
The complexity of one-agent Refinement Modal Logic

Laura Bozzelli1, Hans van Ditmarsch2, and Sophie Pinchinat3

1 Technical University of Madrid (UPM), Madrid, Spain, laura.bozzelli@fi.upm.es
2 Logic, University of Sevilla, Spain, hvd@us.es & IMSc, Chennai, India

3 IRISA/INRIA, University of Rennes, Sophie.Pinchinat@irisa.fr

Abstract. We investigate the complexity of satisfiability for one-agent Refine-
ment Modal Logic (RML), a known extension of basic modal logic (ML) obtained
by adding refinement quantifiers on structures. It is known that RML has the same
expressiveness as ML, but the translation of RML into ML is of non-elementary
complexity, and RML is at least doubly exponentially more succinct than ML. In
this paper, we show that RML-satisfiability is ‘only’ singly exponentially harder
than ML-satisfiability, the latter being a well-known PSPACE-complete problem.
More precisely, we establish that RML-satisfiability is complete for the complex-
ity class AEXPpol, i.e., the class of problems solvable by alternating Turing ma-
chines running in single exponential time but only with a polynomial number of
alternations (note that NEXPTIME⊆ AEXPpol⊆ EXPSPACE).

1 Introduction

From propositional to refinement quantification in modal logics. Modal logics aug-
mented with propositional quantifiers, which allow ‘dynamic’ model transformations
(and, in particular, model restrictions), have been widely investigated in the literature
starting from the seminal paper by Fine [8]. Fine distinguishes different propositional
quantifications, which allow different kinds of model transformations, not all of which
are, in our modern terms, bisimulation preserving. However, in the general case, propo-
sitional quantification can easily lead to undecidable logics [8, 9]. This has motivated,
more recently, the introduction of bisimulation quantified logics [21, 11, 9, 16]: in this
framework, the quantification is over the models which are bisimilar to the current
model except for a propositional variable p (note that this includes model restriction).
A novel way of quantification in rather dynamic modal logics is quantifying over all
modally definable submodels of a given model [1]. The setting for these logics is how
to quantify over information change; for example, in the logic APAL of [1], an expres-
sion that we might write as ∃.ϕ for our purposes stands for “there is a formula ψ such
that after model restriction with relativization to ψ, the formula ϕ holds”. Refinement
modal logic (see [19, 20] and the unpublished manuscript [3]) is a generalization of this
perspective to more complex model transformations than mere model restrictions: this
is achieved by existential and universal quantifiers which range over the refinements
of the current structure (model). Unlike simulation, its dual, refinement corresponds
to structural loss instead of structural gain, and it is more general than model restric-
tion, since it is equivalent to bisimulation followed by model restriction [3]. Refinement
quantification can be seen as implicit quantification over propositional variables, just
as in bisimulation quantified logics we have explicit quantification over propositional

variables; in fact, it is equivalent to bisimulation quantification followed by relativiza-
tion [3]. As amply illustrated in [3], refinement quantification has applications in many
settings: in logics for games [17, 16], it may correspond to a player discarding some
moves; for program logics [10], it may correspond to operational refinement; and for
logics for spatial reasoning, it may correspond to sub-space projections [15].

Our contribution. We focus on complexity issues for (one-agent) Refinement Modal
Logic (RML) [19, 20, 3], the extension of (one-agent) basic modal logic (ML) obtained
by adding the existential and universal refinement quantifiers ∃r and ∀r. It is known [20,
3] that RML has the same expressivity as ML, but the translation of RML into ML is of
non-elementary complexity and no elementary upper bound is known for its satisfiabil-
ity problem [3]. In fact, an upper bound in 2EXPTIME has been claimed in [20] by a
tableaux-based procedure: the authors later concluded that the procedure is sound but
not complete [3]. In this paper, our aim is to close that gap. We also investigate the com-
plexity of satisfiability for some equi-expressive fragments of RML. In particular, we as-
sociate with each RML formula ϕ a parameter ϒw(ϕ) corresponding to a slight variant of
the classical quantifier alternation depth (measured w.r.t. ∃r and ∀r), and for each k≥ 1,
we consider the fragment RMLk consisting of the RML formulas ϕ such that ϒw(ϕ)≤ k.
Moreover, we consider the existential (resp., universal) fragment RML∃ (resp., RML∀)
obtained by disallowing the universal (resp., existential) refinement quantifier.
In order to present our results, first, we recall some computational complexity classes.
We assume familiarity with the standard notions of complexity theory [12, 14]. We will
make use of the levels Σ EXP

k (k ≥ 1) of the exponential-time hierarchy EH, which are
defined similarly to the levels ΣP

k of the polynomial-time hierarchy PH, but with NP
replaced with NEXPTIME. In particular, Σ EXP

k corresponds to the class of problems
decided by single exponential-time bounded Alternating Turing Machines (ATM, for
short) with at most k−1 alternations and where the initial state is existential [12]. Note
that ΣEXP

1 = NEXPTIME. Recall that EH ⊆ EXPSPACE and EXPSPACE corresponds
to the class of problems decided by single exponential-time bounded ATM (with no
constraint on the number of alternations) [4]. We are also interested in an intermediate
class between EH and EXPSPACE, here denoted by AEXPpol, that captures the precise
complexity of some relevant problems [7, 12, 18] such as the first-order theory of real
addition with order [7, 12]. Formally, AEXPpol is the class of problems solvable by sin-
gle exponential-time bounded ATM with a polynomial-bounded number of alternations.
Our complexity results are summarized in Figure 1 where we also recall the well-known
complexity of ML-satisfiability. For the upper bounds, the (technically non-trivial) main
step in the proposed approach exploits a “small” size model property: we establish that
like basic modal logic ML, RML enjoys a single exponential size model property.

We conclude this section by observing that our results are surprising for the follow-
ing reasons. While our results essentially indicate that satisfiability of RML is “only”
singly exponentially harder than satisfiability of ML, it is known [3] that RML is dou-
bly exponentially more succinct than ML. Moreover, RML can be doubly exponentially
more succinct than the more expressive logic given by the modal µ-calculus [3] (recall
that satisfiability of modal µ-calculus is EXPTIME-complete [6]). Furthermore, satisfi-
ability of RML extended with the universal and existential eventually modalities, and
their duals, of standard CTL [5] is already non-elementarily decidable [3]. Due to lack
of space, many proofs are omitted and can be found in the Appendix.

2

ML

PSPACE-complete

RML∃ = RML1

∈ NEXPTIME

PSPACE-hard

RML∀ ⊆ RML2

∈ ΣEXP
2

NEXPTIME-hard

RMLk+1 (k ≥ 1)

∈ ΣEXP
k+1

Σ EXP
k -hard

RML

AEXPpol-complete

Fig. 1. Complexity results for satisfiability of RML and RML-fragments

2 Preliminaries

In the rest of this section, we fix a finite set P of atomic propositions.
Structures, tree structures, and refinement preorder. A (one-agent Kripke) structure
(over P) is a tuple M = 〈S,E,V 〉, where S is a set of states (or worlds), E ⊆ S× S is
a transition (or accessibility) relation, and V : S 7→ 2P is a P-valuation assigning to
each state s the set of propositions in P which hold at s. For states s and t of M such that
(s, t)∈ E, we say that t is a successor of s. A pointed structure is a pair (M,s) consisting
of a structure M and a designated initial state s of M.

A tree T is a prefix-closed subset of N∗, where N is the set of natural numbers. The
elements of T are called nodes and the empty word ε is the root of T . For x ∈ T , the
set of children (or successors) of x is {x · i ∈ T | i ∈ N}. The size |T | of T is the number
of T -nodes. A (rooted) tree structure (over P) is a pair 〈T,V 〉 such that T is a tree and
V : T 7→ 2P is a P-valuation over T . For x∈ T , the tree substructure of 〈T,V 〉 rooted at x
is the tree structure 〈Tx,Vx〉, also denoted by 〈T,V 〉x, where Tx = {y∈N∗ | x ·y∈ T} and
Vx(y) =V (x ·y) for all y∈ Tx. Note that a tree structure 〈T,V 〉 corresponds to the pointed
structure (〈T,E,V 〉,ε), where (x,y) ∈ E iff y is a child of x. Moreover, we can associate
with any pointed structure (M,s) a tree structure, denoted by Unw(M,s), obtained by
unwinding M from s in the usual way.

For two structures M = 〈S,E,V 〉 and M′ = 〈S′,E ′,V ′〉, a refinement from M to M′ is
a relation R⊆ S×S such that for all (s,s′) ∈R: (i) V (s) =V ′(s′), and (ii) if (s′, t ′) ∈ E ′

for some t ′ ∈ S′, then there is some state t ∈ S such that (s, t) ∈ E and (t, t ′) ∈ R. If,
additionally, the inverse of R is a refinement from M′ to M, then R is a bisimulation
from M to M′. For states s∈ S and s′ ∈ S′, (M′,s′) is a refinement of (M,s) (resp., (M,s)
and (M′,s′) are bisimilar), written (M,s)< (M′,s′) (resp., (M,s)≈ (M′,s′)), if there is a
refinement (resp., bisimulation) R from M to M′ s.t. (s,s′)∈R. Note that < is a preorder
(i.e., reflexive and transitive) and ≈ is an equivalence relation over pointed structures.

Remark 1. For each pointed structure (M,s), (M,s)≈ Unw(M,s).

Refinement Modal Logic. We recall the syntax and semantics of one-agent refinement
modal logic (RML) [20, 3], an equally expressive extension of basic modal logic [2]
obtained by adding the existential and universal refinement quantifiers. For technical
convenience, the syntax of RML formulas ϕ over P is given in positive form as:

ϕ ::= p | ¬p | ϕ∧ϕ | ϕ∨ϕ | 3ϕ | 2ϕ | ∃rϕ | ∀rϕ

where p ∈ P, 3ϕ reads as “possibly ϕ”, 2ϕ reads as “necessarily ϕ”, and ∃r and ∀r are
the existential and universal refinement quantifiers. The dual ϕ̃ of a RML formula ϕ is
inductively defined as: p̃=¬p, ¬̃p= p, ϕ̃∨ψ= ϕ̃∧ψ̃, 3̃ϕ=2ϕ̃, 2̃ϕ=3ϕ̃, ∃̃rϕ=∀rϕ̃,
and ∀̃rϕ = ∃rϕ̃. The size |ϕ| of a formula ϕ is the number of distinct subformulas of ϕ.

3

RML is interpreted over pointed structures (M,s). The satisfaction relation (M,s) |= ϕ

is inductively defined as follows (we omit the clauses for boolean connectives):

(M,s) |= p iff p ∈V (s) where M = 〈S,E,V 〉
(M,s) |=3ϕ iff for some successor t of s in M,(M, t) |= ϕ

(M,s) |=2ϕ iff for all successors t of s in M,(M, t) |= ϕ

(M,s) |= ∃rϕ iff for some refinement (M′,s′) of (M,s),(M′,s′) |= ϕ

(M,s) |= ∀rϕ iff for all refinements (M′,s′) of (M,s),(M′,s′) |= ϕ

Note that (M,s) |= ϕ iff (M,s) 6|= ϕ̃. If (M,s) |= ϕ, we say that (M,s) satisfies ϕ, or also
that (M,s) is a model of ϕ. A RML formula ϕ is satisfiable if ϕ admits some model.
Fragments of RML. Let ML be the fragment of RML obtained by disallowing the re-
finement quantifiers, which corresponds to basic modal logic [2], and RML∀ and RML∃

be the fragments of RML obtained by disallowing the existential refinement quantifier
and the universal refinement quantifier, respectively. Moreover, we introduce a family
{RMLk}k≥1 of RML-fragments, where RMLk consists of the RML formulas whose weak
refinement quantifier alternation depth (see Definition 1 below) is at most k.

Definition 1 (Weak Refinement Quantifier Alternation Depth). We first define the
weak alternation length `(χ) of finite sequences χ ∈ {∃r,∀r}∗ of refinement quanti-
fiers: `(ε) = 0, `(Q) = 1 for every Q ∈ {∃r,∀r}, and `(QQ′χ) is `(Q′χ) if Q = Q′, and
`(Q′χ)+1 otherwise. For a RML formula ϕ, let T (ϕ) be the standard tree encoding of ϕ,
where each node is labeled by either a modality, or a boolean connective, or an atomic
proposition. The weak refinement quantifier alternation depth ϒw(ϕ) of a RML formula
ϕ is the maximum of the alternation lengths `(χ) where χ is the sequence of refinement
quantifiers along a path of T (∃rϕ) (note that we consider T (∃rϕ) and not T (ϕ)).

As an example, for ϕ = (∀r∃r p)∨2(∃r(p∧∀rq)), ϒw(ϕ) = 3. Note that RML∃ = RML1

and RML∀ ⊆ RML2. Moreover, for each RML formula ϕ, ϒw(∀rϕ) = ϒw(∀̃rϕ)+ 1. The
following example illustrates the succinctness of RML∃ w.r.t. ML.

Example 1. For n≥ 1, a n-block is a sequence b1, . . . ,bn+1 of n+1 bits. The following
RML∃ formula ϕn is satisfied by a tree structure iff there are two paths from the root
encoding two n-blocks of the form b1, . . . ,bn,bn+1 and b1, . . . ,bn,b′n+1 s.t. bn+1 6= b′n+1:

ϕn := ∃r
(
3

n+1(0∧¬1)∧3n+1(1∧¬0)∧
n∧

i=1

∨
b∈{0,1}

2
i(b∧¬(1−b))

)
By using the approach in Section 6.2 of [3], one can easily show that any ML formula
which is equivalent to ϕn has size singly exponential in n.

Investigated problems. For each RML-fragment F, let SAT(F) be the set of satisfi-
able F formulas. In this paper, we investigate the complexity of SAT(F) for any F ∈
{RML,RML∃,RML∀,RML2, . . .}. Figure 1 depicts our complexity results.

Assumption. Since RML is bisimulation invariant [20, 3], by Remark 1, w.l.o.g. we can
assume that the semantics of RML is restricted to tree structures.

Since RML and ML have the same expressiveness [20, 3], we easily obtain the fol-
lowing (for details, see Appendix A).

Proposition 1 (Finite Model Property). Let ϕ be a RML formula and 〈T,V 〉 be a tree
structure satisfying ϕ. Then, there is a finite refinement 〈Tr,Vr〉 of 〈T,V 〉 satisfying ϕ.

4

3 Upper bounds

In this section, we provide the upper bounds illustrated in Figure 1. Our approach con-
sists of two steps. First, in Section 3.1, we show that RML enjoys a singly exponential
size model property. Then, by using this result, we show in Section 3.2 that SAT(RML)
can be decided by a singly exponential-time bounded ATM whose number of alterna-
tions on an input ϕ is at most ϒw(ϕ)−1 and whose initial state is existential. We fix a fi-
nite set P of atomic propositions and consider RML formulas and tree structures over P.

3.1 Exponential Size Model Property

In this section, we prove the following result.

Theorem 1 (Exponential Size Model Property). For all satisfiable RML formulas ϕ

and tree structures 〈T,V 〉 such that 〈T,V 〉 satisfies ϕ, the following holds: there exists
a finite refinement 〈T ′,V ′〉 of 〈T,V 〉 such that 〈T ′,V ′〉 satisfies ϕ and |T ′| ≤ |ϕ|3|ϕ|2 .

