
PRINCIPLES AND METHODS OF TESTING FINITE STATE MACHINES

— A SURVEY

David Lee

Mihalis Yannakakis

AT&T Bell Laboratories

Murray Hill, New Jersey

ABSTRACT

With advanced computer technology, systems are getting larger to fulfill more complicated

tasks, however, they are also becoming less reliable. Consequently, testing is an indispensable

part of system design and implementation; yet it has proved to be a formidable task for complex

systems. This motivates the study of testing finite state machines to ensure the correct function-

ing of systems and to discover aspects of their behavior.

A finite state machine contains a finite number of states and produces outputs on state tran-

sitions after receiving inputs. Finite state machines are widely used to model systems in diverse

areas, including sequential circuits, certain types of programs, and, more recently, communication

protocols. In a testing problem we have a machine about which we lack some information; we

would like to deduce this information by providing a sequence of inputs to the machine and

observing the outputs produced.

Because of its practical importance and theoretical interest, the problem of testing finite

state machines has been studied in different areas and at various times. The earliest published lit-

erature on this topic dates back to the 50’s. Activities in the 60’s and early 70’s were motivated

mainly by automata theory and sequential circuit testing. The area seemed to have mostly died

down until a few years ago when the testing problem was resurrected and is now being studied

anew due to its applications to conformance testing of communication protocols. While some old

problems which had been open for decades were resolved recently, new concepts and more

intriguing problems from new applications emerge.

We review the fundamental problems in testing finite state machines and techniques for

solving these problems, tracing progress in the area from its inception to the present and the state

of the art. In addition, we discuss extensions of finite state machines and some other topics

related to testing.

- 2 -

1. INTRODUCTION

Finite state machines have been widely used to model systems in diverse areas, including

sequential circuits, some types of programs (in lexical analysis, pattern matching etc.), and, more

recently, communication protocols [FM1, Koh, ASU, Hol]. The demand of system reliability

motivates research into the problem of testing finite state machines to ensure their correct func-

tioning and to discover aspects of their behavior.

There are two types of finite state machines: Mealy machines and Moore machines. The

theory is very similar for the two types. We mainly consider Mealy machines here; they model

finite state systems more properly and are more general than Moore machines. A Mealy machine

has a finite number of states and produces outputs on state transitions after receiving inputs.

We discuss the following two types of testing problems. In the first type of problems, we

have the transition diagram of a finite state machine but we do not know in which state it is. We

apply an input sequence to the machine so that from its input/output (I/O) behavior we can

deduce desired information about its state. Specifically, in the state identification problem we

wish to identify the initial state of the machine; a test sequence that solves this problem is called a

distinguishing sequence. In the state verification problem we wish to verify that the machine is in

a specified state; a test sequence that solves this problem is called a UIO sequence. A different

type of problem is conformance testing. Given a specification finite state machine, for which we

have its transition diagram, and an implementation, which is a ‘‘black box’’ for which we can

only observe its I/O behavior, we want to test whether the implementation conforms to the speci-

fication. This is called the conformance testing or fault detection problem and a test sequence

that solves this problem is called a checking sequence.

Testing hardware and software contains very wide fields with an extensive literature which

we cannot hope to cover. Here we will focus on the basic problems of testing finite state

machines and present the general principles and methods. We shall not discuss testing combina-

tional circuits which are essentially not finite state systems [FM1, Koh, AS]. We shall not con-

sider functional testing either where we want to verify the equivalence of two known machines or

circuits which are not ‘‘black boxes’’ [AS, CK, JBFA]. Numerical software testing is outside the

scope of this article where there is an infinite number (in most cases an infinite-dimensional

space) of inputs [LW1, LW2]. Validation and verification are wide areas distinct form testing

that are concerned with the correctness of system designs (i.e. whether they meet specified cor-

rectness properties) as opposed to the correctness of implementations; interested readers are

referred to [Hol, Kur].

There is an extensive literature on testing finite state machines, the fault detection problem

in particular, dating back to the 50’s. Moore’s seminal 1956 paper on ‘‘gedanken-experiments’’

[Mo] introduced the framework for testing problems. Moore studied the related, but harder prob-

lem of machine identification: given a machine with a known number of states, determine its state

diagram. He provided an exponential algorithm and proved an exponential lower bound for this

- 3 -

problem. He also posed the conformance testing problem, and asked whether there is a better

method than using machine identification. A partial answer was offered by Hennie in an influen-

tial paper [He] in 1964: he showed that if the machine has a distinguishing sequence of length L

then one can construct a checking sequence of length polynomial in L and the size of the

machine. Unfortunately, not every machine has a distinguishing sequence. Furthermore, only

exponential algorithms were known for determining the existence and for constructing such

sequences. Hennie also gave another nontrivial construction of checking sequences in case a

machine does not have a distinguishing sequence; in general however, his checking sequences are

exponentially long. Following this work, it has been widely assumed that fault detection is easy

if the machine has a distinguishing sequence and hard otherwise.

Several papers were published in the 60’s on testing problems, motivated mainly by

automata theory and testing switching circuits. Kohavi’s book gives a good exposition of the

major results [Koh], see also [FM1]. During the late 60’s and early 70’s there were a lot of activi-

ties in the Soviet literature, which are apparently not well known in the West. An important paper

on fault detection was by Vasilevskii [Vas] who proved polynomial upper and lower bounds on

the length of checking sequences. Specifically, he showed that for a specification finite state

machine with n states, p inputs, and q outputs, there exists a checking sequence of length

O(p 2 n 4 log (qn)); and there is a specification finite state machine which requires checking

sequences of length Ω(pn 3). However, the upper bound was obtained by an existence proof, and

he did not present an algorithm for constructing efficiently checking sequences. For machines

with a reliable reset, i.e., at any moment the machine can be taken to an initial state, Chow devel-

oped a method that constructs a checking sequence of length O(pn 3) [Ch].

The area seemed to have mostly died down until a few years ago when the fault detection

problem was resurrected and is now being studied anew due to its applications in testing commu-

nications protocols. Briefly, the situation is as follows (for more information see Holzmann’s

book [Hol], especially Chapter 9 on Conformance Testing). Computer systems attached to a net-

work communicate with each other using a common set of rules and conventions, called proto-

cols. The implementation of a protocol is derived from a specification standard, a detailed docu-

ment that describes (in a formal way to a large extent, at least this is the goal) what its function

and behavior should be, so that it is compatible and can communicate properly with implementa-

tions in other sites. The same protocol standard can have different implementations. One of the

central problems in protocols is conformance testing: check that an implementation conforms to

the standard.

A protocol specification is typically broken into its control and data portion, where the con-

trol portion is modeled by an ordinary finite state machine. Most of the formal work on confor-

mance testing addresses the problem of testing the control portion [ADLU, BS1, BS2, CZ, DSU,

Gon, KSNM, MP1, SD, SL]. Typically, machines that arise in this way have a relatively small

number of states (from one to a few dozen), but a large number of different inputs and outputs (50

- 4 -

to 100 or more). For example, the IEEE 802.2 Logical Level Control Protocol (LLC) [ANSI1]

has 14 states, 48 inputs (even without counting parameter values) and 65 outputs. Clearly, there

is an enormous number of machines with that many states, inputs, and outputs, so that brute force

exponential testing is infeasible. A number of methods have been proposed which work for spe-

cial cases (such as, when there is a distinguishing sequence or a reliable reset capability), or are

generally applicable but may not provide a complete test. We mention a few here: the D-method

based on distinguishing sequences [He], the U-method based on UIO sequences [SD], the W-

method based on characterization sets [Ch], and the T-method based on transition tours [NT]. A

survey of these methods appears in [SL] as well as an experimental comparison on a subset of the

NBS T4 protocol (15 states, 27 inputs).

Finite state machines model well sequential circuits and control portions of communication

protocols. However, in practice usual protocol specifications include variables and operations

based on variable values; ordinary finite state machines are not powerful enough to model in a

succinct way the physical systems any more. Extended finite state machines, which are finite

state machines extended with variables, have emerged from the design and analysis of both cir-

cuits and communication protocols [CK, Hol, Kur]. Meanwhile, protocols among different pro-

cesses can often be modeled as a collection of communicating finite state machines [BZ, Hol,

Kur] where interactions between the component machines (processes) are modeled by, for

instance, exchange of messages. We can also consider communicating extended finite state

machines where a collection of extended finite state machines are interacting with each other.

Essentially, both extended and communicating finite state machines are succinct representations

of finite state machines; we can consider all possible combinations of states of component

machines and variable values and construct a composite machine (if each variable has a finite

number of values). However, we may run into the well-known state explosion problem and brute

force testing is often infeasible. Besides extended and communicating machines, there is a num-

ber of other finite state systems with varied expressive powers that have been defined for model-

ing various features, such as automata, I/O automata, timed automata, Buchi automata, Petri nets,

nondeterministic machines, and probabilistic machines.

We shall focus on testing finite state machines and describe briefly other finite state sys-

tems. In Section 2, after introducing basic concepts of finite state machines: state and machine

equivalence, isomorphism, and minimization, we state five fundamental problems of testing:

determining the final state of a test, state identification, state verification, conformance testing,

and machine identification. The homing and synchronization sequences are then described for the

problem of determining the final state of a test. In Section 3, we study distinguishing sequences

for the state identification problem and UIO sequences for the state verification problem. In Sec-

tion 4, we discuss different methods for constructing checking sequences for the conformance

testing problem. We then study extensions of finite state machines in Section 5: extended and

communicating finite state machines. In Section 6 we discuss briefly some other types of

- 5 -

machines, such as nondeterministic and probabilistic finite state machines. Finally, in Section 7

we describe related problems: machine identification, learning, fault diagnosis, and passive test-

ing.

2. BACKGROUND

Finite state systems can usually be modeled by Mealy machines that produce outputs on

their state transitions after receiving inputs.

Definition 2.1. A finite state machine (FSM) M is a quintuple

M = (I , O , S , δ , λ)

where I , O , and S are finite and nonempty sets of input symbols, output symbols, and states,

respectively.

δ: S×I → S is the state transition function;

λ : S×I → O is the output function.

When the machine is in a current state s in S and receives an input a from I it moves to the next

state specified by δ(s , a) and produces an output given by λ(s , a).

An FSM can be represented by a state transition diagram, a directed graph whose vertices

correspond to the states of the machine and whose edges correspond to the state transitions; each

edge is labeled with the input and output associated with the transition. For the FSM in Fig. 2.1,

suppose that the machine is currently in state s 1 . Upon input b, the machine moves to state s 2

and outputs 1. Equivalently, an FSM can be represented by a state table with one row for each

state and one column for each input symbol. For a combination of a present state and input sym-

bol, the corresponding entry in the table specifies the next state and output. For example, Table

2.1 describes the machine in Fig. 2.1.

We denote the number of states, inputs, and outputs by n = S , p = I , and q = O ,

respectively. We extend the transition function δ and output function λ from input symbols to

strings as follows: for an initial state s 1 , an input sequence x = a 1 , ... ,a k takes the machine suc-

cessively to states s i + 1 = δ(s i , a i), i = 1 , . . . , k, with the final state δ(s 1 , x) = s k + 1 , and

produces an output sequence λ(s 1 , x) = b 1 , ... ,b k , where b i = λ(s i , a i), i = 1 , . . . , k. Sup-

pose that the machine in Fig. 2.1 is in state s 1 . Input sequence abb takes the machine through

states s 1 , s 2 , and s 3 , and outputs 011. Also, we can extend the transition and output functions

from a single state to a set of states: if Q is a set of states and x an input sequence, then

δ(Q ,x) = {δ(s ,x)  s ∈ Q} 1 , and λ(Q ,x) = {λ(s ,x)  s ∈ Q}.

1 We remove the redundant states to make δ(Q , x) a set.

- 6 -

An input sequence x induces a partition π(x) on the set of states S of an FSM M, where two

states s i , s j are placed in the same block of the partition if and only if they are not distinguished

by x, i.e., λ(s i ,x) = λ(s j ,x). This partition is called the initial state uncertainty of x; note that

after applying an input sequence x to M and observing the output, the information we acquire

about the initial state of M (i.e., the state before the application of x) is the block of π(x) to which

it belongs. The information about the current state of M after applying the sequence x is captured

by the family of sets: σ(x) = { δ(B ,x)  B ∈ π(x) }, called the current state uncertainty of x.

Note that σ(x) is not necessarily a partition; i.e., the sets in σ(x) are not necessarily disjoint. The

output produced by M in response to the input sequence x tells us to which member of σ(x) the

current state belongs. For example, consider the machine M shown in Fig. 2.1 and input b. If we

observe output 1, then we know that the machine was initially in state s 1 or s 2 and the current

state is s 2 or s 3; if we observe output 0, then the initial state was s 3 and the current state is s 1 .

Thus, the initial state uncertainty of b is π(b) = {{ s 1 ,s 2 },{ s 3 }} and the current state uncer-

tainty is σ(b) = { {s 2 ,s 3}, {s 1} }.

The successor tree of a machine is a tree showing the behavior of the machine starting from

all possible initial states under all possible input sequences. For every input sequence the tree

contains a path starting from the root, and every node is annotated with the corresponding current

(and/or initial) state uncertainty. Figure 2.2 shows the successor tree of the machine in Fig. 2.1

for input sequences of length at most 2. Thus for example the root is labeled by the whole set of

states, the right child is labeled by σ(b) = { {s 2 ,s 3}, {s 1 } } with corresponding outputs

λ({s 1 , s 2}, b) = {1} and λ({s 3}, b) = {0}, and so forth.

The transition diagram of an FSM is a directed graph, and thus graph theoretic concepts and

algorithms are useful in the analysis of FSM’s. For example, we may want to visit the nodes

(states) and edges (transitions), record the order of the visit, and explore the structure of the graph

such as its connectivity properties. This can be done by a depth-first-search (DFS) or breadth-

first-search (BFS), resulting in a spanning tree of the graph [AHU, CLR]. We may want to find a

shortest path between two nodes [AHU, CLR], constructing a shortest transfer sequence from one

state to the other. We may also want to find a path that traverses each edge at least once; it is

called a covering path, and we usually want to find one with the minimum number of edges [EJ,

Law]. For all these basic concepts, data structures, and graph algorithms, see the references.

The finite state machine in Definition 2.1 is fully specified in a sense that at a state and

upon an input there is a specified next state by the state transition function and a specified output

by the output function. Otherwise, the machine is partially specified; at certain states with some

inputs, the next states or outputs are not specified. Also the machine defined is deterministic; at a

state and upon an input, the machine follows a unique transition to a next state. Otherwise, the

machine is nondeterministic; the machine may follow more than one transition and produce dif-

ferent outputs accordingly.

In the applications of protocols, systems can be partially specified and/or nondeterministic

- 7 -

due to the incomplete specification, unobservable internal transitions, unpredictable behavior of

timers and error conditions, etc. Also, testing is usually performed at different levels, and a fea-

ture may or may not give rise to nondeterminism depending on whether it is modelled at that

level or abstracted away, and depending on whether it is under the control of the tester or not. In

the main exposition, we shall focus on fully specified and deterministic machines. We then

extend the discussion to partially specified machines in Section 4.7. The theory in these cases is

better developed; we now have a reasonably good understanding of the complexity and algo-

rithms for the various problems of interest. For nondeterministic machines, the basic algorithmic

theory is not as well developed; we defer the topic to Section 6.

2.1. Machine Equivalence, Isomorphism, and Minimization

Two states s i and s j are equivalent if and only if for every input sequence the machine will

produce the same output sequence regardless of whether s i or s j is the initial state; i.e., for an

arbitrary input sequence x, λ(s i , x) = λ(s j , x). Otherwise, the two states are inequivalent, and

there exists an input sequence x such that λ(s i , x) ≠ λ(s j , x); in this case, such an input

sequence is called a separating sequence of the two inequivalent states. For two states in differ-

ent machines with the same input and output sets, equivalence is defined similarly. Two

machines M and M ′ are equivalent if and only for every state in M there is a corresponding equiv-

alent state in M ′, and vice versa.

Let M = (I , O , S , δ , λ) and M ′ = (I , O , S ′ , δ ′ , λ ′) be two machines with the same

input and output sets. A homeomorphism from M to M ′ is a mapping φ from S to S ′ such that for

every state s in S and for every input symbol a in I, it holds that δ ′(φ(s) , a) = φ(δ(s , a)) and

λ ′(φ(s) , a) = λ(s , a). If φ is a bijection, then it is called an isomorphism; clearly in this case

M and M ′ must have the same number of states and they are identical except for a renaming of

states. Two machines are called isomorphic if there is an isomorphism from one to the other.

Obviously, two isomorphic FSM’s are equivalent; the converse is not true in general.

Machine equivalence is an equivalence relation on all the FSM’s with the same inputs and

outputs. In each equivalence class there is a machine with the minimal number of states, called a

minimized (reduced) machine. A machine is minimized if and only if no two states are equiva-

lent. In an equivalence class, any two minimized machines have the same number of states; fur-

thermore, there is a one-to-one correspondence between equivalent states, which gives an isomor-

phism between the two machines. That is, the minimized machine in an equivalence class is

unique up to isomorphism.

Given an FSM M, we can find its equivalent minimized machine through a state partitioning

as follows. State equivalence is an equivalence relation on the set of states, and thus we can parti-

tion the states into blocks (classes) of equivalent states. There is a well known algorithm that

splits states successively into equivalent blocks [Koh, Mo]. We describe it informally here. We

first split states by output symbols: two states are placed in the same block if and only if they

- 8 -

produce the same output for each input symbol. We then further split repeatedly each block into

subblocks according to the transitions: two states are in the same subblock if and only if they are

mapped into the same block by each input symbol. This process is repeated until we cannot split

anymore. When we terminate, each block contains equivalent states and states in different blocks

are inequivalent. In addition, for states in different blocks, a concatenation of input symbols for

splitting them apart provides a separating sequence of length no more than n − 1. During a

round of splitting, we examine all the p inputs for each of the n states, and there are no more than

n − 1 rounds of splitting, since there are n states. Therefore, the total time complexity of a

straightforward implementation of this state partitioning is O(pn 2). A modification of an algo-

rithm for automata minimization [Hop] gives a fast algorithm with complexity O(pnlog n).

After partitioning the states of the machine M into blocks of equivalent states, say r blocks

B 1 , ... , B r , we can construct the equivalent minimized machine M ′ as follows. We ‘‘project’’

each block into one state: B i → t i , and let the set of states of M ′ be S ′ = {t i  i = 1 , . . . , r}.

To define the state transition function δ ′ and output function λ ′ recall that for every input symbol

a all the states of a block B i are mapped to the same block, say B j and produce the same output

symbol, say o; then let δ ′(t i , a) = t j and λ ′(t i , a) = o. No two states in M ′ are equivalent

and we have the minimized machine that is equivalent to M. Note that M ′ is a homomorphic

image of M (and of all the machines in the equivalence class of M); the homomorphism takes all

the equivalent states of a block B i into the corresponding state t i in the minimized machine.

There is a range of equivalence relations of states of machines (transition systems in gen-

eral) from observational to strong bisimulation equivalences [Mi]. For fully specified and deter-

ministic machines as in Definition 2.1, they are the same, and for more general machines such as

nondeterministic machines they are different. We shall address this issue later in Section 5 and 6.

2.2. Testing Problems

In a testing problem we have a machine M about which we lack some information, and we

would like to deduce this information by its I/O behavior; we apply a sequence of input symbols

to M, observe the output symbols produced, and infer the needed information of the machine. A

test can be preset - if an input sequence is fixed ahead of time - or can be adaptive - if at each step

of the test, the next input symbol depends on the previously observed outputs. Adaptive tests are

more general than preset tests. Note that an adaptive test is not a test sequence but rather a deci-

sion tree.

We discuss five fundamental problems. In the first three problems we have a complete

description of the machine M = (I , O , S , δ , λ) but we do not know in which state it is; i.e., its

initial state.

Problem 1. (Homing/Synchronizing Sequence): Determine the final state after the test.

Problem 2. (State Identification): Identify the unknown initial state.

- 9 -

Problem 3. (State Verification): The machine is supposed to be in a particular initial state; verify

that it is indeed in that state.

In the other two problems the machine M that is being tested is a black box; i.e., we do not know

its state diagram (the transition and output function), though we may have some limited informa-

tion, for example, a bound on the number of states.

Problem 4. (Machine Verification/Fault Detection/Conformance Testing): We are given the com-

plete description of another machine A, the ‘‘specification machine’’. Determine whether M is

equivalent to A.

Problem 5. (Machine Identification): Identify the unknown machine M.

For each of these problems the basic questions are the following:

Question 1. Existence: Is there a test sequence that solves the problem?

Question 2. Length: If it exists, how long does it need to be?

Question 3. Algorithms and Complexity: How hard is it to determine whether a sequence exists,

to construct one, and to construct a short one?

Problem 1 was addressed and essentially solved completely around 1960 using homing and

synchronizing sequences; these sequences are described in Section 2.3 and 2.4, respectively.

Problems 2 and 3 are solved by distinguishing and UIO sequences, which are the topics of Sec-

tion 3. For Problem 4, different methods are studied in Section 4. Problem 5 is discussed in Sec-

tion 7.

