
Topology Discovery for Large Ethernet Networks

Bruce Lowekamp
Computer Science Dept.

College of William and Mary
Williamsburg, VA

lowekamp@cs.wm.edu

David R. O’Hallaron
School of Computer Science &

Dept. of Electrical and
Computer Engineering

Carnegie Mellon University
Pittsburgh, PA

droh@cs.cmu.edu

Thomas R. Gross
Computer Science Dept.

ETH Zurich
Zurich, Switzerland

trg@inf.ethz.ch

ABSTRACT
Accurate network topology information is important for both net-
work management and application performance prediction. Most
topology discovery research has focused on wide-area networks
and examined topology only at the IP router level, ignoring the need
for LAN topology information. Recent work has demonstrated that
bridged Ethernet topology can be determined using standard SNMP
MIBs; however, these algorithms require each bridge to learn about
all other bridges in the network. Our approach to Ethernet topol-
ogy discovery can determine the connection between a pair of the
bridges that share forwarding entries for only three hosts. This min-
imal knowledge requirement significantly expands the size of the
network that can be discovered. We have implemented the new al-
gorithm, and it has accurately determined the topology of several
different networks using a variety of hardware and network config-
urations. Our implementation requires access to only one endpoint
to perform the queries needed for topology discovery.

1. INTRODUCTION
Both network management and performance analysis benefit

from network topology knowledge. Although network managers
are responsible for maintaining the network, inevitable mistakes or
the actions of other people may leave them without a true picture
of their network’s topology. With access to an automatically de-
rived topology of their network, network managers are better able
to react to and prevent problems. They can not only observe the
exact location of a problem and trace it back to the source, but
also analyze the use of the network under normal operations. This
knowledge allows them to anticipate problems and plan for them
before services are impacted. For planning parallel applications,
topology knowledge allows the effects of link-sharing on an appli-
cation’s performance to be predicted in advance and nodes to be
selected with appropriate network connections to match the appli-
cation’s needs. While the bottlenecks on LANs are generally not as
severe as those on WANs, reliance on commodity components and
the emergence of grid-based computing has increased the need for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’01, August 27-31, 2001, San Diego, California, USA.
Copyright 2001 ACM 1-58113-411-8/01/0008 ...$5.00.

network-aware applications that can determine the network support
available to them.

Although network topology information, especially at the LAN
level, is important for both the management and use of networks,
it is very difficult to obtain such information. The majority
of network-management tools rely only on IP-level discovery of
routers and require the network manager to enter level 2 devices
such as Ethernet switches manually, without providing facilities
for topology discovery. Cisco, Intel, and other hardware providers
have designed their own proprietary topology discovery protocols,
but these are of little use in a heterogeneous environment. More re-
cently, the IETF has acknowledged the importance of LAN topol-
ogy by designating an SNMP MIB to describe topology, but it
failed to define a protocol for obtaining that topology [2]. Pere-
grine’s Infratools software claims to support automatic topology
discovery, but it is based on proprietary technology to which we do
not have access, nor can we evaluate its effectiveness in the same
variety of network environments.

The complexity of performing Ethernet topology discovery
arises from the inherent transparency of Ethernet bridge hardware.
Endpoints are unaware of the presence of bridges in the network.
The bridges themselves only communicate with their neighbors in
the limited exchanges of the spanning tree protocol, and that is not
used in all environments. The only state maintained by bridges is
their forwarding database, which is used to direct incoming traffic
to the appropriate destination port. Fortunately, this information
is sufficient for topology discovery, and because it is available
through a standard SNMP MIB, it is portable enough to enable
automatic topology discovery on almost all Ethernet bridges.

Recently, Bertsekas et al. described an algorithm for perform-
ing topology discovery using information available from Ethernet
bridges [3]. Their algorithm obtains good accuracy, but requires
that each bridge have a forwarding entry for all other bridges in the
network. Because bridges do not normally communicate with each
other, and because obtaining complete information from forward-
ing databases can be a challenging process, this requirement makes
it difficult to obtain sufficient information to derive the topology
and requires more work and greater access to machines on the net-
work as the number of bridges grows.

In this paper, we describe a new algorithm that can perform au-
tomatic topology discovery without requiring complete knowledge.
In fact, our algorithm requires only forwarding entries for three
machines to be shared between each pair of bridges, when those
machines are appropriately placed. Using this approach, we have
derived the topology of Ethernet networks with up to 2000 nodes
and 50 bridges while using only one machine to send queries and
pings. Because our algorithm has no requirement for complete in-

237

formation, it can determine the topology of very large networks,
from which it is typically more difficult to obtain complete infor-
mation.

We begin by describing related topology discovery work. Sec-
tion 3 describes the Remos system for which the topology discov-
ery algorithm was originally developed. Section 4 describes the
direct approach with the completeness requirement, how it is ap-
plied to networks, and its shortcomings. Section 5 describes our
new approach, which derives topology using minimal knowledge
from the forwarding databases. This section includes both a gen-
eral discussion and formal proofs of the theorem itself and the min-
imum knowledge requirement. Section 6 describes details related
to implementing topology discovery using our algorithm. Section 7
describes some of the challenges of implementing the topology dis-
covery algorithm on real networks. Section 8 describes the results
obtained using our implementation on several different networks.

2. RELATED WORK
The Internet has been the focus of most work on topology dis-

covery. Because it forms the bottleneck for nearly all wide-area
applications, server selection and placement generally make Inter-
net topology discovery and performance measurement an interest-
ing and rewarding problem. The most common technique for de-
termining WAN topology is to use benchmarks to measure band-
width across the topology. Topology-d was an early project that
used measurements to build a minimal spanning tree view of the
network [15]. Current work, such as the IDMaps project [9] and
the work of Theilmann and Rothermel [18] build network distance
maps, a more flexible representation of the network’s topology.
These projects have studied the best types of benchmarks as well as
placement of the sites running the benchmarks for accurate topol-
ogy determination.

A lower level approach has been to use the hop-by-hop feedback
provided by tools such as traceroute. The Mercator project has ex-
plored this technique to group IP addresses by network topology
to produce an Internet map [8]. Although many modern routers no
longer respond to traceroute packets, they have achieved good re-
sults on the modern Internet. Skitter has been developed by CAIDA
to combine traceroute and benchmark-based analysis [4]. Octopus
combined SNMP routing information, traceroute, measurements,
and heuristics to determine network topology [17].

Although there has been a significant amount of research study-
ing the importance of topology in task placement for LANs [1, 5,
7, 10], there has been less work on the automatic determination of
LAN topology than WAN topology. A number of projects have
looked at discovering the topology between IP routers, but because
the most interesting portions of LAN topology are generally formed
by level 2 devices, these projects have been unable to address the
majority of LAN topology issues.

ECO demonstrated that benchmarks could be used to discover
LAN topology on older, shared Ethernet networks, but these tech-
niques are of little value on modern switched networks [11]. More
recent work by Shao, Berman, and Wolski has focused on using
benchmark measurements to determine functional differences be-
tween a central server and a collection of machines across a net-
work, which they refer to as effective network views [16]. By ex-
perimenting with different combinations of machines, their tech-
nique groups machines into clusters with good accuracy. However,
for many purposes in parallel computing and network management,
this view of the network’s structure is insufficient.