First, we summarize the main steps in the proof of Theorem 1. Given a RML for-
mula ϕ, we associate with ϕ tableaux-based finite objects called constraints systems for
ϕ (Definition 2). Essentially, a constraint system S for ϕ is a tuple of hierarchically
ordered finite tree structures which intuitively represents an extended model of ϕ: (1)
each node x in a tree structure of S is additionally labeled by a set of subformulas of
ϕ which hold at the tree substructure rooted at node x, and, in particular, the first tree
structure, called main structure, represents a model of ϕ, and (2) the other tree struc-
tures of S are used to manage the ∃r-subformulas of ϕ. In fact, in order to be an extended
model of ϕ, S has to satisfy additional structural requirements which capture the seman-
tics of the boolean connectives and all the modalities except the universal refinement
quantifier ∀r, the latter being only semantically captured. Let C (ϕ) be the set of these
constraints systems for ϕ, which are said to be well-formed, saturated, and semanti-
cally ∀r-consistent. We individuate a subclass Cmin(ϕ) of C (ϕ) consisting of ‘minimal’
constraints systems for ϕ whose sizes are singly exponential in the size of ϕ, and which
can be obtained from ϕ by applying structural completion rules (Definitions 3 and 4).
Furthermore, we introduce a notion of ‘refinement’ between constraint systems for ϕ

(Definition 5) which preserves the semantic ∀r-consistency requirement. Then, given
a finite tree structure 〈T,V 〉 satisfying ϕ, we show that: (1) there is a constraint sys-
tem S ∈ C (ϕ) whose main structure is 〈T,V 〉 (Lemma 1), and (2) starting from S , it is
possible to construct a minimal constraint system Smin ∈ Cmin(ϕ) which is a refinement
of S (Lemma 3). This entails that the main structure of Smin is a refinement of 〈T,V 〉
satisfying ϕ and having a single exponential size. Hence, by Proposition 1, Theorem 1
follows. Now, we proceed with the details of the proof of Theorem 1.

We denote by P the set of negations of propositions in P, i.e. P = {¬p | p ∈ P}.
A set χ of RML formulas is complete if for each p ∈ P, either p ∈ χ or ¬p ∈ χ. In the
following, we fix a RML formula ϕ. The closure cl(ϕ) of ϕ is the set containing all
the subformulas of ϕ and the formulas in P∪P. Moreover, d3,2(ϕ) denotes the nesting
depth of modalities 3 and 2 (in ϕ), and d∃(ϕ) denotes the nesting depth of modality ∃r.

Definition 2. A constraint system for ϕ is a tuple S = 〈〈T1,L1,←1〉, . . . ,〈Tn,Ln,←n〉〉,
where for all 1≤ i≤ n, Ti is a finite tree and Li and←i are two Ti-labelings such that:

5

1. for each x ∈ Ti, Li(x) is a complete subset of cl(ϕ); moreover, ϕ ∈ Li(ε) if i = 1;
2. ←i: Ti 7→ {⊥} if i= 1 (⊥ is for undefined), and←i: Ti 7→ { j}×Tj for some 1≤ j < i

otherwise (note that j < i); moreover, for i > 1 and x,x′ ∈ Ti with ←i(x) = 〈 j,y〉
and←i(x′) = 〈 j,y′〉, if x′ is a successor of x in Ti, then y′ is a successor of y in Tj.

We denote by L̃i the P-valuation over Ti defined as L̃i(x) := Li(x)∩P for all x ∈ Ti, by
S(i) the ith component of S , i.e. 〈Ti,Li,←i〉, and by dim(S) the number of S compo-
nents, i.e., n. The (tree) structure 〈T1, L̃1〉 is called the main structure of S .
Let 1 ≤ i, j ≤ n, x ∈ Ti, y ∈ Tj and ψ ∈ cl(ϕ). We write 〈 j,y〉 ←S 〈i,x〉 to mean that
←i(x) = 〈 j,y〉, and S ` 〈i,x,ψ〉 (resp., S 6` 〈i,x,ψ〉) to mean that ψ ∈ Li(x) (resp.,
ψ 6∈ Li(x)). If S ` 〈i,x,ψ〉, we say that 〈i,x,ψ〉 is a S -constraint. S contains a clash
if S ` 〈i,x, p〉 and S ` 〈i,x,¬p〉 for some 1 ≤ i ≤ n, x ∈ Ti, and p ∈ P. Otherwise,
S is called clash-free. Moreover, S is said to be well-formed if S is clash-free and
whenever 〈 j,y〉 ←S 〈i,x〉, then L̃ j(y) = L̃i(x). Furthermore, S is said to be semantically
∀r-consistent if whenever S ` (i,x,∀rψ) then the tree structure 〈Ti, L̃i〉x satisfies ∀rψ.

If S is well-formed, then the labeling←i induce a refinement hierarchy. More precisely:

Remark 2. Let S = 〈〈T1,L1,←1〉, . . . ,〈Tn,Ln,←n〉〉 be a well-formed constraint system
for ϕ. Then, 〈 j,y〉 ←S 〈i,x〉 implies that 〈Ti, L̃i〉x is a refinement of 〈Tj, L̃ j〉y.

Definition 3 (Saturated Constraint Systems). A constraint system S for ϕ is satu-
rated if none of the following completion rules are applicable to S .

∧-rule: if S ` 〈i,x,ψ1∧ψ2〉, S(i) = 〈T,L,←〉, and {ψ1,ψ2} 6⊆ L(x)
then update L(x) := L(x)∪{ψ1,ψ2}

∨-rule: if S ` 〈i,x,ψ1∨ψ2〉, S(i) = 〈T,L,←〉, and {ψ1,ψ2}∩L(x) = /0

then update L(x) := L(x)∪{ψk} for some k ∈ {1,2}
∃r-rule: if S ` 〈i,x,∃rψ〉, S := 〈〈T1,L1,←1〉, . . . ,〈Tn,Ln,←n〉〉, and

S 6` 〈h,ε,ψ〉 for each h≤ dim(S) such that←h(ε) = 〈i,x〉
then update S := 〈〈T1,L1,←1〉, . . . ,〈Tn+1,Ln+1,←n+1〉〉, where

Tn+1 := {ε}, Ln+1(ε) := {ψ}∪ (Li(x)∩ (P∪P)), and←n+1(ε) := 〈i,x〉
2-rule: if S ` 〈i,x,2ψ〉 and S 6` 〈i,x′,ψ〉 for some successor x′ of x in S(i)

then let S(i) = 〈T,L,←〉
update L(x′) := L(x′)∪{ψ} for each successor x′ of x in T

3-rule: if S ` 〈i,x,3ψ〉 and S 6` 〈i,x′,ψ〉 for each successor x′ of x in S(i)
then let 〈i0,x0〉 ←S . . .←S 〈ik,xk〉 with i0 = 1 and 〈ik,xk〉= 〈i,x〉

guess some complete set χ⊆ P∪P,
for each q = k,k−1, . . . ,0 with S(iq) = 〈Tq,Lq,←q〉 do

update Tq := Tq∪{xq ·hq} for some hq ∈ N such that xq ·hq 6∈ Tq
if q < k then Lq(xq ·hq) := χ and←iq+1(xq+1 ·hq+1) := 〈iq,xq ·hq〉

else Lq(xq ·hq) := {ψ}∪χ

Remark 3. Let S be a constraint system for ϕ. Then, applying any rule of Definition 3
to S yields a constraint system for ϕ.

The ∨-rule, the ∧-rule, and the 2-rule of Definition 3 are standard. The ∃r-rule and
the 3-rule are the unique rules which add new nodes to the given constraint system

6

S for ϕ. The ∃r-rule is applicable to a S -constraint ξ = 〈i,x,∃rψ〉 if there are no S -
constraints (ξ-witnesses) of the form 〈h,ε,ψ〉 such that 〈i,x〉 ←S 〈h,ε〉. The rule then
adds a ξ-witness 〈n+ 1,ε,ψ〉 to S by extending S with a new component containing
a single node (the root) whose label is propositionally consistent with the label of x.
The 3-rule is applicable to a S -constraint ξ = 〈i,x,3ψ〉 if there are no S -constraints
(ξ-witnesses) of the form 〈i,x′,ψ〉 where x′ is a successor of x. Let 〈i0,x0〉 ←S . . .←S
〈ik,xk〉 be the maximal chain of ‘backward links’ from 〈ik,xk〉 = 〈i,x〉. The rule then
adds a ξ-witness 〈ik,x′k,ψ〉 to S (x′k being a new successor of xk = x), a complete set
χ⊆ P∪P is guessed, and the hierarchical structure of S is restored as follows: the rule
adds the new constraints 〈i0,x′0,χ〉, . . . ,〈ik,x′k,χ〉, where x′0, . . . ,x

′
k−1 are new successors

of x0, . . . ,xk−1 respectively, and the new chain of ‘backward links’ 〈i0,x′0〉 ←S . . .←S
〈ik,x′k〉. The proof of the following lemma is given in Appendix B.1.

Lemma 1 (Soundness & Completeness). Let 〈T,V 〉 be a finite tree structure. Then,
〈T,V 〉 satisfies ϕ if and only if there is a well-formed, saturated, and semantically ∀r-
consistent constraint system S for ϕ whose main structure is 〈T,V 〉.

Definition 4 (Minimal Constraint Systems). A constraint system S for ϕ is initial if
S = 〈〈{ε},L,←〉〉, and for all ψ∈ L(ε), either ψ = ϕ or ψ∈ P∪P. A minimal constraint
system S for ϕ is a constraint system for ϕ which can be obtained from some initial
constraint system for ϕ by a sequence of applications of the rules of Definition 3.

The following lemma (whose proof is in Appendix B.2) shows that every minimal
constraint system for ϕ has a ‘size’ singly exponential in the size of ϕ.

Lemma 2. Each minimal constraint system S for ϕ satisfies the following invariant: (i)
each tree in S has height at most d3,2(ϕ) and branching degree at most |ϕ|(2d∃(ϕ)+1),
and (ii) dim(S) is at most |ϕ|4·(d∃(ϕ))2·(d3,2(ϕ)+1). Moreover, any sequence of applica-
tions of the rules of Definition 3 starting from an initial constraint system for ϕ is finite.

We introduce a notion of ‘refinement’ over constraint systems for ϕ, which generalizes
the refinement preorder over finite structures. Moreover, this notion crucially preserves
both well-formedness and the semantic ∀r-consistency requirement (Lemma 3).

Definition 5 (Refinement for constraint systems). Let S = 〈〈T1,L1,←1〉, . . . ,〈Tn, Łn,
←n〉〉 and S ′ = 〈〈T ′1 ,L′1,←′1〉, . . . ,〈T ′m,L′m,←′m〉〉 be constraint systems for ϕ. S is a
refinement of S ′ if there is a tuple T = 〈↑1, . . . ,↑n〉 such that for all 1 ≤ i ≤ n, there is
1≤ j ≤ m so that ↑i: Ti 7→ { j}×T ′j and for all x ∈ Ti with ↑i(x) = 〈 j,y〉:

1. Li(x)⊆ L′j(y), j = 1 iff i = 1, and y = ε iff x = ε;
2. for each successor x′ of x in Ti, ↑i(x′) = 〈 j,y′〉 where y′ is a successor of y in T ′j .
3. if←i(x) = 〈i′,x′〉, then←′j(y) = 〈 j′,y′〉 and ↑i′(x′) = 〈 j′,y′〉.

Lemma 3 (Minimalization). Let S ′ be a constraint system for ϕ which is well-formed
and semantically ∀r-consistent. Then, any constraint system S for ϕ which is a refine-
ment of S ′ is well-formed and semantically ∀r-consistent too, and the main structure of
S is a refinement of the main structure of S ′. Moreover, if S ′ is additionally saturated,
there is a minimal and saturated constraint system S for ϕ which is a refinement of S ′.

7

Sketched proof. (Details are in Appendix B.3). The first part of Lemma 3 follows from
Definition 5 and the following crucial observation: if 〈Tr,Vr〉 is a refinement of a tree
structure 〈T,V 〉, then for each ∀r-formula ∀rψ, 〈T,V 〉 |= ∀rψ implies 〈Tr,Vr〉 |= ∀rψ.
For the second part of Lemma 3, let S ′ be a well-formed, saturated, and semantically
∀r-consistent constraint system for ϕ. Since S ′ is well-formed, there is a unique initial
constraint system S0 for ϕ s.t. S0 is a refinement of S ′. For each rule of Definition 3, we
define an extension of such a rule which has the same precondition and the same effect
(w.r.t. a given constraint system S) with the difference that the nondeterministic choices
are guided by S ′. By Lemma 2, it follows that any sequence of applications of the new
rules starting from S0 is finite. Moreover, the application of these new rules preserves
the property of a constraint system to be a refinement of S ′. Hence, we deduce that there
is a minimal and saturated constraint system S for ϕ which is a refinement of S ′. ut

Proof of Theorem 1. Let 〈T,V 〉 be a tree structure satisfying ϕ. By Proposition 1, there
is a finite refinement 〈Tr,Vr〉 of 〈T,V 〉 satisfying ϕ. By Lemma 1, there is a well-formed,
saturated, and semantically ∀r-consistent constraint system S for ϕ whose main struc-
ture is 〈Tr,Vr〉. Thus, by Lemma 3, there is a minimal, well-formed, saturated, and se-
mantically ∀r-consistent constraint system Smin for ϕ whose main structure 〈Tmin,Vmin〉
is a refinement of 〈Tr,Vr〉. Hence, 〈Tmin,Vmin〉 is a refinement of 〈T,V 〉 as well, and by
Lemmata 1 and 2, 〈Tmin,Vmin〉 satisfies ϕ and |Tmin| ≤ |ϕ|3|ϕ|

2
. Hence, the result follows.

3.2 Checking satisfiability

For a RML formula, the set FL(ϕ) of first-level subformulas of ϕ is defined as follows:
if ϕ = ϕ1∨ϕ2 or ϕ = ϕ1∧ϕ2, then FL(ϕ) = FL(ϕ1)∪FL(ϕ2); otherwise FL(ϕ) = {ϕ}.

Theorem 2. SAT(RML) ∈ AEXPpol and SAT(RMLk) ∈ Σ EXP
k for each k ≥ 1.