2.3. Homing Sequences

Often we do not know in which state the machine is, and we want to perform a test, observe

the output sequence, and determine the final state of the machine; the corresponding input

sequence is called a homing sequence. The homing sequence problem is simple and was com-

pletely solved [Koh, Mo].

Only reduced machines have homing sequences, since we cannot distinguish equivalent

states using any test. On the other hand, every reduced machine has a homing sequence, and we

can construct one easily in polynomial time. First note that an input sequence x is a homing

sequence if and only if all the blocks in its current state uncertainty σ(x) are singletons (contain

one element). Initially, the machine can be in any one of the states, and thus the uncertainty has

only one block S with all the states. We take two arbitrary states in the same block, find a

sequence that separates them (it exists because the machine is reduced), apply it to the machine,

and partition the current states into at least two blocks, each of which corresponds to a different

output sequence. We repeat this process until every block of the current state uncertainty σ(x)

contains a single state, at which point the constructed input sequence x is a homing sequence. For

example, for the machine in Fig. 2.1, input b separates state s 3 from s 1 (and s 2) by their different

- 10 -

outputs 0 and 1, taking states s 1 , s 2 , and s 3 to s 2 , s 3 , and s 1 , respectively. If we have observed

output 0, then we know that we are in state s 1 . Otherwise, we have observed output 1 and we

could either be in state s 2 or s 3 . We then apply input a to separate s 2 from s 3 by their outputs 1

and 0. Therefore, ba is a homing sequence that takes the machine from states s 1 , s 2 , and s 3 to

s 2 , s 3 , and s 1 , respectively; the final state can be determined by the corresponding output

sequences 11, 10, and 00, respectively. Observe that after applying input b and observing 0, we

know the machine must be in state s 1 , and there is no need to further apply input a; however, if

we observe output 1, we have to further input a. Such an adaptive homing sequence can be

shorter than preset ones.

Since we can construct a separating sequence of length no more than n − 1 for any two

states and we apply no more than n − 1 separating sequences before each block of current states

contains a singleton state, we concatenate all the separating sequences and obtain a homing

sequence of length no more than (n − 1)2 . As a matter of fact, a tight upper bound on the length

of homing sequences is n(n − 1)/2 [Koh, Mo]. On the other hand, a tight lower bound is also

n(n − 1)/2 even if we allow adaptiveness, matching the upper bound; i.e., there exists a machine

whose shortest (preset or adaptive) homing sequence is of length at least n(n − 1)/2 [Koh].

Of course, a given FSM may have a shorter homing sequence than the one constructed by

the above algorithm. It is straightforward to find a shortest homing sequence from the successor

tree of the machine [Koh, p. 454]; we only need to find a node of least depth d, which is labeled

by a current state uncertainty consisting of singletons. For example, a shortest homing sequence

of the machine in Fig. 2.1 is ba, using the successor tree in Fig. 2.2. However, it takes exponen-

tial time to construct the successor tree up to depth d. In fact, finding a shortest homing sequence

is an NP-hard problem and is thus unlikely to have a polynomial time algorithm [Ep].

2.4. Synchronizing Sequences

A synchronizing sequence takes a machine to the same final state, regardless of the initial

state or the outputs. That is, an input sequence x is synchronizing if and only if δ(s i ,x) = δ(s j ,x)

for all pairs of states s i , s j . Thus, after applying a synchronizing sequence, we know the final

state of the machine without even having to observe the output. Clearly, every synchronizing

sequence is also a homing sequence, but not conversely. In fact, FSM’s may or may not have

synchronizing sequences even when they are minimized. We can determine in polynomial time

whether a given FSM has a synchronizing sequence and construct one as follows [Ep, Koh].

Given the transition diagram G of an FSM M, we construct an auxiliary directed graph

G×G with n(n + 1)/2 nodes, one for every unordered pair (s i , s j) of nodes of G (including

pairs (s i , s i) of identical nodes). There is an edge from (s i , s j) to (s p , s q) labeled with an

input symbol a if and only if in G there is a transition from s i to s p and a transition from s j to s q ,

and both are labeled by a. For the machine in Fig. 2.3, the auxiliary graph is shown in Fig. 2.4

(we omit the self-loops). For instance, input a takes the machine from both state s 2 and s 3 to

- 11 -

state s 2 and there is an edge from (s 2 , s 3) to (s 2 , s 2). It is easy to verify that there is an input

sequence that takes the machine from states s i and s j , i ≠ j, to the same state s r if and only if

there is a path in G×G from node (s i , s j) to (s r , s r). Therefore, if the machine has a synchro-

nizing sequence, then there is a path from every node (s i , s j), 1 ≤ i < j ≤ n, to some node

(s r , s r), 1 ≤ r ≤ n with equal first and second components. As we will show shortly, the con-

verse is also true; i.e., this reachability condition is necessary and sufficient for the existence of a

synchronizing sequence. In Fig. 2.4, node (s 2 , s 2) is reachable from nodes (s 1 , s 2), (s 1 , s 3),

and (s 2 , s 3), and, therefore, machine in Fig. 2.3 has a synchronizing sequence. In general, the

reachability condition can be checked easily using a breadth-first-search [AHU, CLR] in time

O(pn 2), and, consequently, the existence of synchronizing sequences can be determined in time

O(pn 2).

Suppose that the graph G×G satisfies the reachability condition that there is a path from

every node (s i , s j), 1 ≤ i < j ≤ n, to some node (s r , s r) We now describe a polynomial time

algorithm for constructing a synchronizing sequence. Take two states s i ≠ s j , find a shortest

path in G×G from node (s i , s j) to a node (s r , s r) (the path has length no more than

n(n − 1)/2), and denote the input sequence along the path by x 1 . Obviously, δ(s i , x 1) =
δ(s j , x 1) = s r . Also S 1 = δ(S , x 1) has no more than n − 1 states. Similarly, we examine

S 1 , take two distinct states, apply an input sequence x 2 , which takes them into the same state, and

obtain a set of current states S 2 of no more than n − 2 states. We repeat the process until we

have a singleton current state S k = {s t}; this is always possible because G×G satisfies the reach-

ability condition. The concatenation x of input sequences x 1 , x 2 , . . . , x k takes all states into

state s t , and x is a synchronizing sequence. In Fig. 2.4, node (s 2 , s 2) is reachable from (s 2 , s 3)

via the input a which takes the machine to state s 1 (if it starts in s 1) and s 2 (if it starts in s 2 or

s 3). Therefore, we have S 1 = {s 1 , s 2} = δ(S , a). Since node (s 2 , s 2) is reachable from

(s 1 , s 2), the input sequence ba takes the machine to state s 2 if it starts in s 1 or s 2 , and we have

S 2 = {s 2} = δ(S 1 , ba). Therefore, we obtain a synchronizing sequence aba by concatenating

input sequences a and ba, with δ(S , aba) = {s 2}.

Since the number of times we merge pairs of states is at most n − 1 and the length of each

merging sequence is x i ≤ n(n − 1)/2, the length of synchronizing sequences is no more than

n(n − 1)2 /2. The algorithm can be implemented to run in time O(n 3 + pn 2) [Ep].

If in each stage we choose among the pairs of current states that pair which has the shortest

path to a node of the form (s r ,s r), then it can be shown by a more careful argument that the

length of the constructed synchronizing sequence is at most n(n 2 − 1)/6 [Koh]. The best

known lower bound is (n − 1)2; i.e., there are machines that have synchronizing sequences and

the shortest such sequences have length (n − 1)2 . There is a gap between this quadratic lower

bound and the cubic upper bound; closing this gap remains an open problem.

For a given machine, we can find a shortest synchronizing sequence using a successor tree.

For this purpose we only need to label each node of the tree with the set of current states; i.e., if a

- 12 -

node v corresponds to input sequence x then we label the node with δ(S ,x). A node of least depth

d whose label is a singleton corresponds to a shortest synchronizing sequence. It takes exponen-

tial time to construct the successor tree up to depth d to find such a node and the shortest

sequence. In fact, finding the shortest synchronizing sequence is an NP-hard problem [Ep].

3. STATE IDENTIFICATION AND VERIFICATION

We now discuss testing Problems 2 and 3: state identification and verification. We want to

determine the initial state of a machine before a test instead of the final state after a test as in

Problem 1. The problems become harder; while running a test to deduce needed information, we

may also introduce ambiguity and we may lose the initial state information irrevocably.

Problem 2. State Identification. We know the complete state diagram of a machine M but we do

not know its initial state. The problem is to identify the unknown initial state of M. This is not

always possible, i.e., there are machines M for which there exists no test that will allow us to

identify the initial state. An input sequence that solves this problem (if it exists) is called a distin-

guishing sequence [G1, G2, Koh]. Note that a homing sequence solves a superficially related but

different problem: to perform a test after which we can determine the final state of the machine.

Every distinguishing sequence also provides a homing sequence; once we know the initial state

we can trace down the final state. However, the converse is not true in general.

Problem 3. State Verification. Again we know the state diagram of a machine M but not its initial

state. The machine is supposed to be in a particular initial state s 1; verify that it is in that state.

Again, this is not always possible. A test sequence that solves this problem (if it exists) is called

a Unique Input Output sequence for state s 1 (UIO sequence, for short) [SD]. This concept has

been reintroduced at different times under different names; for example, it is called ‘‘simple I/O

sequence’’ in [Hs] and ‘‘checkword’’ in [Gob].

Distinguishing sequences and UIO sequences are interesting in their own right in offering a

solution to the state identification and verification problems, respectively. Besides, these

sequences have been useful in the development of techniques to solve another important problem:

conformance testing. See Section 4.

There is an extensive literature on these two problems starting with Moore’s seminal 1956

paper on ‘‘gedanken-experiments’’ [Mo] where the notion of distinguishing experiment was first

introduced. Following this work, several papers were published in the 60’s on state identification

motivated mainly by automata theory and testing of switching circuits [G1, G2, KK, Koh]. The

state verification problem was studied in early 70’s [Gob, Hs]. However, only exponential algo-

rithms were given for state identification and verification, using successor trees. Sokolovskii [So]

first proved that if a machine has an adaptive distinguishing sequence, then there is one of poly-

nomial length. However, he only gave an existence proof and did not provide efficient algorithms

for determining the existence of and for constructing distinguishing sequences. In the last few

- 13 -

years there has been a resurgence of activities on this topic motivated mainly by conformance

testing of communication protocols [ADLU, CZ, DSU, Gon, KSNM, MP1, SL1, SL2]. Conse-

quently, the problems of state identification and verification have resurfaced.

The complexity of state identification and verification has been resolved recently [LY1] as

follows. The preset distinguishing sequence and the UIO sequence problems are both PSPACE-

complete. Furthermore, there are machines that have such sequences but only of exponential

length. Surprisingly, for the adaptive distinguishing sequence problem, there are polynomial time

algorithms that determine the existence of adaptive distinguishing sequences and construct such a

sequence if it exists. Furthermore, the sequence constructed has length at most n(n − 1)/2, which

matches the known lower bound.

3.1. Preset Distinguishing Sequences

Recall that a test can be preset - if an input sequence is fixed ahead of time - or can be adap-

tive - if at each step of the test, the next input symbol depends on the previously observed out-

puts. Adaptive tests are more general than preset tests and an adaptive test is not a test sequence

but rather a decision tree.

Given a machine M, we want to identify its unknown initial state. This is possible if and

only if the machine has a distinguishing sequence [G1, G2, Koh].

We discuss preset test first:

Definition 3.1. A preset distinguishing sequence for a machine is an input sequence x such that

the output sequence produced by the machine in response to x is different for each initial state,

i.e.; λ(s i , x) ≠ λ(s j , x) for every pair of states s i , s j , i ≠ j.

For example, for the machine in Fig. 2.1, ab is a distinguishing sequence, since

λ(s 1 , ab) = 01, λ(s 2 , ab) = 11, and λ(s 3 , ab) = 00.

Clearly, an FSM that is not reduced cannot have a distinguishing sequence since equivalent

states can not be distinguished from each other by tests. We only consider reduced machines.

However, not every reduced machine has a distinguishing sequence. For example, consider the

FSM in Fig. 3.1. It is reduced: the input b separates state s 1 from states s 2 and s 3 , and input a

separates s 2 from s 3 . However, there is no single sequence x that distinguishes all the states

simultaneously: a distinguishing sequence x cannot start with letter a because then we would

never be able to tell whether the machine started in state s 1 or s 2 , since both these states produce

the same output 0, and make a transition to the same state s 1 . Similarly, the sequence cannot start

with b because then it would not be able to distinguish s 2 from s 3 . Thus, this machine does not

have any distinguishing sequence.

It is not always as easy to tell whether an FSM has a distinguishing sequence. The classical

- 14 -

algorithm found in textbooks [G1, G2, Koh] works by examining a type of successor tree (called

a distinguishing tree) whose depth is equal to the length of the distinguishing sequence (which is

no more than exponential [Koh]). For this purpose we need to annotate the nodes of the succes-

sor tree with the initial state uncertainty. Note that a sequence x is a distinguishing sequence if

and only if all blocks of its initial state uncertainty π(x) are singletons. The classical algorithms

using successor trees take at least exponential time. This is probably unavoidable in view of the

following result: It is PSPACE-complete to test whether a given FSM has a preset distinguishing

sequence. This holds even when machines are restricted to have only binary input and output

alphabets. Furthermore, there are machines for which the shortest preset distinguishing sequence

has exponential length. For detailed proofs see [LY1]. Therefore, preset tests for state identifica-

tion, if they exist, may be inherently exponential. However, for adaptive testing we have polyno-

mial time algorithms; such a test is provided by an adaptive distinguishing sequence.

3.2. Adaptive Distinguishing Sequences

An adaptive distinguishing sequence is not really a sequence but a decision tree:

Definition 3.2. An adaptive distinguishing sequence is a rooted tree T with exactly n leaves; the

internal nodes are labeled with input symbols, the edges are labeled with output symbols, and the

leaves are labeled with states of the FSM such that: (1) edges emanating from a common node

have distinct output symbols, and (2) for every leaf of T, if x, y are the input and output strings

respectively formed by the node and edge labels on the path from the root to the leaf, and if the

leaf is labeled by state s i of the FSM then y = λ(s i ,x). The length of the sequence is the depth

of the tree.

In Fig. 3.3 we show an adaptive distinguishing sequence for the FSM in Fig. 3.2. The adap-

tive experiment starts by applying input symbol a, and then splits into two cases according to the

observed output 0 or 1, corresponding to the two branches of the tree. In the first case we apply

a, then b followed by a, and split again into two subcases depending on the last output. If the last

output is 0, then we declare the initial state to be s 5; otherwise, we apply ba and depending on the

observed output, we declare the initial state to be s 1 or s 3 . We carry out the experiment analo-

gously in case we fall in the right branch of the tree.

Not all reduced FSM’s have adaptive distinguishing sequences. For example, the FSM in

Fig. 3.1 does not have any (for the same reason as in the preset case). Of course, a preset distin-

guishing sequence is also an adaptive one. Thus, machines with preset distinguishing sequences

have also adaptive ones, and furthermore the adaptive ones can be much shorter. On the other

hand, an FSM may have no preset distinguishing sequences but still have an adaptive one. The

machine in Fig. 3.2 is such an example. A preset distinguishing sequence for this machine can

only start with a because b merges states s 1 , s 2 and s 6 without distinguishing them. After

- 15 -

applying a string of a’s, both the initial and the current state uncertainty are

τ = { {s 1 ,s 3 ,s 5 } , {s 2 ,s 4 ,s 6 } }, and, therefore, b can never be applied because it merges s 2

and s 6 without distinguishing them.

Sokolovskii showed that if an FSM has an adaptive distinguishing sequence, then it has one

of length
12
π2
_ __ n 2 , and this is the best possible up to a constant factor in the sense that there are

FSM’s whose shortest adaptive distinguishing sequence has length n(n − 1)/2 [So]. His proof of

the upper bound is not constructive and does not suggest an algorithm; he argues basically that if

one is given a sequence that is too long then there exists a shorter one. This result implies that the

existence question is in NP. The classical approach for constructing adaptive distinguishing

sequences [G1, G2, Koh] is again a semienumerative type of algorithm that takes exponential

time. The algorithm is naturally more complicated than the one for the preset case, which proba-

bly accounts for the belief that one of the ‘‘main disadvantages of using adaptive experiments (for

state identification) is the relative difficulty in designing them’’ [Koh]. A polynomial time algo-

rithm was recently found [LY1]. We will describe next the algorithm for determining the exis-

tence of an adaptive distinguishing sequence, and in the next subsection we will describe the

algorithm for constructing one.

Consider an adaptive experiment (not necessarily a complete adaptive distinguishing

sequence). The experiment can be viewed as a decision tree T whose internal nodes are labeled

with input symbols and the edges with output symbols. With every node u of T we can associate

two sets of states, the initial set I(u) and the current set C(u). If x and y are respectively the

input and output strings formed by the labels on the path from the root to node u (excluding u

itself), then I(u) = { s i ∈ S  y = λ(s i , x) } (the set of initial states that will lead to node u),

and C(u) = { δ(s i , x)  s i ∈ I(u) } (the set of possible current states after this portion of the

experiment). The initial sets I(u) associated with the leaves u of T form a partition π(T) of the

set of states of the machine (every initial state leads to a unique leaf of the decision tree), which

represents the amount of information we derive from the experiment. The experiment T is an

adaptive distinguishing sequence if and only if π(T) is the discrete partition: all blocks are sin-

gletons. Note that the current sets associated with the leaves need not be disjoint.

We say that an input a (or more generally an input sequence) is valid for a set of states C if

it does not merge any two states s i , s j of C without distinguishing them, i.e., either

λ(s i ,a) ≠ λ(s j ,a) or δ(s i ,a) ≠ δ(s j ,a). If during the test we apply an input a such that

λ(s i ,a) = λ(s j ,a) and δ(s i ,a) = δ(s j ,a) for two states s i , s j of the current set, then we lose

information irrevocably, because we will never be able to tell whether the machine was in state s i

or s j . Therefore, an adaptive distinguishing sequence can apply in each step only inputs that are

valid for the current set. The difference between the preset and adaptive case is that in the preset

case we have to worry about validity with respect to a collection of sets (the current state uncer-

tainty), whereas in the adaptive case we only need validity with respect to a single set, the current

- 16 -

set under consideration.

The algorithm for determining whether there exists an adaptive distinguishing sequence is

rather simple. It maintains a partition π of the set of states S; this should be thought of as a parti-

tion of the initial states that can be distinguished. We initialize the partition π with only one

block containing all the states. While there is a block B of the current partition π and a valid

input symbol a for B, such that two states of B produce different outputs on a or move to states in

different blocks, then refine the partition: replace B by a set of new blocks, where two states of B

are assigned to the same block in the new partition if and only if they produce the same output on

a and move to states of the same block (of the old partition). It was shown in [LY1] that the

machine has an adaptive distinguishing sequence if and only if the final partition is the discrete

partition.

Consider the machine of Fig. 3.2. Initially the partition π has one block S with all the

states. Input symbol b is not valid, but a is. Thus, π is refined to π 1 = { {s 1 ,s 3 ,s 5 } ,

{s 2 ,s 4 ,s 6 } }. Now b is valid for the first block of π 1 which it can refine because s 1 stays under

b in the same block, whereas s 3 and s 5 move to the second block. Thus, the new partition is

π 2 = { {s 1 } , {s 3 ,s 5 } , {s 2 ,s 4 ,s 6 } }. Next, input a can refine the block {s 2 ,s 4 ,s 6 } into

{s 2 ,s 4 }, {s 6 }. After this, b becomes valid for {s 3 ,s 5 } which it refines to {s 3 }, {s 5 }. Finally,

either a or b can refine the block {s 2 ,s 4 } into singletons ending with a discrete partition, and

thus the machine has an adaptive distinguishing sequence.

The decision algorithm is very similar to the classical minimization algorithm. The major

difference is that only valid inputs can be used to split blocks, A straightforward implementation

of the algorithm, as we have described it, takes time O(pn 2). It was shown in [LY1] how to

implement the algorithm so that it runs in time O(pnlog n).

3.3. Constructing Adaptive Distinguishing Sequences

The algorithm for constructing an adaptive distinguishing sequence is somewhat more com-

plicated so that polynomial time of construction and polynomial length of the constructed

sequence can be ensured. The basic ideas are: (1) We perform the splitting conservatively, one

step at a time, and (2) We split the blocks in a particular order, namely, split simultaneously all

blocks of largest cardinality before going on to the smaller ones. We present the construction in

two steps as follows. Algorithm 3.1 does the partition refinement and constructs a tree, which we

call a splitting tree, that reflects the sequence of block splittings. Algorithm 3.2 constructs an

adaptive distinguishing sequence from the splitting tree. We present the algorithms and explain

by examples. For details see [LY1].