1

2

1
2 3

4

2
1

B C

D

A

Z

W

Y

X

1 2

Figure 1: A sample bridged Ethernet network. A, B, C, and
D are bridges. W, X, and Y are hosts. Z is a router. The port
numbers of the bridges are indicated next to their respective
links. A hub is shown connected to A, a non-SNMP enabled
switch to B, and a shared segment to C.

3. REMOS
The topology discovery algorithm was originally developed as

part of Remos, a system for providing resource monitoring infor-
mation to network-aware applications [12]. In that framework, this
algorithm is used to implement the Bridge Collector, which is re-
sponsible for discovering the topology of an Ethernet LAN. That
topology is then given to the SNMP Collector, which is responsi-
ble for monitoring network utilization and for determining routed
(level 3) topology. The resulting network topology and measure-
ments are then available to applications through the Remos API.
Remos provides different collectors for WANs and LANs [14], sim-
ple predictors of future network utilization [13], and also incorpo-
rates software for host load prediction [6].

4. TOPOLOGY DISCOVERY WITH
DIRECT CONNECTIONS

Our goal was to design an algorithm that determines the physical
topology of the Ethernet network used to connect a set of hosts. To
accomplish this goal, we chose to derive the network topology us-
ing information obtained from the bridges themselves with SNMP.

A bridged network containing the nodes N can be divided into
a set of bridges, B, and endpoints, E. Figure 1 shows a sample
network. As shown in this figure, B = {A,B,C,D}. E may con-
tain both hosts, {W,X ,Y}, and routers, {Z}, which are identical to
hosts for the purpose of the Ethernet bridging algorithm. Modern
Ethernet networks are generally built with “switches,” which are
essentially bridges with many ports, and the term can be used in-
terchangeably with “bridges.” Bridged Ethernet networks may also
include the following: hubs, which serve to connect several ma-
chines off one port of a bridge via shared Ethernet, as shown con-
nected to A; shared segments, shown connected to C; and “dumb”
switches, which do not speak SNMP, shown connected to B.

Bridges connect Ethernet segments together in an acyclic net-
work. If cycles are present in the physical connections, the bridges
use the Ethernet spanning tree algorithm to select an acyclic subset
of those connections. Once the topology has been selected, bridges
learn the location of machines on the network by monitoring traf-
fic on each of their ports. When a new node sends a message that
appears on that port, the bridge adds it to the list of nodes found

238

off that port. Later, when the bridge receives a message bound
for that node, it knows to forward the message to that port. The
database that maps addresses to ports is known as the forwarding
database (FDB). For a bridge, C, we denote the forwarding set for
port x as Fx

C . In Figure 1, F1
C = {A,B,D,W,X ,Z}. This set changes

as new addresses are learned, as old addresses expire, or as ma-
chines are physically moved to part of the network connected to a
different port. Fx

a is said to be complete if it contains a forwarding
entry for each member of N found off that port. The example given
for F1

C is complete.
The first step in discovering a network’s topology is determin-

ing how a pair of bridges is connected. Two nodes are referred
to as directly connected if there are no other nodes between them.
In particular, if the packets that bridge A sends on port x are re-
ceived by port y on bridge B without going through any other de-
vice, bridges A and B are directly connected via ports x and y, re-
spectively. In Figure 1, A and B are directly connected by ports 1
and 4, as are B and D by ports 2 and 2. Furthermore, two bridges
are simply connected by ports x and y if they find each other off
those ports, but there may be other nodes in between. A and C are
simply connected by ports 1 and 1. Directly connected nodes, such
as A and B, are also simply connected by ports 1 and 4.

At a high level, this algorithm begins by determining all entries
in the FDBs, ensuring they are complete. It then selects a single
bridge and determines the bridges that are directly connected to
each port. The Ethernet topology is then filled in by traversal. At
the heart of this algorithm is the direct connection theorem, which
is used to determine when two bridges are directly connected.

THEOREM 4.1 (DIRECT CONNECTION THEOREM). Assume
that Fx

i and Fy
j are complete. Two bridges i and j are directly con-

nected via the link connected to port x on i and port y on j if and
only if Fx

i ∩Fy
j = /0 and Fx

i ∪Fy
j = N.

The proof is omitted here. Interested readers are referred to Bre-
itbart et al. [3] for proof of a similar theorem.

4.1 Shared segments
For a simple switched Ethernet, Theorem 4.1 is sufficient, but

most networks do not use direct connections to connect all nodes
to one another. For example, shared segments are commonly used
at the leaves of networks, such as the hub attached to A in Figure 1
or the shared segment attached to C. These typical uses of shared
segments do not cause problems for Theorem 4.1. However, it is
also possible to create shared segments internal to the topology of
the bridged Ethernet (between bridges in the topology). These in-
terior shared segments cause problems and generally occur in two
situations:

1. A hub is used to connect two bridges with other hosts or
bridges. Because hubs do not participate in the bridging
algorithm, this creates a shared network segment between
the bridges. The reality is that a properly designed network
would never contain such a hub, but the real world does not
guarantee that all networks will be properly designed. We
have also encountered a shared segment deliberately placed
between switches to facilitate traffic monitoring on the exter-
nal network connection.

2. A bridge exists in the network from which the program can-
not obtain a forwarding database. This situation can occur
either when the program is not informed of the bridge’s exis-
tence or when SNMP access is denied to that bridge. Be-
cause SNMP protection generally consists of a simple al-
lowed/denied list of IP addresses, this situation can easily

occur and did, in fact, occur on a number of occasions dur-
ing the development of the topology discovery system.

Both of these cases cause problems because they form networks
where there are no direct connections between bridges. Consider
Figure 1 if B is replaced with a hub or if SNMP access is unavail-
able to B. In that case, there is no direct connection that can be
established between A, C, and D.

Because Theorem 4.1 detects only direct connections and not
bridges connected with shared segments, a new rule is required. To
develop this rule, first let a(b) be the port of bridge a that address b
is found off of. Let SB be the set of bridges connected to the shared
segment. (Note that |SB| > 1.) Let SE be the endpoints attached
to the shared segment. The entire shared segment is denoted S =
SB ∪SE .

THEOREM 4.2 (SHARED SEGMENT THEOREM). S consists
of a shared segment between the bridges in SB if and only if
∀a ∈ SB,∀b,c ∈ S : a(b) = a(c) and all forwarding databases are
complete.

In other words, on a shared segment, all bridges must find all mem-
bers of the shared segment on the same port. This theorem defines
a shared segment and can be used to verify that a set of nodes forms
a shared segment.

Proof ⇐: Assume that ∀a ∈ SB,∀b,c ∈ S : a(b) = a(c), but
the members of SB are not connected with a shared segment. If
S is not shared, then there exists a switch in SB that has ele-
ments of S on different ports, by the definition of a shared seg-
ment. More formally, and by applying the completeness require-
ment, ∃a ∈ SB,∃b,c ∈ S : a(b)
= a(c). This contradicts the original
assumption. Therefore the bridges are connected with a shared seg-
ment if ∀a ∈ SB,∀b,c ∈ S : a(b) = a(c).