Proof. For a RML formula ϕ, a certificate of ϕ is a finite tree structure 〈T,V 〉 such that
|T | ≤ |ϕ|3·|ϕ|2 . Define:

ŜAT(RML) := {(ϕ,〈T,V 〉) | ϕ ∈ RML and 〈T,V 〉 is a certificate of ϕ satisfying ϕ}
By Theorem 1, ϕ ∈ SAT(RML) iff (ϕ,〈T,V 〉) ∈ ŜAT(RML) for some certificate 〈T,V 〉
of ϕ. Since 〈T,V 〉 has size singly exponential in the size of ϕ, it suffices to show that
ŜAT(RML) can be decided by a polynomial-time bounded ATM whose number of al-
ternations on an input (ϕ,〈T,V 〉) is at most ϒw(ϕ)− 1 and whose initial state is exis-
tential. For this, in turn, we show that ŜAT(RML) can be decided by a nondeterministic
polynomial-time bounded procedure “check” that given an input (ϕ,〈T,V 〉), uses in case
ϒw(ϕ)> 1 as an oracle the same language ŜAT(RML) but with input queries of the form
(ψ,〈T ′,V ′〉), where ϒw(ψ) < ϒw(ϕ) and ψ ∈ cl(ϕ). Hence, by standard arguments in
complexity theory [12, 14], the result follows. Procedure check is defined as follows.

check(ϕ,〈T,V 〉) /** ϕ ∈ RML and 〈T,V 〉 is a certificate of ϕ **/

K ←{(ϕ,〈T,V 〉)};
while K 6= /0 do

select (ψ,〈T ′,V ′〉) ∈K ; update K ←K \{(ψ,〈T ′,V ′〉)};
guess F ⊆ FL(ψ) and let ψF be the boolean formula obtained from ψ by replac-

8

ing each first-level subformula θ of ψ with true if θ ∈ F , and false otherwise;
if ψF evaluates to false then reject the input;
for each θ ∈ F do

case θ = p with p ∈ P: if p /∈V ′(ε) then reject the input;
case θ = ¬p with p ∈ P: if p ∈V ′(ε) then reject the input;
case θ=3θ′: guess a child x of the T ′-root, update K ←K ∪{(θ′,〈T ′,V ′〉x)};
case θ =2θ′: update K ←K ∪{(θ′,〈T ′,V ′〉x1), . . . ,(θ

′,〈T ′,V ′〉xk)}
where x1, . . . ,xk are the children of the root of T ′;

case θ = ∃rθ
′: guess a certificate 〈T ′′,V ′′〉 of θ′ which is a refinement of
〈T ′,V ′〉 and update K ←K ∪{(θ′,〈T ′′,V ′′〉)};1

case θ = ∀rθ
′: query the oracle for ŜAT(RML) with input (∀̃rθ′,〈T ′,V ′〉);

/** note that ϒw(∀̃rθ′)< ϒw(∀rθ
′)≤ ϒw(ϕ) **/

if the oracle answers YES then reject the input;
end for

end while
accept the input.

Correctness of the procedure check easily follows from Theorem 1. ut

4 Lower bounds

In this section, we provide the lower bounds illustrated in Figure 1. The main contribu-
tion is AEXPpol-hardness of SAT(RML), which is proved by a polynomial-time reduction
from a suitable AEXPpol-complete problem. First, we define this problem.

Let k ≥ 1. A k-ary deterministic Turing Machine is a deterministic Turing machine
M = 〈k, I,A,Q,{qacc,qrej},q0,δ〉 operating on k ordered semi-infinite tapes and having
just one read/write head, where: I (resp., A ⊃ I) is the input (resp., work) alphabet, A
contains the blank symbol #, Q is the set of states, qacc (resp., qrej) is the terminal ac-
cepting (resp., rejecting) state, q0 is the initial state, and δ : (Q\{qacc,qre j})×A→ (Q×
A×{−1,+1})∪{1, . . . ,k} is the transition function. In each non-terminal step, if the
read/write head scans a cell of the `th tape (1≤ `≤ k) and (q,a)∈ (Q\{qacc,qre j})×A
is the current pair state/ scanned cell content, the following occurs:

– δ(q,a) ∈ Q×A×{−1,+1} (ordinary moves): M overwrites the tape cell being
scanned, there is a change of state, and the read/write head moves one position to
the left (-1) or right (+1) in accordance with δ(q,a).

– δ(q,a) = h ∈ {1, . . . ,k} (jump moves): the read/write head jumps to the left-most
cell of the hth tape and the state remains unchanged.

M accepts a k-ary input (w1, . . . ,wk)∈ (I∗)k, written M (w1, . . . ,wk), if the computation
of M from (w1, . . . ,wk) (initially, the `th tape contains the word w`, and the head points
to the left-most cell of the first tape) is accepting. We consider the following problem.
1By Theorem 1, if there is a refinement of 〈T ′,V ′〉 which satisfies θ′, there is also a refinement
of 〈T ′,V ′〉 satisfying θ′ which is a certificate of θ′. Moreover, checking for two given finite
tree structures 〈T,V 〉 and 〈T ′,V ′〉, whether 〈T,V 〉 is a refinement of 〈T ′,V ′〉 (or, equivalently,
〈T ′,V ′〉 is a simulation of 〈T,V 〉) can be done in polynomial time (see, e.g., [13]).

9

Alternation Problem. An instance of the problem is a triple (k,n,M), where k ≥ 1,
n > 1, and a M is a polynomial-time bounded k-ary deterministic Turing Machine
with input alphabet I. The instance (k,n,M) is positive iff the following holds,
where Q` = ∃ if ` is odd, and Q` = ∀ otherwise (for all 1≤ `≤ k),

Q1x1 ∈ I2n
.Q2x2 ∈ I2n

. . . .Qkxk ∈ I2n
.M (x1, . . . ,xk)

Note that the quantifications Qi are restricted to words over I of length 2n.

For k ≥ 1, the k-Alternation Problem is the Alternation Problem restricted to instances
of the form (k,n,M) (i.e., the first input parameter is fixed to k), and the Linear Alter-
nation Problem is the Alternation Problem restricted to instances of the form (n,n,M).
The proof of the following result is standard (a proof is given in Appendix C).

Proposition 2. The Linear Alternation Problem is AEXPpol-complete and for all k≥ 1,
the k-Alternation Problem is Σ EXP

k -complete.

Fix an instance (k,n,M) of the Alternation Problem with M = 〈k, I,A,Q,{qacc,qrej},
q0,δ〉. Since M is polynomial-time bounded, there is an integer constant c ≥ 1 such
that when started on a k-ary input (w1, . . . ,wk), M reaches a terminal configuration
in at most (|w1|+ . . .+ |wk|)c steps. A (k,n)-input is a k-ary input (w1, . . . ,wk) such
that wi ∈ I2n

for all 1 ≤ i ≤ k. Let c(k,n) := c · (n+ dlogke), where dlogke denotes
the smallest i ∈ N such that i ≥ logk. Note that a configuration of M reachable from
a (k,n)-input, called (k,n)-configuration, can be described as a tuple

−→
C = (C1, . . . ,Ck)

of k words C1, . . . ,Ck over A∪ (Q× A) of length exactly 2c(k,n) such that for some
1 ≤ ` ≤ k, C` is of the form w · (q,a) ·w′ ∈ A∗ × (Q× A)× A∗, and for i 6= `, Ci ∈
A2c(k,n)

. For a (k,n)-input (a ·w1, . . . ,wk), the associated initial (k,n)-configuration is
((q0,a) ·w1 · #2c(k,n)−2n

, . . . ,wk · #2c(k,n)−2n
). Thus, the computations of M from (k,n)-

inputs, called (k,n)-computations, can be described by sequences π of at most 2c(k,n)

(k,n)-configurations. In fact, w.l.o.g., we can assume that π has length exactly 2c(k,n).
In the rest of this section, we prove the following result.

Theorem 3. One can construct a RMLk+1 formula ϕ in time polynomial in n, k, and
the size of the TM M such that (i) ϕ is a RML∀ formula if k = 1, and (ii) ϕ is satisfiable
if and only if the instance (k,n,M) of the Alternation Problem is positive.

By Proposition 2 and Theorem 3, we obtain the following.

Corollary 1. SAT(RML) is AEXPpol-hard, SAT(RML∀) is NEXPTIME-hard, and for all
k ≥ 1, SAT(RMLk+1) is Σ EXP

k -hard.

Tree encoding of (k,n)-computations. In order to prove Theorem 3, first, we define an
encoding of (k,n)-computations by suitable tree structures over P, where P is given by

P = {0,1,arg1, . . . ,argk}∪Λ

and Λ is the set of triples (u−,u,u+) s.t. u ∈ A∪ (Q×A) and u−,u+ ∈ A∪ (Q×A)∪
{⊥} (⊥ is for undefined). An extended TM block ext bl is a word over 2P of length
2c(k,n)+ 2 of the form ext bl = {bit1} · . . . · {bitc(k,n)} · bl, where bl, called TM block,
is of the form bl = {bit′1} · . . . · {bit′c(k,n)} · {arg`} · {t} with 1 ≤ ` ≤ k and t ∈ Λ. The
content CON(ext bl) (resp., CON(bl)) of ext bl (resp., bl) is bl (resp., t), the component
number of ext bl and bl is `, and the position number of ext bl (resp., bl) is the integer in

10

[0,2c(k,n)−1] whose binary code is bit1, . . . ,bitc(k,n) (resp., bit′1, . . . ,bit′c(k,n)). Intuitively,
ext bl encodes the triple t =(C`(i−1),C`(i),C`(i)) with i= ID(bl) (where C`(i−1)=⊥
if i = 0, and C`(i+ 1) = ⊥ if i = 2c(k,n)− 1) of the `th component C` of some (k,n)-
configuration, the latter being the (ID(ext bl))-th (k,n)-configuration of some (k,n)-
computation. For a sequence π =

−→
C 0, . . . ,

−→
C 2c(k,n)−1 of 2c(k,n) (k,n)-configurations, we

can encode π by the set Sext bl(π) of extended blocks defined as: ext bl ∈ Sext bl(π) iff
there are 0≤ i, j ≤ 2c(k,n)−1 and 0≤ `≤ k such that ID(ext bl) = i, CON(ext bl) = bl,
ID(bl) = j and bl is the TM block associated with the jth symbol of the `th component
of
−→
C i. The tree representation of the set Sext bl(π) is defined as follows.

Definition 6. A (k,n)-computation tree code is a tree structure 〈T,V 〉 over P such that:
1. Each path of 〈T,V 〉 from the root has length 2c(k,n)+2, and each node is labeled

exactly by a proposition in P. Moreover, 〈T,V 〉 satisfies the ML-formula
2c(k,n)∧

i=1
2

i−1((30∧31)∧2(0∨1))∧22c(k,n)(
k∧

`=1
3arg`∧2

k∨
`=1

arg`)∧22c(k,n)+2
∨
t∈Λ

t

This requirement implies, in particular, that each path ν of 〈T,V 〉 from the root is
labeled by a word of the form V (ε) · ext bl, where ext bl is an extended TM block.

2. There is a sequence π =
−→
C 0, . . . ,

−→
C 2c(k,n)−1 of 2c(k,n) (k,n)-configurations such that

the set of extended TM blocks of 〈T,V 〉 corresponds to the set Sext bl(π).

We also need to encode existential and universal quantification on the different com-
ponents of a (k,n)-input of the TM M . This leads to the following definition.

Definition 7 (Initialized full (k,n)-computation tree codes). Let 1 ≤ ` ≤ k. A `-in-
itialized full (k,n)-computation tree code is a tree structure 〈T,V 〉 over P such that:
1. Fullness requirement. 〈T,V 〉 satisfies Property 1 of Definition 6. Moreover, let ν =

z0, . . . ,z2c(n)+1,z2c(n)+2 be a path of 〈T,V 〉 (from the root) encoding an extended
TM block ext bl with component number h such that either h > ` or ID(ext bl)> 0.
Then, for each t ∈ Λ, there is a child z of z2c(n)+1 which is labeled by {t}.

2. `-initialization requirement. There are w1, . . . ,w` ∈ I2n
s.t. for each extended block

ext bl of 〈T,V 〉 with component number 1 ≤ h ≤ ` and position number 0, bl =
CON(ext bl) encodes the ID(bl)th symbol of the hth component of any initial (k,n)-
configuration associated with a (k,n)-input of the form (w1, . . . ,w`,w′`+1, . . . ,w

′
k)

for some w′`+1, . . . ,w
′
k ∈ I2n

. We say that w1, . . . ,w` ∈ I2n
is the `-ary input (which

is uniquely determined) associated with 〈T,V 〉 and we write 〈T,V 〉(w1, . . . ,w`).

Intuitively, a `-initialized full (k,n)-computation tree code 〈T,V 〉 associated with a
`-ary input w1, . . . ,w` ∈ I2n

encodes all the possible (k,n)-computations from (k,n)-
inputs of the form (w1, . . . ,w`,w′`+1, . . . ,w

′
k) for arbitrary words w′`+1, . . . ,w

′
k ∈ I2n

.
More precisely, by construction, the following holds.

Proposition 3. Let 1≤ `≤ k, w1, . . . ,w` ∈ I2n
, and 〈T,V 〉 be a `-initialized full (k,n)-

computation tree code such that 〈T,V 〉(w1, . . . ,w`) holds. Then, the following holds:
1. case ` < k: for each w ∈ I2n

, there is a refinement 〈Tr,Vr〉 of 〈T,V 〉 which is a
`+1-initialized full (k,n)-computation tree code satisfying 〈Tr,Vr〉(w1, . . . ,w`,w).
Moreover, for each refinement 〈Tr,Vr〉 of 〈T,V 〉 which is a `+ 1-initialized full
(k,n)-computation tree code, there is w∈ I2n

such that 〈Tr,Vr〉(w1, . . . ,w`,w) holds.

11

2. case `= k: the set of refinements of 〈T,V 〉 which are (k,n)-computation tree codes
encoding (k,n)-computations is non-empty, and each of such refinements encodes
the (k,n)-computation from the (k,n)-input (w1, . . . ,wk).

The proof of the following Lemma 4 is given in Appendix C.2.

Lemma 4. One can construct in time polynomial in n, k, and the size of the TM M ,
1. a RML∀ formula ϕ1

init over P such that given a tree structure 〈T,V 〉, 〈T,V 〉 satisfies
ϕ1

init if and only if 〈T,V 〉 is a 1-initialized full (k,n)-computation tree code;
2. a RML∀ formula ϕ`

init over P (for each 2 ≤ ` ≤ k) such that given a refinement
〈Tr,Vr〉 of a `−1-initialized full (k,n)-computation tree code, 〈Tr,Vr〉 satisfies ϕ`

init
if and only if 〈Tr,Vr〉 is a `-initialized full (k,n)-computation tree code;

3. a RML∀ formula ϕcomp over P such that given a refinement 〈Tr,Vr〉 of a k-initialized
full (k,n)-computation tree code, 〈Tr,Vr〉 satisfies ϕcomp iff 〈Tr,Vr〉 is a (k,n)-compu-
tation tree code encoding a (k,n)-computation;

4. a ML formula ϕacc over P such that given a (k,n)-computation tree code 〈T,V 〉,
〈T,V 〉 satisfies ϕacc iff the (k,n)-configuration with position number 2c(k,n)−1 en-
coded by 〈T,V 〉 is accepting.

Theorem 3 directly follows from the following two results (Theorems 4 and 5).

Theorem 4. One can construct a RMLk+1 formula ϕ in time polynomial in n, k, and
the size of the TM M such that ϕ is satisfiable if and only if

Q1x1 ∈ I2n
.Q2x2 ∈ I2n

. . . .Qkxk ∈ I2n
.M (x1, . . . ,xk)

where Q` = ∃ if ` is odd, and Q` = ∀ otherwise (for all 1≤ `≤ k).