The splitting tree is a rooted tree T. Every node of the tree is labeled by a set of states; the

root is labeled with the whole set of states, and the label of an internal (nonleaf) node is the union

of its children’s labels. Thus, the leaf labels form a partition π(T) of the set of states of the

- 17 -

machine M, which should be thought of as a partition of the initial states. The splitting tree is

complete if the partition is a discrete partition. In addition to the set-labels, we associate an input

string ρ with every internal node u. Every edge of the splitting tree is labeled by an output sym-

bol. In the algorithm below we use the notation δ − 1 (Q , σ) for a set Q of states and an input

sequence σ to denote the set of states s ∈ S for which δ(s , σ) ∈ Q.

For a block Q in the current partition π, a valid input a can be classified into one of three

types. (i) Two or more states of Q produce different outputs on input a. (ii) All states of Q pro-

duce the same output, but they are mapped to more than one block of π. (iii) Neither of the

above; i.e., all states produce the same output and are mapped into a same block of π. Define the

implication graph of π, denoted G π , to be a directed graph with the blocks of π as its nodes and

arcs between blocks with the same number of states as follows. There is an arc B 1 → B 2 labeled

by an input symbol a and output symbol o if a is a valid input of type (iii) for B 1 and maps its

states one-to-one and onto B 2 with output o.

Algorithm 3.1. (Splitting Tree)

Input: A reduced FSM M.

Output: A complete splitting tree ST if M has an adaptive distinguishing sequence.

Method:

1. Initialize ST to be a tree with a single node, the root, labeled with the set S of all the states, and

the current partition π to be the trivial one.

2. While π is not the discrete partition do the following. Let R be the set of blocks with the larg-

est cardinality. Let G π be the implication graph of π and G π [R] its subgraph induced by R. For

each block B of R, let u(B) be the leaf of the current tree ST with label B. We expand ST as fol-

lows.

Case (i). If there is a valid input a of type (i) for B, then associate the symbol a with node u(B).

For each subset of states of B that produces the same output symbol on input a attach to u(B) a

leaf child with this subset as its label; the edge is labeled by the output symbol.

Case (ii). Otherwise, if there is a valid input a of type (ii) for B with respect to π, then let v be the

lowest node of ST whose label contains the set δ(B ,a) (note: v is not a leaf). If the string associ-

ated with v is σ, then associate with node u(B) the string aσ. For each child of v whose label Q

intersects δ(B ,a), attach to u(B) a leaf child with label B∩ δ − 1 (Q ,a); the edge incident to u(B)

is given the same label as the corresponding edge of v.

Case (iii). Otherwise, search for a path in G π from B to a block C that has fallen under Case (i) or

(ii). If no such path exists, then we terminate and declare failure (the FSM does not have any

adaptive distinguishing sequences); else let σ be the label of (a shortest) such path. By now,

u(C) has already acquired children and has been associated with a string τ by the previous cases.

Expand the tree as in Case (ii): Associate with u(B) the string σ τ. For each child of u(C) whose

label Q intersects δ(B , σ), attach to u(B) a leaf child with label B∩ δ − 1 (Q , σ); the edge inci-

dent to u(B) is given the same label as the corresponding edge of u(C).

- 18 -

Example 3.1. Consider the FSM in Fig. 3.2. The splitting tree is shown in Fig. 3.4. We have

indexed the internal nodes according to the order in which they are created by Algorithm 3.1, and

we have attached the set-labels and the associated strings; we have omitted the edge labels. The

only valid input for the set S is a which splits S into two blocks of three states each. Both blocks

are considered in the next iteration. The block of node u 1 has a valid input of type (ii), namely b,

which maps it into the root block, and thus node u 1 gets the string ba and acquires two children.

The block of node u 2 has only a valid input of type (iii), namely a, which gives a path of length 1

in the implication graph to the block of u 1; thus, u 2 gets the string aba. In the next iteration we

examine the blocks of nodes u 3 and u 4 . Both inputs are valid of type (ii) for u 3; we have chosen

arbitrarily input a in the figure, so the string of u 3 is a followed by the string of u 2 . The block of

u 4 has only valid type (iii) inputs a and b, and both map u 4 into u 3 . We choose b and the string

of u 4 is b followed by that of u 3 , i.e., baaba.

It can be shown [LY1] that Algorithm 3.1 succeeds in constructing a complete splitting tree

if and only if the FSM has an adaptive distinguishing sequence. The time complexity of the algo-

rithm is O(pn 2) and the size of the output of the algorithm, i.e., of the annotated complete split-

ting tree, is O(n 2).

We now derive an adaptive experiment for determining the initial state of the FSM, given a

complete splitting tree. At each stage, depending on the output seen so far, there is a set I of pos-

sible initial states and a set C (of equal size) of the possible current states. The experiment is

based on the current states.

Algorithm 3.2. (Adaptive Distinguishing Sequence)

Input: A complete splitting tree ST.

Output: An adaptive distinguishing sequence.

Method: Let I , C be the possible initial and current sets that are consistent with the observed out-

puts (initially, I = C is the whole set S of states). While I > 1 (and thus, also C> 1), find

the lowest node u of the splitting tree whose label contains the current set C, apply the input

string τ associated with node u, and update I and C according to the observed output.

Example 3.2. Consider again the FSM of Fig. 3.2. If we apply Algorithm 3.2 to the splitting

tree ST of Fig. 3.4, we obtain the adaptive distinguishing sequence in Fig. 3.3. First, we input

symbol a, the label of the root of ST. Suppose the output is 0. Then the initial set I is

{s 1 ,s 3 ,s 5 }, which means that the current set C is {s 2 ,s 4 ,s 6 }. The lowest node of ST that con-

tains C is u 2 , so we apply the input sequence from u 2: aba. Suppose that the last output is 1.

Then the initial set becomes I = {s 1 ,s 3 }, with corresponding current set C = {s 5 ,s 1 }. The

lowest node of ST that contains this set is u 1 , so we apply now the sequence from u 1: ba, after

- 19 -

which we know the initial state. The other branches of the adaptive distinguishing sequence are

constructed similarly.

Suppose that Algorithm 3.1 succeeds in constructing a complete splitting tree. Then it can

be shown [LY1] that the experiment derived by Algorithm 3.2 identifies correctly the initial state

and has length at most n(n − 1)/2. The adaptive distinguishing sequence (decision tree) has

O(n 2) nodes and can be constructed in time O(n 2) from the splitting tree. The length of the

adaptive experiment is tight; there are machines for which the shortest adaptive distinguishing

sequence has length n(n − 1)/2 [So].

Recall that it is hard to determine whether an FSM has a preset distinguishing sequence, and

even if such a sequence exists it may be exponentially long. On the other hand, there are efficient

algorithms to determine the existence of and to construct adaptive distinguishing sequences that

are more general but are shorter than preset ones. Therefore, for state identification problem and

for applications such as fault detection (see Section 4), we only have to consider adaptive distin-

guishing sequences.

3.4. State Verification

We now turn to Problem 3. We want to verify that a given machine M with a known state

diagram is in a particular state. This is possible if and only if that state has a Unique Input Output

(UIO) sequence [Gob, Hs, SD]. Adaptiveness does not make a difference in this case.

Definition 3.3. A UIO sequence of a state s is an input sequence x, such that the output sequence

produced by the machine in response to x from any state other than s is different than that from s,

i.e., λ(s i , x) ≠ λ(s , x) for any s i ≠ s.

An input sequence x is a UIO sequence for a state s if and only if its initial state uncertainty

π(x) has s in a singleton block {s}. For example, for the FSM in Fig. 3.1, b is a UIO sequence

for state s 1 because it outputs 0 while s 2 and s 3 output 1; state s 2 has no UIO sequence and s 3

has a UIO sequence a.

If a machine has a preset or even an adaptive distinguishing sequence, then all states have

UIO sequences. More specifically, if a tree T is an adaptive distinguishing sequence, then the

input string formed by the node labels on the path from the root to a leaf that declares the initial

state to be s i is a UIO sequence for state s i . The converse is not true in general. On the other

hand, for a given machine, it is possible that no state has a UIO sequence, that some states have

UIO sequences and some do not, or that every state has UIO sequences but there is no adaptive

distinguishing sequence.

There have been many papers in the last few years, which propose methods for the

- 20 -

conformance testing of protocols based on UIO sequences ([ADLU, CCK, CVI1, CA1, SLD,

SSLS, YU] and others). However, no efficient algorithms are known for finding UIO sequences;

the proposed methods are based on appropriate successor trees and take exponential time.

It turns out that finding UIO sequences is a hard problem [LY1]. For a given machine M,

the following three problems are PSPACE-complete. (1) Does a specific given state s of M have

a UIO sequence? (2) Do all states of M have UIO sequences? (3) Are there some states of M

with UIO sequences. These results hold even in the case of machines with binary input and out-

put alphabets. Furthermore, there are machines whose states have UIO sequences, but only of

exponential length. Note that these are worst case results. It has been reported in practical appli-

cations that in many cases there exist short UIO sequences, especially in communication protocol

machines [ADLU, SD].

3.5. Remarks

In this section we addressed two fundamental problems of testing finite state machines: dis-

tinguishing sequences and UIO sequences. These problems and concepts have been around for

decades since the pioneering works of Moore and Hennie [He, Mo]. Yet the problems about their

existence, length, and complexity of their computation have been resolved only recently [LY1].

We now comment on the relation between these test sequences, since it could be rather confusing.

Distinguishing sequences identify the initial state of a machine, whereas UIO sequences solve an

easier problem; they only verify if the machine is in a particular initial state. If a finite state

machine has a preset distinguishing sequence, then it must have an adaptive one with length no

more than n(n − 1)/2, but not vice versa; there are machines that have adaptive distinguishing

sequences but do not have any preset ones. Therefore, for state identification and its applications

to fault detection, we would consider adaptive distinguishing sequences. If a machine has an

adaptive distinguishing sequence (a decision tree), then each state has a UIO sequence. More

specifically, the input sequence from the root of the decision tree to a leaf node, which corre-

sponds to a state, is a UIO sequence for that state and has length no more than n(n − 1)/2.

Therefore, for state verification and its applications to fault detection, we might want to first try

adaptive distinguishing sequences to derive UIO sequences; they are short and it takes only poly-

nomial time. In case the machine does not have any adaptive distinguishing sequences, we may

try to construct UIO sequences directly. There are machines, which do not have any adaptive dis-

tinguishing sequences but do have UIO sequences for some or all states. Note that there is no

need to consider ‘‘adaptive’’ UIO sequences; they can always be made preset.

- 21 -

4. CONFORMANCE TESTING

We now discuss Problem 4: the conformance testing or fault detection problem. We have

complete information of a specification machine A; we have its state transition and output func-

tions in a form of a transition diagram or state table. We are also given an implementation

machine B that is a ‘‘black box’’ and we can only observe its I/O behavior. We want to design a

test to determine whether B is a correct implementation of A by applying the test sequence to B

and observing the outputs. This problem has been referred to as the ‘‘fault detection’’ or

‘‘machine verification’’ problem in the circuits and switching systems literature, and is called the

‘‘conformance testing’’ (or simply ‘‘test generation’’) problem in the literature on communication

protocols.

4.1. Preliminaries

We wish to test whether an implementation machine B conforms (is equivalent) to the spec-

ification machine A. Obviously, without any assumptions the problem is impossible; for any test

sequence we can easily construct a machine B, which is not equivalent to A but produces the same

outputs as A for the given test sequence. There is a number of natural assumptions that are usu-

ally made in the literature in order for the test to be at all possible:

Assumption 4.1. (1) Specification machine A is strongly connected; (2) Machine A is reduced;

(3) Implementation machine B does not change during the experiment and has the same input

alphabet as A; and (4) Machine B has no more states than A.

An FSM is strongly connected if its transition diagram is strongly connected; that is, for

every pair of states s i and s j there is an input sequence x that takes the machine from state s i to

s j: δ(s i ,x) = s j . The reason for Assumption (1) is that, if A is not strongly connected, and if in

the experiment the machine B starts at a state that cannot reach some other states, then in the test

we will not be able to visit all states of the machine, thus, we will not be able to tell with certainty

whether B is correct. The rationale for Assumption (2) is that we can always minimize A if it is

not reduced, and anyway by testing B we can only determine it up to equivalence because all

equivalent machines have the same I/O behavior. The reason for Assumption (3) is obvious.

In addition, an upper bound must be placed on the number of states of B; otherwise, no mat-

ter how long our test is, it is possible that it does not reach the ‘‘bad’’ part of B. The usual

assumption made in the literature, and which we will also adopt for most of this section, is

Assumption (4): the faults do not increase the number of states of the machine. In other words,

under this assumption, the faults are of two types: ‘‘output faults’’; i.e., one or more transitions

may produce wrong outputs, and ‘‘transfer faults’’; i.e., transitions may go to wrong next states.

However, in applications such as protocol testing, implementation machines may have more

states than that of the specification machines. The additional difficulties due to extra states are

- 22 -

orthogonal to the checking problem itself; We will discuss later in Section 4.7.2 what happens

when assumption (4) is relaxed; the additional difficulties due to extra states are orthogonal to the

checking problem itself.

Under these assumptions, we want to design an experiment that tests whether B is equiva-

lent to A. The following fact is easy to prove, and is well known [Koh, Mo].

Proposition 4.1. Let A and B be two FSM’s satisfying Assumption 4.1. The following are equiv-

alent: (1) A and B are isomorphic; (2) A and B are equivalent; and (3) At least one state of A has

an equivalent state in B.

Note that our notion of a specification FSM does not include an initial state. If the specifi-

cation A includes also a designated initial state s 1 that has to be verified, then a test may not exist,

since this is a state verification problem, see Section 3.4.

On the other hand, suppose that the implementation machine B starts from an unknown state

and that we want to check whether it is isomorphic to A. We first apply a homing sequence that

is supposed to bring B (if it is correct) to a known state s 1 that is the initial state for the main part

of the test, which is called a checking experiment and accomplishes the following. If B is isomor-

phic to A, then the homing sequence has brought B to the initial state s 1 and then the checking

experiment will verify that B is isomorphic to A. However, if B is not isomorphic to A, then the

homing sequence may or may not bring B to s 1; in either case, a checking experiment will detect

faults: a discrepancy between the outputs from B and the expected outputs from A will be

observed.

From now on we assume that a homing sequence has taken the implementation machine B

to a supposedly initial state s 1 before we conduct a conformance test.

Definition 4.1. Let A be a specification FSM with n states and initial state s 1 . A checking

sequence for A is an input sequence x that distinguishes A from all other machines with n states;

i.e., every (implementation) machine B with at most n states that is not isomorphic to A produces

on input x a different output than that produced by A starting from s 1 .

All the proposed methods for checking experiments have the same basic structure. We want

to make sure that every transition of the specification FSM A is correctly implemented in FSM B;

so for every transition of A, say from state s i to state s j on input a, we want to apply an input

sequence that transfers the machine to s i , apply input a, and then verify that the end state is s j by

applying appropriate inputs. The methods differ by the types of subsequences they use to verify

that the machine is in a right state. This can be accomplished by status messages, separating fam-

ily of sequences, distinguishing sequences, UIO sequences, characterizing sequences, and identi-

fying sequences. Furthermore, these sequences can be selected deterministically or randomly.

- 23 -

These methods will be surveyed in this section. We introduce some basic concepts first.

A separating family of sequences for A is a collection of n sets Z i , i = 1 ,... ,n, of sequences

(one set for each state) such that for every pair of states s i , s j there is an input string α that (1)

separates them, i.e., λ A (s i ,α) ≠ λ A (s j ,α) (where λ A is the output function of A), and (2) α is a

prefix of some sequence in Z i and some sequence in Z j . We call Z i the separating set of state s i ,

and the elements of Z i its separating sequences.

There are many ways for choosing separating sets for an FSM. If the machine A has a pre-

set distinguishing sequence x, then we may choose all the Z i’s to be {x}. If A has an adaptive dis-

tinguishing sequence, then we may choose Z i to have a single element, namely the input

sequence for which the adaptive distinguishing experiment declares the initial state to be s i (i.e.,

the input sequence that labels the path from the root to the leaf labeled s i). In fact, it is not hard

to see that we can satisfy the separation property with all sets Z i being singletons if and only if A

has an adaptive distinguishing sequence. However, even if every state s i has a UIO sequence x i ,

we may not be able to choose the singletons {x i} as separating sets, because they may violate the

prefix condition of the separation property.

Every reduced machine has a separating family. One way of constructing a separating fam-

ily for a general reduced machine A is as follows. Since the specification machine A is reduced,

we can find a separating sequence x for any two distinct states s i and s j , using the method in Sec-

tion 2.1. We then partition the states into blocks based on their different outputs λ(s k , x),

k = 1 , . . . , n; each state s k takes x as a separating sequence in its set Z k . Then for each block

with more than one state, we repeat the process until each block becomes a singleton set. The

resulting family of sets has the property that, for every pair of states s i , s j their corresponding sets

Z i , Z j contain a common sequence that separates them; therefore it is a separating family. There

are no more than n − 1 partitions and each Z i has no more than n − 1 separating sequences.

According to this procedure, the sets Z i for different states s i could be different because the states

are involved in different splittings and we need to include a sequence in Z i only if s i is involved

in the splitting. If instead we let every Z i include the separating sequence for every splitting of

every block, no matter whether the corresponding state s i is involved in the splitting or not, then

all the Z i’s would be identical and still each of them would have no more than n − 1 sequences

of length less than n. Such a set of sequences is called a set of characterizing sequences [He,

Koh]; any two states are separable by a sequence in the set.

Note that we want the Z i’s to contain as few and as short sequences as possible. We allow

the sets Z i for different states to be different, instead of an identical characterizing set, for two

reasons. First, because this allows more flexibility, thus we may be able to use smaller sets with

shorter sequences and thus shorten the conformance test. Second, this is needed for the test to

generalize to partially specified machines, because in this case, there may even not exist a set of

characterizing sequences that is defined for all the states.

We say that a state q i of B is similar to state s i of A if it agrees (gives the same output) on

- 24 -

all sequences in the separating set Z i of s i . The key property is that q i can be similar to at most

one state of A. To see this, suppose that q i is similar to states s i and s j and consider a string α
that separates s i from s j and is a prefix of sequences in Z i and Z j . Since s i and s j produce differ-

ent outputs on input α, state q i cannot agree with both, say it disagrees with s i . Then q disagrees

with s i on the sequence of Z i that has α as a prefix. Let us say that an FSM B is similar to A, if

for each state s i of A, the machine B has a corresponding state q i similar to it. Note that then all

the q i’s must be distinct, and since B has at most n states, there is a one-to-one correspondence

between similar states of A and B.

In the remainder of this section, we describe different checking experiments. For clarity, we

denote the specification and implementation machine by A = (I , O , S A , δ A , λ A) and

B = (I , O , S B , δ B , λ B), respectively. Furthermore, we assume that B is supposed to be taken

by a homing sequence to an initial state, which corresponds to state s 1 of A.

4.2. Status Messages and Reset

A status message tells us the current state of a machine. Conceptually, we can imagine that

there is a special input status, and upon receiving this input, the machine outputs its current state

and stays there. Such status messages do exist in practice. In hardware testing, one might be able

to observe register contents which store the states of a sequential circuit, and in protocol testing,

one might be able to dump and observe variable values which represent the states of a protocol

machine.

With a status message, the machine is highly observable at any moment. We say that the

status message is reliable if it is guaranteed to work reliably in the implementation machine B;

i.e., it outputs the current state without changing it. Suppose the status message is reliable. Then

a checking sequence can be easily obtained by simply constructing a covering path of the transi-

tion diagram of the specification machine A, and applying the status message at each state visited.

Since each state is checked with its status message, we verify whether B is similar to A. Further-

more, every transition is tested because its output is observed explicitly, and its start and end state

are verified by their status messages; thus such a covering path provides a checking sequence. If

the status message is not reliable, then we can still obtain a checking sequence by applying the

status message twice in a row for each state s i at some point during the experiment when the cov-

ering path visits s i; we only need to have this double application of the status message once for

each state and have a single application in the rest of the visits. The double application of the sta-

tus message ensures that it works properly for every state.

For example, consider the specification machine A in Fig. 2.1, starting at state s 1 . We have

a covering path from input sequence x = ababab. Let s denote the status message. If it is reli-

able, then we obtain the checking sequence sasbsasbsasbs. If it is unreliable, then we have the

sequence ssasbssasbssasbs.

- 25 -

We say that machine A has a reset capability if there is an initial state s 1 and an input sym-

bol r that takes the machine from any state back to s 1 , i.e., δ A (s i , r) = s 1 for all states s i .
2 We

say that the reset is reliable if it is guaranteed to work properly in the implementation machine B,

i.e., δ B (s i ,r) = s 1 for all s i; otherwise it is unreliable.