⇒: Assume that the members of SB are connected via a shared
segment containing SE . By definition of a shared segment, no
bridges in SB may have elements of S on two different ports,
otherwise, by the acyclicity requirement, the segment would be
switched, rather than shared. Therefore, every member of SB has
all members of S on the same port. Stated formally, ∀a∈ SB,∀b,c∈
S : a(b) = a(c) if the bridges are connected with a shared segment.
�

4.2 Limitations of the direct connection
theorem

The most significant shortcoming of the direct connection the-
orem is the completeness requirement. Requiring entries for all,
or nearly all, of the machines in an Ethernet is infeasible for any
moderately sized network. First, many bridges are connected to the
network with “out-of-band” ports, which do not participate in the
main network, but are instead on a second network used for ad-
ministration and are especially helpful when the primary network
is down. These bridges may not participate in the topology of the
network they are forming. Secondly, to generate entries in the for-
warding databases, all machines involved in the topology must be
generating traffic that is seen by all bridges in the network. This is
unlikely to occur naturally and difficult to do automatically without
accounts on every machine in the network.

As the network grows larger, the problem of obtaining complete
forwarding sets becomes even more challenging. In a large network
with hundreds or thousands of machines, more and more of the ma-
chines will be down or unresponsive at any given time, whether
due to hardware failure, software failure, being rebooted, or other
problems associated with maintaining a large network. Capturing
a complete, consistent picture in a real-world dynamic network en-
vironment becomes less and less likely as the network grows.

239

Even in situations where sufficient traffic can be generated, there
are still challenges. Although bridges supply their forwarding
databases using SNMP, that interface appears to be a direct link
into a dynamic data structure on several bridges we encountered.
As that data structure changed, the traversal ordering of the en-
tries changed, sometimes resulting in duplicate entries being re-
ceived and other times skipping large portions of the FDB. These
databases can require several attempts to obtain entries for most of
the addresses in the network.

Although the direct connection approach is still usable with ap-
propriate modifications and heuristic assumptions, the difficulties
in applying it to real-world large Ethernet networks motivated the
development of a new approach that does not require complete in-
formation.

4.3 Related work
The algorithm described in this section is very closely related

to work previously published by Breitbart et al. from Lucent [3].
There are, however, significant differences between the two ap-
proaches that are worth discussing. The researchers from Lu-
cent focused on Ethernet networks with multiple IP subnets and
VLANs. They found that by extending their algorithm with infor-
mation available from non-standard vendor MIBs, their algorithm
could handle topology discovery on networks using VLANs.

On the other hand, their algorithms do not address the problems
of shared segments appearing between bridges, whereas our expe-
rience with academic and research networks required support for
shared segments in the algorithm. There were also a number of
practical challenges that our algorithm had to deal with to support
the Ethernet LANs at CMU that were apparently not a problem
for the networks at Lucent. The unusual network configurations
encountered by our group and the Lucent group generally seem
to correspond to the nonstandard aspects of the networks we each
sought to support.

The most significant difference between the approaches is that
the Lucent group focused on forwarding sets containing only the
addresses of bridges and routers in the network, whereas our ap-
proach also uses the addresses of endpoints on the network. There
is a tradeoff here—although there are many more hosts, which
make it harder to obtain complete databases, the penalty for missing
a single entry is less severe because there are so many entries. Al-
though using only forwarding entries for bridges reduces the num-
ber of entries needed for complete sets, they still experienced diffi-
culties obtaining complete sets. They developed two approaches to
improve the completeness of their FDBs.

The first technique was to use “spoofed” ICMP-echo packets to
force bridges to communicate with each other. In our network, we
found that approximately half of the bridges replied to these pack-
ets by putting the requested IP return address in the reply packet,
but sending that packet to the Ethernet MAC address of the ma-
chine that originally sent it, rather than to the MAC belonging to
the “spoofed” return address, thus defeating the purpose of the ex-
ercise. In our experiments, therefore, all traffic was creating using
endpoints.

The Lucent group’s second approach was to relax the complete-
ness requirement by requiring only a user-defined fraction of the
entries to be present in the forwarding databases for them to be
called complete. This approach works well in situations where the
majority of entries are present, with a small number of entries miss-
ing on each machine.

Although the Lucent group found that their techniques for ad-
dressing the completeness requirement resolved the difficulties for
their network, we sought to develop an algorithm that avoids the

{X}

{Y,Z}{X}{Y}

{Z}

B

A

3
2

1

2

1

Bridge Port Forwarding Through
Entries Sets

A 1 X Y, Z
2 Y X, Z
3 Z X, Y

B 1 X Y, Z
2 Y, Z X

Figure 2: Example of two bridges for which contradictions can
be used to determine the connections.

challenges of obtaining complete information, and instead makes
more efficient use of the incomplete information typically available
from bridges.

5. TOPOLOGY DISCOVERY WITH
INCOMPLETE KNOWLEDGE

Because of the difficulties associated with obtaining complete
forwarding databases for entire Ethernet LANs, we decided to pur-
sue an alternative approach to topology discovery. Rather than
proceeding with the goal to prove that two nodes are directly con-
nected, consider the approach of proving that bridge a is not simply
connected to port x of b, denoted bx. Because this is a proof by con-
tradiction, only a single counterexample is needed to demonstrate
the contradiction.

For the remainder of this paper, the word “connection” will usu-
ally refer to a simple connection, rather than a direct connection.
When a distinction is necessary, it will be made clear that a direct
connection is being discussed.

Figure 2 shows an example where contradictions can be used to
determine how two bridges are connected. The motivating concept
here is to hypothesize that two bridges are simply connected by
a particular pair of ports. Remember that there may be nodes in
between, as this is not a direct connection. If all entries in the for-
warding database are consistent with this connection, it may exist.
If any one entry is inconsistent, then that connection is impossible.

Before considering how to connect the two bridges in Figure 2,
consider the four hypothetical examples of valid and invalid con-
nections shown in Figure 3. The only situation where a contradic-
tion can be found in making a connection is where each of the two
bridges have a forwarding entry for the same address on ports other
than the connecting ports. In other words, they claim the same
machine is in two different places on the network. In Figure 3,
this rule excludes the second and fourth examples, where the two
bridges forward the same address in opposite directions. Anytime
there are not directly conflicting forwarding entries, the connection
may be valid. Note that in the third example of Figure 3, node W
is between bridges A and B. Because this rule establishes a simple
connection and not a direct connection, this is perfectly valid.

240

Connection Valid

{W} {V} {W} {V}
F G Yes

{V} {W} {V}{W}
F G No

{W} {V}{V,W}
F G Yes

{W} {V}{V,W}
F G No

Figure 3: Examples of valid and invalid connections between
two bridges with different forwarding entries on bridge F. In
each case, the forwarding entries are examined to see whether
those two edges can form a valid simple connection. Note that
the only cases where there are conflicts occur when the bridges
map the same address in opposite directions.

Ports
A B Mapping Conflict

1 1
{X}

{Z}

{Y}

{X} {Y,Z}
A B Y and Z

3 1
{X} {Y,Z}{Z}

{Y}

{X}

BA Y

2 2
{Y}

{Z}

{X}

{Y,Z} {X}
BA X

2 1
{X} {Y,Z}{Y}

{Z}

{X}

BA Z

1 2
{X}

{Z}

{Y}

{Y,Z} {X}
A B NONE

3 2
{Z}

{Y}

{X}

{Y,Z} {X}
BA X

Figure 4: How contradictions can be used to eliminate impossi-
ble connections from the bridges in Figure 2.

