
Music Genre Classification

Michael Haggblade Yang Hong Kenny Kao

1 Introduction

Music classification is an interesting problem with many applications, from Drinkify (a program that
generates cocktails to match the music) to Pandora to dynamically generating images that comple-
ment the music. However, music genre classification has been a challenging task in the field of music
information retrieval (MIR). Music genres are hard to systematically and consistently describe due
to their inherent subjective nature.

In this paper, we investigate various machine learning algorithms, including k-nearest neighbor (k-
NN), k-means, multi-class SVM, and neural networks to classify the following four genres: clas-
sical, jazz, metal, and pop. We relied purely on Mel Frequency Cepstral Coefficients (MFCC) to
characterize our data as recommended by previous work in this field [5]. We then applied the ma-
chine learning algorithms using the MFCCs as our features.

Lastly, we explored an interesting extension by mapping images to music genres. We matched the
song genres with clusters of images by using the Fourier-Mellin 2D transform to extract features and
clustered the images with k-means.

2 Our Approach

2.1 Data Retrieval Process

Marsyas (Music Analysis, Retrieval, and Synthesis for Audio Signals) is an open source software
framework for audio processing with specific emphasis on Music Information Retrieval Applica-
tions. Its website also provides access to a database, GTZAN Genre Collection, of 1000 audio
tracks each 30 seconds long. There are 10 genres represented, each containing 100 tracks. All the
tracks are 22050Hz Mono 16-bit audio files in .au format [2]. We have chosen four of the most
distinct genres for our research: classical, jazz, metal, and pop because multiple previous work has
indicated that the success rate drops when the number of classifications is above 4 [4]. Thus, our
total data set was 400 songs, of which we used 70% for training and 30% for testing and measuring
results.

We wrote a python script to read in the audio files of the 100 songs per genre and combine them
into a .csv file. We then read the .csv file into Matlab, and extract the MFCC features for each
song. We further reduced this matrix representation of each song by taking the mean vector and
covariance matrix of the cepstral features and storing them as a cell matrix, effectively modeling
the frequency features of each song as a multi-variate Gaussian distribution. Lastly, we applied
both supervised and unsupervised machine learning algorithms, using the reduced mean vector and
covariance matrix as the features for each song to train on.

2.2 Mel Frequency Cepstral Coefficients (MFCC)

For audio processing, we needed to find a way to concisely represent song waveforms. Existing
music processing literature pointed us to MFCCs as a way to represent time domain waveforms as
just a few frequency domain coefficients (See Figure 1).

1

To compute the MFCC, we first read in the middle 50% of the mp3 waveform and take 20 ms frames
at a parameterized interval. For each frame, we multiply by a hamming window to smooth the edges,
and then take the Fourier Transform to get the frequency components. We then map the frequencies
to the mel scale, which models human perception of changes in pitch, which is approximately linear
below 1kHz and logarithmic above 1kHz. This mapping groups the frequencies into 20 bins by
calculating triangle window coefficients based on the mel scale, multiplying that by the frequencies,
and taking the log. We then take the Discrete Cosine Transform, which serves as an approximation
of the Karhunen-Loeve Transform, to decorrelate the frequency components. Finally, we keep the
first 15 of these 20 frequencies since higher frequencies are the details that make less of a difference
to human perception and contain less information about the song. Thus, we represent each raw song
waveform as a matrix of cepstral features, where each row is a vector of 15 cepstral frequencies of
one 20 ms frame for a parameterized number of frames per song.

We further reduce this matrix representation of each song by taking the mean vector and covariance
matrix of the cepstral features over each 20ms frame, and storing them as a cell matrix. Model-
ing the frequencies as a multi-variate Gaussian distribution again compressed the computational
requirements of comparing songs with KL Divergence.

Figure 1: MFCC Flow

3 Techniques

3.1 Kullback-Lieber (KL) Divergence

The fundamental calculation in our k-NN training is to figure out the distance between two songs.
We compute this via the Kullback-Leibler divergence [3]. Consider p(x) and q(x) to be the two
multivariate Gaussian distributions with mean and covariance corresponding to those derived from
the MFCC matrix for each song. Then, we have the following:

However, since KL divergence is not symmetric but the distance should be symmetric, we have:

3.2 k-Nearest Neighbors (k-NN)

The first machine learning technique we applied is the k-nearest neighbors (k-NN) because existing
literature has shown it is effective considering its ease of implementation. The class notes on k-
nearest neighbors gave a succinct outline of the algorithm which served as our reference.