For machines with a reliable reset, there is a polynomial time algorithm for constructing a

checking sequence [Ch, CVI1, Vas]. Let Z i , i = 1 , ... ,n be a family of separating sets; as a special

case the sets could all be identical (i.e., a characterizing set). We first construct a breadth-first-

search tree (or any spanning tree) of the transition diagram of the specification machine A and

verify that B is similar to A; we check states according to the breadth-first-search order and tree

edges (transitions) leading to the nodes (states). For every state s i , we have a part of the checking

sequence that does the following for every member of Z i: first it resets the machine to s 1 by input

r, then it applies the input sequence (say p i) corresponding to the path of the tree from the root s 1

to s i and then applies a separating sequence in Z i . If the implementation machine B passes this

test for all members of Z i , then we know that it has a state similar to s i , namely the state that is

obtained by applying the input sequence p i starting from the reset state s 1 . If B passes this test

for all states s i , then we know that B is similar to A. This portion of the test also verifies all the

transitions of the tree. Finally, we check nontree transitions. For every transition, say from state

s i to state s j on input a, we do the following for every member of Z j: reset the machine, apply the

input sequence p i taking it to the start node s i of the transition along tree edges, apply the input a

of the transition, and then apply a separating sequence in Z j . If the implementation machine B

passes this test for all members of Z j then we know that the transition on input a of the state of B

that is similar to s i gives the correct output and goes to the state that is similar to state s j . If B

passes the test for all the transitions, then we can conclude that it is isomorphic to A.

Example 4.1. For the machine in Fig. 2.1, a family of separating sets is: Z 1 ={ a , b },

Z 2 ={ a }, and Z 3 ={ a , b }. A spanning tree is shown in Fig. 4.1 with thick tree edges.

Sequences ra and rb verify state s 1 . Sequence rba verifies state s 2 and transition (s 1 , s 2): after

resetting, input b verifies the tree edge transition from s 1 to s 2 and separating sequence a of Z 2

verifies the end state s 2 . The following two sequences verify state s 3 and the tree edge transition

from s 2 to s 3: rbba and rbbb where the prefix rbb resets the machine to s 1 and takes it to state s 3

along verified tree edges, and the two suffixes a and b are the separating sequences of s 3 .

Finally, we test nontree edges in the same way. For instance, the self-loop at s 2 is checked by the

sequence rbaa.

2 There is occasionally some confusion in the literature concerning the strong connectivity of machine A

with a reset. The reset counts also as an input symbol, i.e., if A has a reset symbol and the state s 1 can reach
all the other states, then A is considered to be strongly connected (even though the subgraph induced by the
transitions on the rest of the input symbols may not be strongly connected).

- 26 -

To check the similarity of B, it takes time O(pn 2) to compute a family of separating

sequences, O(pn) to construct a spanning tree [AHU, CLR], O(n 2) to verify a state and tree

edge, and O(n 2) to check a transition and its end state. There are pn transitions, and thus the

total cost is O(pn 3) to construct a checking sequence of length O(pn 3). This bound on the

length of the checking sequence is in general best possible (up to a constant factor): there are

specification machines A with reliable reset such that any checking sequence requires length

Ω(pn 3) [Vas].

For machines with unreliable reset, only randomized polynomial time algorithms are known

[YL2]; we can construct with high probability in randomized polynomial time a checking

sequence of length O(pn 3 + n 4 log n). See Section 4.5.

4.3. Distinguishing Sequences

For machines with a distinguishing sequence there is a deterministic polynomial time algo-

rithm to construct a checking sequence [He, Koh] of polynomial length. For clarity, we first dis-

cuss checking experiments using preset distinguishing sequences and then study the application

of adaptive distinguishing sequences.

A distinguishing sequence is similar to an unreliable status message in that it gives a differ-

ent output for each state, except that it changes the state. We take a distinguishing sequence x 0 as

the separating set Z i for every state. We first check whether the implementation machine B is

similar to the specification machine A by a test sequence which displays the response of each state

to the distinguishing sequence. We then check each transition by exercising it and verifying the

ending state, also using the distinguishing sequence.

A transfer sequence τ(s i , s j) is a sequence that takes the machine from state s i to s j . Such

a sequence always exists for any two states since the machine is strongly connected. Obviously,

it is not unique and a shortest path [AHU, CLR] from s i to s j in the transition diagram is often

preferable. Suppose that the machine is in state s i and that distinguishing sequence x 0 takes the

machine from state s i to t i , i.e., t i = δ(s i , x 0), i = 1 , . . . , n. For the machine in the initial

state s 1 , the following test sequence takes the machine through each of its states and displays

each of the n different responses to the distinguishing sequence:

x 0 τ(t 1 , s 2) x 0 τ(t 2 , s 3) x 0
. . . x 0 τ(t n , s 1) x 0 (4.1)

Starting in state s 1 , x 0 takes the machine to state t 1 and then τ(t 1 , s 2) transfers it to state s 2 for

its response to x 0 . At the end the machine responds to x 0 τ(t n , s 1). If it operates correctly, it

will be in sate s 1 , and this is verified by its response to the final x 0 . During the test we should

observe n different responses to the distinguishing sequence x 0 from n different states, and this

verifies that the implementation machine B is similar to the specification machine A.

We then establish every state transition. Suppose that we want to check transition from

- 27 -

state s i to s j with input/output a / o when the machine is currently in state t k . We would first take

the machine from t k to s i , apply input a, observe output o, and verify the ending state s j . We

cannot simply use τ(t k , s i) to take the machine to state s i , since faults may alter the ending state.

Instead, we apply the following input sequence: τ(t k , s i − 1) x 0 τ(t i − 1 , s i). The first transfer

sequence is supposed to take the machine to state s i − 1 , which is verified by its response to x 0 ,

and as has been verified by (4.1), x 0 τ(t i − 1 , s i) definitely takes the machine to state s i . We then

test the transition by input a and verify the ending state by x 0 . Therefore, the following sequence

tests for a transition from s i to s j:

τ(t k , s i − 1) x 0 τ(t i − 1 , s i) ax 0 (4.2)

After this sequence the machine is in state t j . We repeat the same process for each state transition

and obtain a checking sequence. Observe that the length of the checking sequence is polynomial

in the size of the machine A and the length of the distinguishing sequence x 0 .

Example 4.2. A preset distinguishing sequence for the machine in Fig 2.1 is: x 0 = ab and the

corresponding responses from state s 1 , s 2 , and s 3 are: 01, 11, and 00, respectively. The transfer

sequences are, for example, τ(s 1 , s 2) = b. The sequence in (4.1) for checking states is ababa-

bab. Suppose that the machine is in state s 3 . Then the following sequence babbab tests for the

transition from s 2 to s 3: b takes the machine to state s 1 , ab definitely takes the machine to state

s 2 if it produces outputs 01, which we have observed during state testing, and, finally, bab tests

the transition on input b and the end state s 3 . Other transitions can be tested similarly.

We can use adaptive distinguishing sequences to construct a checking sequence. An adap-

tive distinguishing sequence is not really a sequence but a decision tree that specifies how to

choose inputs adaptively based on observed outputs to identify the initial state. For each state s i ,

we examine the decision tree and take the input sequence x i from the root to the leaf node s i , see

Section 3.3. The sets Z i = {x i} form a separating family. For example, an adaptive distinguish-

ing sequence of the machine in Fig. 2.1 is in Fig. 4.2. We have x 1 = ab, x 2 = a, and x 3 = ab.

To construct a test sequence, we simply replace in (4.1) and (4.2) each x 0 by x i if the state that is

checked is s i . That is, (4.1) becomes x 1 τ(t 1 , s 2) x 2 τ(t 2 , s 3) x 3
. . . x n τ(t n , s 1) x 1 , where

t i = δ(s i ,x i). Sequence (4.2) becomes τ(t k , s i − 1) x i − 1 τ(t i − 1 , s i) ax j . Note that the resulting

test sequence is preset. Of course, we prefer to use adaptive distinguishing sequences since they

are more general and shorter than preset ones; as discussed in Section 3, preset distinguishing

sequences can be exponentially longer than adaptive ones.

An adaptive distinguishing sequence has length O(n 2), a transfer sequence has length no

more than n, and, consequently, the test sequence in (4.1) has length O(n 3). On the other hand,

each test in (4.2) has length O(n 2) and we need a test sequence of length O(pn 3) for all the pn

transitions. This construction yields a checking sequence of length O(pn 3). Regarding the time

- 28 -

complexity to construct the sequence, recall that it takes time O(pn 2) to find an adaptive distin-

guishing sequence, and time O(pn) to find a transfer sequence (using a breadth-first-search for

instance), and the total cost is O(pn 3).

There is another simple variation for constructing a checking experiment using preset or

adaptive distinguishing sequences. As we mentioned earlier, a distinguishing sequence is similar

to an unreliable status message, except that it may change the state. Let x i , t i be defined as above

from an adaptive distinguishing sequence (in the case of a preset sequence, all the x i are equal).

Let y i = x i τ(t i , s i); the sets {y i} form a separating family. Furthermore, each y i takes the

machine from s i back to s i and serves as status message for state s i . As in the case of an unreli-

able status message, a checking sequence can be obtained from a covering path with the end state

s i of each transition checked by the corresponding y i; for one of the visits of the covering path to

each state s i we apply y i twice, and for the rest of the visits to s i we apply y i once. It is easy to

see that the resulting sequence is a checking sequence and has length also at most O(pn 3) in gen-

eral.

4.4. Identifying Sequences

The previous three methods are based on knowing where we are during the experiment,

using status messages, reset, and distinguishing sequences, respectively. However, these

sequences may not exist in general. A method was proposed by Hennie that works for general

machines, although it may yield exponentially long checking sequences. It is based on certain

sequences, called identifying sequences in [Koh] (locating sequences in [He]) that identify a state

in the middle of the execution. Identifying sequences always exist and checking sequences can be

derived from them [He, Koh].

To check that the implementation machine B is similar to the specification machine A we

display for each state the responses to all the sequences in its separating set. Suppose that the

separating set Z i of state s i has two separating sequences z 1 and z 2 . We want to take the

machine to s i , apply z 1 , take the machine back again to s i , and then apply z 2 . However, due to

faults, the machine B may not arrive at state s i as we wish and the two responses to z 1 and z 2

may not be from the same state, and the test for similarity is invalid. We want to make sure that

when we apply z 1 and z 2 the machine is at the same state. As described in previous subsections,

status messages, reset, and distinguishing sequences help in this respect. However, when they do

not exist it is more difficult to achieve this goal.

Example 4.3. Consider machine A in Fig. 2.1. We want to display the responses of state s 1 to

separating sequences a and b. Suppose that we first take the machine to s 1 by a transfer

sequence, apply the first separating sequence a, and observe output 0. Due to faults, there is no

guarantee that the implementation machine was transferred to state s 1 in the first place. Assume

instead that we transfer the machine (supposedly) to s 1 and then apply aaa which produces output

- 29 -

000. The transfer sequence takes the machine B to state q 0 and then aaa takes it through states

q 1 , q 2 , and q 3 , and produces outputs 000 (if not, then B must be faulty). The four states q 0 to q 3

cannot be distinct since B has at most three states. Note that if two states q i, q j are equal, then

their respective following states q i + 1 , q j + 1 (and so on) are also equal because we apply the

same input a. Hence q 3 must be one of the states q 0 , q 1 , or q 2 , and thus we know that it will

output 0 on input a; hence we do not need to apply a. Instead we apply input b and must observe

output 1. Therefore, we have identified a state of B (namely q 3); that responds to the two separat-

ing sequences a and b by producing 0 and 1 respectively, and thus is similar to state s 1 of A.

More generally, suppose that state s i of the specification machine A has two separating

sequences z 1 and z 2 in Z i . Consider the input sequence

(z 1 τ(t i , s i)) nz 2 (4.3)

where t i = δ(s i , z 1); i.e., z 1 takes the machine from state s i to t i . Consider the application of

this sequence to A starting from s i and suppose that B starting from some state q 0 produces the

same output. Let q r be the state of B after (z 1 τ(t i , s i)) r , r = 1 , . . . , n. Arguing as in the exam-

ple, at least two of the states q 0 to q n are equal. Hence q n is equal to some q r , r < n. Conse-

quently, we know for sure that q n will produce the same output as s i on input z 1 without testing

it explicitly; because of the suffix z 2 of (4.3) we know also that it produces the same output on

input z 2 , and therefore is similar to state s i .

Identifying sequences for states with up to n − 1 separating sequences can be obtained sim-

ilarly. Suppose that Z i = {z 1 , .. ,z l}. For each r = 1 , ... ,l, let z ′ r be an extension of z r that takes

the machine back to s i , e.g., z ′ r = z r τ(t ir , s i), where t ir = δ(s i , z r). Define inductively

sequences β r , where, for r = 1, β 1 is empty, and for r > 1, β r = (β r − 1 z ′ r − 1) n β r − 1 . One can

show then by similar arguments as above that the sequence β l z l is an ‘‘identifying’’ sequence for

state s i in the following sense: if the implementation machine starting from any state produces the

same output in response to this sequence as that produced by machine A starting from s i , then B

has a state similar to s i; in particular the state of B right before the suffix z l is similar to s i

(regardless of which state B started from).

Once we have identifying sequences for all the states, we can apply a procedure similar to

that of Section 4.3: the machine is made to go through every state, which is verified by displaying

the responses to its identifying sequence. Let I i be an identifying sequence of state s i with

t i = δ(s i , I i). The following test verifies whether the implementation machine B is similar to

the specification machine A:

I 1 τ(t 1 , s 2) I 2 τ(t 2 , s 3) I 3
. . . I n τ(t n , s 1) I 1 (4.4)

If B passes this test, we know that it has a unique state, say s ′ i , similar to state s i of A,

- 30 -

i = 1 , . . . , n.

To verify the transitions, we can then use anyone of the identifying sequences to obtain in

effect a reliable reset. Suppose for example that s 1 has l separating sequences z 1 , ..., z l , and its

identifying sequence is I 1 = β l z l as above. If on input I 1 the machine B produces the same out-

put as A starting from s 1 , then we know that right before the suffix z l the machine B was at its

unique state s ′ 1 that is similar to s 1 , and therefore at the end it is at the unique state

t ′ 1 = δ B (s ′ 1 ,z l), regardless of where it started from. Thus, at any point in time during the

experiment, if B is supposed to be in state s k at that point, we can reset it to t ′ 1 by applying

τ(s k ,s 1) I 1; if B produces the correct output then we know that at the end it is in state t ′ 1 . We

can then check the transitions as in the case of a reliable reset (Section 4.2). Namely, to test a

transition with input a from state s i to s j , we repeat the following process for every separating

sequence of s j: reset the machine to t 1 as above, transfer it to s i (along tested transitions), and

then apply a followed by a separating sequence of s j .

The length of an identifying sequence in the above construction grows exponentially with

the number of separating sequences of a state and the resulting checking sequence is of exponen-

tial length in general.

4.5. A Polynomial Time Randomized Algorithm

With status messages, reset, or distinguishing sequences, we can find in polynomial time

checking sequences of polynomial length. In the general case without such information, Hennie’s

algorithm constructs an exponential length checking sequence. We now describe a polynomial

time randomized algorithm that constructs with high probability a polynomial length checking

sequence [YL2]. The probabilities are with respect to the random decisions of the algorithm; we

do not make any probabilistic assumptions on the specification A or the implementation B. For a

test sequence to be considered ‘‘good’’ (a checking sequence), it must be able to uncover all

faulty machines B. As usual, ‘‘high probability’’ means that we can make the probability of error

arbitrarily small by repeating the test enough times (doubling the length of the test squares the

probability that it is not a checking sequence).

We break the checking experiment into two tests. The first test ensures with high probabil-

ity that the implementation machine B is similar to A. The second test ensures with high proba-

bility that all the transitions are correct: they give the correct output and go to the correct next

state.

- 31 -

Test 1. (Similarity)

For i = 1 to n do

Repeat the following k i times:

Apply an input sequence that takes A from its current state to state s i;

Choose a separating sequence from Z i uniformly at random and apply it.

We assume that for every pair of states we have chosen a fixed transfer sequence from one

state to the other. Assume that z i is the number of separating sequences in Z i for state s i . Let x

be the random input string formed by running Test 1 with k i = O(nz i min (p ,z i) logn) for each

i = 1 ,... ,n. It can be shown that, with high probability, every FSM B (with at most n states) that is

not similar to A produces a different output than A on input x.

Test 2. (Transitions)

For each transition of the specification FSM A, say δ A (s i , a) = s j , do

Repeat the following k i j times:

Take the specification machine A from its current state to state s i;

Flip a fair coin to decide whether to check the current state or the transition;

In the first case, choose (uniformly) at random a sequence from Z i and apply it;

In the second case, apply input a followed by a randomly selected sequence from Z j .

Let x be the random input string formed by running Test 2 with

k i j = O(max (z i ,z j) log (pn)) for all i , j. It can be shown that, with high probability, every FSM

B (with at most n states) that is similar but not isomorphic to A produces a different output than A

on input x.

Combining the two tests, we obtain a checking sequence with a high probability [YL2].

Specifically, given a specification machine A with n states and input alphabet of size p, the ran-

domized algorithm constructs with high probability a checking sequence for A of length

O(pn 3 + p ′n 4 logn) where p ′ = min (p ,n).

The first term pn 3 in the above expression is the length of checking sequences for machines

with reset or distinguishing sequences (Section 4.2 and 4.3). As a matter of fact, it matches the

lower bound of checking sequences [Vas]. The second term exceeds it by a factor of nlogn in the

worst case, but the excess gets smaller as p gets larger. For very large values of p (eg, p≥n 2 logn)

the first term dominates and the upper bound is optimal up to a constant factor. On the other

hand, several factors of n in the bound are really the number of separating sequences, their length,

and the diameter of the transition diagram (the maximum distance between two states). It is

reported that in many cases the states can be separated by few and short sequences. There are

some rigorous results showing this to be the case for most specification machines in a

- 32 -

probabilistic sense, i.e. for random machines A [TB]. In the case that these parameters are loga-

rithmic, the bound on the checking sequence is significantly better3: Õ(pn + n 2). Thus, for

p ≥ n, the length of the checking sequence is within polylog factors of the number of transitions

pn. Furthermore, it is proved in [YL2] that for almost all specification machines A, the con-

structed checking sequence has length Õ(pn) if p > logn.

4.6. Heuristic Procedures and Optimizations

Checking sequences guarantee a complete fault coverage but sometimes could be too long

for practical applications and heuristic procedures are used instead. For example, in circuit test-

ing, test sequences are generated based on fault models that significantly limit the possible faults

[AS]. Without fault models, covering paths are often used in both circuit testing [AS, FM1, Koh]

and protocol testing [NT, SL, UD] where a test sequence exercises each transition of the specifi-

cation machine at least once. A short test sequence is always preferred and a shortest covering

path is desirable, resulting in a Postman Tour [ADLU, AL, EJ, Ku, UD].

A covering path is easy to generate yet may not have a high fault coverage. Additional

checking is needed to increase the fault coverage. For instance, suppose that each state has a UIO

sequence. To increase the coverage we may test a transition from state s i to s j by its I/O behavior

and then apply a UIO sequence of s j to verify that we end up in the right state. Suppose that such

a sequence takes the machine to state t j . Then a test of this transition is represented by a test

sequence, which takes the machine from s i to t j . Imagine that all the edges of the transition dia-

gram have a white color. For each transition from s i to s j , we add a red edge from s i to t j due to

the additional checking of the UIO sequence of s j . A test that checks each transition along with a

UIO sequence of its end state requires that we find a path that exercises each red edge at least

once. It provides a better fault coverage than a simple covering path, although such a path does

not necessarily give a checking sequence. See [CVI1] for a counter example. We would like to

find a shortest path that covers each red edge at least once. This is a Rural Postman Tour [GJ].

In general, it is an NP-hard problem. However, practical constraints are investigated and polyno-

mial time algorithms are obtained for a class of communication protocols in [ADLU].

Sometimes, the system is too large to construct and we cannot even afford a covering path.

To save space and to avoid repeatedly testing the same portion of the system, a ‘‘random walk’’

could be used for test generation [LSKP, Wes]. Basically, we only keep track of the current state

and determine the next input on-line; for all the possible inputs with the current state, we choose

one at random. Note that a pure random walk may not work well in general; as is well known, a

3 The notation Õ(.) is used to make expressions more readable by suppressing polylogarithmic factors (i.e.,
polynomials of logarithms of the input parameters p and n), in the same way as the big O notation is used to
hide constant factors. That is, a function is in Õ(f (p ,n)) if there is a constant c such that that the function is
in O(f (p ,n) logc (p + n)).

- 33 -

random walk can easily get ‘‘trapped’’ in one part of the machine and fail to visit other states if

there are ‘‘narrow passages’’. Consequently, it may take exponential time for a test to reach and

uncover faulty parts of an implementation machine through a pure random walk. Indeed, this is

very likely to happen for machines with low enough connectivity and few faults (single fault, for

instance). To avoid such problems, a guided random walk was proposed [LSKPU] for protocol

testing where partial information of a history of the tested portion is being recorded. Instead of a

random choice of next input, priorities based on the past history are enforced; on the other hand,

we make a random choice within each class of inputs of the same priority. Hence we call it a

guided random walk; it may take the machine out of the ‘‘traps’’ and increase the fault coverage.

In the techniques discussed, a test sequence is formed by combining a number of subse-

quences, and often there is a lot of overlaps in the subsequences. There are several papers in the

literature that propose heuristics for taking advantage of overlaps in order to reduce the total

length of tests [CCK, Koh, YU].