Figure 4 shows how contradictions can be used to determine the
only valid connection between the bridges in Figure 2. All six pos-
sible connections between the bridges are shown. In five of the
six connections, a contradiction of the two bridges forwarding the
same address in opposite directions was found. Only the valid con-
nection is left.

The most important observation about the application of this
simple rule is that there is no requirement for complete knowledge.
Instead of requiring complete knowledge, there is merely the min-
imal requirement of having enough information to rule out all but
one possible connection. We will define and prove this minimum
knowledge requirement. In the example in Figure 4, the entries for
these three addresses meet the minimum knowledge requirement.
There may be many other nodes in the network, and there may be
entries for many other nodes on one or both of bridges A and B,
but as long as the minimum information is captured as it is in this
example, the correct connection will be determined.

To simplify the presentation of the algorithm, We will first in-
troduce additional notation. The “through sets” indicated in Fig-
ure 2 contain the addresses that are forwarded through each port—
in other words, the addresses that are on other ports, for which the
bridge will forward packets through itself. The through sets for
each port are, in a sense, the complement of Fx

i and are denoted
T x

i .
After determining through sets for each port, it is simple to ap-

ply this information to determine the ports that connect two bridges.
To see if ports x and y of bridges a and b are connected, calculate
T x

a ∩T y
b . If there are any addresses in common, then the ports can-

not be connected because a single node cannot be in two different
directions on an Ethernet, which is required to be acyclic. If the
intersection is empty, they can be connected.

By simple iteration, it is possible to map each bridge to the port
it appears off every other bridge. Applying this technique to each
bridge allows the complete topology of the network to be deter-
mined.

This approach has several advantages over the algorithm based
on the Direct Connection Theorem:

• Rather than relying only on information about one port, in-
formation from all ports is combined for each mapping ques-
tion. This is especially helpful for ports with few machines
connected to them, because it allows data to be aggregated
without requiring that it be complete.

• Incomplete information is tolerated much more easily.

• Shared segments are naturally determined from the primary
theorem, rather than relying on a special case to resolve con-
flicts when the direct connection theorem fails.

• The approach offers positive rejection: if insufficient infor-
mation is available to perform a mapping, that error is de-
tectable and distinguishable from a case where a mapping is
performed with incomplete, although sufficient, data.

5.1 Rigorous presentation

THEOREM 5.1 (SIMPLE CONNECTION THEOREM).
Let a,b∈B. Suppose there exists exactly one pair of ports ax and by
such that Tx

a ∩T y
b = /0. Then ax and by are connected. Furthermore,

if ax and by are connected, then Tx
a ∩T y

b = /0.

Remark: Note that ax and by being connected does not imply
that T x

a ∩T y
b = /0 for only one pair x and y. In other words, there are

241

{1} {1}
{2}{2}1 2

Figure 5: This network consists of two bridges and two hosts,
labeled 1 and 2. The connection of the two bridges cannot be
determined because there is insufficient information. Observe
that the bridges can be placed in either position, as they are
indistinguishable using their forwarding databases.

indeterminate solutions where insufficient information is present.
See Figure 5 for an example.

Proof ⇒: Assume that ax and by are connected. Partition the
network into three partitions, let NS be the partition between ax and
by, let Na be the partition containing a, and let Nb be the partition
containing b. Tx

a ⊆ Na and T y
b ⊆ Nb. Because Na and Nb are a

partitioning of N, T x
a ∩T y

b = /0. Therefore, T x
a ∩T y

b = /0 if ax and by
are connected.

⇐: Assume that T x
a ∩T y

b = /0 for only one pair x and y, but ax
and by are not connected. Because a and b belong to a connected
Ethernet, they must be connected by some pair of ports. Let ai and
b j be the true ports connecting the bridges. From the first half of

the proof, T i
a ∩T j

b = /0. However, this contradicts the assumption
that the intersection is empty for only one pair of ports. Therefore,
by contradiction, ax and by are connected if Tx

a ∩T y
b = /0 for only

one pair x and y. �
The requirement of Theorem 5.1 that the intersection is empty

for only one pair x and y is the minimum knowledge requirement.
It serves to prevent trivial solutions to Tx

a ∩T y
b = /0 that exist only

because the forwarding databases have insufficient information or
because the network topology is structurally indeterminate. Con-
sider the network shown in Figure 5. These two bridges can be
arranged in either order because the knowledge they give is insuf-
ficient to determine an ordering between themselves using only the
forwarding entries for the hosts shown.

The minimum knowledge requirement can be met by any pair of
bridges that meet the following rule:

LEMMA 5.2 (MINIMUM KNOWLEDGE REQUIREMENT).
The ports x and y that connect bridges a and b are uniquely deter-
mined if and only if at least one of these conditions is met:

1. Each bridge has an entry for the other’s address in its FDB,
not including out-of-band ports; or

2. Bridge a has an entry for b in Fx
a and ∃k
= x : Fy

b ∩Fk
a
= /0;

or

3. Forwarding entries for three nodes are shared between a and
b, divided among at least two ports on one of a or b and three
ports on the other bridge. x and y must be included in those
ports. Formally, ∃i, j, i
= j : (Fx

a ∩Fi
b
= /0∧Fx

a ∩F j
b
= /0), and

∃k
= x : Fy
b ∩Fk

a
= /0.

Proof The first condition is trivial—if each bridge has an entry
for the other in their FDBs, then the entries directly indicate which
ports are used to connect the bridges, and a contradiction is gener-
ated whenever the wrong pair of ports is considered for connection.
If that option is not available, one of the other two must be met.

For the second condition, port x is uniquely determined to be the
port of a connected to b because of the explicit FDB entry. Port y on
b is uniquely determined because there is an entry shared between
by and a port on a other than ax. If a connection is tried using any
port on b other than y, these two entries will cause a contradiction

a bx y

a bx y, i

a bx y

i

k

j

{q}

{r}
{s}

{q}

{q,r} {q}

{s}

(a)

(b)

(c)

Figure 6: Examples of the three required shared entries for
rule 3 of the Minimum Knowledge Requirement. (a) illustrates
a shared entry between ax and bi, which is insufficient to deter-
mine x. (b) adds a shared entry with b j , which determines x, but
not y. Note that although i
= j, y can equal i or j. (c) illustrates
the shared entry needed to determine y once x is determined.
Note that k
= x.

by pointing in different directions for the same entry. This is the
important condition required by ∃k
= x : Fy

b ∩Fk
a
= /0.

Proving the second half of rule two formally: ⇐: Assume ∃k
=
x : Fy

b ∩Fk
a
= /0. Let c ∈ Fy

b ∩Fk
a . Because k
= x, c ∈ T x

a . Also,
∀l
= y : c ∈ T l

b . Because c is in both sets, Tl
b ∩T x

a
= /0. Therefore,
if ∃k
= x : Fy

b ∩Fk
a
= /0, y is uniquely defined.

