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List-Decodable Codes

The field of coding theory is motivated by the problem of communicating reliably over noisy chan-

nels — where the data sent over the channel may come out corrupted on the other end, but we

nevertheless want the receiver to be able to correct the errors and recover the original message.

There is a vast literature studying aspects of this problem from the perspectives of electrical engi-

neering (communications and information theory), computer science (algorithms and complexity),

and mathematics (combinatorics and algebra). In this survey, we are interested in codes as “pseu-

dorandom objects.” In particular, a generalization of the notion of an error-correcting code yields

a framework that we will use to unify all of the main pseudorandom objects covered in this survey

(averaging samplers, expander graphs, randomness extractors, list-decodable codes, pseudorandom

generators).

5.1 Definitions and Existence

5.1.1 Definition.

The approach to communicating over a noisy channel is to restrict the data we send to be from a

certain set of strings that can be easily disambiguated (even after being corrupted).

Definition 5.1. A q-ary code is a multiset1 C ⊂ Σn̂, where Σ is an alphabet of size q. Elements of

C are called codewords. We define the following key parameters:

• n̂ is the block length.
• n = log |C| is the message length.
• ρ = n/(n̂ · log |Σ|) is the (relative) rate of the code.

An encoding function for C is an bijective mapping Enc: {1, . . . , |C|} → C. Given such an encod-

1 Traditionally, codes are defined to be sets rather than multisets. However, the generality afforded by multisets will allow the

connections we see later to be stated more cleanly. In the case C is a multiset, the condition that a mapping Enc : {1, . . . , N} → C
is bijective means that for every c ∈ C, |Enc−1(c)| equals the multiplicity of c in C.
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ing function, we view the elements of {1, . . . , |C|} as messages. When n = log |C| is an integer, we

often think of messages as strings in {0, 1}n.

We view C and Enc as being essentially the same object (with Enc merely providing a “labelling”

of codewords), with the former being useful for studying the combinatorics of codes and the latter

for algorithmic purposes.

We remark that our notation differs from the standard notation in coding theory in several ways.

Typically in coding theory, the input alphabet is taken to be the same as the output alphabet (rather

than {0, 1} and Σ, respectively), the blocklength is denoted n, and the message length (over Σ)

is denoted k and is referred to as the rate. Our notational choices are made in part to facilitate

stating connections to other pseudorandom objects covered in this survey.

So far, we haven’t talked at all about the error-correcting properties of codes. Here we need to

specify two things: the model of errors (as introduced by the noisy channel) and the notion of a

successful recovery.

For the errors, the main distinction is between random errors and worst-case errors. For random

errors, one needs to specify a stochastic model of the channel. The most basic one is the binary

symmetric channel (over alphabet Σ = {0, 1}), where each bit is flipped independently with proba-

bility δ. People also study more complex channel models, but as usual with stochastic models, there

is always the question of how well the theoretical model correctly captures the real-life distribution

of errors. We, however, will focus on worst-case errors, where we simply assume that fewer than a δ

fraction of symbols have been changed. That is, when we send a codeword c ∈ Σn̂ over the channel,

the received word r ∈ Σn̂ differs from c in fewer than δn̂ places. Equivalently, c are r are close in

Hamming distance:

Definition 5.2 (Hamming distance). For two strings x, y ∈ Σn̂, their (relative) Hamming dis-

tance dH(x, y) equals Pri[xi 6= yi]. The agreement is defined to be agr(x, y) = 1− dH(x, y).

For a string x ∈ Σn̂ and δ ∈ [0, 1], the (open) Hamming ball of radius δ around x is the set

B(x, δ) of strings y ∈ Σn̂ such that dH(x, y) < δ.

For the notion of a successful recovery, the traditional model requires that we can uniquely

decode the message from the received word (in the case of random errors, this need only hold with

high probability). Our main focus will be on a more relaxed notion which allows us to produce a

small list of candidate messages. As we will see, the advantage of such list decoding is that it allows

us to correct a larger fraction of errors.