Proof. Let ϕ1
init, . . . ,ϕ

k
init, and ϕcomp be the RML∀ formulas satisfying Properties 1–3 of

Lemma 4, and ϕacc be the ML formula satisfying Property 4 of Lemma 4. Then, the
RMLk+1 formula ϕ is defined as follows, where Q̃` = ∃r and op` = ∧ if ` is odd, and
Q̃` = ∀r and op` =→ otherwise (for all 2≤ `≤ k):2

ϕ := ϕ1
init ∧ Q̃2(ϕ

2
init op2 Q̃3(ϕ

3
init op3 . . . opk−1 Q̃k(ϕ

k
init opk Q̃k(ϕcomp opk ϕacc)) . . .))

By construction and Lemma 4, it easily follows that ϕ is RMLk+1 formula which
can be constructed in time polynomial in n, k, and the size of the TM M . Let ϕ1 := ϕ,
ϕk+1 := Q̃k(ϕcomp opk ϕacc), and for each 2≤ `≤ k,

ϕ` := Q̃`(ϕ
`
init op` Q̃`+1(ϕ

`+1
init op`+1 . . . opk−1 Q̃k(ϕ

k
init opk Q̃k(ϕcomp opk ϕacc)) . . .))

Correctness of the construction directly follows from the following claim, where a
0-initialized full (k,n)-computation tree code is an arbitrary tree structure.

Claim: let 0≤ `≤ k, w1, . . . ,w` ∈ I2n
, and 〈T,V 〉 be a `-initialized full (k,n)-computation

tree code such that 〈T,V 〉(w1, . . . ,w`) holds. Then, 〈T,V 〉 satisfies ϕ`+1 if and only if
Q`+1x`+1 ∈ I2n

. . . . Qkxk ∈ I2n
.M (w1, . . . ,w`,x`+1, . . . ,xk)

The claim follows from Proposition 3 and Lemma 4 (details are in Appendix C.3). ut

The proof of the following theorem is given in Appendix C.4.

Theorem 5. Let k = 1. Then, one can construct a RML∀ formula ϕ∀ in time polynomial
in n and the size of the TM M such that ϕ∀ is satisfiable if and only if ∃x ∈ I2n

.M (x).

2For RML formulas ϕ and ψ, ϕ→ ψ is an abbreviation for ϕ̃∨ψ.

12

5 Concluding remarks

An intriguing question left open is the complexity of satisfiability for multi-agent refine-
ment modal logic [20, 3]: we conjecture that this problem remains in AEXPpol. More-
over, it would be interesting to investigate the exact complexity of the fragments RML∃,
RML∀, and RMLk, and the succinctness gap between RMLk and RMLk+1 for each k ≥ 1.
Furthermore, since the modal µ-calculus extended with refinement quantifiers (RMLµ,
for short) is non-elementarily decidable [3], an other interesting direction is to individ-
uate weak forms of interactions between fixed-points and refinement quantifiers, which
may lead to elementarily decidable and interesting RMLµ-fragments.

References

1. P. Balbiani, A. Baltag, H. van Ditmarsch, A. Herzig, T. Hoshi, and T. De Lima. ‘Knowable’
as ‘known after an announcement’. Review of Symbolic Logic, 1(3):305–334, 2008.

2. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press,
Cambridge, 2001. Cambridge Tracts in Theoretical Computer Science 53.

3. L. Bozzelli, H. van Ditmarsch, T. French, J. Hales, and S. Pinchinat. Refinement modal logic.
Available at http://arxiv.org/abs/1202.3538, 2012.

4. A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the ACM,
28(1):114–133, 1981.

5. E.M. Clarke and E.A. Emerson. Design and verification of synchronization skeletons using
branching time temporal logic. In Proc. of Workshop on Logic of Programs, LNCS 131,
pages 52–71. Springer-Verlag, 1981.

6. E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics of programs. In
Proc. 29th FOCS, pages 328–337, 1988.

7. J. Ferrante and C. Rackoff. A decision procedure for the first order theory of real addition
with order. SIAM Journal on Computing, 4(1):69–76, 1975.

8. K. Fine. Propositional quantifiers in modal logic. Theoria, 36(3):336–346, 1970.
9. T. French. Bisimulation quantifiers for modal logic. PhD thesis, University of Western

Australia, 2006.
10. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
11. M. Hollenberg. Logic and bisimulation. PhD thesis, University of Utrecht, 1998.
12. D.S. Johnson. A catalog of complexity classes. In Handbook of Theoretical Computer

Science, pages A:67–161. MIT Press, 1990.
13. O. Kupferman and M.Y. Vardi. Verification of Fair Transisiton Systems. In Proc. 8th CAV,

LNCS 1102, pages 372–382. Springer, 1996.
14. C.H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
15. R. Parikh, L. Moss, and C. Steinsvold. Topology and epistemic logic. In Handbook of Spatial

Logics, pages 299–341. Springer Verlag, 2007.
16. Sophie Pinchinat. A generic constructive solution for concurrent games with expressive

constraints on strategies. In Proc. 5th ATVA, LNCS 4762, pages 253–267. Springer, 2007.
17. T.A. Henzinger R. Alur and O. Kupferman. Alternating-time temporal logic. Journal of the

ACM, 49(5):672–713, 2002.
18. T. Rybina and A. Voronkov. Upper bounds for a theory of queues. In Proc. 30th ICALP,

LNCS 2719, pages 714–724. Springer, 2003.
19. H. van Ditmarsch and T. French. Simulation and information. In Proc. Knowledge Repre-

sentation for Agents and Multi-Agent Systems, LNAI 5605, pages 51–65. Springer, 2009.
20. H. van Ditmarsch, T. French, and S. Pinchinat. Future event logic - axioms and complexity.

In Proc. 7th Advances in Modal Logic, volume 8, pages 77–99. College Publications, 2010.
21. A. Visser. Bisimulations, model descriptions and propositional quantifiers, 1996. Logic

Group Preprint Series 161, Department of Philosophy, Utrecht University.

13

Appendix

A Proof of Proposition 1

Proposition 1 (Finite Model Property). Let ϕ be a RML formula and 〈T,V 〉 be a tree structure
satisfying ϕ. Then, there is a finite refinement 〈Tr,Vr〉 of 〈T,V 〉 satisfying ϕ.

Proof. Since for each RML formula, there is an equivalent ML formula [20, 3], it suffices to show
that the result holds for ML. Let ϕ be a ML formula and 〈T,V 〉 be a tree structure satisfying ϕ. We
denote by d3,2(ϕ) the nesting depth of modalities 3 and 2 in ϕ. Let 〈Tpr,Vpr〉 be the tree structure
obtained from 〈T,V 〉 by pruning all the subtrees rooted at nodes x∈ T ⊆N∗ such that |x|> d3,2(ϕ).
By a straightforward induction on d3,2(ϕ), we deduce that 〈Tpr,Vpr〉 satisfies ϕ as well. Now, we
observe that 〈Tpr,Vpr〉 is a refinement of 〈T,V 〉 having finite height (bounded by d3,2(ϕ)). Since
〈Tpr,Vpr〉 has finite height, we easily deduce that there is a finite tree structure 〈Tr,Vr〉 such that
〈Tr,Vr〉 and 〈Tpr,Vpr〉 are bisimilar. Hence, 〈Tr,Vr〉 is a refinement of 〈T,V 〉. Moreover, since ML is
bisimulation invariant, 〈Tr,Vr〉 satisfies ϕ as well, and we are done. ut

B Proofs from Section 3

B.1 Proof of Lemma 1

In order to prove Lemma 1, we need additional definitions. For a RML formula ϕ and a tree structure
〈T,V 〉, the ϕ-completion of 〈T,V 〉 is the labeled tree 〈T,L〉, where for each x ∈ T , L(x) is the set of
formulas ψ ∈ cl(ϕ) such that 〈T,V 〉x (the tree substructure of 〈T,V 〉 rooted at x) satisfies ψ. Note
that L(x) is a complete subset of cl(ϕ) and L(x)∩P = V (x). A constraint system S = 〈〈T1,L1,←1

〉, . . . ,〈Tn,Ln,←n〉〉 for ϕ is said to be a model for ϕ if for each 1≤ i≤ n, there is a formula ψi ∈ cl(ϕ)
such that 〈Ti,Li〉 is the ψi-completion of 〈Ti, L̃i〉 (note that ψ1 = ϕ).

Lemma 1 (Soundness & Completeness). Let 〈T,V 〉 be a finite tree structure. Then, 〈T,V 〉 sat-
isfies ϕ if and only if there is a well-formed, saturated, and semantically ∀r-consistent constraint
system S for ϕ whose main structure is 〈T,V 〉.

Proof. Soundness: Let S = 〈〈T1,L1,←1〉, . . . , 〈Tn,Ln,←n〉〉 be a constraint system for ϕ such that S
is well-formed, saturated, and semantically ∀r-consistent. We need to show that the main structure
of S satisfies ϕ. For this, it suffices to show that for all 1 ≤ i ≤ n, x ∈ Ti, and ψ ∈ Li(x), the tree
structure 〈Ti, L̃i〉x satisfies ψ (recall that ϕ ∈ L1(ε)). The proof is by structural induction on ψ:

– ψ = p ∈ P. Since p ∈ Li(x), p ∈ L̃i(x) as well. Hence, the result follows.
– ψ = ¬p and p ∈ P. Since ¬p ∈ Li(x) and S is well-formed (hence, clash-free), it holds that

p 6∈ Li(x). Hence, p 6∈ L̃i(x) and the result follows.
– ψ = ψ1 ∧ ψ2 (resp., ψ = ψ1 ∨ ψ2). Since ψ ∈ Li(x) and S is saturated, by the precondition of

the ∧-rule (resp., ∨-rule), we obtain that ψ1,ψ2 ∈ Li(x) (resp., ψk ∈ Li(x) for some k ∈ {1,2}).
Hence, by the induction hypothesis, the result follows.

14

– ψ = 2ψ′ (resp., ψ = 3ψ′). Since ψ ∈ Li(x) and S is saturated, by the precondition of the 2-
rule (resp., 3-rule), we obtain that ψ′ ∈ Li(x′) for each (resp., for some) successor x′ of x in Ti.
Hence, by the induction hypothesis, the result follows.

– ψ = ∃rψ
′. Since ψ ∈ Li(x) and S is saturated, by the precondition of the ∃r-rule, there is some

h≤ dim(S) such that←h(ε) = 〈i,x〉 and ψ′ ∈ Lh(ε). By the induction hypothesis, 〈Th, L̃h〉 satis-
fies ψ′. Moreover, since←h(ε) = 〈i,x〉 and S is well-formed, by Remark 2, it holds that 〈Th, L̃h〉
is a refinement of 〈Ti, L̃i〉x. Hence, 〈Ti, L̃i〉x satisfies ∃rψ

′ and the result follows.
– ψ = ∀rψ

′. Since ψ ∈ Li(x) and S is semantically ∀r-consistent, the result follows.

Completeness: let 〈T,V 〉 be a finite tree structure satisfying ϕ. We need to show that there is a well-
formed, saturated, and semantically ∀r-consistent constraint system S for ϕ whose main structure
is 〈T,V 〉. Let S0 = 〈T,L,←〉, where 〈T,L〉 is the ϕ-completion of 〈T,V 〉 and ←(x) = ⊥ for each
x ∈ T . Evidently, S0 is a model for ϕ which is well-formed and whose main structure is 〈T,V 〉. We
extend S0 by repeated applications of the following rule:

Semantic ∃r-rule:
if S ` (i,x,∃rψ), S = 〈〈T1,L1,←1〉, . . . ,〈Tn,Ln,←n〉〉 is a model for ϕ, and

S 6` (h,ε,ψ) for each h≤ dim(S) such that←h(ε) = 〈i,x〉
then update S := 〈〈T1,L1,←1〉, . . . ,〈Tn+1,Ln+1,←n+1〉〉 where

〈Tn+1,Ln+1〉 is the ψ-completion of some finite refinement 〈Tn+1, L̃n+1〉 of 〈Ti, L̃i〉x
satisfying ψ, and←n+1 is some labeling ensuring that←n+1(ε) = 〈i,x〉, S is still a
constraint system for ϕ, and for each y ∈ Tn+1 such that←n+1(y) = 〈i,z〉, L̃n+1(y) = L̃i(z).
/** Since ∃rψ ∈ Li(x) and S is a model of ϕ, there is a refinement 〈Tn+1,Vn+1〉 of 〈Ti, L̃i〉x

satisfying ψ. Thus, since refinement is a preorder, by Proposition 1, there is a finite
refinement 〈Tn+1, L̃n+1〉 of 〈Ti, L̃i〉x satisfying ψ. **/

We show that by a finite number of applications of the semantic ∃r-rule starting from the initial
model S0 for ϕ (which is also well-formed), we obtain a well-formed, saturated, and semantically
∀r-consistent constraint system for ϕ. Hence, since the main structure of S0 is 〈T,V 〉 and applica-
tions of the semantic ∃r-rule do not modify the main structure, the result follows. Note that if S
is a model for ϕ, then S is semantically ∀r-consistent, and at most the ∃r-rule of Definition 3 is
applicable to S . Moreover, the application of the semantic ∃r-rule preserves the property of a con-
straint system to be well-formed and a model for ϕ. Since the precondition of the semantic ∃r-rule
corresponds to the precondition of the ∃r-rule in Definition 3, it suffices to show the following:

Claim: any sequence of applications of the semantic ∃r-rule starting from S0 is finite.

Proof of the claim: fix an ordering ϕ1, . . . ,ϕk of the formulas in cl(ϕ) such that for all i 6= j,
d∃(ϕi)> d∃(ϕ j) implies i< j. For each model S for ϕ which can be obtained from S0 by a sequence
of applications of the semantic ∃r-rule, we associate to S a k-tuple of natural numbers < S > as
follows. Let S = 〈〈T1,L1,←1〉, . . . ,〈Tn,Ln,←n〉〉. For each 1 < i ≤ dim(S), let ψi ∈ cl(ϕ) be the
formula such that ∃rψi is in the precondition of the semantic ∃r-rule instance whose application
has generated the ith component S(i) of S . Moreover, let ψ1 = ϕ. Note that for all 1≤ i≤ dim(S),
〈Ti,Li〉 is the ψi-completion of 〈Ti, L̃i〉. Then, for each ψ ∈ cl(ϕ), define

I(S ,ψ) = {1≤ i≤ dim(S) | ψi = ψ}

15

Moreover, for all 1 ≤ i ≤ dim(S) and ∃rψ ∈ cl(ϕ), let T (S , i,∃rψ) be the set of nodes x ∈ Ti such
that the semantic ∃r-rule is applicable to node x with respect to formula ∃rψ, i.e.

T (S , i,∃rψ) = {x ∈ Ti | ∃rψ ∈ Li(x) and there is no j ≤ dim(S) s.t. ← j(ε) = 〈i,x〉 and ψ ∈ L j(ε)}
Then, < S >= 〈n1, . . . ,nk〉 where for all 1≤ j ≤ k

n j = ∑
i∈I(S ,ϕ j)

∑
∃rψ∈cl(ϕ j)

|T (S , i,∃rψ)|

Let <k be the lexicographic ordering over Nk. Then, by construction, for each model S ′ for ϕ

obtained form S by an application of the semantic ∃r-rule, it easily follows that < S ′ ><k< S >.
Thus, since <k is well-founded, the claim follows. ut

B.2 Proof of Lemma 2

Lemma 2. Each minimal constraint system S for ϕ satisfies the following invariant: (i) each tree in
S has height at most d3,2(ϕ) and branching degree at most |ϕ|(2d∃(ϕ)+1), and (ii) dim(S) is at most
|ϕ|4·(d∃(ϕ))2·(d3,2(ϕ)+1). Moreover, any sequence of applications of the rules of Definition 3 starting
from an initial constraint system for ϕ is finite.