⇒: Assume y is uniquely defined, but ∀k
= x : Fy
b ∩ Fk

a = /0.
Because x and y are connected, Ty

b ∩ T x
a = /0. By definition of

through sets, ∀l
= y,∀k
= x : Fl
b ∩ Fk

a = /0. Combined with the
initial assumption, ∀l,∀k
= x : Fl

b ∩Fk
a = /0. Again by the defini-

tion of through sets, ∀l : T l
b ∩T x

a = /0. This contradicts the assump-
tion that y is uniquely defined. Therefore if y is uniquely defined,
∃k
= x : Fy

b ∩Fk
a
= /0.

The third, and fully general condition is an extension of the logic
used for condition two to using intersections to make the unique
determination of both ports x and y. The third case requires that Fx

a
must have members also found in two ports of b, denoted Fi

b and

F j
b . This condition is sufficient to uniquely determine x. To see

why an entry must be shared with two ports, whereas for condition
two, a shared entry with only one port was required, consider the
case where there is an entry shared between port ax and port bi,
but no entries shared with any port other than bi. This situation
is illustrated in Figure 6a. In this case, ax can be connected to
any port on b without creating a conflict. However, bi can also be
connected to any port on a without creating a conflict, q will be
forwarded from b through bi to a and on through ax. Because bi
can be connected to any port on a, this single shared entry does not
uniquely define x.

Next, consider the added requirement that there is an additional
entry shared with bj , as illustrated in Figure 6b. In this case, if ax
is connected to b, the connection is valid. However, if any port of
a other than ax is used for the connection, a conflict is created. If
bi is connected to a port on a other than ax, r will create a conflict
because it is forwarded in opposite directions. Likewise, a conflict
will be created if b j is connected to a port other than ax, as q will
now be forwarded in opposite directions. If a port on b other than

242

1 2

{2}

{1}

{2}

{1}

a b

1 2

{1} {1}

{2}{2}

a b

1 2

3

{2,3} {2,3}

{1} {1,2}

{1,3}
a b

1 2

3

{1} {1}

{3}{2,3}
{2}

a b

(a)

(b)

Forwarding Sets

Through Sets

Through Sets

Forwarding Sets

Figure 7: Two network graphs are shown with forwarding
and through sets indicated. Network (a) does not provide suf-
ficient information to meet the minimum knowledge require-
ment. Network (b), however, with one additional host, meets
that requirement.

bi or b j is connected to a port other than ax, then both q and r will
present conflicts. Therefore, we see that these two shared entries
uniquely determine ax as the port used to connect a to b, although
y is still not determined, as any port of b can be connected to ax
without generating a conflict.

Once x is uniquely determined, y is determined with the same
rule as used for condition two. Figure 6c illustrates this rule. Be-
cause k
= x, the shared entry s between ak and by forces y to be
the port connected to a, otherwise a conflict would be creating by
mapping s in opposite directions.

Consider the example of an indeterminate network shown in Fig-
ure 7. In network (a), there is not a unique solution to the mapping
problem. The bridges share two entries, but they are symmetric and
can be placed in either order. Network (b), however, resolves the in-
determinism. By adding a second machine off of one of the bridges
which is shared in both bridges’ FDBs, the network is uniquely de-
termined. This second machine gives a shared entries with two of
b’s ports. It is no longer possible to reorder these two bridges be-

cause the only port on the left bridge that can be connected to the
right one is the one with both entries. Any other connection will
cause a contradiction.

The formal proof of condition three begins by proving that
∃i, j, i
= j : (Fx

a ∩Fi
b
= /0∧Fx

a ∩F j
b
= /0) uniquely determines x.

⇐: Assume ∃i, j, i
= j : (Fx
a ∩Fi

b
= /0∧Fx
a ∩F j

b
= /0). This im-

plies that ∀z : Fx
a ∩T z

b
= /0 because either Fi
b or F j

b will be in T z
b .

Accordingly, ∀l
= x,∀z : T l
a ∩T z

b
= /0. Therefore, x is uniquely de-

termined if Fx
a ∩Fi

b
= /0 and Fx
a ∩F j

b
= /0.
⇒: Assume that x is uniquely determined, but that ∀i
= j : Fx

a ∩
Fi

b = /0∨Fx
a ∩F j

b = /0. In other words, there is at most one i such
that Fx

a ∩Fi
b
= /0. Consider two cases:

• First, that there is no set Fi
b such that Fx

a ∩Fi
b
= /0. We know

that T x
a ∩T y

b = /0. Combining these two, ∀l,∀i : Fl
a ∩Fi

b = /0.
Therefore, there are no common members, which contradicts
the initial assumption that x is uniquely determined.

• The second case is that there exists only one i such that
Fx

a ∩Fi
b
= /0. Note that network (a) in Figure 7 meets this

condition, but is indeterminate. By example, this is a contra-
diction.

Therefore, if x is uniquely determined, ∃i, j, i
= j : (Fx
a ∩Fi

b
= /0∧
Fx

a ∩F j
b
= /0).

Once x is uniquely determined, the proof of rule 2 proves y is
uniquely determined if and only if ∃k
= x : Fy

b ∩Fk
a
= /0. �

Therefore, it has been shown that Lemma 5.2 represents the min-
imum knowledge required for Theorem 5.1 to determine the simple
connection between two bridges in a network.

5.2 Practicality
The next question to be asked is whether Lemma 5.2 is a realistic

expectation for bridged Ethernet networks to meet. After all, the
motivation for pursuing this technique is that it is much easier to
satisfy the minimum knowledge requirement than to require the
FDBs to be complete.

Consider the four snapshots of two bridges shown in Figure 8.
Imagine that the real position of these two bridges has bridge A
internal to the topology and bridge B positioned as a leaf bridge,
connecting only to one other bridge, A, with the remainder of its
ports connected to endpoints.

In Figure 8(a), only one host has an entry shared between the two
bridges. This mapping is obviously indeterminate. In Figure 8(b)
the new node 2 might correspond to the querying node sending
pings to node 1 while probing the FDBs. However, for the same
reasons as Figure 5, this mapping is still indeterminate.

Now, suppose that node 1 has communicated with some other
host on the network, for instance a nameserver. If that node is also
found on any port of the upper bridge other than the port with 2 in
its forwarding set, such as in Figure 8(c), then the mapping is deter-
minate. In many cases, it is possible to force a machine to contact
a nameserver by connecting to its FTP daemon, for instance.

In most cases, networks aren’t designed with only one endpoint
connected to a bridge. There is no reason to purchase a bridge in
that case. Almost all bridges have 4, 16, 24, or even more ports
used for connections to machines. A bridge with just two ports
connecting machines to the network will satisfy Lemma 5.2. Con-
sider Figure 8(d). The only entries in the FDBs are for endpoints on
two different ports of bridge B and for the querying machine send-
ing them pings. Networks (c) and (d) are two minimal examples—a
single machine on a bridge that has talked to more than one other

243

{1}

{2}

{1}

{2}

{1}

(b)(a)

{1}

(c)

{2} {3}

{1}

{2,3}

{1}

(d)

{2}

{1,3}

{2}

{1}{3}

A

B

A

B

A

B

A

B

Figure 8: These snapshots of two bridges within a network
demonstrate different examples of indeterminate and determi-
nate FDBs. The dashed line is the physical connection that the
algorithm is attempting to determine. The forwarding sets are
shown for each port. (a) and (b) give examples of indetermi-
nate networks. (c) and (d) are both determinate, although for
different reasons.

machine (host, server, or router) or a bridge connected to two ma-
chines. Practically every part of an Ethernet will meet at least one
of these criteria. However, because bridges are generally only in-
stalled in a network to be used, which means there are machines
divided among several ports, most components will provide infor-
mation well beyond the minimal requirements.