4.7. Extensions

There are various extensions of the problem we have studied. Here we discuss three of

them: testing only one black box, faults that increase the number of states, and partially specified

machines. With certain assumptions, a checking sequence distinguishes any implementation

machine that is not isomorphic to the specification machine. However, in practice, we often only

have one implementation machine - one black box - under test. In previous discussions we

assume that the number of states of the implementation machines is no more than that of the spec-

ification machine. This may not be true for implementations, especially for complicated proto-

cols. Also system design (specification) is typically not fully specified; designers have design

requirements and system functions in mind rather than ‘‘mathematical completeness’’.

4.7.1. Testing One Black Box

Suppose that we are given a black box implementation machine B which we want to test for

conformance with the specification FSM A. Suppose that we apply a deterministic test. Even if

B passes the test, we cannot tell with any confidence at the end whether B is correct (without

making any probabilistic assumptions on B), unless our test sequence x is a checking sequence,

because if x misses even one faulty FSM, it is possible that B is exactly that machine. Thus, for a

deterministic algorithm, testing a single black box machine B does not differ from testing all pos-

sible machines. However, if we allow randomization, then testing a single machine to achieve a

certain level of confidence may require a shorter test. It turns out that the following simple algo-

rithm that checks transitions at random is just as good as any in this respect. As before, we let

{Z j} be a family of separating sets.

- 34 -

Test. (One Black Box)

Repeat the following k times:

Pick a transition of A at random, say transition from state s i on input symbol a to state s j;

Apply a shortest input sequence that transfers the machine A from its current state to s i;

Apply input a;

Choose uniformly at random a sequence from Z j and apply it.

Suppose that there are at most z < n separating sequences for any state and that each is of

length at most n. It can be shown [YL2] that k = O(pnz) iterations (producing a test sequence of

length O(pn 2 z) = O(pn 3)) suffice to reveal a fault in any fixed faulty machine B with high

probability. Specifically, let B be a fixed faulty machine with at most n states. For any ε > 0, the

test sequence of length at most 2pn 2 z log (1/ε) that is generated after k = pnz log (1/ε) iterations

detects that B is faulty with probability at least 1 − ε.

Note that the probability is again with respect to the random decisions of the algorithm.

There are no probabilistic assumptions on the specification A or the implementation B; i.e., the

statement applies to any A and B. Also we remark that one factor n in the bound can be replaced

by D, an upper bound on the diameter and the length of the separating sequences. Thus, if D and

z are logarithmic (as is the case for many specification machines), then a fault will be discovered

with high probability within log factors of pn, the number of transitions.

4.7.2. More States

Depending on the applications and implementations, the assumption that faults do not intro-

duce additional states may or may not be satisfied. If it does not, then the fault detection problem

becomes much harder. However, the additional complications that arise from the extra states do

not have so much to do with the checking problem itself, but instead are due to the well known

difficulties of traversing unknown graphs, i.e., the universal traversal problem for directed graphs

[AKLLR].

Suppose that A is a specification FSM with n states and p inputs and that B is an implemen-

tation machine with at most n + ∆ states. Suppose that B is identical to A except for the ∆ extra

states that hang off from a state of B where there happens to be an ‘‘incorrect’’ transition. Then it

is like having to search an unknown graph of ∆ nodes for a bad edge. More specifically, consider

the machine B in Fig. 4.3. It has states s 1 , ..., s n and q 1 , ... , q ∆ . Let α = a 0
. . . a ∆ be an

input sequence of length ∆ + 1. All the states induce an isomorphic copy of A except for the tran-

sition of s i on input a 0 which leads to q 1 . Let α k = a 0
. . . a k − 1 be the prefix of α of length k

and let s ik = δ A (s i ,α k). For each k, the extra state q k has the same transitions as s ik (i.e., same

next state and output) except for the input symbol a k . On input a k , state q k , for k < ∆, moves to

q k + 1 producing the same output as s ik, but q ∆ produces the wrong output λ B (q ∆ ,a ∆)

- 35 -

≠ λ B (s i∆ ,a ∆) or moves to a wrong next state. This subgraph of the ∆ extra states is the usual

graph that is hard to search, and shows for example that universal traversal of directed graphs

requires exponential length: if the search starts at s i and is guaranteed to traverse this last bad

edge out of q ∆ , regardless of what α is, then the traversal sequence must contain all possible

strings α of length ∆ + 1, and thus it must have length at least p ∆ + 1 . Moore [Mo] used originally

the graph to show his exponential lower bound for the machine identification problem (see Sec-

tion 7.1), calling it the ‘‘combination lock’’ machine, because in order to ‘‘unlock’’ it; i.e., find

that last edge out of the last node q ∆ we must know the ‘‘combination’’ α, and there are p ∆ + 1

possible combinations. Therefore, a test sequence now has to consider all possible combinations

leading to a possibly bad edge through the extra nodes.

Vasilevskii showed that in the case of ∆ extra nodes, the lower bound on the test sequence

(for some specification FSM A) is multiplied by p ∆; i.e., it becomes Ω(p ∆ + 1 n 3) [Vas], That is,

there is a specification machine A such that every checking sequence for A with respect to all

implementation machines B with at most n + ∆ states has length at least Ω(p ∆ + 1 n 3). Note that

the problem described above, which is introduced by the extra states and causes the exponential

dependence on ∆, is shared by all specification FSM’s A; i.e., it is not the case that there are only

some pathological bad machines A. For every specification FSM A, if we want a test that is com-

plete for all machines B with n + ∆ states, then we have to try all possible input combinations of

length ∆ + 1 from all the states of A, and thus, the test sequence must have length at least p ∆ + 1 n.

(On the other hand, faulty machines B, such as the one in Fig. 4.3, that cause this problem, are

pathological.)

Consequently, the results from the previous sections can be extended to the case with ∆
extra states with a multiplicative increase in cost by a factor of p ∆ . For example, in the test of

one black box of the previous subsection, instead of picking a transition at random and checking

it as indicated there, we pick a sequence of length at most ∆ + 1 and check it in the same way.

The corresponding theorem becomes: a faulty machine B with at most n + ∆ states fails a test of

length 2p ∆ + 1 n 2 z log (1/ε) with probability at least 1 − ε. The other results can be extended simi-

larly.

4.7.3. Partially Specified Machines

Although protocols have large input alphabets, they are typically only partially specified;

the transitions out of most states on most input symbols are not specified. The transitions that are

specified are called core transitions. There are two levels of conformance testing, strong and

weak, depending on how the unspecified transitions are treated (see eg. [SD, SL]). In strong con-

formance testing, there is a completeness assumption stating how missing transitions are to be

treated. Such an assumption might be for example that if the transition of state s i on input a is

not in the core, then if the machine receives input a while being in state s i the machine simply

ignores the input; this is equivalent to having a transition from s i to itself on input a with null

- 36 -

output. 4 An alternative completeness assumption may be that if a transition is not in the core,

then the machine makes a transition to an error state and outputs an error symbol. In any case, a

partially specified machine A augmented with a completeness assumption can be regarded as a

fully specified machine A ′. For an implementation machine B to conform strongly to a specifica-

tion A, the implementation is supposed to conform both to the core behavior of the specification

and to the choices of the completeness assumption, and the test is supposed to check for that.

Thus, strong conformance testing is essentially the same as testing the fully specified machine A ′
with the missing transitions included and does not present any new problems.

In weak conformance testing, the missing transitions are treated as being ‘‘don’t cares’’.

The implementation machine is only required to have the same ‘‘core behavior’’, and can be arbi-

trary or undefined for the missing transitions. We say that an input sequence x is specified (or

defined) at a state s i of A, if the sequence x traces a path from s i using only core transitions. In

this case, the final state δ A (s i ,x) and the output λ A (s i ,x) are defined. Our assumptions on the

specification FSM A of Section 4.1 refer now to the core part of A. Thus, the strong connectivity

assumption means that for every pair of states s i , s j there is an input sequence x that is specified

at s i and takes the machine A from s i to s j . The assumption that A is reduced means that for

every pair of states s i , s j , there is an input sequence x which (1) is specified starting from both

states, and (2) produces distinct outputs, λ A (s i ,x) ≠ λ A (s j ,x). 5 Let B be a fully specified FSM

with the same input alphabet as A. From Proposition 4.1, we define weak conformance as fol-

lows. The machine B conforms weakly to the specification machine A if it has a state q 1 such that

for every input sequence x ∈ I * that is specified in A at a state s 1 , it holds that

λ A (s 1 ,x) = λ B (q 1 ,x).

Assuming that B does not have more states than A, it is easy to see that B conforms weakly

to A if and only if A (only with the core transitions) is isomorphic to a subgraph of B, including

input/output labels on the transitions; i.e., we can number the states of B as q 1 , ..., q n so that if

input a is specified at a state s i of A with δ A (s i ,a) = s j , then δ B (q i ,a) = q j and

λ A (s i ,a) = λ B (q i ,a).

We now discuss checking experiments for partially specified machines. In this case, we

may be obliged to use different separating sets for different states, because there may even not

exist an input that is specified at all the states. Also, we cannot use the classical partitioning algo-

rithm to test for state equivalence. We can test if A is reduced and compute separating sets in

4 Null output is permitted. It is assumed that every transition and the production of output takes place within
a certain time [SD], and thus the null output (absence of output) can be treated as just another output symbol.
5 If A is not reduced, then the situation is similar to the case that the black box B can have more states than A.
Sometimes one sees in the literature described partially specified FSM’s that are not reduced. However, of-
ten this is due to the omission from the description of A of a default completeness assumption regarding some
of the missing transitions (such as, an input being rejected or ignored at a particular state). Usually, the fact
that one has two different states s i , s j in a specification suggests that they are meant to be distinguishable
from each other and shouldn’t be merged.

- 37 -

polynomial time [YL2]. However, the separating sequences have length at most n 2 instead of

n − 1 as in fully specified machines.

Definition 4.2. Let A be a partially specified FSM with n states and initial state s 1 . A checking

sequence for A is an input sequence x that is defined at s 1 and which distinguishes A from all

machines B with n states that do not conform weakly to A.

According to this definition, no assumptions are made on the behavior of a correct imple-

mentation in the noncore transitions, because a checking sequence does not (in fact is not allowed

to) exercise them; for example, it can be that the machine breaks down completely if we try an

unspecified transition.

Weak conformance testing of partially specified machines appears at first sight to be easier

than strong conformance, because, after all, we have to check fewer transitions. However, the

opposite is true. The missing transitions allow more flexibility to the implementation machine.

For example, in the fully specified case if we bound the number of faults by a constant, then there

is a polynomial number of faulty machines. However, in the partially specified case, even if we

only allow one fault in a core transition, there is an exponential number of faulty machines for all

possible choices on the noncore transitions; the checking sequence has to detect the fault without

finding out what happens in the noncore transitions.

We now explain which results carry over to the partially specified case and what the bounds

are. Let n be the number of states, p the number of inputs, and m the number of core transitions

of A. We assume that we have a separating set for each state with at most z sequences in each set,

and that D is an upper bound on the diameter of A and the length of the separating sequences.

The randomized algorithm for one black box testing carries over directly to the partially

specified case; we only check the core transitions. It can be shown [YL2] that if B does not con-

form weakly to A, then a test sequence of length at most 2mDzlog (1/ε) detects it with probability

at least 1 − ε. In the worst case this is O(mn 3), and in the good case where D and z are logarith-

mic, it is Õ(m).

The randomized algorithm in Section 4.5 also works with certain modifications [YL2]. The

length of the sequence that tests the similarity of B is now n 2 Dzmin (p ,z) logn. We can run Test

2 applying it only on the core transitions. However, we have to increase the number of repetitions

k i j for each transition in Test 2 to O(nzmin (p ,z) logn). Thus, the length of the sequence that

checks all the transitions is O(mnDzmin (p ,z) logn); this is also the length of the checking

sequence with this approach because Test 2 becomes now the bottleneck (note that m≥n). In the

worst case, the length of the checking sequence is O(mn 4 min (p ,n) logn), and in the good case

(logarithmic D and z) it is Õ(mn).

In the case of a machine with a reliable reset, the same construction of Section 4.2 based on

- 38 -

separating sets can be used in the partially specified case, and the proof works as well. The

checking sequence in this case has length O(mDz). In the worst case this is O(mn 3), and in the

good case it is Õ(m). On the other hand, if the reset is not reliable, we suggest the following

algorithm. First apply Test 1 as in the general case. Then apply Test 2 only for the n reset transi-

tions (since n < m, this is better than checking all the transitions). If the black box B passes these

two tests, then we know that it is similar to A and that the reset works properly. Then, as a final

step we apply the checking sequence from the reliable reset case. The length of the checking

sequence is O(mDz + n 2 Dzmin (p ,z) logn). In the worst case this is

O(mn 3 + n 5 min (p ,n) logn), and in the good case it is Õ(m + n 2).

5. EXTENDED AND COMMUNICATING FINITE STATE MACHINES

In principle, finite state machines model appropriately sequential circuits and control por-

tions of communication protocols. However, in practice the usual specifications of protocols

include variables and operations based on variable values; ordinary FSM’s are not powerful

enough to model in a succinct way the physical systems any more. For instance, ANSI/IEEE

Standard ISO 8802-2 (Logical Link Control) [ANSI1] is specified by 14 control states, a number

of variables, and a set of transitions. For example, a typical transition is (p. 96):

current_state SETUP

input ACK_TIMER_EXPIRED

predicate S_FLAG = 1

output CONNECT_CONFIRM

action P_FLAG := 0; REMOTE_BUSY := 0

next_state NORMAL

In state SETUP and upon input ACK_TIMER_EXPIRED, if variable S_FLAG has value 1, then

the machine outputs CONNECT_CONFIRM, sets variable P_FLAG and REMOTE_BUSY to 0,

and moves to next state NORMAL.

To model this and other protocols, including other ISO standards and complicated systems

such as 5ESS6 , we extend finite state machines with variables as follows. We denote a finite set

of variables by a vector: x→ = (x 1 , . . . , x k). A predicate on variable values P(x→) returns FALSE

or TRUE; a set of variable values x→ is valid if P(x→) = TRUE, and we denote the set of valid vari-

able values by X P = {x→ : P(x→) = TRUE}. An action (transformation) is an assignment:

x→ : = A(x→) where A is a function of x→.

Definition 5.1. An Extended finite state machine (EFSM) is a quintuple

M = (I , O , S , x→, T)

6 AT&T No. 5 Electronic Switching System

- 39 -

where I, O, S, x→, and T are finite sets of input symbols, output symbols, states, variables, and tran-

sitions respectively. Each transition t in the set T is a 6-tuple:

t = (s t , q t , a t , o t , P t , A t)

where s t , q t , a t , and o t are the start (current) state, end (next) state, input, and output, respec-

tively. P t (x→) is a predicate on the current variable values and A t (x→) gives an action on variable

values.

Initially, the machine is in an initial state s 1 ∈ S with initial variable values: x→init . Suppose

that at a state s the current variable values are x→. Upon input a, the machine follows a transition

t = (s , q , a , o , P , A) if x→ is valid for P: P(x→) = TRUE. In this case, the machine outputs o,

changes the current variable values by action x→ : = A(x→), and moves to state q.

For each state s ∈ S and input a ∈ I, let all the transitions with start state s and input a be:

t i = (s , q i , a , o i , P i , A i), 1 ≤ i ≤ r. In a deterministic EFSM the sets of valid variable val-

ues of these r predicates are mutually disjoint, i.e., X P i
∩ X P j

= ∅, 1 ≤ i ≠ j ≤ r. Otherwise,

the machine is nondeterministic.

In a deterministic EFSM there is at most one possible transition to follow, since for each

state and input, the associated transitions have disjoint valid variable values for their predicates;

in a nondeterministic EFSM there may be more than one possible transition to follow.

Clearly, if the variable set is empty and all predicates P ≡ TRUE, then an EFSM becomes

an ordinary FSM.

Each combination of a state and variable values is called a configuration. Given an EFSM,

if each variable has a finite number of values (Boolean variables for instance), then there are a

finite number of configurations, and we have an equivalent FSM with configurations as states.

Therefore, an EFSM with finite variable domains is a compact representation of an FSM. Thus,

testing extended FSM’s reduces in principle to testing of ordinary FSM’s. Specifically, the tech-

niques in Section 4 on testing for conformance still apply to EFSM’s; we first construct an equiv-

alent FSM from a given EFSM with configurations as states and then apply a test sequence such

as a checking experiment to the FSM. As for state identification and verification, we have two

variations of the problems and both find their usages in practice. In the first case, we want to

identify/verify the current (control) state and variable values. We expand the EFSM into an equiv-

alent FSM and identify/verify the current configuration, which contains information of the current

state and variable values. In the second case, we only need to identify/verify the current (control)

state. We could still expand the EFSM into an equivalent FSM first. We now only need to

identify/verify whether we are in any one of a set of configurations whose control state is the state

we want to identify/verify.

- 40 -

However, for many protocol systems, the equivalent FSM may have many more states than

the length of the tests that we can afford to perform, or moreover the equivalent FSM may have

such a large number of states that it is impossible to even construct it. Consequently, in these

cases, none of the testing methods, which are based on explicitly given FSM’s, are applicable.

This is the well-known state explosion problem. There is a number of approaches to cope with

this problem [CA2, CK, FL, Hol, Kur, Kw1. Kw2, LL1, LL2, MP2, PF, TBS, WL1, WL2].

Instead of surveying different techniques, we discuss a general procedure for minimization and

reachability of EFSM’s, which can be used for both protocol and VLSI testing [CK, LY2]. We

discuss here only the case of deterministic EFSM’s (the minimization procedure extends to the

nondeterministic case).

Suppose that we were able to construct an equivalent FSM for a given EFSM. Then in the

FSM, a number of states could be equivalent, and we could ‘‘collapse’’ equivalent states into one

and compute a reduced machine. Furthermore, in the reduced machine we are only interested in

the states reachable from the initial state. An interesting question is: can we construct directly the

reduced machine without constructing the equivalent FSM, which is in most cases too large to

compute. Furthermore, can we construct the reachable part of the reduced machine without even

computing the reduced machine, which could be substantially larger than the reachable part. The

answer is yes; there are efficient algorithms for the construction in time polynomial in the size of

the reachable part of the reduced machine. The advantage is: we only have to analyze and test the

reachable part of the reduced machine; this is about the minimal amount of work we have to do

using traditional FSM techniques. The general algorithm is somewhat involved [LY2]. We

explain the main ideas here using an example.

Example 5.1. Ring networks have been around for many years and are used for both local and

wide area networks [Tan]. Our example is a simplified version of a token ring protocol, which is

commonly used in ring networks. In a token ring a special bit pattern, called the token, circulates

around the ring whenever all stations are idle. When a station wants to transmit a frame, it seizes

the token and removes it from the ring before transmitting. After finishing transmission, the sta-

tion regenerates a token and sends it back to the ring.

We consider the Active Monitor Protocol, which is part of the token ring protocol of

ANSI/IEEE Standard 802.5 [ANSI2]. Its responsibility is to monitor the ring; it checks whether

the token is lost, takes action when the ring breaks, cleans the ring up when garbled frames

appear, watches out for orphan frames, handles multiple priority frames, among other functions.

We only discuss the handling of the token. For clarity, we ignore the timers and I/O behavior,

which are not essential for our discussion of the minimization and reachability of EFSM’s.

The protocol is modeled by the EFSM 7 shown in Fig. 5.1. There are 3 control states

7 Since the Standby State is reachable from every configuration, we omit it for clarity. For the details see

[ANSI2, p. 58].

- 41 -

S = { s 0 , s 1 , s 2 } and 3 variables involved: a Boolean variable M for the monitor bit; an inte-

ger variable P ∈ [0 , 7] represented by the three priority bits; and an integer variable R ∈ [0 , 7]

represented by the three bits for the reservation requests (in [ANSI2] it is R r). There are 7 transi-

tions of the form (current_state , next_state , predicate, action) where identity is an action such

that variable values remain the same and an arc is associated with predicate/action:

(1) t 1 = (s 1 , s 0 , TRUE, P : = R and M : = 0); (2) t 2 = (s 2 , s 1 , TRUE, identity); (3)

t 3 = (s 0 , s 2 , M = 1 , identity); (4) t 4 = (s 0 , s 2 , TRUE, identity); (5) t 5 = (s 0 , s 0 , TRUE,

R : = min {R + a , 7}) 8; (6) t 6 = (s 0 , s 0 , P = 0 and M = 0 , identity); (7)

t 7 = (s 0 , s 0 , P > 0 and M = 0 , M : = 1).

Each configuration is a quadruple: < s i , P i , M i , R i > where s i is a control state, P i is a

priority value, M i is a monitor bit value, and R i is a reservation request value. The transition sys-

tem has 384 configurations: S×P×M×R . Note that all paths of the transition system

correspond to paths in the graph of Fig. 5.1, but not vice-versa: some paths of Fig. 5.1 may not be

possible because the enabling predicates on the transitions may not be satisfied.