Proof. Recall that the labeling of a node in a constraint system S for ϕ contains only formulas in
cl(ϕ), and every application to S of a rule in Definition 3 either adds a new node or a new component
with a single node, or add a new formula in cl(ϕ) to a label of a node. Thus, since cl(ϕ) is finite,
Properties (i) and (ii) in the statement of the lemma entail that any sequence of applications of the
rules of Definition 3 starting from an initial constraint system for ϕ is finite. Thus, we need to prove
Properties (i) and (ii). Let S = 〈〈T1,L1,←1〉, . . . ,〈Tn,Ln,←n〉〉 be a minimal constraint system for
ϕ. For all 1≤ i≤ dim(S) and x ∈ Ti, x satisfies one of the following:

– x is the root of Ti. Moreover, if i > 1, then the root of Ti is generated by an application of the
∃r-rule. The formula ψ in the body of the ∃r-rule which is added to the label of the root of Ti

(when such a root is generated) is called main formula of S(i). The main formula of S(1) is ϕ.
– x is not the root of Ti, x is generated be executing the body of the 3-rule, and in particular, x

corresponds to node xk ·hk in the body of the 3-rule (see Definition 3).
– x is not the root of Ti, x is generated be executing the body of the 3-rule, and in particular, x

corresponds to some node xq ·hq with q < k in the body of the 3-rule (see Definition 3).
In the first two cases, we say that x is a main node. Otherwise, x is said to be a secondary node.
For each 1 ≤ i ≤ dim(S), the main formula of S(i) is denoted by ϕi (note that ϕ1 = ϕ). For all
1 ≤ i ≤ dim(S) and x ∈ Ti, define →i(x) = {1 ≤ h ≤ dim(S) |←h(ε) = 〈i,x〉}. Note that for each
h ∈→i(x), h > i and the root of Th is generated by executing the ∃r-rule applied to the constraint
〈i,x,∃rϕh〉. Hence, in particular, ∃rϕh ∈ Li(x). Since ϕ = ϕ1 and ϕi ∈ cl(ϕ) for each 1≤ i≤ dim(S),
Properties (i) and (ii) in the lemma directly follow from the following claims.

Claim 1: For all 1≤ i≤ dim(S) , x ∈ Ti, and h ∈→i (x), it holds that Li(x)⊆ cl(ϕi), |→i(x)| ≤ |ϕi|,
d3,2(ϕh)≤ d3,2(ϕi), d∃(ϕh)< d∃(ϕi), and ϕh is a subformula of ϕi.

Proof of Claim 1: let 1 ≤ i ≤ dim(S) and x ∈ Ti. First, we show that Li(x) ⊆ cl(ϕi). Evidently,
Li(ε)⊆ cl(ϕi). Thus, it suffices to show that for all nodes y and z of Ti such that z is a successor of
y and Li(y)⊆ cl(ϕi), Li(z)⊆ cl(ϕi) holds as well. This follows from the fact that for each ψ ∈ Li(z)

16

such that ψ /∈ P∪P, either 3ψ∈ Li(y) or 2ψ∈ Li(y) (i.e., ψ has been added to the label of z by a 3-
rule or a 2-rule), or ψ has been added to Li(z) by an application of the ∨-rule or ∧-rule starting from
a formula ψ′ ∈ Li(z) such that ψ is strict subformula of ψ′. Now, let us show that |→i(x)| ≤ |ϕi|.
Since→i(x) can be implicitly updated only by a ∃r-rule application, it easily follows that→i(x) =
{i1, . . . , ik}, ∃rϕi1 , . . . ,∃rϕik ∈ Li(x), and ∃rϕi1 , . . . ,∃rϕik are pairwise distinct. Since Li(x) ⊆ cl(ϕi),
the result follows. Moreover, we obtain that ϕh is a subformula of ϕi, d3,2(ϕh) ≤ d3,2(ϕi), and
d∃(ϕh)< d∃(ϕi) for all h ∈→i(x). ut

Claim 2: For all 1≤ i≤ dim(S), the height of Ti is bounded by d3,2(ϕi).

Proof of Claim 2: For a finite set χ of RML formulas, define d3,2(χ) := max({d3,2(ψ) | ψ ∈
χ}). The proof is by induction on dim(S)− i. We consider the induction step (the base case i =
dim(S) being simpler). Thus, let i < dim(S). A node x of Ti is said to be propositional if Li(x) ⊆
P∪P. Let π = x0, . . . ,xk be a path of Ti from the root. We need to show that the length of π is
bounded by d3,2(ϕi). Observe that since x0 = ε, ϕi ∈ Li(ε), and Li(ε) ⊆ cl(ϕi) (Claim 1), it holds
that d3,2(Li(x0)) = d3,2(ϕi). We distinguish two cases:

– π = x0 . . . ,xk does not visit nodes which are both propositional and secondary. We show that for
all 0 < j ≤ k, d3,2(Li(x j)) < d3,2(Li(x j−1)), hence, since d3,2(Li(x0)) = d3,2(ϕi), the result
follows. We assume the contrary and derive a contradiction. Then, there is 0 < j ≤ k such that
d3,2(Li(x j))≥ d3,2(Li(x j−1)). There are two subcases:
• x j is a main node. Hence, there must be 3ψ ∈ Li(x j−1) such that ψ ∈ Li(x j). Moreover, for

each ψ′ ∈ Li(x j)\ (P∪P), either 3ψ′ ∈ Li(x j−1), or 2ψ′ ∈ Li(x j−1), or ψ′ has been added
to Li(x j) by an application of the ∨-rule or ∧-rule starting from a formula ψ′′ ∈ Li(x j) such
that ψ′ is a strict subformula of ψ′′. It follows that d3,2(Li(x j)) < d3,2(Li(x j−1)), which is
a contradiction.
• x j is a secondary node. By hypothesis, x j is not a propositional node. Since when a sec-

ondary node is created, its label contains only atomic propositions, by the 2-rule, there
must be 2ψ∈ Li(x j−1) such that ψ∈ Li(x j). Moreover, for each ψ′ ∈ Li(x j)\(P∪P), either
2ψ′ ∈ Li(x j−1), or ψ′ has been added to Li(x j) by an application of the ∨-rule or ∧-rule
starting from a formula ψ′′ ∈ Li(x j) such that ψ′ is a strict subformula of ψ′′. It follows that
d3,2(Li(x j))< d3,2(Li(x j−1)), which is a contradiction.

– π = x0 . . . ,xk visits some node which is both propositional and secondary. It easily follows that
node xk is both propositional and secondary. Hence, there is exactly one pair 〈i′,x′k〉 such that
←i′(x′k)= 〈i,xk〉. Moreover, x′k 6= ε. Let π′ be the partial path of Ti′ from the root to node x′k. Since
S is a constraint system for ϕ, by Property 2 in Definition 2, there is 0≤ q < k such that π′ can
be written in the form π′ = x′q,x

′
q+1, . . . ,x

′
k, where x′q = ε and←i′(x′l) = 〈i,xl〉 for all q≤ l ≤ k.

In particular, i′ ∈→i(xq) and ∃rϕi′ ∈ Li(xq). Since i′ > i, by the induction hypothesis, the length
of π′ is bounded by d3,2(ϕi′). Since d3,2(ϕi′)≤ d3,2(Li(xq)) (∃rϕi′ ∈ Li(xq)), we obtain that the
suffix xq, . . . ,xk of π has length bounded by d3,2(Li(xq)). Since the prefix x0, . . . ,xq of π does
not visit nodes which are both propositional and secondary (xq is not propositional), by the first
case, it holds that for all 0 < j ≤ q, d3,2(Li(x j)) < d3,2(Li(x j−1)). Hence, the length of π is
bounded by d3,2(Li(x0)) = d3,2(ϕi) which concludes.

ut

17

Claim 3: For all 1≤ i≤ dim(S) and x ∈ Ti, the out-degree of x in Ti (i.e., the number of successors
of x in Ti) is at most |ϕi|(2d∃(ϕi)+1).

Proof of Claim 3: the proof is by induction on dim(S)− i. For the base case (i = dim(S)), it
holds that every node of Ti is a main node. Let x1, . . . ,xk be the successors of x in Ti (which are
created by applications of the 3-rule). By the precondition of the 3-rule, it follows that there are
pairwise distinct k formulas 3ψ1, . . . ,3ψk ∈ Li(x). Since Li(x) ⊆ cl(ϕi) (Claim 1), it follows that
the out-degree of x in Ti is bounded by |ϕi|. Hence, in this case the result holds. Now, assume that
i < dim(S). Assume that |ϕi| ≥ 2 (otherwise, the result is obvious) and x is a secondary node (the
other case being simpler). Then, there is exactly one pair 〈 j,z〉 such that z 6= ε and← j(z) = 〈i,x〉
(in particular, x and z are created by the same application of the 3-rule). Thus, since S is constraint
system, there is an ancestor xa of x in Ti such that← j(ε) = 〈i,xa〉, hence j ∈→i(xa). Let Nmain(x) be
the number of successors of x which are main nodes. By reasoning as in the base case, Nmain(x)≤
|ϕi|. Then, by construction it follows that:

out-degree of x = Nmain(x)+N j(z)+ ∑
l∈→i(x)

Nl(ε)

where N j(z) is the out-degree of z in Tj, and for all l ∈→i(x), Nl(ε) is the out-degree of the Tl-root.
Since j > i and l > i for all l ∈→i(x), by the induction hypothesis we obtain (note that d∃(ϕi)> 1)

out-degree of x≤ |ϕi|+|ϕ j|(2d∃(ϕ j)+1)+ ∑
l∈→i(x)

|ϕl|(2d∃(ϕl)+1)≤ (by Claim 1 and since j ∈→i(xa))

|ϕi|+ |ϕi|(2d∃(ϕi)−1)+ ∑
l∈→i(x)

|ϕi|(2d∃(ϕi)−1) ≤ (by Claim 1)

|ϕi|+ |ϕi|(2d∃(ϕi)−1)+ |ϕi| · |ϕi|(2d∃(ϕi)−1) ≤ 2 · |ϕi| · |ϕi|(2d∃(ϕi)−1) ≤ (|ϕi| ≥ 2)

|ϕi|(2d∃(ϕi)+1)

which concludes. ut

For each 1 ≤ i ≤ dim(S), let H(S , i) be the set of i-descendants in S defined as H(S , i) :=
{i}∪{ j ∈H(S ,h) | h ∈→i(x) for some x ∈ Ti}. Note that H(S , i) is well defined since for all x ∈ Ti

and h ∈→i(x), h > i. Moreover, dim(S) = |H(S ,1)|.

Claim 4: |H(S , i)| ≤ |ϕi|4·(d∃(ϕi))
2·(d3,2(ϕi)+1) for all 1≤ i≤ dim(S).

Proof of Claim 4: the proof is by induction on dim(S)− i. For the base case (i= dim(S)), H(S , i) =
{i}. Hence, the result follows. Now, assume that i < dim(S). If d∃(ϕi) = 0, then H(S , i) = {i} and
the result holds. Now, let d∃(ϕi)≥ 1. By Claims 2 and 3, |Ti| ≤ |ϕi|(2d∃(ϕi)+1)·d3,2(ϕi) and by Claim 1,
for each x ∈ Ti, |→i(x)| ≤ |ϕi|. Then:

|H(S , i)|= 1+ ∑
x∈Ti,h∈→i(x)

|H(S ,h)| ≤ (by the induction hypothesis)

1+ ∑
x∈Ti,h∈→i(x)

|ϕh|4·(d∃(ϕh))
2·(d3,2(ϕh)+1) ≤ (by Claim 1)

1+ ∑
x∈Ti,h∈→i(x)

|ϕi|4·(d∃(ϕi)−1)2·(d3,2(ϕi)+1) ≤ (|Ti| ≤ |ϕi|(2d∃(ϕi)+1)·d3,2(ϕi) and |→i(x)| ≤ |ϕi|)

18

1+ |ϕi| · |ϕi|(2d∃(ϕi)+1)·d3,2(ϕi) · |ϕi|4·(d∃(ϕi)−1)2·(d3,2(ϕi)+1) ≤

1+ |ϕi|(d3,2(ϕi)+1)·(4·(d∃(ϕi))
2+5−6d∃(ϕi)) ≤ (since d∃(ϕi)≥ 1, hence, |ϕi|> 1)

|ϕi|4·(d∃(ϕi))
2·(d3,2(ϕi)+1).

Hence, the result follows. ut

B.3 Detailed proof of Lemma 3

Let S = 〈〈T1,L1,←1〉, . . . ,〈Tn, Łn,←n〉〉, S ′= 〈〈T ′1 ,L′1,←′1〉, . . . ,〈T ′m,L′m,←′m〉〉, and T = 〈↑1, . . . ,↑n

〉 as in Definition 5. We also say that S is a refinement of S ′ w.r.t. T . Lemma 3 directly follows
from the following two lemmata.

Lemma 5. Let S and S ′ be two constraint systems for ϕ such that S ′ is well-formed and S is
a refinement of S ′. Then, S is well-formed as well, and the main structure of S is a refinement
of the main structure of S ′. Moreover, if S ′ is additionally semantically ∀r-consistent, then S is
semantically ∀r-consistent too.

Proof. Let S = 〈〈T1,L1,←1〉, . . . ,〈Tn,Ln,←n〉〉 and S ′ = 〈〈T ′1 ,L′1,←′1〉, . . . , 〈T ′m,L′m,←′m〉〉 as in the
statement of the lemma, and T = 〈↑n, . . . ,↑n〉 such that S is a refinement of S ′ w.r.t. T . First,
we show that S is well-formed as well. Let i ≤ dim(S) and x ∈ Ti such that ↑i(x) = 〈 j,y〉. By
Property 1 of Definition 5, Li(x)⊆ L′j(y). Since S ′ is clash-free (S ′ is well-formed) and i and x are
arbitrary, it follows that S is clash-free as well. Moreover, since Li(x) is complete, we also obtain
that L̃i(x) = L̃′j(y). Now, assume that i > 1 and←i(x) = 〈i′,x′〉. We show that L̃i(x) = L̃i′(x′), hence
S is well-formed. By Property 3 of Definition 5,←′j(y) = 〈 j′,y′〉 and ↑i′(x′) = 〈 j′,y′〉. Then, by the
above considerations, L̃i′(x′) = L̃′j′(y

′). Moreover, since S ′ is well-formed, L̃′j(y) = L̃′j′(y
′). Thus,

since L̃i(x) = L̃′j(y), it follows that L̃i(x) = L̃i′(x′), and the result holds. Moreover, by Property 2 of
Definition 5, we obtain the following.

Claim: for all i≤ dim(S) and x ∈ Ti such that ↑i(x) = 〈 j,y〉, 〈Ti, L̃i〉x is a refinement of 〈T ′j , L̃′j〉y.

