonance measures based on the informa-
tion provided by the interference energy of the Wigner
transform.
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Figure 1: Wigner-Ville interference energy of a con-
stant frequency modulation plus a linear chirp.

Figure 2: Wigner-Ville transform of a constant fre-
quency modulation plus a linear chirp.

Name Just Pythagorean Equal
m2 16/15 256/243 21/12

M2 9/8 9/8 22/12

m3 6/5 32/27 23/12

M3 5/4 81/64 24/12

P4 4/3 4/3 25/12

Tritone 64/45 729/512 26/12

P5 3/2 3/2 27/12

m6 8/5 128/81 28/12

M6 5/3 27/16 29/12

m7 7/4 16/9 210/12

M7 15/8 243/128 211/12

octave 2 2 212/12

Table 1: Frequency ratios used to delimit the horizontal
axis in the figures.

Section 3.1 introduced the functionφx(t, τ). Let’s
generalize this slightly by defining

φgγmgγn (t, τ) = gγm (t+ τ
2 ) g∗γn (t− τ

2 )

By definition of the cross Wigner transform in equa-
tion (3),Wgγmgγn is the Fourier transform ofφgγmgγn (t, τ)
with respect toτ . Therefore, the inverse Fourier trans-
form of Wgγmgγn is φgγmgγn . That is,∫

Wgγmgγn (t, ν)ei2πντ dν = φgγmgγn (t, τ)

Suppose that, at any given point in time, we integrate
Wgγmgγn (t, ν) over all frequencies,ν. This is equiva-
lent to evaluatingφgγmgγn at τ = 0:∫

Wgγmgγn (t, ν) dν = φgγmgγn (t, 0)

= gγm(t)g∗γn(t) (11)

As a first proposal, we consider measuring the dis-
sonance at timet of the signalx by integrating the in-
terference energyIx(t, ν) over all frequenciesν. The
result is

Ix(t) =
∫
Ix(t, ν) dν (12)

= 2 Re
∑
m≥0
n>m

〈Rmx, gγm〉〈Rnx, gγn〉∗gγm(t)g∗γn(t)

The lower graph in Figure 3 shows how the function
Ix(t) behaves for the constant tone plus linear chirp.
The top graph is there for reference and represents the
value of the instantaneous frequencies of the signal.
Figure 4 also shows the value ofIx(t) for the example
signal. However, in this figure the time axes are delim-
ited by tick marks representing just and Pythagorean
tunings. Table 1 presents the frequency ratios corre-
sponding to these tick marks.

We first note that, in all three tuning systems, the
perfect 5th falls in roughly the same place, and that
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Figure 3: (a) Normalized instantaneous frequencies;
(b) Instantaneous interference – the sum of interfer-
ences at each point in time; the time axis of (b) is de-
limited by the ratio of the two frequencies in figure (a),
with tick marks illustrating points of an equal tempered
scale.

Figure 4: Instantaneous interference for just and
Pythagorean tunings. This figure is the same as that
of 3 (b), except that the tick marks illustrate points of a
just (a) and Pythagorean (b) scale.

this interval consistently corresponds to local minima
of Ix(t). Other significant intervals, such as the major
3rd and the tritone, also correspond to a local minimum
of Ix(t).

5.2 A General Dissonance Measure

As stated at the outset, we want to find not only
a point-wise measure of dissonance, but also a mea-
sure that could account for melodic context. The func-
tion Ix(t) is essentially the sum overν of the func-
tion Ix(t, ν). SinceIx(t, ν) is a measure of interfer-
ences among signal components centered att as well
as those centered at times surroundingt, it appears that
the functionIx(t) accounts for melodic context. On
the other hand, the form of equation (12) suggests that
Ix(t) only measures interferences among signal com-
ponents at the single time instantt. In any case, the
results for our simple example show that this measure
may provide a useful point-wise dissonance character-
ization of a signal.

We can generalize the foregoing by considering the
inverse Fourier transform of the interference energy:

Ix(t, τ) =
∫
Ix(t, ν)ei2πντ dν

= 2 Re
∑
m≥0
n>m

〈Rmx, gγm〉〈Rnx, gγn〉∗φgγmgγn (t, τ)

Recall,

φgγmgγn (t, τ) = gγm (t+ τ
2 ) g∗γn (t− τ

2 )

The functionIx(t, τ) leads to dissonance measures based
on interferences between signal components at differ-
ent points in time. For instance, a measure of interfer-
ences among signal components that are separated by
not more thanτ0 units of time is

Iτ0x (t) =
∫ τ0

0

Ix(t, τ) dτ (13)

= 2 Re
∑
m≥0
n>m

〈Rmx, gγm〉〈Rnx, gγn〉∗×

∫ τ0

0

gγm (t+ τ
2 ) g∗γn (t− τ

2 ) dτ

Of course, we can varyτ0 depending on the extent to
which we wish to account for interferences among sig-
nal components across time.

More generally, put a distributionµ on the domain
of time differences among signal components. This
distribution describes the relative importance of the in-
terferences across various time intervals. Then define,

Iµx (t) =
∫ ∞
−∞
Ix(t, τ) dµ(τ) (14)

The definition ofIx in equation (12) andIτ0x in
equation (13) are special cases of (14). We arrive at



Proceedings ICMC, September 2002 8

Iτ0x by setting

dµ(τ) = χ[0,τ0)(τ) dτ

whereχ[0,τ0)(τ) is the characteristic function, equal to
1 whenτ ∈ [0, τ0) and 0 elsewhere. In this case,µ is a
uniform distribution of widthτ0. Therefore,µ assigns
equal importance to interferences among components
separated by at mostτ0 units of time, and zero impor-
tance to interferences among components separated by
more thanτ0 units. Clearly, by settingτ0 = 0 in the
foregoing, we return to the simplest measure,Ix, with
which we began.

Figure 5 shows how the functionIτ0x behaves for
our example signal and two values ofτ0. The upper
graph showsIτ0x for τ0 = 5.9 milliseconds, and the
lower graph shows the same function forτ0 = 46.9
milliseconds.

One interesting aspect of these figures is the behav-
ior they exhibit near the perfect fifth interval. Taken as
a measure of dissonance, the figures indicate that dis-
sonance is high when the ratio approaches the perfect
fifth and low once it reaches the perfect fifth.

Figure 5: Interference measureIτ0x ; the sum of inter-
ferences over the given time intervals.

6 Conclusion

We have described the function,Ix, representing
the sum of the interference terms of the Wigner trans-
form of a signal. Based on this function we derived
a measure,Iτ0x , of interference among signal compo-
nents over a given interval of time,τ0. Finally, we pro-
posed a general interference measure,Iµx , by putting
a distributionµ on the domain of time differences be-
tween signal components.

The dissonance measure that results from the fore-
going depends on the functionµ, which represents the
relative importance we place on interferences across

various time intervals. GeneralizingIx is this way en-
ables the interference function to account for melodic
context, and this provides heuristic justification for the
use ofIµx as a measure of melodic dissonance.

We have shown that the measures presented above
exhibit interesting behavior for our simple example.
However, it is as yet unclear exactly how useful, as
measures of dissonance, are such functions. We expect
that further research, and experience with these func-
tions in musical situations, will at least demonstrate
their utility as a means of characterizing musical sig-
nals.
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