We wish to partition the configurations into equivalence classes, so that configurations in

the same class can undergo the same sequences of transitions. We can then represent the system

by another minimized FSM which has one node for every class, and has a transition t i from a

class (node) C to a class C ′ if all configurations in C can execute transition t i and the resulting

configurations belong to class C ′. This FSM (graph) has the property that all its paths correspond

to true paths in the transition system.

We examine all the outgoing transitions from state s 0 , and partition the configurations with

state s 0 into blocks such that all the configurations in each block contain variable values that are

valid for the same predicates of the outgoing transitions from s 0 . We obtain 3 blocks of configu-

rations: B 1 , B 2 , and B 3 . Therefore, we have 5 blocks in the initial partition of the system: π =
{ B 1 , B 2 , B 2 , B 4 , B 5 }, where B 4 and B 5 are configurations with control state s 4 and s 5 ,

respectively, associated with all possible variable values. Transition t 4 and t 5 are split accord-

ingly into t 4 ,i and t 5 ,i with i = 1 , 2 , 3. See Fig. 5.2. Therefore, we have a transition system of

384 configurations, 5 blocks, and 11 transitions.

For a transition t from block B to C with action A(x→), let B ′ be the inverse image of C and

B ′ ′ be the difference of B and B ′, i.e., B ′ = B ∩ A − 1 (C) and B ′ ′ = B − B ′. Transition t is sta-

ble if and only if its domain block B is contained in the inverse image of A: B ⊆ A − 1 (C). Other-

wise, it is unstable. We process each unstable transition by splitting its domain block to stabilize

it. This may introduce newly unstable transitions. We repeat the process until all the transitions

are stable. In the final partition, each block contains equivalent configurations; we ‘‘collapse’’

each block into one state and we have a minimized machine.

8 a is a nonnegative integer from a reservation request.

- 42 -

Specifically, we find that t 1 is unstable. To stabilize t 1 , we split block B 4 into

B 4 , 1 = t1
− 1 (B 2) ∩ B 4 = < s 1 , R = 0 > and B 4 , 2 = t1

− 1 (B 3) ∩ B 4 = < s 1 , R > 0 >. Now

transition t 2 becomes unstable due to the splitting of B 4 . To stabilize it, we split block B 5 into

B 5 , 1 = t2
− 1 (B 4 , 1) ∩ B 5 = < s 2 , R = 0 > and B 5 , 2 = t2

− 1 (B 4 , 1) ∩ B 5 = < s 2 , R > 0 >. Simi-

larly, we split B i into B i, 1 and B i, 2 , i = 1 , 2 , 3, according to R = 0 and R > 0, and obtain the

minimized system. See Fig. 5.3. Note that the transitions / R : = min{R + a , 7} from B i, 1 to

B i, 2 , i = 1 , 2 , 3, have an associated input parameter a > 0, and we omit the self loops on these

blocks, which correspond to a = 0.

The reduced system has only 10 states (blocks). Note that the system has 384 configura-

tions and minimization significantly reduces the system complexity.

Suppose that p 0 = < s 1 , P = 0 , M = 0 , R = 0 > is the initial configuration of the system.

We are interested in the reachable states (blocks) of the minimized machine. From the reduced

system in Fig. 5.3, we can easily find it; it has 8 nodes and 13 edges. See Fig. 5.4; the high-

lighted nodes and edges are reachable from p 0 . The rest of the nodes and edges are not reachable;

it is a waste to construct them. As a matter of fact, there are efficient algorithms that construct the

reachable part of the minimized machine directly without constructing the unreachable part. The

main idea is: from the initial configuration and partition, we search and mark reachable blocks

until we cannot go further. Then, similar to minimization, we split blocks according to unstable

transitions; we do the splitting in a round-robin fashion. However, reachability search has a

higher priority; after each splitting, we search and mark newly reachable blocks if there are any.

It can be shown that we can construct the reachable part of the minimized system in time polyno-

mial in the size of the final system. For details, see [LY2].

In our minimization procedure for EFSM’s, we collapse ‘‘equivalent’’ configurations into a

block, such that configurations in the same block undergo the same sequences of transitions. This

notion of equivalence is motivated by the desire to transform an EFSM to a minimized ordinary

FSM. More generally, similar methods apply to arbitrary transition systems represented in some

succinct way (whether by an EFSM or some other form of representation), to partition the config-

urations according to bisimulation equivalence [Mi]. See [LY2] for the general algorithm, and

[YL3] for an application to timed systems.

Extended finite state machines as in Definition 5.1 are a succinct and implicit representation

of finite state machines and model well practical systems. However, it is still not powerful

enough to model some protocol systems where there are parameters which are associated with

inputs and have effects on the predicates and actions of transitions. As a matter of fact, we have

already encountered such a parameter in Example 5.1, the parameter a ≥ 0 from an input reserva-

tion request.

Such parameterized extended finite state machine can be defined by a generalization of

- 43 -

Definition 5.1 as follows. An input or output symbol has a set of (zero or more) parameters y→ =
(y 1 , . . . , y κ). For a transition t, the input, output, predicate, and action all depend on y→: a t (y→),

o t (y→), P t (x→, y→), and x→ : = A t (x→, y→). Parameterized EFSM is another level of generalization of

EFSM’s and is a more succinct and implicit representation of FSM’s.

If each parameter only has finitely many values then we can simply split each input, output,

and transition according to different parameter value combinations. This naive approach may

again cause explosion if the number of such combinations is large. Furthermore, if the parameter

values are infinite then this approach does not work (the expanded system is not finite). For their

minimization and reachability, we need more general procedures [LY3].

Protocols among different processes can often be modeled as a collection of communicating

finite state machines (CFSM) [BZ]. Each FSM is a component machine. To specify interactions

between various component machines, we could use interprocess I/O operations similar to those

used in the language CSP [Hoa]. An output operation in process2 is denoted as process1!msg

(send msg) and a matching input operation in process1 is denoted as process2?msg (receive msg).

These matching operations are executed simultaneously. In other words, if a process attempts to

do an output, it has to wait until its corresponding process is ready to execute the matching input

operation and vice versa. For example, if process2 is ready to do the output operation

process1!msg, it must wait until process1 is ready to do the input operation process2?msg. The

synchronized message exchange between two processes is called a rendezvous.

For testing purposes, we can first take all possible combinations of states of component

machines and construct a composite machine, which is an FSM, and then apply known techniques

to the composite machine. Again, we may run into the state explosion problem. There are

heuristic procedures for test generation for CFSM’s such as random walk; we select the next input

at random and on-line. It is well-known that we may be ‘‘trapped’’ in one small portion of the

system [AKLLR]. To cope with this, guided random walk was suggested. Specifically, we only

want to test transitions of each component machine and that often provides a reasonable fault cov-

erage. On the other hand, we can afford to keep track of each component machine instead of the

composite machine. For this purpose, transitions of each component machine are classified

according to their visiting status. Instead of choosing the next input randomly, we favor unvisited

transitions, which have higher priority. On the other hand, among possible transitions in a same

priority class, we make a random selection. Experiments show that it performs better than a pure

random walk and improves fault coverage [LSKP].

Obviously, CFSM’s are equivalent to an EFSM; we can simply add a variable to encode the

component machines and represent CFSM’s by an EFSM. Similarly, communicating EFSM’s

can also be represented by one EFSM. In general, EFSM’s with unbounded variables have the

same computing power as Turing machines [HU].

- 44 -

6. OTHER FINITE STATE SYSTEMS

There is a variant of Mealy machines, the Moore machines, in which the output is only

determined by the state [HS, Mo]. Specifically, we replace the output function in Definition 2.1

by λ : S → O and obtain a Moore machine. Moore machines are a special case of Mealy

machines where output functions only depend on states, and all the previous discussions of test-

ing apply to such machines.

Automata were introduced and studied in the 50’s and 60’s for an understanding of com-

putability and (regular) languages [HU]. An automaton can be perceived as a special case of

Moore machines where there are only two outputs: ACCEPT and REJECT. Starting with an ini-

tial state, an input sequence (sentence, word, or string) is in the language specified by the automa-

ton if and only if it takes the machine to an ACCEPT state.

There are other variations and/or extensions of FSM’s and automata, such as I/O automata,

timed automata, Buchi automata, Petri nets, etc. that have more expressive power. They are out-

side the scope of this article; there is not much work so far on extending the algorithmic theory of

testing to these types of machines.

The FSM in Definition 2.1 is deterministic; from a state s upon input a, the next state and

the output are uniquely determined by the state transition function δ(s , a) and output function

λ(s , a), respectively. An FSM is nondeterministic if for a given state and input there can be

more than one possible transitions that may go to different next states or produce different out-

puts. Nondeterministic finite state machines (NFSM) are a natural generalization of deterministic

FSM and can also be represented by transition diagrams, which are directed graphs. As before,

states are represented by vertices and transitions by edges. However, for a state s and input a,

there is an edge from s to each possible next state q, labeled with input a and a corresponding out-

put. Similarly, nondeterministic automata are natural generalization of deterministic ones in the

study of languages and computability [HU]. NFSM’s arise also in practical applications, espe-

cially in communication protocols. Such nondeterminism may be due to the asynchronous opera-

tions of different processes and also due to the unpredictable activities of entities and channels, in

the event of crash, loss of messages, etc.

There has been very little algorithmic work on testing problems for nondeterministic

machines. The state identification problem was studied very recently in [ACY]. We are given an

NFSM M and a set of possible initial states Q. We would like to find if possible an input

sequence x, such that we will be able to determine the initial state from the output sequence pro-

duced by M, regardless of the nondeterministic choices made. It is shown in [ACY] that in the

preset case the distinguishing sequence problem is PSPACE-complete and in the adaptive case it

is complete for Exponential Time. This holds even if Q= 2, i.e., if we want to distinguish

between just two states. By contrast, recall that in the deterministic case, distinguishing between

two states is easy: it can be done in O(nlogn) time by the classical state minimization algorithm.

- 45 -

Regarding conformance testing, a different notion of testing is studied in several papers (see

eg. [Bri, BTV, Le, Me. Wez]) and an elegant theory is developed. In this framework, the tester is

allowed to be nondeterministic. A test case is an (in general nondeterministic) machine T, the

implementation under test B is composed with the tester machine T, and the definition of B failing

the test T is essentially that there exists a run of the composition of B and T that behaves differ-

ently than the composition of the specification A and T. The underlying model in this framework

is that of processes or transition systems (instead of FSM’s), where transitions are labelled by

"actions" (instead of inputs and outputs), and "different" behavior is defined in terms of a dead-

lock being reached with an inability to perform certain actions (instead of the output produced).

It is shown in [Bri] that every specification can be tested in this sense, and there is a "canonical"

tester. The fact that the framework uses the model of transition systems instead of FSM’s is only

a minor difference, and one could establish a formal correspondence with NFSM’s. The major

difference is that the tester is allowed to be nondeterministic, and furthermore the definition of an

implementation B failing a test T assumes implicitly that the nondeterminism in B and T is

resolved in a favourable way that shows a potential fault. Consider for example the case that spec-

ifications A and implementations B are deterministic FSM’s as in the previous sections. The fol-

lowing nondeterministic machine T would be a sufficient tester in this framework: T keeps track

of the state of the specification machine A, and at each step nondeterministically generates an

arbitrary input for the implementation machine B and rejects if B produces the wrong output.

Clearly, B does not conform to A if and only if there is a run of B and T that will be rejected.

However, it is not clear how to use this machine T to choose test sequences to apply to an imple-

mentation.

The extension of the theory and algorithms to generate test sequences for conformance test-

ing of NFSM’s remains to be investigated. One might suggest that we can first ‘‘reduce’’ the

problem of testing NFSM to FSM, as in the reduction of a nondeterministic finite automaton to

an equivalent deterministic automaton, which accepts the same language, even though with an

exponential increase of the number of states in the worst case; we then design a checking

sequence for the deterministic machine, which is also a ‘‘checking sequence’’ for the nondeter-

ministic machine. Unfortunately, there is no such simple reduction of an NFSM to an ‘‘equiva-

lent’’ deterministic FSM such that a checking sequence of the latter is also a checking sequence

of the former. For an input string accepted by a nondeterministic automaton it is sufficient that

there exists a path from the initial state to an accepting state labeled with that input string. How-

ever, for testing, we have to also ‘‘observe’’ an expected output sequence which is often unpre-

dictable due to the nondeterminism even when an implementation machine is ‘‘correct’’.

The unpredictability of which transition to follow upon an input is partly due to the lack of

information of the probability of each transition. For an input, if we assign a probability to each

possible outgoing transition, then we have a probabilistic finite state machine:

Definition 6.1. A probabilistic finite state machine (PFSM) M is a quintuple

- 46 -

M = (I , O , S , T , P)

where I = {a 1 , . . . , a p} is the input alphabet , O = {o 1 , . . . , o q} is the output alphabet ,

S = {s 1 , . . . , s n} is the set of states, and T is the set of transitions, where every transition t∈T

is a tuple t = (s ,q ,a ,o) consisting of the start (current) state s, next state q, input symbol a and

output symbol o. P is a function that assigns a number P(t) ∈ [0 , 1] to each transition (its

probability), so that for every state s and input symbol a, the sum
q,o
Σ P(s ,q ,a ,o) of the probabili-

ties of all the transitions out of s on input a is equal to 1.

A PFSM can be represented by a transition graph with n nodes corresponding to the n

states and directed edges between states corresponding to the transitions with nonzero probability.

Specifically, if P(s i ,s j ,a k ,o l) > 0 then there is an edge from s i to s j with an associated input

a k and output o l . If P(s i ,s j ,a k ,o l) = 0 then there is no corresponding edge.

If we disregard all the probability measures then a PFSM becomes an NFSM. If for each

state s i and input a k there is only one j and l such that P(s i ,s j ,a k ,o l) > 0 (and hence this prob-

ability is actually equal to 1), then a PFSM becomes a deterministic FSM.

A PFSM is essentially a Markov Decision Process [De], where the inputs correspond to the

actions of the process. The process is only partially observable, since we do not observe directly

the state during testing, but obtain information only indirectly through the outputs observed.

The distinguishing sequence problem for PFSM is studied in [ACY]. In the context of

PFSM, we would like to determine the initial state with probability 1. If we restrict the distin-

guishing sequence x to be finite, then there is no difference with finding a distinguishing sequence

for the underlying nondeterministic FSM. However, even if there is no such finite sequence, we

may be able to approach probability 1 arbitrarily close by allowing a test that runs longer and

longer. For this reason, a distinguishing sequence for a PFSM is defined to be an infinite

sequence such that, after n steps we can determine from the observed output the initial state with

probability p n which tends to 1 as n tends to infinity. The complexity of the distinguishing

sequence problem for PFSM is similar to the case of NFSM, although the algorithms are differ-

ent: it is complete for PSPACE in the preset case and for exponential time in the adaptive case.

Conformance testing for PFSM’s is to check whether an implementation PFSM ‘‘con-

forms’’ to a specification PFSM where ‘‘conformance’’ could be defined in different ways.

While there are some published results along the direction of identifying a PFSM, such as identi-

fying a hidden Markov Chain [CT, Lo, Ru], conformance testing remains to be studied.

Finally, we mention that there are several variants of EFSM’s. For example, one such vari-

ant is the Virtual finite state machine (VFSM). It is an EFSM and some of its particular choices

are: it combines features of Mealy and Moore machines allowing output to be produced both from

states and during transitions, and it uses only Boolean variables [Wa]. More work remains to be

- 47 -

done on testing different types of EFSM’s.

7. RELATED TOPICS

A closely related but more difficult problem is machine identification where we are given a

‘‘black box’’ machine and want to identify the structure from its I/O behavior. Moore [Mo] first

proposed this problem, provided an exponential algorithm, and proved that the problem is inher-

ently exponential.

A variant of the identification problem in a more restricted model has been studied recently

in the learning theory community. In this model it is further assumed that we have additional

information, for instance, from a teacher who would either confirm our conjectured machine or

reject it by providing a counterexample.

The purpose of conformance testing is only to find out if an implementation is different than

its specification. An interesting yet more complex problem is how to locate the differences

between a specification machine and its implementation if they are found to be different. We call

this fault diagnosis. In the most general case, it is a machine identification problem. However, if

we constrain the number or type of faults that can occur, then there are efficient methods for solv-

ing the problem.

7.1. Machine Identification

We are given an implementation machine B, and we wish to find a test sequence that allows

us to determine the transition diagram of B from its response to the test. Such procedures have

applications in practice such as reverse-engineering of communication protocols [LS] where we

want to keep track of proprietary protocol standards by observing the behavior of their implemen-

tations.

Obviously, without any assumptions it is an impossible problem. We need certain a priori

knowledge of the machine B as in the case of the conformance testing problem (Assumption 4.1).

We assume that B is strongly connected, reduced, does not change during the experiment, we

know its input and output alphabet, and we know an upper bound n on its number of states. The

reasons for these assumptions are similar to the conformance testing case. For example, the

assumption that B is reduced is to make the identification problem uniquely defined because an

experiment cannot distinguish between equivalent machines; alternatively, we could require the

test to only determine a machine that is equivalent to B. Similar comments apply to the other

assumptions (see Section 4.1). We now describe Moore’s algorithm and then present a variation

that is somewhat more efficient.

We want to generate test sequences to identify a given machine with no more than n states.

We construct all the machines with n states 9 , p inputs and q outputs by considering all the

9 A machine with less than n states is equivalent to a machine with n states. Therefore, we do not have to

consider machines with less than n states.

- 48 -

possible next states and outputs of each of the pn transitions; it is easy to check that the total

number is N = (nq) pn / n!. We minimize each of them and discard all the machines which are

not strongly connected. For the remaining machines, we only keep one in a class of equivalent

machines, obtaining a set of reduced, inequivalent, and strongly connected machines with no

more than n states: M i = (I , O , S i , δ i , λ i), i = 1 , . . . , N where N < N. Implementation

machine B is equivalent to one and only one of them, which we are to identify.

We construct a direct sum machine M of the N component machines as follows. Machine M

has the same input set I and output set O and its states are the union of the states of all the compo-

nent machines: S =
i = 1
∪
N

S i . The transition and output functions δ and λ are natural extensions of

that of the component machines; for an input a ∈ I and state s ∈ S i ⊂ S, δ(s , a) = δ i (s , a)

and λ(s , a) = λ i (s , a). Obviously, machine M is reduced and B is equivalent to a component

machine M k , which we want to identify. Suppose that B is in an initial state that is equivalent to

state s k in M k , which is also unknown. However, if we can apply a test sequence to M and deter-

mine the final state then the containing component machine must be M k (which we want to iden-

tify) since any input sequence takes the machine from s k to a state also in the same component

machine M k . A homing sequence h of M would satisfy this purpose; we apply h to the imple-

mentation machine B, determine the final state s t in M from the outputs from B, and identify the

containing component machine s t ∈ M k , which is equivalent to B. We have identified the

implementation machine B from its I/O behavior. A homing sequence has in general quadratic

length in the number of states (Section 2.3). However in the case of the direct sum machine M

that we have here, we can argue that there is one of length O(n 2 N) (which is much smaller than

N 2 because N is exponential in n). The reason is that any two states of M can be separated by a

sequence of length at most 2n − 1; such a separating sequence can be obtained by applying the

minimization procedure to the direct sum of only the (at most two) component machines that con-

tain the two states. Recall from Section 2.3 that the homing sequence of M is constructed there

by concatenating no more than nN (the number of states of the machine M) such pairwise separat-

ing sequences, and hence has length O(n 2 N). The cost of actually constructing the homing

sequence h and then of applying it to the direct product machine M is quadratic in N because it

involves tracing the behavior of M starting from all the states on input sequence h.

We now describe an adaptive variation of the identification procedure. It could also be used

for fault diagnosis, see Section 7.3. As before, enumerate all possible N machines, M 1 , . . ., and

denote their next state and output functions by δ i and λ i , respectively. We consider a pair of can-

didate machines at a time, cross-verify them against B, and rule out at least one of them. After

repeating the process no more than N times, we have one machine left, which is equivalent to B.

For a pair of machines under consideration, we construct their reduced machines. We dis-

card either if it is not strongly connected. Furthermore, if the two machines are equivalent then

we discard one of them. If one (or both) of them are discarded then we take another (or two)

- 49 -

machines, pair up, and repeat the process until we have two reduced, strongly connected, and

inequivalent machines: M i and M j . We compute their corresponding homing sequences h i and

h j , concatenate them h = h i h j and apply the result to B. If B is equivalent to M i then h takes B

to a known state s = s i in M i (known from the output produced by B). If B is equivalent to M j

then h takes B to a known state s = s j in M j .
10 Since M i and M j are inequivalent, we compute a

separating sequence x of s i and s j: y i = λ i (s i , x) ≠ y j = λ j (s j , x). We apply x to B and have

y = λ B (s , x). There are three cases. (1) y ≠ y i and y ≠ y j . Machine B is not equivalent to M i

and M j . We discard both of them and consider the remaining machines. (2) y ≠ y i and y = y j .

Machine B is not equivalent to M i . We discard M i , pair up M j with one of the remaining

machines, and repeat the process. (3) y = y i and y ≠ y j . This is similar to Case (2).