By Property 1 of Definition 5, ↑1(ε) = 〈1,ε〉. Thus, by the claim above, it follows that 〈T1, L̃1〉
(the main structure of S) is a refinement of 〈T ′1 , L̃′1〉 (the main structure of S ′), which concludes the
proof of the first part of the lemma. For the second part of the lemma, assume that S ′ is additionally
semantically ∀r-consistent. Let 1 ≤ i ≤ n, x ∈ Ti, and ∀rψ ∈ Li(x). We need to show that the tree
structure 〈Ti, L̃i〉x satisfies ∀rψ. Let ↑i(x) = 〈 j,y〉. By Property 1 of Definition 5, ∀rψ ∈ L′j(y). Thus,
since S ′ is semantically ∀r-consistent, it holds that the tree structure 〈T ′j , L̃′j〉y satisfies ∀rψ. By the
claim above, 〈Ti, L̃i〉x is a refinement of 〈T ′j , L̃′j〉y. It follows that 〈Ti, L̃i〉x satisfies ∀rψ as well (recall
that refinement is a preorder), which concludes the proof of the lemma. ut

Lemma 6. Let S ′ be a constraint system for ϕ which is well-formed and saturated. Then, there
exists a minimal and saturated constraint system S for ϕ which is a refinement of S ′.

Proof. Let S ′ = 〈〈T ′1 ,L′1,←′1〉, . . . ,〈T ′m,L′m,←′m〉〉 as in the statement of the lemma. First, for each
rule of Definition 3, we define an extension of such a rule which has the same precondition and the
same effect (w.r.t. a given constraint system S for ϕ) with the difference that the nondeterministic

19

choices are guided by S ′. Moreover, these new rules are applicable to pairs (S ,T) such that S is
a refinement of S ′ w.r.t. T , and their application preserves this last condition. These new rules are
defined as follows, where for each rule, the parts which are not present in the corresponding rule of
Definition 3 are underlined (for the rest, the two rules are identical).

Assumption: S is a refinement of S ′ w.r.t. T .

∧-rule: if S ` 〈i,x,ψ1∧ψ2〉, S(i) = 〈T,L,←〉, and {ψ1,ψ2} 6⊆ L(x)
then update L(x) := L(x)∪{ψ1,ψ2}

∨-rule: if S ` 〈i,x,ψ1∨ψ2〉, S(i) = 〈T,L,←〉, and {ψ1,ψ2}∩L(x) = /0

then update L(x) := L(x)∪{ψk} for some k ∈ {1,2}
such that ψk ∈ L′j(y) where ↑i(x) = 〈 j,y〉 and T = 〈↑1, . . . ,↑n〉
/** note that such a k exists since L(x)⊆ L′j(y) and S ′ is saturated **/

∃r-rule: if S ` 〈i,x,∃rψ〉, S := 〈〈T1,L1,←1〉, . . . ,〈Tn,Ln,←n〉〉, and
S 6` 〈h,ε,ψ〉 for each h≤ dim(S) such that←h(ε) = 〈i,x〉

then let T = 〈↑1, . . . ,↑n〉, ↑i(x) = 〈 j,y〉, and h≤ dim(S ′) s.t.←′h(ε) = 〈 j,y〉 and ψ ∈ L′h(ε)
/** note that such a h exists since Li(x)⊆ L′j(y) and S ′ is saturated **/
update S := 〈〈T1,L1,←1〉, . . . ,〈Tn+1,Ln+1,←n+1〉〉, T := 〈↑1, . . . ,↑n+1〉,
where Tn+1 := {ε}, Ln+1(ε) := {ψ}∪ (Li(x)∩ (P∪P)),←n+1(ε) := 〈i,x〉,
and ↑n+1(ε) := 〈h,ε〉.
/** since S ′ is well-formed and Li(x)⊆ L′j(y), Ln+1(ε)⊆ L′h(ε) **/

2-rule: if S ` 〈i,x,2ψ〉 and S 6` 〈i,x′,ψ〉 for some successor x′ of x in S(i)
then let S(i) = 〈T,L,←〉

update L(x′) := L(x′)∪{ψ} for each successor x′ of x in T

3-rule: if S ` 〈i,x,3ψ〉 and S 6` 〈i,x′,ψ〉 for each successor x′ of x in S(i)
then let 〈i0,x0〉 ←S . . .←S 〈ik,xk〉 with i0 = 1 and 〈ik,xk〉= 〈i,x〉

let T = 〈↑1, . . . ,↑n〉, ↑i0(x0) = 〈 j0,y0〉, . . . ,↑ik(xk) = 〈 jk,yk〉
/** note that j0 = 1 and 〈 j0,y0〉 ←S ′ . . .←S ′ 〈 jk,yk〉 **/
let y′k be a successor of yk in T ′jk such that ψ ∈ L′jk(y

′
k)

/** such a y′k exists since Lik(xk)⊆ L′jk(yk) (Lik is the labeling of S(ik)) and
S ′ is saturated **/

let 〈 j0,y′0〉 ←S ′ . . .←S ′ 〈 jk,y′k〉
/** note that y′q is a successor of yq in T ′jq for all 1≤ q≤ k **/
guess some complete set χ⊆ P∪P such that χ = L′jk(y

′
k)∩ (P∪P)

/** L′j0(y
′
0)∩ (P∪P) = . . .= L′jk(y

′
k)∩ (P∪P) = χ since S ′ is well-formed **/

for each q = k,k−1, . . . ,0 with S(iq) = 〈Tq,Lq,←q〉 do
update Tq := Tq∪{xq ·hq} for some hq ∈ N such that xq ·hq 6∈ Tq,
↑iq(xq ·hq) := 〈 jq,y′q〉
if q < k then Lq(xq ·hq) := χ and←iq+1(xq+1 ·hq+1) := 〈iq,xq ·hq〉

else Lq(xq ·hq) := {ψ}∪χ

By construction, we easily obtain the following.

20

Claim: Let (S ,T) be such that S is a refinement of S ′ w.r.t. T , R be any of the rules defined above,
and (S ′′,T ′′) obtained from (S ,T) by applying rule R. Then, S ′′ is a refinement of S ′ w.r.t. T ′′.

Since S ′ is well-formed, there is a unique initial constraint system S0 = 〈{ε},L,←〉 for ϕ s.t. S0

is a refinement of S ′. Let T0 = 〈↑1〉 with ↑1: {ε} 7→ {1}×{ε}. Note that S0 is a refinement of S ′
w.r.t. T0. Now, every rule defined above has the same precondition and the same effect (w.r.t. a
constraint system S for ϕ) of the corresponding rule in Definition 3. Hence, by the claim above and
Lemma 2, any sequence of applications of the rules defined above starting from (S0,T0) is finite
and leads to a pair (S ,T) s.t.: (i) S is a refinement of S ′ w.r.t. T , and (ii) S ′ can be obtained from S0

by a sequence of applications of the rules of Definition 3. Hence, there is a minimal and saturated
constraint system S for ϕ which is a refinement of S ′. This concludes the proof of the lemma. ut

C Proofs from Section 4

In this section, for RML formulas ϕ and ψ, we use ϕ→ ψ as an abbreviation for ϕ̃∨ψ.

C.1 Proof of Proposition 2

First, we briefly recall the framework of Alternating Turing Machines (ATM), see [4] for more
details. An ATM M allows both existential choices (nondeterminism) and universal choices (par-
allelism). The set of M -states is partitioned into a set of existential states and a set of universal
states. This partition induces an analogous partition on the set of configurations in accordance with
the associated state. The acceptance criterium of M can be defined via a reachability two-player
turn-based game between player Eve and player Adam, where existential (resp., universal) con-
figurations are controlled by Eve (resp., Adam). A configuration C of M leads to acceptance iff
there is a strategy of Eve from C which allows to select only computations (from C) ending in an
accepting configuration. An input word α is accepted by M iff the initial configuration associated
with α leads to acceptance. The ATM M is singly exponential-time bounded if there is an integer
constant c≥ 1 such that for each input α, when started on α, no matter what are the universal and
existential choices, M halts in at most 2|α|

c
steps. The ATM M has a polynomial-bounded number

of alternations if there is an integer constant c≥ 1 s.t. for all inputs α and computations π from α,
the number of alternations of existential and universal configurations along π is at most |α|c.

Now, we prove Proposition 2. The upper bounds are easy, while the lower bounds directly
follows from the following two lemmata.

Lemma 7. Let k ≥ 1 and MA be a singly exponential-time bounded ATM with at most k− 1 al-
ternations and such that the initial state is existential. Moreover, let c ≥ 1 be an integer constant
such that for each input α, when started on α, MA reaches a terminal configuration in at most 2|α|

c

steps. Then, given an input α, one can construct in time polynomial in α and the size of MA an
instance (k,2|α|c,M) of the Alternation Problem s.t. the instance is positive iff MA accepts α.

Lemma 8. Let MA be a singly exponential-time bounded ATM with a polynomial-time bounded
number alternations. Moreover, let c ≥ 1 and ca ≥ 1 be integer constants such that for each input
α, when started on α, MA has at most |α|ca alternations and MA reaches a terminal configuration

21

in at most 2|α|
c

steps. Then, given an input α, one can construct in time polynomial in α and the size
of MA an instance (2|α|max{c,ca},2|α|max{c,ca},M) of the Alternation Problem such that the instance
is positive iff MA accepts α.

The proofs of Lemmata 7 and 8 are very similar, so that we prove only Lemma 7.

Proof of Lemma 7. Let MA , c, and k as in the statement of Lemma 7. Let IA (resp., AA) be the
input (resp., work) alphabet of MA , where IA ⊂ AA , and Q be the set of MA -states. Fix an input
α ∈ I∗A . An α-configuration is a word over IA × (Q× IA)× IA of length exactly 2|α|

c
. Note that any

configuration of MA reachable from the input α can be encoded by an α-configuration. We denote
by Cα the initial (existential) α-configuration associated with the input α. A partial computation of
MA is a finite sequence π=C1, . . . ,Cp of α-configurations such that p≤ 2|α|

c
and for each 1≤ i< p,

Ci+1 is a MA -successor of Ci (note that a computation of MA over α is a partial computation). We
say that π is uniform if additionally, one of the following holds:

– Cp is terminal and π visits only existential n-configurations;
– Cp is terminal and π visits only universal n-configurations;
– p > 1, Cp is existential and for each 1≤ h < p, Ch is universal;
– p > 1, Cp is universal and for each 1≤ h < p, Ch is existential.

Let ♦ be a fresh symbol and I = AA ∪{♦}. The code of a partial computation π =C1, . . . ,Cp is
the word over I of length exactly 22|α|c given by C1, . . . ,Cp,C0

p+1, . . . ,C
0
2|α|c , where C0

h ∈ {♦}2|α|
c

for
all p+1≤ h≤ 2|α|

c
. We construct a polynomial-time bounded k-ary deterministic Turing Machine

M , which satisfies Lemma 7 for the given input α of MA , as follows. The input alphabet of M is I.
Given a k-ary input (w1, . . . ,wk)∈ (I∗)k, M operates in k-steps. At step ith (1≤ i≤ k), the behavior
of M is as follows, where n = 2|α|c and for a partial computation π =C1, . . . ,Cp, first(π) =C1 and
last(π) =Cp:

– First step: i = 1.
1. If w1 ∈ I2n

and w1 encodes a uniform partial computation π1 of MA from Cα, then the
behavior is as follows. If last(π1) is accepting (resp., rejecting), then M accepts (resp.,
rejects) the input . If instead last(π1) is not a terminal configuration, then M goes to step
i+1.

2. Otherwise, M rejects the input.
– i > 1.

1. If wi ∈ I2n
and wi encodes a uniform partial computation πi of MA such that first(πi) =

last(πi−1), where πi−1 is the uniform partial computation encoded by wi−1, then the behavior
is as follows. If last(πi) is accepting (resp., rejecting), then M accepts (resp., rejects) the
input. If instead last(πi) is not a terminal configuration, then M goes to step i+1.

2. Otherwise, if i is odd (resp., even), then M rejects (resp., accepts) the input.
Note that Conditions 1 in the steps above can be checked by M in polynomial time (in the size of
the input) by using the transition function of MA and n-bit counters. Hence, M is a polynomial-
time bounded k-ary deterministic Turing Machine which, evidently, can be constructed in time
polynomial in n and the size of MA . Now, we prove that the construction is correct, i.e. (k,n,M)

is a positive instance of the Alternation Problem iff MA accepts α. For each 1 ≤ ` ≤ k, let Q` = ∃
if ` is odd, and Q` = ∀ otherwise. Since Cα is existential, MA accepts α iff there is a non-rejecting
uniform partial computation π1 of MA from Cα such that last(π1) leads to acceptance. Moreover, for

22

each w1 ∈ I2n
, M accepts an input of the form (w1,w′2, . . . ,w

′
k) only if w1 encodes a non-rejecting

uniform partial computation of MA from Cα. Thus, since Q1 = ∃, correctness of the construction
directly follows from the following claim.

Claim: let 1 ≤ ` ≤ k and π = π1 . . .π` be a partial computation of MA from Cα such that π` is
uniform and for each 1≤ h < `, πh is non-empty and πh ·first(πh+1) is uniform as well. Let w` ∈ I2n

be the word encoding π` and for each 1 ≤ h < l, wh ∈ I2n
be the word encoding πh · first(πh+1).

Then, last(π`) leads to acceptance if and only if

Q`+1x`+1 ∈ I2n
. . . . Qkxk ∈ I2n

.M (w1, . . . ,w`,x`+1, . . . ,xk) (1)

Proof of the claim: the proof is by induction on k− `.

Base Step: `= k. Note that in this case last(πk) is a terminal configuration (otherwise, the number
of alternations of existential and universal configurations along π would be greater than k− 1).
Thus, we need to show that last(πk) is accepting iff M (w1, . . . ,wk). By construction, when started
on the input (w1, . . . ,wk), M reaches the kth step and Condition 1 in this step is satisfied. Moreover,
either last(πk) is accepting and M accepts the input (w1, . . . ,wk), or last(πk) is rejecting and M
rejects the input (w1, . . . ,wk). Hence, the result follows.

Induction Step: ` < k. First, assume that last(π`) is a terminal configuration. By construction on
any input of the form (w1, . . . ,w`,w′`+1, . . . ,w

′
k), M reaches the `th step and Condition 1 in this step

is satisfied. Moreover, either last(π`) is accepting and M accepts the input (w1, . . . ,w`,w′`+1, . . . ,w
′
k),

or last(π`) is rejecting and M rejects the input (w1, . . . ,w`,w′`+1, . . . ,w
′
k). Hence, in this case the

result holds. Now, assume that last(π`) is not terminal. We distinguish two cases:
– `+1 is even: hence Q`+1 = ∀. Since Cα is existential and last(π`) is not terminal, by hypothesis,

last(π`) must be an universal configuration. First, assume that last(π`) leads to acceptance. Let
w`+1 ∈ I2n

. By construction on any input of the form (w1, . . . ,w`,w`+1,w′`+2 . . . ,w
′
k), M reaches

the (`+1)th step. If w`+1 satisfies Condition 2 in this step, then since `+1 is even, M accepts
the input. Hence, Q`+2x`+2 ∈ I2n

. . . .Qkxk ∈ I2n
.M (w1, . . . ,w`,w`+1,x`+2, . . . ,xk). Otherwise,

w`+1 encodes a uniform partial computation π`+1 of MA from last(π`). Since last(π`) leads to
acceptance and last(π`) is universal, last(π`+1) leads to acceptance as well. Thus, applying the
induction hypothesis to the partial computation π1 . . .π`−1π′`π`+1 (where π′` is obtained from π`

by removing last(π`)), it follows that Q`+2x`+2 ∈ I2n
. . . .Qkxk ∈ I2n

.M (w1, . . . ,w`,w`+1,x`+2, . . . ,

xk). Thus, the previous condition holds for each w`+1 ∈ I2n
. Since Q`+1 = ∀, it follows that Con-

dition (1) holds. For the converse direction, assume that Condition (1) holds. Let π`+1 be any
uniform partial computation of MA from last(π`). We need to show that last(π`+1) leads to
acceptance. Since Condition (1) holds and Q`+1 = ∀, we can apply the induction hypothesis to
the partial computation π1 . . .π`−1π′`π`+1 (where π′` is obtained from π` by removing last(π`)).
Hence, the result follows.