5.3 Specialization for traversal
An important specialization of Lemma 5.2 can be used in most

cases. If the network’s topology is determined by traversal from a
designated root, then the first mapping step resolves the ports form-
ing simple connections between each bridge and the root bridge. In
a sense, this step divides the bridges into sets, each set containing
the bridges found off one of the ports of the root bridge. It also
identifies the port of each of the child bridges that forms a simple
connection with the root bridge. From that point in the algorithm,
the “root port” of each bridge is fixed. This knowledge can be ex-
ploited by the algorithm. In fact, being able to fix the root port of a
bridge satisfies the first half of rule 3 in Lemma 5.2. This reduces
the requirement for subsequent mappings to only one entry shared
between the connecting port and another port on the child bridge.

This specialization is easy to exploit. The root is picked to max-
imize the chances that it meets the minimum knowledge require-
ment. The only complexity in the traversal is that each bridge must
be tested to see if it is the next hop in the traversal, essentially try-
ing to find the bridge directly connected to each port of the current
root. Determining which bridge is the next hop is easy, because
performing the mapping with an incorrect bridge will either indi-
cate that there are bridges between itself and the root bridge (these
bridges will be connected to the incorrect choice’s root port), or it

will actually cause a conflict because a bridge will have to be con-
nected to it on a port other than its root port, indicating that this
isn’t the true topology.

In summary, the minimum knowledge requirement is very easy
to satisfy. Any bridge that is installed and used to connect more
than one machine to the network will meet the requirement. Fur-
thermore, even if the topology has little information, once the root
port has been determined, only one entry is needed to meet the re-
quirement.

6. IMPLEMENTATION
The algorithm has been implemented in the Remos Bridge Col-

lector and tested on a variety of networks. The implementation
begins with the set of bridges on the network and downloads the
entire FDB from each bridge. The actual topology derivation is
done by traversal from a designated root bridge. After obtaining
the FDBs, the root bridge is selected with the goal of maximizing
the distribution of nodes across different ports.

The core operation of the algorithm is determining the port of the
root to which each bridge is connected. The simple connection the-
orem is applied to each pair of bridges to determine the port of the
root to which it is connected (and the port of the child bridge that
is connected to the root) and the child is placed in a set connected
to that port. The algorithm is then called recursively for the set of
bridges attached to each port of the root. The bridge that is directly
connected to the previous root bridge is found, and the mapping be-
gins again. Shared segments are discussed in the following section.

After the bridge topology is derived, the endpoints in the net-
work are mapped to their location in the network. That informa-
tion is already present in the forwarding databases, and in general
endpoint location is easily determined. In some situations, incom-
plete databases make it difficult to determine an endpoint’s exact
location, but pinging endpoints that are not located using the FDBs
obtained earlier and querying the bridges where more information
is needed has always provided the required information to locate a
functioning endpoint.

6.1 Virtual switches
In Section 4.1, we described two situations where a direct con-

nection could not be established between two bridges in an other-
wise complete network. The principal challenge in these situations
is the creation of a shared Ethernet segment, rather than the modern
point-to-point connections. These situations are:

1. A hub is used to connect two bridges with other hosts or
bridges. Because hubs do not participate in the bridging al-
gorithm, this creates a shared network segment between the
bridges.

2. A bridge exists that the algorithm either was not informed
about, or to which SNMP access is denied. Because SNMP
security generally consists of a simple list of allowed or de-
nied IP addresses, this situation can easily occur.

The direct connection theorem required a special case to handle
these possibilities. However, using the simple connection theorem
no special case is required. This is because the theorem is used to
map bridges to the port to which they are connected, rather than
finding direct connections. In the course of the traversal, at each
step the algorithm selects the next bridge in the tree. In the ideal
case, a next hop will be found and will have no other bridges along
its root port, therefore it is directly connected to the previous root.
A virtual switch corresponding to one of the above conditions is
inserted when no single bridge is found to be the next hop. Instead,

244

all bridges map at least one other bridge or host along their root
ports, without causing any conflicts that would indicate that the
previous root choice was incorrect.

To determine which bridges are connected directly to the virtual
switch and which are their children, take the intersection of the
nodes that each bridge maps to its root port. If a node appears in
this set, it indicates that every bridge believes that node is between
itself and the root bridge. The only way this situation can occur is
for a shared segment to exist that connects multiple nodes to the
root bridge via a broadcast medium. The nodes that do not appear
in the intersection set are on the other side of one of the bridges
connected to the shared segment, and the traversal is continued for
each of the bridges connected to the shared segment to resolve the
topology connecting these remaining nodes.

The elegance of this solution is one of the appealing aspects
of this technique. Rather than requiring a special case, virtual
switches are naturally determined using the base algorithm. In fact,
the intersection set is calculated as the algorithm searches for the
next bridge, so when no directly connected bridge is found, the
nodes involved in the shared segment are already determined.

7. REAL WORLD EXPERIENCE
Practical experience has shown that the algorithms work as ex-

pected when used on a bridged Ethernet with bridges that properly
support the BRIDGE-MIB. While these standards covers a large
percentage of deployed networks, there are a number of networks
that require somewhat modified approaches.

7.1 Administrative access
The administrative complication is primarily accessibility. Typ-

ically, SNMP access is only allowed from machines on the local
network, and it is usually impossible to make SNMP queries to net-
work components on an ISP’s network. Security and privacy are the
two primary reasons for this. Security is actually a technical con-
cern; because the original designers of SNMP were unable to agree
on a workable security protocol, there is little security in many im-
plementations, therefore a minimal security level is achieved by re-
stricting access to local hosts. ISP’s are generally concerned about
privacy, not wishing to divulge information about the congestion
levels of their services. Furthermore, because SNMP queries can be
expensive, no one wants to open their network up to excessive load
or even denial-of-service attacks with SNMP. Remos combines
network-based data with benchmark-based data to provide perfor-
mance predictions in environments where direct network queries
are only available for portions of the network.

7.2 SNMP compatibility
Although RFCs describe the behavior of SNMP implementa-

tions, the standards and their implementations have not resulted
in the different manufacturers providing consistent interfaces. For
instance, the forwarding databases in Ethernet bridges are particu-
larly troublesome. Some allow queries to be made for the forward-
ing port of a specific address. Other implementations are designed
only for traversal, requiring the same query to be reformulated as a
query for the subsequent entry from the numerically preceding ad-
dress. Furthermore, some bridges remove the forwarding database
if queries are made to it too rapidly, apparently as a security mea-
sure.

Additionally, some SNMP implementations are non-compliant.
Two Xylan bridges failed to correctly implement the BRIDGE-
MIB’s port to interface table, providing numbers that were incor-
rect. While a patch was easily applied to the Bridge Collector that
allowed this table to be replaced with a configuration file, discover-

ing these incompatibilities takes time and a thorough understanding
of how to interpret the data in the MIB.

7.3 VLANs
In theory, VLANs should be somewhat trivial to manage, as each

can be treated as a separate bridged Ethernet. In the Remos frame-
work, the connection between VLANs would likely be addressed
by other components than the Bridge Collector. In practice, differ-
ences in how VLANs are expressed in SNMP MIBs make topology
discovery of VLANs more challenging for the Bridge Collector.