3.3 k-Means

For unsupervised k-means clustering to work on our feature set, we wrote a custom implementation
because we had to determine how to represent cluster centroids and how to update to better centroids
each iteration. To solve this, we chose to represent a centroid as if it were also a multi-variate Gaus-
sian distribution of an arbitrary song (which may not actually exist in the data set), and initialized
the four centroids as four random songs whose distances (as determined by KL divergence) were
above a certain empirically determined threshold. Once a group of songs is assigned to a centroid,
the centroid is updated according to the mean of the mean vectors and covariance matrices of those

2

songs, thus represented as a new song that is the average of the real songs assigned to it. Finally, as
random initialization in the beginning and number of iterations are the two factors with notable in-
fluence on the cluster outcomes, we determined the iteration number empirically and repeatedly run
k-means with different random initial centroids and pick the best, as determined by the calculated
total percent accuracy.

3.4 Multi-Class Support Vector Machine (DAG SVM)

A directed acyclic graph of 2-class SVMs

SVM classifiers provide a reliable and fast way to
differentiate between data with only two classes.
In order to generalize SVMs to data falling into
multiple classes (i.e. genres) we use a directed
acyclic graph (DAG) of two-class SVMs trained
on each pair of classes in our data set (eg f14(x)
denotes the regular SVM trained on class 1 vs
class 4) [1]. We then evaluate a sequence of two-
class SVMs and use a process of elimination to
determine the output of our multi-class classifier.

3.5 Neural Networks

We tried neural networks because it has proved generally successful in many machine learning
problems. We first pre-process the input data by combining the mean vector and the top half of the
covariance matrix (since it is symmetric) into one feature vector. As a result, we get 15+(1+15)∗ 15

2
features for each song. We then process the output data by assigning each genre to an element in the
set of the standard orthonormal basis in R4 for our four genres, as shown in the table below:

Genre Classical Jazz Metal Pop
Vector (1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 1) (0, 0, 0, 1)

We then split the data randomly by a ratio of 70-15-15: 70% of the data was used for training our
neural network, 15% of the data was used for verification to ensure we dont over-fit, and 15% of
the data for testing. After multiple test runs, we found that a feedforward model with 10 layers (see
Figure 2) for our neural network model gives the best classification results.

Figure 2: Diagram of a Neural Network

4 Results

4.1 Music Genre Classification

Classification accuracy varied between the different machine learning techniques and genres. The
SVM had a success rate of only 66% when identifying jazz , most frequently misidentifying it
as classical or metal. The Neural Network did worst when identifying metal with a 76% success
rate. Interestingly, the Neural Network only ever misidentified metal as jazz. k-Means did well
identifying all genres but Jazz, which was confused with Classical 36% of the time. k-NN had
difficulty differentiating between Metal and Jazz in both directions. Of its 33% failures identifying
Jazz, it misidentifies as Metal 90% of the time. Similarly, k-NN incorrectly predicted that Metal

3

Table 1: DAG SVM Results
Actual

Classical Jazz Metal Pop
Pr

ed
ic

te
d Classical 29 4 1 1

Jazz 1 20 1 0
Metal 0 4 26 0
Pop 0 2 2 29

Accuracy 97% 67% 87% 97%

Table 2: Neural Network Results
Actual

Classical Jazz Metal Pop

Pr
ed

ic
te

d Classical 14 0 0 0
Jazz 1 12 4 0

Metal 0 0 13 0
Pop 1 0 0 19

Accuracy 88% 100% 76% 100%

Table 3: k-Means Results
Actual

Classical Jazz Metal Pop

Pr
ed

ic
te

d Classical 14 16 0 0
Jazz 2 27 1 0

Metal 0 0 27 3
Pop 0 1 1 28

Accuracy 88% 61% 93% 90%

Table 4: k-NN Results
Actual

Classical Jazz Metal Pop

Pr
ed

ic
te

d Classical 26 9 0 2
Jazz 4 20 4 1

Metal 0 1 24 0
Pop 0 0 2 27

Accuracy 87% 67% 80% 90%

songs would be Jazz in 66% of all its failed Metal identifications. Overall we found that k-NN
and k-means yielded similar accuracies of about 80%. A DAG SVM gave about 87% accuracy and
neural networks gave 96% accuracy.