– `+ 1 is odd: hence Q`+1 = ∃. Since Cα is existential and last(π`) is not terminal, by hypoth-
esis, last(π`) must be an existential configuration. First, assume that last(π`) leads to accep-
tance. Hence, there is an uniform partial computation π`+1 of MA from last(π`) such that
last(π`+1) leads to acceptance. Let w`+1 ∈ I2n

be the word encoding π`+1. Applying the induc-

23

tion hypothesis to the partial computation π1 . . .π`−1π′`π`+1 (where π′` is obtained from π` by re-
moving last(π`)), it follows that Q`+2x`+2 ∈ I2n

. . . .Qkxk ∈ I2n
.M (w1, . . . ,w`,w`+1,x`+2, . . . ,xk).

Thus, since Q`+1 = ∃, it follows that Condition (1) holds. For the converse direction, as-
sume that Condition (1) holds. Hence, there must be w`+1 ∈ I2n

such that (*) Q`+2x`+2 ∈
I2n

. . . .Qkxk ∈ I2n
.M (w1, . . . ,w`,w`+1,x`+2, . . . ,xk). By construction on any input of the form

(w1, . . . ,w`,w`+1,w′`+2 . . . ,w
′
k), M reaches the (`+ 1)th step. Note that since `+ 1 is odd,

Condition 2 in the (`+ 1)th step cannot be satisfied (otherwise for all words w′`+2, . . . ,w
′
k,

(w1, . . . ,w`, w`+1,w′`+2 . . . ,w
′
k) would be rejected by contradicting Condition (*)). Thus, by

construction, w`+1 encodes a uniform partial computation π`+1 of MA from last(π`). By apply-
ing the induction hypothesis to the partial computation π1 . . .π`−1π′`π`+1 (where π′` is obtained
from π` by removing last(π`)), it follows that last(π`+1) leads to acceptance. Since last(π`) is an
existential configuration, we obtain that last(π`) leads to acceptance as well, which concludes.

ut

C.2 Proof of Lemma 4

For each 1≤ `≤ k, a `-extended TM block (resp., `-TM block) is an extended TM block (resp., TM
block) with component number `. A (k,n)-computation tree code 〈T,V 〉 is said to be well-initialized
if the (k,n)-configuration with position number 0 encoded by 〈T,V 〉 is initial. In the following, we
use the following ML formula Φcomplete characterizing the tree structures such that each path from
the root has length 2c(k,n)+2.

Φcomplete ::=2
2c(k,n)+3false ∧

2c(k,n)+1∧
i=0

2
i
3true

Lemma 4. One can construct in time polynomial in n, k, and the size of the TM M ,
1. a RML∀ formula ϕ1

init over P such that given a tree structure 〈T,V 〉, 〈T,V 〉 satisfies ϕ1
init if and

only if 〈T,V 〉 is a 1-initialized full (k,n)-computation tree code;
2. a RML∀ formula ϕ`

init over P (for each 2 ≤ ` ≤ k) such that given a refinement 〈Tr,Vr〉 of a
`−1-initialized full (k,n)-computation tree code, 〈Tr,Vr〉 satisfies ϕ`

init if and only if 〈Tr,Vr〉 is
a `-initialized full (k,n)-computation tree code;

3. a RML∀ formula ϕcomp over P such that given a refinement 〈Tr,Vr〉 of a k-initialized full (k,n)-
computation tree code, 〈Tr,Vr〉 satisfies ϕcomp iff 〈Tr,Vr〉 is a (k,n)-computation tree code en-
coding a (k,n)-computation;

4. a ML formula ϕacc over P such that given a (k,n)-computation tree code 〈T,V 〉, 〈T,V 〉 satisfies
ϕacc iff the (k,n)-configuration with position number 2c(k,n)−1 encoded by 〈T,V 〉 is accepting.

Proof. Since the proof of Property 1 is very similar to the proof of Property 2 and Property 4 is
trivial, we only prove Property 2 and Property 3.

Proof of Property 2. For 2≤ `≤ k, the RML∀ formula ϕ`
init satisfying Property 2 is defined as:

ϕ
`
init := ϕ

`
full ∧ ϕ

`
<2n ∧ ϕ

`
≥2n ∧ ϕconf

24

where ϕ`
full, ϕ`

<2n , ϕ`
≥2n , and ϕconf satisfy the following:

– ϕ`
full is a ML formula ensuring that the given refinement of a `−1-initialized full (k,n)-compu-

tation tree code satisfies the fullness requirement in Definition 7.
– ϕ`

<2n , ϕ`
≥2n , and ϕconf are RML∀ formulas ensuring that the given refinement of a `−1-initialized

full (k,n)-computation tree code satisfies the `-initialization requirement in Definition 7:
• ϕ`

<2n (resp., ϕ`
≥2n) is a RML∀ formula ensuring that for all extended `-TM blocks ext bl

and ext bl’ such that ID(ext bl) = ID(ext bl’) = 0, CON(ext bl) = bl, CON(ext bl’) = bl′,
and ID(bl) = ID(bl′) < 2n (resp., ID(bl) = ID(bl′) ≥ 2n), the following holds: CON(bl) =
CON(bl′) and CON(bl) is of the form (u−,a,u+) with a ∈ I (resp., (u−,#,u+)).
• ϕconf is a RML∀ formula ensuring that for all extended `-TM blocks ext bl and ext bl’ such

that ID(ext bl) = ID(ext bl’) = 0, CON(ext bl) = bl, CON(ext bl’) = bl′, and ID(bl′) =
ID(bl)+ 1 (consecutive `-TM blocks), the following holds: CON(bl) and CON(bl′) are of
the form (u−,u,u+) and (u,u+,u++), respectively. Moreover, if ID(bl) = 0 (resp., ID(bl′) =
2c(k,n)−1), then CON(bl) (resp., CON(bl′)) is of the form (⊥,u,u+) (resp., (u−,u,⊥))

ϕ
`
full :=

(2c(k,n)∧
i=1

2
i−1(30∧31)

)
∧
(
2

2c(k,n)
k∧

i=1
3argi

)
∧
(
2

2c(k,n)+1
k∧

i=`+1

(argi→
∧
t∈Λ

3t)
)
∧

(c(k,n)∧
i=1

2
i(1→2

2c(k,n)−i+1
∧
t∈Λ

3t)
)
∧ Φcomplete

The constructions of formulas ϕ`
<2n and ϕ`

≥2n are similar. So, we just give the definition of ϕ`
≥2n .

ϕ
`
≥2n := ∀r

((
Φcomplete∧

c(k,n)∧
i=1

2
i0∧¬

c(k,n)∨
i=1

(3
c(k,n)+i0∧3c(k,n)+i1)∧

c(k,n)∨
i=n+1

3
c(k,n)+i1∧22c(k,n)+1arg`

)
︸ ︷︷ ︸

select `-TM blocks with the same position number ≥ 2n associated with extended TM blocks of position number 0

−→
∨

(u−,#,u+)∈Λ

2
2c(k,n)+2(u−,#,u+)

)

ϕconf := ∀r

((
Φcomplete∧

c(k,n)∧
i=1

2
i0 ∧ 2

2c(k,n)+1arg` ∧ ϕinc
)

︸ ︷︷ ︸
select two consecutive `-TM blocks associated with extended TM blocks of position number 0

−→ ϕcheck

)

where ϕinc and ϕcheck are ML formulas defined below. In particular, ϕinc allows to “select” only TM
blocks having position numbers i and i+1 for some 0≤ i < 2c(k,n)−1, while ϕcheck checks the con-
sistency of the selected consecutive `-TM blocks associated with extended TM blocks of position
number 0. Note that for two TM blocks bl = {bit1}, . . . ,{bitc(k,n)}, . . . and bl′= {bit′1}, . . . ,{bit′c(k,n)},
. . ., ID(bl′) = ID(bl)+1 iff there is 1 ≤ i ≤ c(k,n) such that: (1) biti = 0 and bit′i = 1, (2) for each
1≤ j ≤ i−1, bit j = 1 and bit′j = 0, and (3) for each i+1≤ j ≤ c(k,n), bit j = bit′j.

ϕinc :=3
c(k,n)+10 ∧ 3

c(k,n)+11∧
c(k,n)∨
i=1

(
ϕ

i
inc ∧ ¬

c(k,n)∨
j=i+1

(3
c(k,n)+ j0∧3c(k,n)+ j1))

25

where ϕi
inc := true if i = 1, and ϕi

inc is defined as follows otherwise

2
c(k,n)+1(0→ (2

i−11∧
i−2∧
j=1

2
j0)
)
∧2c(k,n)+1(1→ (2

i−10∧
i−2∧
j=1

2
j1)
)

ϕcheck :=
∨

(u−,u,u+),(u,u+,u++)∈Λ

c(k,n)∨
i=1

(
(¬

j=c(k,n)∨
j=i+1

(3
c(k,n)+ j0 ∧ 3

c(k,n)+ j1)) ∧ 3
c(k,n)+i0 ∧ 3

c(k,n)+i1∧

2
c(k,n)+i(0→2

c(k,n)−i+2(u−,u,u+)) ∧ 2
c(k,n)+i(1→2

c(k,n)−i+2(u,u+,u++))
)

︸ ︷︷ ︸
content consistency for consecutive TM blocks associated with the same component of a (k,n)-configuration

∧

(
3

c(k,n)(3(0∧3(0∧ . . .∧30︸ ︷︷ ︸
c(k,n) times

) . . .)))−→3
c(k,n)(3(0∧3(0∧ . . .∧3(0︸ ︷︷ ︸

c(k,n) times

∧
∨

(⊥,u,u+)∈Λ

3
2(⊥,u,u+)) . . .)))

)
∧

(
3

c(k,n)(3(1∧3(1∧ . . .∧31︸ ︷︷ ︸
c(k,n) times

) . . .)))−→3
c(k,n)(3(1∧3(1∧ . . .∧3(1︸ ︷︷ ︸

c(k,n) times

∧
∨

(u−,u,⊥)∈Λ

3
2(u,u,⊥)) . . .)))

)

Proof of Property 3. Since a (k,n)-computation tree code which is a refinement of a k-initialized
full (k,n)-computation tree code is well-initialized, Property 3 directly follows from the following
claim.

Claim: One can construct in time polynomial in n, k, and the size of the TM M ,
– a RML∀ formula ϕtree code over P s.t. given a refinement 〈Tr,Vr〉 of a k-initialized full (k,n)-

computation tree code, 〈Tr,Vr〉 satisfies ϕtree code iff 〈Tr,Vr〉 is a (k,n)-computation tree code;
– a RML∀ formula ϕfaithful over P such that given a well-initialized (k,n)-computation tree code
〈T,V 〉, 〈T,V 〉 satisfies ϕfaithful iff 〈T,V 〉 encodes a (k,n)-computation.

Proof of the claim.

Construction of the RML∀ formula ϕtree code:

ϕtree code := Φcomplete ∧
2c(k,n)∧

i=1

(
2

i−1(30∧31)
)
∧22c(k,n)(

k∧
`=1

3arg`) ∧ ϕunique ∧ ϕcontrol ∧ ϕ
′
conf

where ϕunique, ϕcontrol, and ϕ′conf ensure Property 2 in Definition 6. In particular, the following holds:

– ϕunique is a RML∀ formula ensuring that for all extended TM blocks ext bl and ext bl’ such
that ID(ext bl) = ID(ext bl’), CON(ext bl) = bl, CON(ext bl’) = bl′, and bl and bl′ have the
same component and position number, the following holds: CON(bl) = CON(bl′) (i.e., for each
position number i, there is a unique (k,n)-configuration with position number i).

26

– ϕcontrol is a ML formula ensuring that for each position number i, there is a unique extended TM
block ext bl such that ID(ext bl) = i and CON(CON(ext bl)) is of the form (u−,(q,a),u+).

– ϕ′conf is a RML∀ formula ensuring that for all extended TM blocks ext bl and ext bl’ such
that ID(ext bl) = ID(ext bl’), CON(ext bl) = bl, CON(ext bl’) = bl′, bl and bl′ have the same
component number, and ID(bl′) = ID(bl) + 1 (consecutive TM blocks), the following holds:
CON(bl) and CON(bl′) are of the form (u−,u,u+) and (u,u+,u++), respectively. Moreover, if
ID(bl) = 0 (resp., ID(bl′) = 2c(k,n)−1), then CON(bl) (resp., CON(bl′)) is of the form (⊥,u,u+)
(resp., (u−,u,⊥)).

ϕunique := ∀r

((
Φcomplete ∧ ¬

(2c(k,n)∨
i=1

3
i0∧3i1

)
∧

∨
1≤`≤k

2
2c(k,n)+1arg`

)
︸ ︷︷ ︸

select for some `, i, and j, extended `-TM blocks ext bl with ID(ext bl) = i and ID(CON(ext bl)) = j

−→
∨
t∈Λ

2
2c(k,n)+2t

)

ϕcontrol :=2
c(k,n)

[
(

∨
(u−,(q,a),u+)∈Λ

3
c(k,n)+2(u−,(q,a),u+)) ∧ ¬

∨
(u−,(q,a),u+),(u′−,(q′,a′),u′+)∈Λ(

{
∨

1≤ 6̀=h≤k
3

c(k,n)+1(arg`∧3(u−,(q,a),u+))∧3c(k,n)+1(argh∧3(u′−,(q
′,a′),u′+))} ∨

{
c(k,n)∨
i=1

3
i(0 ∧ 3

c(k,n)−i+2(u−,(q,a),u+)) ∧ 3
i(1 ∧ 3

c(k,n)−i+2(u′−,(q
′,a′),u′+))}

)]

ϕ
′
conf := ∀r

((
Φcomplete ∧ ¬

(c(k,n)∨
i=1

3
i0∧3i1

)
∧

∨
1≤`≤k

2
2c(k,n)+1arg` ∧ ϕinc

)
︸ ︷︷ ︸

select two consecutive TM blocks of some component of some (k,n)-configuration

−→ ϕcheck

)

where ϕinc and ϕcheck are the ML formulas defined at the end of the proof of Property 1.