A VLAN constructed using Cisco switches required the VLAN
number to be appended to the community name to obtain forward-
ing information about that particular VLAN. A VLAN constructed
with the Xylan switches, however, did not result in any observable
change in MIB-2 or the BRIDGE-MIB compared to the same net-
work constructed with a single IP network without VLANs. It is
unclear how this switch might report trunked VLAN links, as none
were present in that network

Both trunked VLAN links and running multiple IP subnets over
the same bridged Ethernet raise the issue of addressing the rela-
tionship between physical and logical topology. Remos does not
currently address this well. The Bridge Collector can determine
the topology of a single bridged Ethernet with multiple IP subnets,
as the IP subnets do not affect the bridging protocol, but making
use of this information for network management or resource pre-
diction purposes requires more work. The Lucent group addressed
some challenging aspects of this problem.

7.4 Hubs and dumb switches
Ideally, Ethernet networks are constructed with each desktop

connected to a high-end switch, which is connected to a back-
bone with gigabit bandwidth. In reality, financial constraints and
legacy hardware typically provide a lower-capacity network. As
in Figure 1, hubs and shared segments are frequently used to con-
nect several machines to a single switched port, and might typically
be deployed in an office with multiple desktops. Hubs and shared
segments used in this manner do not present any problems to the
topology discovery algorithm. Because they are typically used in
a limited physical space, such as an office, they do not present any
network management difficulties. From a performance measure-
ment perspective, they are easily dealt with because, by virtue of
the broadcast medium, the bridge’s port connected to the shared
segment receives all data transmitted on that segment and provides
a simple measurement of utilization.

Dumb switches, which are Ethernet switches that do not speak
SNMP, present a different set of problems. They are similarly inde-
tectable, as they do not speak SNMP and do not have an IP address.
However, unlike hubs, because they do not form a shared broadcast
medium, utilization measurement is more difficult, as the closest
SNMP-enabled switch only sees traffic between the hosts and the
rest of the network. If truly end-to-end utilization measurements
are needed, then the necessary measurement can be obtained from
the hosts themselves, if SNMP-enabled. From a network manage-
ment perspective, dumb switches are not necessarily more difficult
than hubs. However, the increasing availability of cheap 24-port
dumb switches may result in a number of hierarchical networks of
dumb switches, presenting significant problems for both network
management and utilization measurement.

The presence of a hub, dumb switch, or an intelligent switch
to which SNMP access could not be obtained in the internal por-
tion of the network—between other SNMP-enabled switches—
may present a more serious challenge. Fortunately, if only a single
switch is missed, all links can be successfully monitored from their

245

other end. If adjacent switches are missed, however, their absence
becomes more significant. In general, the presence of a shared seg-
ment in the interior of a network should be regarded with suspicion.

7.5 Dynamic networks
The topology of an Ethernet is nearly always regarded as being

static—machines are rarely moved from one location to another.
However, as the size of a network grows and as the Bridge Col-
lector is left running longer, machines moving across the network
must be accounted for. Wireless networks such as WaveLAN make
dynamic topology updates essential, as mobile hosts may change
their location, and corresponding base station, quite rapidly.

Fortunately, verifying the location of a host is as simple as check-
ing the leaf bridge at which it was last found and verifying its pres-
ence. In the event that a node moves, sending a ping to it and then
tracing it to its new location has only a minimal cost. The frequency
at which nodes’ locations are verified can be adjusted according to
the frequency at which nodes move and the accuracy desired. A
logical extension would be to identify mobile hosts and verify their
location at a much higher rate than wired hosts.

Rearrangement of bridges is somewhat harder to detect, requir-
ing the verification of several entries. However, changes in bridge
topology are expected extremely rarely, so the slight added ex-
pense of verifying their location is not significant. When a bridge is
added, deleted, or moves the topology discovery algorithm is sim-
ply rerun.

Finally, movement of a host during the discovery phase, when
the bridges’ forwarding databases are being downloaded, can cause
conflicts that prevent the topology from being discovered. Our cur-
rent approach is to simply rerun the discovery phase when such a
conflict is found. However, in an environment with many mobile
nodes, it may be necessary to improve the discovery phase by ver-
ifying the entries for a particular node across all of the bridges’
forwarding databases to ensure that the node did not move during
discovery.

8. RESULTS
The topology discovery algorithm has been implemented and

tested in a variety of networks. The largest network was the CMU
CS Department network, which contains almost 2000 hosts and
50 bridges. It has also been tested on departmental networks at
BBN, ETH Zurich, and William and Mary, as well as on testbed
networks at CMU, William and Mary, S/TDC, and two labs at
NSWC as part of the HiPer-D project. The hardware used to imple-
ment these networks has included bridges from Cisco, Intel, 3Com,
Asanté, Netgear, Xylan, Linksys, and others. Two of the testbeds
used different types of VLAN technology, and one testbed also uti-
lized ATM LAN emulation. In all cases, the algorithm and im-
plementation were able to correctly determine the topology of the
Ethernet LAN.

Although correctness of the topology is the most important crite-
rion when judging the performance of this algorithm, its time per-
formance may also be important in some applications. The ma-
jority of the execution time is spent downloading the FDBs from
the bridges. This is partially due to the slow speed of SNMP but
most significantly due to a desire not to swamp the bridges with
queries. As java implementations have improved, the time to de-
termine the topology of large networks has dropped significantly.
Figure 9 shows the time required to calculate the topologies for a
network with varying numbers of hosts and bridges included. Be-
cause the topology of bridged networks changes rather slowly, this
performance is quite acceptable. Furthermore, detecting changes
in the topology and updating the location of endpoints, which may

0

5

10

15

20

25

0 500 1000 1500 2000

Se
co

nd
s

Number of nodes

Time to calculate topology

0

5

10

15

20

25

0 10 20 30 40 50
Se

co
nd

s

Number of bridges

Time to calculate topology

Figure 9: The performance of the topology discovery algorithm
running on a 566Mhz Pentium III. The number of hosts and
bridges were varied by removing the entries for hosts or bridges
from a previously collected data file.

move more often than bridges, can be done without recomputing
the entire topology.

Figure 10 shows the bridge topology discovered in the CMU CS
Department network. This topology was verified to the extent pos-
sible as correct by the departmental network manager. There was
no actual record of where hosts are attached to the network, but we
discovered no errors in the placement of the machines we verified.

8.1 Practical considerations
Our research has demonstrated that SNMP, already supported by

almost all of the current networking infrastructure, is sufficient for
obtaining the information needed to determine topology and pre-
dict performance directly from the most commonly-used networks
used today. Although it is not an ideal interface for this purpose,
it allows the network-based approach to performance prediction to
be explored and utilized on existing networks. Demonstrating the
value of this approach by using it in real systems and applications
should result in the development of more appropriate interfaces for
network components. However, both administrative and technical
considerations must be addressed to provide a better interface for
performance prediction purposes.