In all cases, we rule out at least one machine by a cross-verification against B. We continue

the process until there is only one machine M k left, which is equivalent to B, and we have identi-

fied the implementation machine B from its I/O behavior.

The length of a homing sequence for a component machine is n(n − 1)/2 and that of a sep-

arating sequence of two states in different component machines is 2n − 1. A test sequence of

length no more than n 2 rules out at least one machine. On the other hand, it takes time

O(pnlog n) to construct a reduced machine and time O(pnlog n + n 2) to compute a separating

and homing sequence; it takes time O(pnlog n + n 2) to rule out at least one machine. Since

there are at most N = (nq) pn / n! machines to process, it takes time

O((plog n + n) (n pn + 1 q pn)/ n!) to construct a test sequence of length no more than

n pn + 2 q pn / n!, which identifies an implementation machine by its I/O behavior.

7.2. Machine Learning

In machine learning [An2, Val], it is assumed that, besides the black box B to which we can

supply inputs and observe the outputs as before, there is available in addition a teacher, to whom

we can show a conjectured machine C (i.e., a complete state diagram) and the teacher will tell us

whether B is equivalent to C, and if it is not, will provide us with a string (a counter-example) that

distinguishes the two machines. Angluin showed that in this model it is possible to do machine

identification in deterministic polynomial time provided the machine B under test has a (reliable)

reset capability [An1]. Polynomial time here is measured as a function of the number of states n

of the black box B and the lengths of the counterexample sequences that are returned by the

teacher. Since there are always counterexample strings of length n, if there are any at all, in the

case of a so-called ‘‘minimally adequate’’ teacher, the time is polynomial in n. Rivest and

Schapire developed a randomized algorithm for machine identification in this model in the

absence of a reset capability [RS]. Note that in this learning model, the teacher is essentially an

10 If we deduce that B is not equivalent to M i or M j from its response to h, we discard M i or M j .

- 50 -

oracle for the machine verification problem.

There is an interesting relationship between machine learning and conformance testing. In

particular, we claim that in the case of a reliable reset, one can use Angluin’s algorithm for fault

detection. We will not describe her algorithm in detail, but we will need a key property of the

algorithm: If B has n states, then the conjectured machines that the algorithm asks the teacher

have all at most n states, and furthermore there is at most one conjectured machine C i for every

number of states i ≤ n, and the last conjecture is C i = B at which point the teacher replies affir-

matively and the algorithm terminates. Suppose now that we have a specification machine A with

n states (satisfying the assumptions of Section 2) that has a reliable reset and a black box B with

the same number n of states we wish to test for isomorphism with A. We follow Angluin’s algo-

rithm. Whenever it applies an input to B, we do the same; when it queries the teacher about a

conjectured machine C i , we compute a string that distinguishes C i from the specification A. If,

for i = n the conjectured machine C n is A, then we declare B to be correct, otherwise faulty. The

correctness of this scheme follows from the correctness of Angluin’s algorithm and the fact that it

queries the teacher about only one machine with any number of states.

Of course, the direct algorithm for fault detection in the case of a reliable reset is simple

enough in itself. Note also that the above procedure will not work if the black box B can have

more states, say n + 1 states. The reason is that the learning algorithm may conjecture for n states

the machine C n = A, in which case we do not know what the teacher should respond; in fact this

is exactly the question we wanted to answer to begin with. The algorithm of Rivest and Schapire

for machine learning in the absence of reset queries the teacher about more than one machine with

the same number of states, so the above scheme cannot be used. It would be interesting to see if

there are any connections between the fault detection problem in the general case and the work of

[RS].

7.3. Fault Diagnosis

The purpose of conformance testing is only to find out if an implementation is different than

its specification. An interesting yet more complex problem is how to locate the differences

between a protocol specification and its implementation if they are found to be different. We call

this fault diagnosis or reverse-engineering. A solution to this problem has various applications.

Sometimes, it is essential to keep track of proprietary protocol standards by observing the behav-

ior of their implementations. This is especially important for designers of protocol implementa-

tions which have to interoperate with proprietary protocol implementations. For example, a seg-

ment of computer industry manufactures channel extenders for mainframes. A channel extender

enables a remote peripheral to communicate with a mainframe. To keep designs of these exten-

ders up-to-date, designers have to keep track of the protocols used in the mainframes. Manufac-

turers of mainframes are usually slow or reluctant to inform their users about the changes in these

protocols. We need a procedure which can enable us to locate changes in these protocols by

- 51 -

observing the I/O behavior of these mainframes. It could also be useful in correcting a protocol

implementation so that it conforms to its specification.

There are heuristic procedures [FM2, GB, GBD] for fault diagnosis. An exact procedure is

reported in [LS] that is similar to the modified algorithm in Section 7.1. Basically, it enumerates

all possible changed machines, eliminates all of them by a cross-verification with the implemen-

tation machine except one, which is the implementation machine. If there is a single change (or a

constant number of changes) in the implementation machine, then the number of possible

changed machines is not too large, and a polynomial length test sequence can be obtained in poly-

nomial time. However, if the number of changes is arbitrary, then it becomes the machine identi-

fication problem, which is known to be inherently exponential. In practice, if we constantly mon-

itor the implementation machine and update information of its structure, the changes between two

successive updates are small (bounded by a constant). In this case, the algorithm constructs in

polynomial time a test sequence of polynomial length. For details, see [LS].

7.4. Passive Testing

In our testing model, we can control inputs to a machine to test for conformance or to iden-

tify the machine. In some applications, we have no control of inputs but can only observe the I/O

behavior of a system. From this passive observation, we want to determine if an implementation

machine conforms to the specification machine or to identify the implementation machine. This

is a harder problem, called passive testing, and occurs in practice. It was first raised in sequential

circuit testing [Se] and recently in network management [LNSSJ, WS]. The problem of inferring

a finite state machine from a given set of observations has been studied in learning theory. Find-

ing the smallest such consistent machine is an NP-hard problem [Gol], and even approximating

the minimum number of states required is hard [KV, PW].

8. CONCLUSIONS

Finite state machines have proved to be a useful model for systems in several different

areas, and undoubtedly will continue to find new applications. From the theoretical point of

view, most of the fundamental problems have been resolved (for deterministic FSM) except that it

is still not known how to construct checking sequences deterministically in polynomial time. For

a summary of the known results, see Table 8.1.

The theory of testing for other types of finite state systems, such as nondeterministic and

probabilistic FSM, is less advanced. From the practical point of view, a lot of issues remain to be

explored. Hardware testing offers a challenge due to a large number of states and nondetermin-

ism among others. Protocol conformance testing is a currently active area where more work

remains to be done, particularly on testing extended and communicating finite state machines, in

dealing with the state explosion problem where we want to go beyond the control structure of

- 52 -

protocols and incorporate parameters and variables.

For further study of protocol testing, readers are referred to the papers in the references.

Related papers could be found in IEEE/ACM Transactions on Networking, IEEE Transactions on

Computers, IEEE Transactions on Software Engineering, IEEE Transactions on Communica-

tions, ACM Transactions on Software Engineering and Methods, and Computer Networks and

ISDN Systems. Conference proceedings usually contain more recent and often works in progress.

Proceedings of International Conference on Network Protocols (ICNP), the IFIP International

Symposium on Protocol Specification, Testing, and Verification (PSTV), International Confer-

ence on Formal Description Techniques (FORTE, merged with PSTV), International Conference

on Computer Communications and Networks (ICCCN), and International Workshop on Protocol

Test Systems (IWPTS) report recent works on protocol testing, mostly focused on formal methods.

IEEE INFOCOM and GLOBCOM are large communication conferences and have sessions on for-

mal methods and protocol testing. Testing papers can occasionally also be found in Proceedings

of ACM SIGCOMM and Computer Aided Verification (CAV). For hardware testing, readers are

referred to the books [AS, FM1, Koh] and journals IEEE Transactions on Computers, IEEE

Transactions on Computer Aided Design, and conference proceedings such as: International Con-

ference on Computer Design (ICCD), IEEE/ACM International Conference on CAD (CAD),

Design Automation Conference (DAC), and IEEE International Symposium on Fault-Tolerant

Computing (FTCS). Software testing is another large area. The readers are referred to book

[My], journals: IEEE Transactions on Software Engineering, ACM Transactions on Software

Engineering and Methods, and Proceedings of International Symposium on Software Testing and

Analysis (ISSTA).

ACKNOWLEDGEMENTS

We are deeply indebted to A. V. Aho, E. Brinksma and J. Tretmans for their insightful and

constructive comments.

REFERENCES

[AS] V. D. Agrawal and S. C. Seth, Test Generation for VLSI Chips, Computer Society

Press, 1988.

[ADLU] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar, ‘‘An optimization technique for

protocol conformance test generation based on UIO sequences and rural Chinese post-

man tours,’’ IEEE Trans. on Communications, vol. 39, no. 11, pp. 1604-1615, 1991.

[AHU] A.V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer

Algorithms, Addison-Wesley, 1974.

- 53 -

[AL] A.V. Aho and D. Lee, ‘‘Efficient algorithms for constructing testing sets, covering

paths, and minimum flows,’’ AT&T Bell Laboratories Tech. Memo. CSTR159, 1987.

[ASU] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools,

Addison-Wesley, 1986.

[AKLLR]R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, and C. Rackoff, ‘‘Random walks,

universal traversal sequences, and the complexity of maze problems,’’ in Proc. 20th

Ann. Symp. on Foundations of Computer Science, pp. 218-223, 1979.

[AK] N. P. Alfano and B. Kanungo, ‘‘Development of an international standard for confor-

mance testing X.25 DTEs,’’ Proc. IFIP WG6.1 10th Intl. Symp. on Protocol Specifica-

tion, Testing, and Verification, North-Holland, L. Logrippo, R. L. Probert, and H. Ural

Ed. pp. 129-140, 1990.

[ACD] R. Alur, C. Courcoubetis, and D. Dill, ‘‘Model checking for real-timed systems,’’ in

Proc. 5th IEEE Symp. on Logic in Computer Science, pp. 414-425, 1990.

[ACY] R. Alur, C. Courcoubetis, and M. Yannakakis, "Distinguishing tests for nondeterminis-

tic and probabilistic machines", Proc. 27th Ann. ACM Symp. on Theory of Computing,

pp. 363-372, 1995.

[An1] D. Angluin, ‘‘Learning regular sets from queries and counterexamples,’’ Information

and Computation, vol. 75, pp. 87-106, 1987.

[An2] D. Angluin, "Computational learning theory: survey and selected bibliography,"

Proc. 24th Annual ACM Symp. on The Theory of Computing, pp. 351-369, 1992.

[ANSI1] International standard ISO 8802-2, ANSI/IEEE std 802.2, 1989.

[ANSI2] International standard ISO/IEC 8802-5, ANSI/IEEE std 802.5, 1992.

[Au] B. Austermuehl, ‘‘MHTS/400 - testing message handling systems,’’ Proc. IFIP WG6.1

6th Intl. Symp. on Protocol Specification, Testing, and Verification, North Holland, B.

Sarikaya and G. v. Bochmann Ed. pp. 151-162, 1986.

[BSSE] U. Bar, M. Strecker, W. Stoll, W. Effelsberg, ‘‘Presentation layer conformance testing

with TTCN,’’ Proc. IFIP WG6.1 11th Intl. Symp. on Protocol Specification, Testing,

and Verification, North-Holland, B. Jonsson, J. Parrow, and B. Pehrson Ed. pp. 283-

298, 1991.

[BS1] U. Bar and J. M. Schneider, ‘‘Automated validation of TTCN test suites,’’ Proc. IFIP

WG6.1 12th Intl. Symp. on Protocol Specification, Testing, and Verification, North

Holland, R. J. Linn, Jr. and M. U. Uyar Ed. pp. 279-295, 1992.

[BS2] G. v. Bochmann and C. A. Sunshine, ‘‘A Survey of formal methods,’’ Computer Net-

works and Protocols, P. E. Green, Ed. Plenum Press, pp. 561-578, 1983.

[BU] S. C. Boyd and H. Ural, "On the complexity of generating optimal test sequences,"

IEEE Trans. on Software Engineering, vol. 17, no. 9, pp. 976-978, 1991.

- 54 -

[BZ] D. Brand and P. Zafiropulo, ‘‘On communicating finite-state machines,’’ JACM, vol.

30, no. 2, pp. 323-342, 1983.

[Bre] M. A. Breuer, ‘‘An algorithm for generating a fault detection test for a class of sequen-

tial circuits,’’ Theory of Machines and Computations, Z. Kohavi and A. Paz Ed. Aca-

demic Press, pp. 313-326, 1972.

[Bri] E. Brinksma, ‘‘A theory for the derivation of tests,’’ Proc. IFIP WG6.1 8th Intl. Symp.

on Protocol Specification, Testing, and Verification, North-Holland, S. Aggarwal and

K. Sabnani Ed. pp. 63-74, 1988.

[BTV] E. Brinksma, J. Tretmans, and L. Verhaard, ‘‘A framework for test selection,’’ Proc.

IFIP WG6.1 11th Intl. Symp. on Protocol Specification, Testing, and Verification,

North-Holland, B. Jonsson, J. Parrow, and B. Pehrson Ed. pp. 233-248, 1991.

[BKP] S. P. van de Burgt, J. Kroon, and A. M. Peeters, ‘‘Testability of formal specifications,’’

Proc. IFIP WG6.1 12th Intl. Symp. on Protocol Specification, Testing, and Verification,

North Holland, R. J. Linn, Jr. and M. U. Uyar Ed. pp. 63-77, 1992.

[CS] R. Castanet and R. Sijelmassi, ‘‘Methods and semi-automatic tools for preparing dis-

tributed testing,’’ Proc. IFIP WG6.1 6th Intl. Symp. on Protocol Specification, Testing,

and Verification, North Holland, B. Sarikaya and G. v. Bochmann Ed. pp. 177-188,

1986.

[CC] U. Celikkan and R. Cleaveland, ‘‘Computing diagnostic tests for incorrect processes,’’

Proc. IFIP WG6.1 12th Intl. Symp. on Protocol Specification, Testing, and Verification,

North Holland, R. J. Linn, Jr. and M. U. Uyar Ed. pp. 263-278, 1992.

[CVI1] W. Y. L. Chan, S. T. Vuong, and M. R. Ito, ‘‘An improved protocol test generation pro-

cedure based on UIOs,’’ Proc. SIGCOM, pp. 283-294, 1989.

[CVI2] W. Y. L. Chan, S. T. Vuong, and M. R. Ito, ‘‘On test sequence generation for proto-

cols,’’ Proc. IFIP WG6.1 9th Intl. Symp. on Protocol Specification, Testing, and Verifi-

cation, North-Holland, E. Brinksma, G. Scollo, and C. A. Vissers, Ed. pp. 119-130,

1989.

[CLPZ] S. T. Chanson, B. P. Lee, N. J. Parakh, and H. X. Zeng, ‘‘Design and implementation

of a ferry clip test systems,’’ Proc. IFIP WG6.1 9th Intl. Symp. on Protocol Specifica-

tion, Testing, and Verification, North-Holland, E. Brinksma, G. Scollo, and C. A. Vis-

sers, Ed. pp. 101-118, 1989.

[CZ] S. T. Chanson and J. Zhu, ‘‘A unified approach to protocol test sequence generation’’,

Proc. INFOCOM, pp. 106-114, 1993.

[CCK] M.-S. Chen Y. Choi, and A. Kershenbaum, ‘‘Approaches utilizing segment overlap to

minimize test sequences,’’ Proc. IFIP WG6.1 10th Intl. Symp. on Protocol Specifica-

tion, Testing, and Verification, North-Holland, L. Logrippo, R. L. Probert, and H. Ural

- 55 -

Ed. pp. 85-98, 1990.

[CLBW] W. H. Chen, C. S. Lu, E. R. Brozovsky, and J. T. Wang, ‘‘An optimization technique

for protocol conformance testing using multiple UIO sequences, Information Process-

ing Letters, vol. 26, pp. 7-11, 1990.

[CLCW] W. H. Chen, C. S. Lu, L. Chen, and J. T. Wang, ‘‘Synchronizable protocol test genera-

tion via the duplex technique,’’ Proc. INFOCOM, pp. 561-563, 1991.

[CTU] W.-H. Chen, C. Y. Tang, and H. Ural, ‘‘Minimum-cost synchronizable test sequence

generation via the duplexU Digraph,’’ Proc. INFOCOM, pp. 128-136, 1993.

[CK] K.-T. Cheng and A. S. Krishnakumar, ‘‘Automatic functional test generation using the

extended finite state machine model,’’ Proc. DAC, pp. 1-6, 1993.

[CWY] T.-Y. Cheung, Y. Wu, and X. Ye, ‘‘Generating test sequences and their degrees of inde-

terminism for protocols,’’ Proc. IFIP WG6.1 11th Intl. Symp. on Protocol Specifica-

tion, Testing, and Verification, North-Holland, B. Jonsson, J. Parrow, and B. Pehrson

Ed. pp. 301-316, 1991.

[Ch] T. S. Chow, ‘‘Testing software design modeled by finite-state machines,’’ IEEE Trans.

on Software Engineering, vol. SE-4, no. 3, pp. 178-187, 1978.

[CA1] W. Chun and P. D. Amer, ‘‘Improvements on UIO sequence generation and partial UIO

sequences,’’ Proc. IFIP WG6.1 12th Intl. Symp. on Protocol Specification, Testing, and

Verification, North Holland, R. J. Linn, Jr. and M. U. Uyar Ed. pp. 245-260, 1992.

[CA2] W. Chun and P. D. Amer, ‘‘Test Case Generation for Protocols Specified in Estelle,’’

Proc. of the Third International Conference on: Formal Description Techniques, pp.

197-210, 1990.

[CLR] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw

Hill, 1989.

[CT] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley Series in

Telecommunications, 1991.

[DSU] A. T. Dahbura, K. Sabnani, and M. U. Uyar, ‘‘Formal methods for generating protocol

conformance test sequences,’’ Proc. IEEE, vol. 78, no. 8, August 1990.

[De] C. Derman, Finite State Markov Decision Processes, Academic Press, 1972.

[DB] R. Dssouli and G. v. Bochmann, ‘‘Conformance testing with multiple observers,’’

Proc. IFIP WG6.1 6th Intl. Symp. on Protocol Specification, Testing, and Verification,

North Holland, B. Sarikaya and G. v. Bochmann Ed. pp. 217-229, 1986.

[EJ] J. Edmonds and E.L. Johnson, ‘‘Matching, Euler tours and the Chinese postman,’’

Mathematical Programming, vol. 5, pp. 88-124, 1973.

[EKa] J. Edmonds and R.M. Karp, ‘‘Theoretical improvements in algorithmic efficiency for

- 56 -

network flow problems,’’ JACM, vol. 19, no. 2, pp. 248-264, 1972.

[EKr]] J. Ellsberger and F. Kristoffersen, ‘‘Testability in the context of SDL,’’ Proc. IFIP

WG6.1 12th Intl. Symp. on Protocol Specification, Testing, and Verification, North

Holland, R. J. Linn, Jr. and M. U. Uyar Ed. pp. 319-334, 1992.

[Ep] D. Eppstein, "Reset sequences for monotonic automata’’, SIAM J. on Computing, vol.

19, no. 3, pp. 500-510, 1990.

[EBVS] S. Eswara, T. Berrian, P. VanHoutte, and B. Sarikaya, ‘‘Towards execution of TTCN

test cases,’’ Proc. IFIP WG6.1 10th Intl. Symp. on Protocol Specification, Testing, and

Verification, North-Holland, L. Logrippo, R. L. Probert, and H. Ural Ed. pp. 99-112,

1990.

[FL] J-P. Favreau and R. J. Linn, Jr., ‘‘Automatic generation of test scenario skeletons from

protocol specifications written in Estelle,’’ Proc. IFIP WG6.1 6th Intl. Symp. on Proto-

col Specification, Testing, and Verification, North Holland, B. Sarikaya and G. v.

Bochmann Ed. pp. 191-202, 1986.

[FM1] A. D. Friedman and P. R. Menon, Fault Detection in Digital Circuits, Prentice-Hall,

1971.

[FM2] A. D. Friedman and P. R. Menon, ‘‘Fault location in iterative logic arrays,’’ Theory of

Machines and Computations, Z. Kohavi and A. Paz Ed. Academic Press, 1972, pp.

327-340.

[FBKAG]S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi, ‘‘Test selec-

tion based on finite state models,’’ IEEE Trans. on Software Eng., vol. 17, pp. 591-603,

1991.

[GJ] M. R. Garey and D. S. Johnson, Computers and Intractability: a Guide to the Theory of

NP-Completeness, W. H. Freeman, 1979.

[GB] A. Ghedamsi and G. v. Bochmann, ‘‘Test result analysis and diagnostics for finite state

machines,’’ Proc. 12th Int. Conf. on Distributed Systems, 1992.

[GBD] A. Ghedamsi, G. v. Bochmann, and R. Dssouli, ‘‘Multiple fault diagnostics for finite

state machines,’’ Proc. INFOCOM 93, pp. 782-791, 1993.

[G1] A. Gill, ‘‘State-identification experiments in finite automata,’’ Information and Con-

trol, vol. 4, pp. 132-154, 1961.