Construction of the RML∀ formula ϕfaithful: First, we construct two ML formulas ϕsc and ϕsb that
satisfy the following:

– given a refinement 〈Tr,Vr〉 of a (k,n)-computation tree code 〈T,V 〉, 〈Tr,Vr〉 satisfies ϕsc iff
〈Tr,Vr〉 “selects” two consecutive (k,n)-configurations encoded by 〈T,V 〉 (i.e., two (k,n) con-
figurations having position numbers i and i+1 for some 0≤ i < 2c(k,n)−1);

– given a refinement 〈Tr,Vr〉 of a well-initialized (k,n)-computation tree code which “selects”
two consecutive (k,n)-configurations

−→
C and

−→
C ′, it holds that: for each refinement 〈T ′r ,V ′r 〉 of

〈Tr,Vr〉, 〈T ′r ,V ′r 〉 satisfies ϕsb iff 〈T ′r ,V ′r 〉 “selects” two TM blocks bl and bl′ which have the
same position and component number, and are associated with

−→
C and

−→
C ′, respectively.

ϕsc := Φcomplete ∧
(2c(k,n)∧

i=c(k,n)+1

2
i−1(30∧31)

)
∧
(
2

2c(k,n)
∧

1≤`≤k
3arg`

)
∧ 30 ∧ 31 ∧

c(k,n)∨
i=1

(
ψ

i
inc ∧ ¬

c(k,n)∨
j=i+1

(3
j0∧3 j1))

where ψi
inc ::= true if i = 1, and ψi

inc is defined as follows otherwise

27

2
(
0→ (2

i−11 ∧
i−2∧
j=1

2
j0)
)
∧ 2

(
1→ (2

i−10 ∧
i−2∧
j=1

2
j1)
)

ϕsb := Φcomplete∧
c(k,n)∨

j=1

(3
j0∧3 j1)∧¬

(c(k,n)∨
i=1

3
c(k,n)+i0∧3c(k,n)+i1

)
∧

∨
1≤`≤k

2
2c(k,n)+1arg`

Now, we describe the construction of the RML∀ formula ϕfaithful:

ϕfaithful ::= ∀r
(
ϕsc −→

∨
(q,a)∈(Q\{qacc,qrej})×A

(ψcheck
q,a ∧ ψ

faithful
q,a)

)
where for a refinement of a well-initialized (k,n)-computation tree code which selects two (k,n)-
configurations

−→
C and

−→
C ′ with position numbers i and i+ 1, respectively, we have that: (1) ψcheck

q,a
is a ML formula that checks that (q,a) ∈ (Q\{qacc,qrej})×A is the pair state/scanned cell content
associated with the (k,n)-configuration

−→
C , and (2) ψfaithful

q,a is a RML∀ formula that uses the ML

formula ϕsb and checks that
−→
C ′ is the TM successor of

−→
C .

ψ
check
q,a :=

∨
(u−,(q,a),u+)∈Λ

c(k,n)∨
i=1

(
3

i1∧3i(0∧32c(k,n)−i+2(u−,(q,a),u+))∧¬
c(k,n)∨
j=i+1

(3
j0∧3 j1)

)
It remains to construct the RML∀ formula ψfaithful

q,a . We distinguish two cases.

Case δ(q,a) is an ordinary move: let
−→
C = (C1(0) . . . C1(2c(k,n)−1), . . . ,Ck(0) . . .Ck(2c(k,n)−1)) be a

(k,n)-configuration whose pair state/scanned cell content is (q,a). In this case, for all 1 ≤ ` ≤ k
and 0≤ j ≤ 2c(k,n)−1, the ‘value’ u`, j of the j-th symbol of the `th component of the

−→
C -successor

is completely determined by the values C`(j− 1), C`(j) and C`(j + 1) (taking C`(j + 1) for j =
2c(k,n)− 1 and C`(j− 1) for j = 0 to be ⊥). We denote by next(C`(j− 1),C`(j),C`(j + 1)) our
expectation for u`, j (this function can be trivially obtained from the transition function δ of M).
Thus, in this case, we have to check that given a refinement 〈Tr,Vr〉 of a well-initialized (k,n)-
computation tree code which “selects” two (k,n)-configurations

−→
C and

−→
C ′ with position numbers

i and i+1 (for some i) respectively (we say that
−→
C is the first configuration and

−→
C ′ is the second

configuration), and such that (q,a) is the pair state/scanned cell content associated with
−→
C , the

following holds: for each refinement of 〈Tr,Vr〉 which selects two TM blocks bl and bl′ such that
bl and bl′ have the same position and component number, and are associated with

−→
C and

−→
C ′,

respectively, CON(bl′) is of the form (u−,next(CON(bl)),u+). Hence, ψfaithful
q,a is defined as follows:

ψ
faithful
q,a ::= ∀r

(
ϕsb −→

∨
t,(u−,next(t),u+)∈Λ

c(k,n)∨
i=1

(
[¬

c(k,n)∨
j=i+1

(3
j0∧3 j1)] ∧

[3
i(0∧32c(k,n)−i+2t)]︸ ︷︷ ︸

select the TM block of the first (k,n)-configuration

∧ [3
i(1∧32c(k,n)−i+2(u−,next(t),u+))]︸ ︷︷ ︸

select the TM block of the second (k,n)-configuration

))

28

Case δ(q,a) is a jump move: for s∈ A∪(Q×A), let A(s) := s if s∈ A and A(s) be the A-component
of s otherwise. Let

−→
C = (C1(0) . . .C1(2c(k,n)−1), . . . ,Ck(0) . . .Ck(2c(k,n)−1)) be a (k,n)-configuration

whose pair state/scanned cell content is (q,a). In this case, for all 1≤ `≤ k and 0≤ j ≤ 2c(k,n)−1,
the ‘value’ u`, j of the j-th symbol of the `th component of the

−→
C -successor satisfies the following:

u`, j = (q,A(C`(j))) if `= δ(q,a) and j = 0, and u`, j = A(C`(j)) otherwise. Let 〈Tr,Vr〉 be a refine-
ment of a well-initialized (k,n)-computation tree code which “selects” two (k,n)-configurations

−→
C

and
−→
C ′ with position numbers i and i+1 (for some i) respectively, and such that (q,a) is the pair

state/scanned cell content associated with
−→
C . We have to check that for each refinement of 〈Tr,Vr〉

which selects two TM blocks bl and bl′ such that bl and bl′ have the same position and component
number, and are associated with

−→
C and

−→
C ′, respectively, the following holds:

– if bl and bl′ have position number 0 and component number δ(q,a), then CON(bl) = (u−,u,u+)
and CON(bl′) = (u′−,(q,A(u)),u

′
+);

– otherwise, CON(bl) = (u−,u,u+) and CON(bl′) = (u′−,A(u),u
′
+).

Hence, ψfaithful
q,a is defined as follows:

ψ
faithful
q,a ::= ∀r

(
ϕsb −→

(
[(3

2c(k,n)+1argδ(q,a)∧
c(k,n)∧

j=1
2

c(k,n)+ j0)−→ ψq]︸ ︷︷ ︸
the two TM blocks have position number 0 and component number δ(q,a)

∧

[¬(32c(k,n)+1argδ(q,a)∧
c(k,n)∧

j=1
2

c(k,n)+ j0)→ ψ]︸ ︷︷ ︸
for the two selected TM blocks, either the position number is not 0 or the component number is not δ(q,a)

))

where ψq and ψ are ML-formulas. Below, we define ψq (the construction of ψ is very similar).

ψq ::=
∨

(u−,u,u+),(u′−,(q,A(u)),u′+)∈Λ

c(k,n)∨
i=1

(
[¬

c(k,n)∨
j=i+1

(3
j0∧3 j1)]∧

[3
i(0∧32c(k,n)−i+2(u−,u,u+))]︸ ︷︷ ︸

select the TM block of the first (k,n)-configuration

∧ [3
i(1∧32c(k,n)−i+2(u′−,(q,A(u)),u

′
+))]︸ ︷︷ ︸

select the TM block of the second (k,n)-configuration

))
This concludes the proof of the claim. ut

ut

C.3 Detailed proof of Theorem 4

Theorem 4. One can construct a RMLk+1 formula ϕ in time polynomial in n, k, and the size of the
TM M such that ϕ is satisfiable if and only if

Q1x1 ∈ I2n
.Q2x2 ∈ I2n

. . . .Qkxk ∈ I2n
.M (x1, . . . ,xk)

where Q` = ∃ if ` is odd, and Q` = ∀ otherwise (for all 1≤ `≤ k).

Proof. Let ϕ1
init, . . . ,ϕ

k
init, and ϕcomp be the RML∀ formulas satisfying Properties 1–3 of Lemma 4,

and ϕacc be the ML formula satisfying Property 4 of Lemma 4. Then, the RMLk+1 formula ϕ is

29

defined as follows, where Q̃` = ∃r and op` = ∧ if ` is odd, and Q̃` = ∀r and op` =→ otherwise (for
all 2≤ `≤ k):

ϕ := ϕ1
init ∧ Q̃2(ϕ

2
init op2 Q̃3(ϕ

3
init op3 . . . opk−1 Q̃k(ϕ

k
init opk Q̃k(ϕcomp opk ϕacc)) . . .))

By construction and Lemma 4, it easily follows that ϕ is RMLk+1 formula which can be constructed
in time polynomial in n, k, and the size of the TM M . Let ϕ1 := ϕ, ϕk+1 := Q̃k(ϕcomp opk ϕacc),
and for each 2≤ `≤ k,

ϕ` := Q̃`(ϕ
`
init op` Q̃`+1(ϕ

`+1
init op`+1 . . . opk−1 Q̃k(ϕ

k
init opk Q̃k(ϕcomp opk ϕacc)) . . .))

Correctness of the construction directly follows from the following claim, where a 0-initialized
full (k,n)-computation tree code is an arbitrary tree structure.

Claim: let 0≤ `≤ k, w1, . . . ,w` ∈ I2n
, and 〈T,V 〉 be a `-initialized full (k,n)-computation tree code

such that 〈T,V 〉(w1, . . . ,w`) holds. Then, 〈T,V 〉 satisfies ϕ`+1 if and only if
Q`+1x`+1 ∈ I2n

. . . . Qkxk ∈ I2n
.M (w1, . . . ,w`,x`+1, . . . ,xk) (2)

Proof of the claim: the proof is by induction on k− `.

Base Step: `= k. We need to show that 〈T,V 〉 satisfies ϕk+1 := Q̃k(ϕcomp opk ϕacc) iff M (w1, . . . ,wk).

We assume that k is even (the other case being similar). Then, by construction, ϕk+1 = ∀r(ϕcomp →
ϕacc). First, assume that 〈T,V 〉 satisfies ϕk+1. Since 〈T,V 〉 is a k-initialized full (k,n)-computation
tree code such that 〈T,V 〉(w1, . . . ,wk) holds, by Proposition 3(2) there is a refinement 〈Tr,Vr〉 of
〈T,V 〉 which is a (k,n)-computation tree code encoding the (k,n)-computation from the (k,n)-
input (w1, . . . ,wk). By Lemma 4(3), it follows that 〈Tr,Vr〉 satisfies ϕcomp. Since 〈T,V 〉 satisfies
ϕk+1, we deduce that 〈Tr,Vr〉 |= ϕacc. Thus, by Lemma 4(3), we obtain that the (k,n)-computation
from the (k,n)-input (w1, . . . ,wk) is accepting, i.e. M (w1, . . . ,wk).
For the converse implication assume that M (w1, . . . ,wk). Let 〈Tr,Vr〉 be any refinement of 〈T,V 〉
satisfying ϕcomp. We need to show that 〈Tr,Vr〉 satisfies ϕacc. By Lemma 4(3), it follows that 〈Tr,Vr〉
is a (k,n)-computation tree code encoding a (k,n)-computation. Moreover, since 〈Tr,Vr〉 is a refine-
ment of 〈T,V 〉 and 〈T,V 〉(w1, . . . ,wk) holds, by Proposition 3(2), 〈Tr,Vr〉 encodes the (accepting)
(k,n)-computation from the (k,n)-input (w1, . . . ,wk). Thus, by Lemma 4(4), the result follows.

Induction Step: let ` < k. We assume that ` > 0 and `+1 is even (the other cases being similar).
Then, ϕ`+1 =∀r(ϕ

`+1
init → ϕ`+2) and Q`+1 =∀. First, assume that 〈T,V 〉 satisfies ϕ`+1. Let w`+1 ∈ I2n

.
Since 〈T,V 〉 is a `-initialized full (k,n)-computation tree code such that 〈T,V 〉(w1, . . . ,w`) holds, by
Proposition 3(1) there must be a refinement 〈Tr,Vr〉 of 〈T,V 〉 such that 〈Tr,Vr〉 is a `+1-initialized
full (k,n)-computation tree code and 〈Tr,Vr〉(w1, . . . ,w`+1) holds. By Lemma 4(2), 〈Tr,Vr〉 |= ϕ

`+1
init .

Since 〈T,V 〉 satisfies ϕ`+1, we deduce that 〈Tr,Vr〉 |= ϕ`+2. Thus, by the induction hypothesis it
follows that Q`+2x`+2 ∈ I2n

. . . . Qkxk ∈ I2n
.M (w1, . . . ,w`+1,x`+2, . . . ,xk). Since Q`+1 = ∀ and w`+1

is arbitrary, we obtain that Condition (2) in the claim holds. For the converse implication, assume
that Condition (2) in the claim holds. Let 〈Tr,Vr〉 be a refinement of 〈T,V 〉 satisfying ϕ

`+1
init . We

need to show that 〈Tr,Vr〉 |= ϕ`+2. By Lemma 4(2), it holds that 〈Tr,Vr〉 is a `+ 1-initialized full
(k,n)-computation tree code. Since 〈Tr,Vr〉 is a refinement of 〈T,V 〉 and 〈T,V 〉(w1, . . . ,w`) holds,
by Proposition 3(1) there must be w`+1 ∈ I2n

such that 〈Tr,Vr〉(w1, . . . ,w`+1) holds. Since Q`+1 = ∀,

30

by hypothesis, it holds that Q`+2x`+2 ∈ I2n
. . . . Qkxk ∈ I2n

. M (w1, . . . ,w`+1,x`+2, . . . ,xk). Thus, by
the induction hypothesis, 〈Tr,Vr〉 |= ϕ`+2 holds, and we are done. ut

ut

C.4 Proof of Theorem 5

Theorem 5. Let k = 1. Then, one can construct a RML∀ formula ϕ∀ in time polynomial in n and
the size of the TM M such that ϕ∀ is satisfiable if and only if ∃x ∈ I2n

.M (x).

Proof. The RML∀ formula ϕ∀ is given by ψtree code ∧ ϕfaithful ∧ ϕacc, where ϕfaithful is the RML∀

formula used in the proof of Lemma 4(3), ϕacc is the ML formula of Lemma 4(4), and ψtree code is a
RML∀ formula over P which is satisfied by a tree structure 〈T,V 〉 iff 〈T,V 〉 is a (1,n)-computation
tree code such that the (1,n)-configuration with position number 0 encoded by 〈T,V 〉 is initial.
The construction of the RML∀ formula ψtree code is similar to the construction of the RML∀ formula
ϕtree code in the proof of Lemma 4(3). Thus, we omit the details here. ut

31