One of the motivations for this work is the lack of standardization
between the various bridge vendors on support for topology discov-
ery. While both Cisco and Intel, two major bridge vendors, support
topology discovery, they use incompatible proprietary techniques
for doing so. In September 2000, the IETF adopted the Physical
Topology MIB as a standard MIB [2]. While an encouraging devel-

246

GIGABONE

ES−WEH−3504−1

ES−WEH−CL1−1

ES−WEH−CL6−1

ES−WEH−CL3−1

ES−WEH−CL4−1

ES−WEH−CL2−1

ES−NSH−CL2−1

ES−FMR−CLE−1

ES−WEHCL4−2

ES−WEH−MRA−3

ES−HBH−CL7−1

ES−WEH−CL7−2

ES−WEH−CLE−2

ES−DH−CL6−1

ES−EDSH−CLE−1

ES−WEH−CL3−2

ES−WEH−CL6−2

ES−WEH−CL7−3

ES−WEH−CL2−2

GES−NSH−CL2−1

ES−WEH−CLE−1

GES−HBH−CL6−1

ES−WEH−CLE−4

ES−WEH−3504−2

GES−HBH−CL7−1

ES−WEH−MRA−2

ES−WEH−MRA−1

GES−WEH−MRA−2

GES−DH−CL6−1

GES−EDSH−CLE−1

GES−WEH−3504−1

GES−WEH−CL1−1

GES−WEG−CL6−1

GES−WEH−CL3−1

GES−WEH−CL4−1

GES−WEH−CL2−1

GES−WEH−MRA−1

GES−WEH−CL7−1

GES−NSH−CL3−1

GES−NSH−CL4−1

ES−WEH−MRA−4

ES−WEH−MRA−7

ES−WEH−MRA−8

ES−WEH−CL7−1

Figure 10: Topology of the CMU CS Department primary bridged Ethernet on May 29, 2000. 1831 endpoints are located on this
topology and omitted for clarity.

opment, the earlier components of the RFC that specified a proto-
col to be used for topology discovery were removed from this RFC,
and the current RFC does not impose an Internet standard for a dis-
covery protocol—it merely reserves this portion of the MIB space.
These shortcomings make it unlikely that automatic topology dis-
covery will soon be a portable standard in commodity components.

9. CONCLUSIONS
We have described an algorithm that can derive the topology

used in a bridged Ethernet network using only information avail-
able from standard SNMP MIBs, while performing queries from
a single machine. The primary contribution of the algorithms
described in this paper is the ability to perform accurate topol-
ogy discovery using knowledge of only a few endpoints, whereas
previously knowledge of the entire network was required from
the bridges. The minimum knowledge requirement allows topol-
ogy discovery to be performed on very large networks with many
bridges. The combined challenges of forcing the bridges to learn
forwarding information for all of the bridges and then obtaining
that information out of the bridges using sometimes unreliable im-
plementations of the Bridge MIB were previously a major impedi-
ment to performing automatic discovery of Ethernet topology.

The information obtained through topology discovery is useful
to both network managers and to the developers and users of paral-
lel applications. Our implementation of the algorithm is currently
the easiest way our network manager has to locate machines that
have been inappropriately moved on the network. We have also
used the information obtained through this program as the first step
in obtaining link-level performance prediction used for scheduling
applications in distributed environments. We hope that the useful-

ness of the topology information will encourage the development
of a true standard protocol for topology discovery.

The implementation is available for download as part of the Re-
mos system, available at:
http://www.cs.cmu.edu/˜remos/

10. ACKNOWLEDGEMENTS
Special thanks to Nancy Miller, Mark Puskar, and the Remos

team for their help in the development of the software, and to An-
drej Bauer for providing comments on the formal proofs. Shawn
Singh collected the performance data used in Figure 9.

Effort sponsored in part by the Advanced Research Projects
Agency and Rome Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-96-1-0287. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
thereon.

The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
the Advanced Research Projects Agency, Rome Laboratory, or the
U.S. Government.

11. REFERENCES
[1] I. Ahmad, Y. Kwok, and M. Wu. Analysis, Evaluation, and

Comparison of Algorithms for Scheduling Task Graphs on
Parallel Processors. In Proceedings of the Second
International Symposium on Parallel Architectures,
Algorithms, and Networks, pages 207–213, June 1996.

247

[2] A. Bierman and K. Jones. Physical topology MIB. RFC2922,
September 2000.

[3] Y. Breitbart, M. Garofalakis, C. Martin, R. Rastogi,
S. Seshadri, and A. Silberschatz. Topology discovery in
heterogeneous IP networks. In Proceedings of INFOCOM
2000, March 2000.

[4] CAIDA. Skitter.
http://www.caida.org/TOOLS/measurement/skitter/.

[5] P. E. Crandall and M. J. Quinn. A partitioning advisory
system for networked data-parallel processing. Concurrency:
Practice and Experience, 7(5):479–495, August 1995.

[6] P. A. Dinda and D. R. O’Hallaron. An evaluation of linear
models for host load prediction. In Proceedings of the 8th
IEEE International Symposium on High Performance
Distributed Computing (HPDC), August 1999.

[7] S. Figueira and F. Berman. Modeling the effects of
contention on the performance of heterogeneous
applications. In Proceedings of the Fifth IEEE International
Symposium on High Performance Distributed Computing
(HPDC 5), pages 392–401, Syracuse, NY, August 1996.

[8] R. Govindan and H. Tangmunarunkit. Heuristics for internet
map discovery. In IEEE INFOCOM 2000, Tel Aviv, Israel,
March 2000.

[9] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. On
the placement of internet instrumentation. In IEEE
INFOCOM 2000, Tel Aviv, Israel, March 2000.

[10] P. K. K. Loh, W. J. Hsu, C. Wentong, and N. Sriskanthan.
How Network Topology Affects Dynamic Load Balancing.
IEEE Parallel and Distributed Technology, pages 25–35, Fall
1996.

[11] B. Lowekamp and A. Beguelin. ECO: Efficient collective
operations for communication on heterogeneous networks.
In Proceedings of the 10th International Parallel Processing
Symposium (IPPS’96), pages 399–405. IEEE, April 1996.

[12] B. Lowekamp, N. Miller, D. Sutherland, T. Gross,
P. Steenkiste, and J. Subhlok. A resource query interface for
network-aware applications. Cluster Computing,
2(2):139–151, 1999.

[13] B. Lowekamp, D. O’Hallaron, and T. Gross. Direct queries
for discovering network resource properties in a distributed
environment. In Proceedings of the 8th IEEE International
Symposium on High Performance Distributed Computing
(HPDC), pages 38–46. IEEE Computer Society, August
1999.

[14] N. Miller and P. Steenkiste. Collecting network status
information for network-aware applications. In IEEE
INFOCOM 2000, Tel Aviv, Israel, March 2000.

[15] K. Obraczka and G. Gheorghiu. The performance of a
service for network-aware applications. In Proceedings of
the ACM Sigmetrics SPDT’98, 1998.

[16] G. Shao, F. Berman, and R. Wolski. Using effective network
views to promote distributed application performance. In
Proceedings of the 1999 International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA’99), 1999.

[17] R. Siamwalla, R. Sharma, and S. Keshav. Discovering
internet topology.
http://www.cs.cornell.edu/skeshav/papers/discovery.pdf, July
1998.

[18] W. Theilmann and K. Rothermel. Dynamic distance maps of
the internet. In IEEE INFOCOM 2000, Tel Aviv, Israel,
March 2000.

248