4.2 Music to Image Mapping

Figure 3: Image accompanying Lady Gaga’s Poker Face

As an extension, we mapped images to song genres. We obtained 120 images, with 30 images
of similar ”type” (i.e. nature images for classical music) per music genre. For extracting a set
of features from the images, we used the Fourier-Mellin 2D transform (FMT), which is similar to
extending MFCCs to 2D [6]. The main differences are that we binned the DTFT according to a
non-uniform logarithmic grid and then transformed from cartesian to log-polar coordinates (keeping
the rest of the procedure more or less the same as MFCCs). This makes the Mellin 2D transform
invariant to rotation, scale, and illumination, which is important in image characterization.

We then applied k-Means clustering to our feature matrices from FMT, using the Frobenius norm as
our distance measure between images. Lastly, we matched each of the resulting clusters to a genre,
such that given a song, we can map the song to a genre as well as to a random image in the associated
image cluster. Our music to image mapper generated some fairly interesting results. For example,
our music classification correctly identified Lady Gaga’s Poker Face song as Pop. When we then
mapped the pop genre to a random image from its associated image cluster, we received the image
in Figure 3, a very reasonable matching.

4

5 Conclusion

5.1 Discussion

Our algorithms performed fairly well, which is expected considering the sharply contrasting genres
used for testing. The simpler and more naive approaches, k-NN (supervised) and k-Means (un-
supervised), predictably did worse than the more sophisticated neural networks (supervised) and
SVMs (unsupervised). However, we expected similar performance from SVMs and neural networks
based on the papers we read, so the significant superiority of neural networks came as a surprise.
A large part of this is probably attributable to the rigorous validation we used in neural networks,
which stopped training exactly at the maximal accuracy for the validation data set. We performed no
such validation with our DAG SVM. Most learning algorithms had the most difficulty differentiat-
ing between Metal and Jazz, except k-Means which had the most difficulty differentiating between
Classical and Jazz. This corroborates the idea that qualitatively these genres are the most similar.
Our image matching results can be considered reasonable from human perception but due to the
subjective and nebulous nature of image-to-music-genre clusters, we found roughly 40% overlap of
image types with any two given image clusters.

5.2 Future Work

Our project makes a basic attack on the music genre classification problem, but could be extended in
several ways. Our work doesn’t give a completely fair comparison between learning techniques for
music genre classification. Adding a validation step to the DAG SVM would help determine which
learning technique is superior in this application. We used a single feature (MFCCs) throughout this
project. Although this gives a fair comparison of learning algorithms, exploring the effectiveness
of different features (i.e. combining with metadata from ID3 tags) would help to determine which
machine learning stack does best in music classification.

Since genre classification between fairly different genres is quite successful, it makes sense to at-
tempt finer classifications. The exact same techniques used in this project could be easily extended
to classify music based on any other labelling, such as artist. In addition, including additional meta-
data text features such as album, song title, or lyrics could allow us to extend this to music mood
classification as well.

In regards to the image matching extension, there is room for further development in obtaining a
more varied data set of images (instead of four rough image ”themes” such as nature for classical or
pop artists for pop), although quantifying results is again an inherently subjective exercise. Another
possible application of the music-image mapping is to auto-generate a group of suitable images
for any given song, possibly replacing the abstract color animations in media players and manual
compilations in Youtube videos.

References

[1] Chen, P., Liu, S.. ”An Improved DAG-SVM for Multi-class Classification” http://
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=0566976.

[2] Marsyas. ”Data Sets” http://marsysas.info/download/data_sets.
[3] Mandel, M., Ellis, D.. ”Song-Level Features and SVMs for Music Classification” http://

www.ee.columbia.edu/˜dpwe/pubs/ismir05-svm.pdf.
[4] Li, T., Chan, A., Chun, A.. ”Automatic Musical Pattern Feature Extraction Using Con-

volutional Neural Network.” IMECS 2010. http://www.iaeng.org/publication/
IMECS2010/IMECS2010_pp546-550.pdf.

[5] Fu, A., Lu, G., Ting, K.M., Zhang, D.. ”A Survey of Audio-Based Music Classification and An-
notation” IEEE Transactions on Multimedia. http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=5664796&tag=1.

[6] Cakir, S., Cetin, A. E.. ”Mel- and Mellin-cepstral Feature Extraction Algorithms for Face
Recognition” The Computer Journal, 2011. http://comjnl.oxfordjournals.org/
content/54/9/1526.full.pdf.

5