[G2] A. Gill, Introduction to the Theory of Finite-state Machines, McGraw-Hill, 1962.

[Gob] S. M Gobershtein, ‘‘Check words for the states of a finite automaton,’’ Kibernetika, no.

1, pp. 46-49, 1974.

[Gol] E. M. Gold, "Complexity of automaton identification from given data," Information

and Control 37, pp. 302-320, 1978.

- 57 -

[Gon] G. Gonenc, ‘‘A Method for the design of fault detection experiments,’’ IEEE Trans.

Computers, vol. C-19, pp. 551-558, 1980.

[HS] J. Hartmanis and R. E. Stearns, Algebraic Structure Theory of Sequential Machines,

Prentice-Hall, 1966,

[HK] W. Hengeveld and J. Kroon, ‘‘Using checking sequences for OSI session layer confor-

mance testing,’’ Proc. IFIP WG6.1 7th Intl. Symp. on Protocol Specification, Testing,

and Verification, North Holland, H. Rudin and C. H. West Ed. pp. 435-449, 1987.

[He] F. C. Hennie, ‘‘Fault detecting experiments for sequential circuits,’’ Proc. 5th Ann.

Symp. Switching Circuit Theory and Logical Design, pp. 95-110, 1964.

[Hoa] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.

[Hol] G. J. Holzmann, Design and Validation of Protocols, Prentice-Hall, 1990.

[Hop] J. E. Hopcroft, ‘‘An n log n algorithm for minimizing states in a finite automaton,’’

Theory of Machines and Computations, Z. Kohavi and A. Paz, Ed. Academic Press, pp.

189-196, 1971.

[HU] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and

Computation, Addison-Wesley, 1979.

[Hs] E. P. Hsieh, ‘‘Checking experiments for sequential machines,’’ IEEE Trans. on Com-

puter, vol. C-20, no. 10, pp. 1152-1166, 1971.

[JBFA] J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham, ‘‘Probabilistic verification of

Boolean functions,’’ Formal Methods in System Design, vol. 1, pp. 63-117, 1992.

[KLPU] B. Kanungo, L. Lamont, R. L. Probert, and H. Ural, ‘‘A useful FSM representation for

test suite design and development,’’ Proc. IFIP WG6.1 6th Intl. Symp. on Protocol

Specification, Testing, and Verification, North Holland, B. Sarikaya and G. v. Boch-

mann Ed. pp. 163-176, 1986.

[KSNM] K. Katsuyama, F. Sato, T. Nakakawaji, and T. Mizuno, ‘‘Strategic testing environment

with formal description techniques,’’ IEEE Trans. on Computers, vol. 40, no.4, pp.

514-525, 1991.

[KV] M. Kearns and L. Valiant, "Cryptographic limitations on learning Boolean formulae

and finite automata," Proc. 21st Annual ACM Symp. on Theory of Computing, pp. 433-

444, 1989.

[KMM] S. M. Kim, R. McNaughton, and R. McCloskey, ‘‘A polynomial time algorithm for the

local testability problem of deterministic finite automata,’’ IEEE Trans. on Computers,

vol. 40, no. 10, pp. 1087-1093, 1991.

[KK] I. Kohavi and Z. Kohavi, ‘‘Variable-length distinguishing sequences and their applica-

tion to the design of fault-detection experiments,’’ IEEE Trans. on Computer, vol. C-

17, pp. 792-795, 1968.

- 58 -

[Koh] Z. Kohavi, Switching and Finite Automata Theory, 2nd Ed. McGraw-Hill, 1978.

[Kor] A. D. Korshunov, ‘‘On the degree of distinguishability of finite automata,’’ Diskretnyi

Analiz., pp. 39-59, 1967.

[KR] K. B. Krohn and J. L. Rhodes, ‘‘Algebraic theory of machines,’’ Proc. Symposium on

Mathematical Theory of Automata, 1962, Microwave Research Institute Symposium

Series, vol. 12, Poytechnic Press, 1963.

[Ku] M.-K. Kuan, ‘‘Graphic programming using odd or even points,’’ Chinese Math., vol. 1,

pp. 273-277, 1962.

[Kur] R. P. Kurshan, Computer-aided Verification of Coordinating Processes, Princeton Uni-

versity Press, Princeton, New Jersey, 1995.

[Kw1] E. Kwast, ‘‘Towards automatic test generation for protocol data aspects,’’ Proc. IFIP

WG6.1 11th Intl. Symp. on Protocol Specification, Testing, and Verification, North-

Holland, B. Jonsson, J. Parrow, and B. Pehrson Ed. pp. 333-348, 1991.

[Kw2] E. Kwast, ‘‘Automatic test generation for protocol data aspects,’’ Proc. IFIP WG6.1

12th Intl. Symp. on Protocol Specification, Testing, and Verification, North Holland, R.

J. Linn, Jr. and M. U. Uyar Ed. pp. 211-226, 1992.

[Lal] P. K. Lala, Fault Tolerant & Fault Testable Hardware Design, Prentice-Hall, 1985.

[LS1] S. S. Lam and A. U. Shankar, ‘‘Protocol verification via projections,’’ IEEE Trans. on

Software Engineering, vol. SE-10, no. 4, pp. 325-342, 1984.

[Law] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and

Winston, 1976.

[Le] G. Leduc, ‘‘Conformance relation, associated equivalence, and new canonical tester in

LOTOS,’’ Proc. IFIP WG6.1 11th Intl. Symp. on Protocol Specification, Testing, and

Verification, North-Holland, B. Jonsson, J. Parrow, and B. Pehrson Ed. pp. 249-264,

1991.

[LL1] D. Y. Lee and J. Y. Lee, ‘‘Test generation for the specification written in Estelle,’’

Proc. IFIP WG6.1 11th Intl. Symp. on Protocol Specification, Testing, and Verification,

North-Holland, B. Jonsson, J. Parrow, and B. Pehrson Ed. pp. 317-332, 1991.

[LL2] D. Y. Lee and J. Y. Lee, ‘‘A well-defined Estelle specification for the automatic test

generation,’’ IEEE Trans. on Computers, vo. 40, no. 4, pp. 526-542, 1991.

[LNS] D. Lee, A. N. Netravali and K. Sabnani, ‘‘Protocol pruning,’’ Proceedings of The

IEEE, Vol. 83, No. 10, pp. 1357-1372, 1995.

[LNSSJ] D. Lee, A. N. Netravali, B. Sugla, K. Sabnani and A. John, ‘‘Passive testing and net-

work management,’’ paper in preparation.

[LS] D. Lee and K. Sabnani, ‘‘Reverse-engineering of communication protocols,’’ Proc.

- 59 -

ICNP, pp. 208-216, 1993.

[LSKPU] D. Lee, K. Sabnani, D. M. Kristol and S. Paul, ‘‘Conformance testing of protocols

specified as communicating finite state machines - a guided random walk based

approach,’’ to appear in IEEE Trans. on Communications.

[LW1] D. Lee and H. Wozniakowski, ‘‘Testing linear operators,’’ BIT, Vol. 35, pp. 331-351,

1995.

[LW2] D. Lee and H. Wozniakowski, ‘‘Testing nonlinear operators,’’ Numerical Algorithms,

Vol. 9, pp. 319-342, 1995.

[LY1] D. Lee and M. Yannakakis, ‘‘Testing finite state machines: state identification and veri-

fication,’’ IEEE Trans. on Computers, vol. 43, no. 3, pp. 306-320, 1994.

[LY2] D. Lee and M. Yannakakis, ‘‘On-line minimization of transition systems,’’ Proc. 24th

Ann. ACM Symp. on Theory of Computing, pp. 264-274, 1992.

[LY3] D. Lee and M. Yannakakis, ‘‘On-line minimization of transition systems - general

methods,’’ paper in preparation.

[Lo] S. Low ‘‘Probabilistic conformance testing of protocols with unobservable transitions,’’

Proc. ICNP, pp. 368-375, 1993.

[MMS] R. S. Matthews, K. H. Muralidhar, and M. K. Shumacher, ‘‘Conformance testing: oper-

ational aspects, tools, and experiences,’’ Proc. IFIP WG6.1 6th Intl. Symp. on Protocol

Specification, Testing, and Verification, North Holland, B. Sarikaya and G. v. Boch-

mann Ed. pp. 135-150, 1986.

[Me] J. de Meer, ‘‘Derivation and validation of test scenarios based on the formal specifica-

tion language LOTOS,’’ Proc. IFIP WG6.1 6th Intl. Symp. on Protocol Specification,

Testing, and Verification, North Holland, B. Sarikaya and G. v. Bochmann Ed. pp.

203-216, 1986.

[ML] R. E. Miller and G. M. Lundy, ‘‘Testing protocol implementations based on a formal

specification,’’ Protocol Test Systems III, North-Holland, pp. 289-304, 1990.

[MP1] R. E. Miller and S. Paul, ‘‘Generating minimal length test sequences for conformance

testing of communication protocols, Proc. INFOCOM, pp. 970-979, 1991.

[MP2] R. E. Miller and S. Paul, ‘‘Generating conformance test sequences for combined control

and data flow of communication protocols,’’ Proc. IFIP WG6.1 12th Intl. Symp. on

Protocol Specification, Testing, and Verification, North Holland, R. J. Linn, Jr. and M.

U. Uyar Ed. pp. 13-28, 1992.

[Mi] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[Mo] E. F. Moore, ‘‘Gedanken-experiments on sequential machines,’’ Automata Studies,

Annals of Mathematics Studies, Princeton University Press, no. 34, pp. 129-153, 1956.

- 60 -

[Mu] K. H. Muralidhar, ‘‘MAP 2.1 network management and directory services test system,’’

Proc. IFIP WG6.1 7th Intl. Symp. on Protocol Specification, Testing, and Verification,

North Holland, H. Rudin and C. H. West Ed. pp. 359-372, 1987.

[My] G. J. Myers, Software Reliability: Principles & Practices, Wiley, 1976.

[NT] S. Naito and M. Tsunoyama, ‘‘Fault detection for sequential machines by transitions

tours,’’ Proc. IEEE Fault Tolerant Comput. Symp., IEEE Computer Society Press, pp.

238-243, 1981.

[Nig] J. S. Nightingale, ‘‘Application of the ISO distributed single-layer testing method to the

connectionless network protocol,’’ Proc. IFIP WG6.1 6th Intl. Symp. on Protocol Spec-

ification, Testing, and Verification, North Holland, B. Sarikaya and G. v. Bochmann

Ed. pp. 123-134, 1986.

[Pa] J. Pachl, ‘‘A notation for specifying test selection criteria,’’ Proc. IFIP WG6.1 10th

Intl. Symp. on Protocol Specification, Testing, and Verification, North-Holland, L.

Logrippo, R. L. Probert, and H. Ural Ed. pp. 71-84, 1990.

[PY] A. Petrenko and N. Yevtushenko, ‘‘Test suit generation from an FSM with a given type

of implementation errors,’’ Proc. IFIP WG6.1 12th Intl. Symp. on Protocol Specifica-

tion, Testing, and Verification, North Holland, R. J. Linn, Jr. and M. U. Uyar Ed. pp.

229-244, 1992.

[PF] D. H. Pitt and D. Freestone, "The Derivation of conformance tests from LOTOS speci-

fications,’’ IEEE Trans. on Software Engineering Vol. 16, No. 12, pp. 1337-1343,

1990.

[PW] L. Pitt and M. Warmath, "The minimum consistent DFA problem cannot be approxi-

mated within any polynomial," J. ACM Vol. 40, No. 1, pp. 95-142, 1993.

[PUH] R. L. Probert, H. Ural, and M. W. A. Hornbeek, ‘‘An integrated software environment

for developing and validating standardized conformance tests,’’ Proc. IFIP WG6.1 8th

Intl. Symp. on Protocol Specification, Testing, and Verification, North-Holland, S.

Aggarwal and K. Sabnani Ed. pp. 87-98, 1988.

[RHTW] E. P. Rathgeb, C. Homann, H. L. Truong, and G. Waldmann, ‘‘Protocol testing for the

ISDN D-channel network layer,’’ Proc. IFIP WG6.1 7th Intl. Symp. on Protocol Speci-

fication, Testing, and Verification, North Holland, H. Rudin and C. H. West Ed. pp.

421-434, 1987.

[RS] R. L. Rivest and R. E. Schapire, ‘‘Inference of finite automata using homing

sequences,’’ Proc. 21st Annual ACM Symp. on Theory of Computing, pp. 411-420,

1989.

[RU] M. Rodrigues and H. Ural, "Exact solutions for the construction of optimal length test

sequences," Information Processing Letters, vol. 48, pp. 275-280, 1993.

- 61 -

[Ru] S. Rudich, ‘‘Inderring the structure of a Markov chain from its output’’, Proc. 26th

Ann. Symp. on Foundations of Computer Science, pp. 321-326, 1985.

[SD] K. K. Sabnani and A. T. Dahbura, ‘‘A protocol test generation procedure,’’ Computer

Networks and ISDN Systems, vol. 15, no. 4, pp. 285-297, 1988.

[SB1] B. Sarikaya and G. v. Bochmann, ‘‘Some experience with test sequence generation,’’

Proc. 2nd Intl. Workshop on Protocol Specification, Testing, and Verification, C. Sun-

shine, Ed. North-Holland, pp. 555-567, 1982.

[SB2] B. Sarikaya and G.v. Bochmann, ‘‘Synchronization and specification issues in protocol

testing,’’ IEEE Trans. on Commun., vol. COM-32, no. 4, pp. 389-395, 1984.

[SBC] B. Sarikaya, G. v. Bochmann, and E. Cerny, ‘‘A test design methodology for protocol

testing,’’ IEEE Trans. on Soft. Eng., vol. SE-13, no. 5, pp. 518-531, 1987.

[SG] B. Sarikaya and Q. Gao, ‘‘Translation of test specifications in TTCN to LOTOS,’’

Proc. IFIP WG6.1 8th Intl. Symp. on Protocol Specification, Testing, and Verification,

North-Holland, S. Aggarwal and K. Sabnani Ed. pp. 219-230, 1988.

[Se] C. L. Seitz, ‘‘An approach to designing checking experiments based on a dynamic

model,’’ Theory of Machines and Computations, Z. Kohavi and A. Paz Ed. Academic

Press, pp. 341-349, 1972.

[SLD] Y. N. Shen, F. Lombardi, and A. T. Dahbura, ‘‘Protocol conformance testing using

multiple UIO sequences,’’ Proc. IFIP WG6.1 9th Intl. Symp. on Protocol Specification,

Testing, and Verification, North-Holland, E. Brinksma, G. Scollo, and C. A. Vissers,

Ed. pp. 131-144, 1989.

[Si] D. Sidhu, ‘‘Protocol testing: the first ten years, the next ten years,’’ Proc. IFIP WG6.1

10th Intl. Symp. on Protocol Specification, Testing, and Verification, North-Holland, L.

Logrippo, R. L. Probert, and H. Ural Ed. pp. 45-68, 1990.

[SL1] D. P. Sidhu and T.-K. Leung, ‘‘Experience with test generation for real protocols,’’

Proc. SIGCOM, pp. 257-261, 1988.

[SL2] D. P. Sidhu and T.-K. Leung, ‘‘Formal methods for protocol testing: a detailed study,’’

IEEE Trans. Soft. Eng., vol. 15, no. 4, pp. 413-426, 1989.

[So] M. N. Sokolovskii, ‘‘Diagnostic experiments with automata,’’ Kibernetika, no. 6, pp.

44-49, 1971.

[SSLS] X. Sun, Y.-N. Shen, F. Lombardi, and D. Sciuto, ‘‘Protocol conformance testing by dis-

criminating UIO sequences,’’ Proc. IFIP WG6.1 11th Intl. Symp. on Protocol Specifi-

cation, Testing, and Verification, North-Holland, B. Jonsson, J. Parrow, and B. Pehrson

Ed. pp. 349-364, 1991.

[Tan] A. S. Tanenbaum, Computer Networks, 2nd Ed. Prentice Hall, 1988.

[Tar] R.E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and

- 62 -

Applied Mathematics, 1983.

[TB] B. A. Trakhtenbrot and Y. M. Barzdin, Finite Automata, Behavior and Synthesis,

North-Holland, 1973.

[TS] P. Tripathy and B. Sarikaya, ‘‘Test generation from LOTOS specifications,’’

[Ur] H. Ural, ‘‘A test derivation method for protocol conformance testing,’ Proc. IFIP

WG6.1 7th Intl. Symp. on Protocol Specification, Testing, and Verification, North Hol-

land, H. Rudin and C. H. West Ed. pp. 347-358, 1987.

[UP] H. Ural and R. L. Probert, ‘‘User-guided test sequence generation,’’ Proc. IFIP WG6.1

3rd Intl. Symp. on Protocol Specification, Testing, and Verification, North Holland, H.

Rudin and C. H. West Ed. pp. 421-436, 1983.

[UD] M.U. Uyar and A.T. Dahbura, ‘‘Optimal test sequence generation for protocols: the

Chinese postman algorithm applied to Q.931,’’ Proc. IEEE Global Telecommunica-

tions Conference, 1986.

[Val] L. G. Valiant, ‘‘A theory of learnable,’’ CACM, vol. 27, pp. 1134-1142, 1984.

[Vas] M. P. Vasilevskii, ‘‘Failure diagnosis of automata,’’ Kibernetika, no. 4, pp. 98-108,

1973.

[VSZ] R. J. Velthuys, J. M. Schneider, and G. Zorntlein, ‘‘A test derivation method based on

exploiting structure information,’’ Proc. IFIP WG6.1 12th Intl. Symp. on Protocol

Specification, Testing, and Verification, North Holland, R. J. Linn, Jr. and M. U. Uyar

Ed. pp. 195-210, 1992.

[Wa] F. Wagner, ‘‘VFSM executable specification,’’ Proc. CompEuro, 1992.

[WH] B. Wang and D. Hutchinson, ‘‘Protocol testing techniques,’’ Computer Communica-

tions, vol. 10, no. 2, pp. 79-87, 1987.

[WL1] C.-J. Wang and M. T. Liu, ‘‘A test suite generation method for extended finite state

machines using axiomatic semantics approach,’’ Proc. IFIP WG6.1 12th Intl. Symp. on

Protocol Specification, Testing, and Verification, North Holland, R. J. Linn, Jr. and M.

U. Uyar Ed. pp. 29-43, 1992.

[WL2] C.-J. Wang and M. T. Liu, ‘‘Generating test cases for EFSM with given fault models,’’

Proc. INFOCOM, pp. 774-781, 1993.

[WS] C. Wang and M. Schwartz, ‘‘Fault detection with multiple observers,’’ IEEE/ACM

Trans. on Networking, vol. 1, No. 1, pp. 48-55, 1993.

[Wes] C. West, ‘‘Protocol validation by random state exploration,’’ Proc. IFIP WG6.1 6th

Intl. Symp. on Protocol Specification, Testing, and Verification, North-Holland, B.

Sarikaya and G. Bochmann, Ed. 1986.

[Wez] C. D. Wezeman, ‘‘The CO-OP method for compositional derivation of conformance

- 63 -

testers,’’ Proc. IFIP WG6.1 9th Intl. Symp. on Protocol Specification, Testing, and Ver-

ification, North-Holland, E. Brinksma, G. Scollo, and C. A. Vissers, Ed. pp. 145-160,

1989.

[Wv] R. Wvong, ‘‘LAPB conformance testing using trace analysis,’’ Proc. IFIP WG6.1 11th

Intl. Symp. on Protocol Specification, Testing, and Verification, North-Holland, B. Jon-

sson, J. Parrow, and B. Pehrson Ed. pp. 267-282, 1991.

[YU] B. Yang and H. Ural, ‘‘Protocol conformance test generation using multiple UIO

sequences with overlapping,’’ Proc. SIGCOM, pp. 118-125, 1990.

[YL1] M. Yannakakis and D. Lee, ‘‘Testing finite state machines,’’ Proc. 23rd Annual ACM

Symposium on Theory of Computing, pp. 476-485, 1991.

[YL2] M. Yannakakis and D. Lee, ‘‘Testing finite state machines: fault detection,’’ J. of Com-

puter and System Sciences, Vol. 50, No. 2, pp. 209-227, 1995.

[YL3] M. Yannakakis and D. Lee, ‘‘An efficient algorithm for minimizing real-time transition

systems,’’ Proc. CAV, pp. 210-224, 1993.

[YiL] W. Yi and K. G. Larsen, ‘‘Testing probabilistic and nondeterministic processes,’’ Proc.

IFIP WG6.1 12th Intl. Symp. on Protocol Specification, Testing, and Verification,

North Holland, M. U. Uyar and J. Linn, Ed. 47-62, 1992.

[ZDH] H. X. Zeng, X. F. Du, and C. S. He, ‘‘Promoting the local test method with the new

concept ferry clip,’’ Proc. IFIP WG6.1 8th Intl. Symp. on Protocol Specification, Test-

ing, and Verification, North-Holland, S. Aggarwal and K. Sabnani Ed. pp. 231-241,

1988.

- 64 -