Definition 5.3. Let Enc: {0, 1}n → Σn̂ be an encoding algorithm for a code C. A δ-decoding

algorithm for Enc is a function Dec : Σn̂ → {0, 1}n such that for every m ∈ {0, 1}n and r ∈ Σn̂

satisfying dH(Enc(m), r) < δ, we have Dec(r) = m. If such a function Dec exists, we call the code

δ-decodable.

A (δ, L)-list-decoding algorithm for Enc is a function Dec : Σn̂ → ({0, 1}n)L such that for every

m ∈ {0, 1}n and r ∈ Σn̂ satisfying dH(Enc(m), r) < δ, we have m ∈ Dec(r). If such a function Dec

exists, we call the code (δ, L)-list-decodable.
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Note that a δ-decoding algorithm is the same as a (δ, 1)-list-decoding algorithm. It is not hard to

see that, if we do not care about computational efficiency, the existence of such decoding algorithms

depends only on the combinatorics of the set of codewords.

Definition 5.4. The (relative) minimum distance of a code C ⊂ Σn̂ equals minx 6=y∈C dH(x, y).2

Proposition 5.5. Let C ⊂ Σn̂ be a code with any encoding function Enc.

(1) For δn̂ ∈ N, Enc is δ-decodable iff its minimum distance is at least 2δ − 1/n̂.

(2) Enc is (δ, L)-list-decodable iff for every r ∈ Σn̂, we have |B(r, δ) ∩ C| ≤ L.

Proof. Item 2 follows readily from the definitions.

For Item 1, first note that Enc is δ-decodable iff there is no received word r ∈ Σn̂ at distance less

than δ from two codewords c1, c2. (Such an r should decode to both c1 and c2, which is impossible

for a unique decoder.) If the code has minimum distance at least 2δ− 1/n̂, then c1 and c2 disagree

in at least 2δn̂−1 positions, which implies that r disagrees with one of them in at least δn̂ positions.

(Recall that δn̂ is an integer by hypothesis.) Conversely, if the code has minimum distance smaller

than 2δ − 1/n̂, then there are two codewords that disagree in at most 2δn̂ − 2 positions, and we

can construct r that disagrees with each in at most δn̂− 1 positions.

Because of the factor of 2 in Item 1, unique decoding is only possible at distances up to 1/2,

whereas we will see that list decoding is possible at distances approaching 1 (with small lists).

The main goals in constructing codes are to have infinite families of codes (e.g. for every message

length n) in which we:

• Maximize the fraction δ of errors correctible (e.g. constant independent of n and n̂).
• Maximize the rate ρ (e.g. a constant independent of n and n̂).
• Minimize the alphabet size q (e.g. a constant, ideally q = 2).
• Keep the list size L relatively small (e.g. a constant or poly(n)).
• Have computationally efficient encoding and decoding algorithms.

In particular, coding theorists are very interested in obtaining the optimal tradeoff between the

constants δ and ρ with efficiently encodable and decodable codes.

5.1.2 Existential Bounds

Like expanders, the existence of very good codes can be shown using the probabilistic method. The

bounds will be stated in terms of the q-ary entropy functions, so we begin by defining those.

Definition 5.6. For q, n̂ ∈ N and δ ∈ [0, 1], we define Hq(δ, n̂) ∈ [0, 1] to be such that |B(x, δ)| =
qHq(δ,n̂)·n̂ for x ∈ Σn̂, where Σ is an alphabet of size q.

We also define the q-ary entropy function Hq(δ) = δ · logq((q − 1)/δ) + (1− δ) · logq(1/(1− δ)).

The reason we use similar notation for Hq(δ, n̂) and Hq(δ) is Part 1 of the following:

2 If any codeword appears in C with multiplicity greater than 1, then the minimum distance is defined to be zero.
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Proposition 5.7. For every q ∈ N, δ ∈ (0, 1− 1/q), ε ∈ [0, 1/2],

(1) limn̂→∞Hq(δ, n̂) = Hq(δ).

(2) Hq(δ) ≤ H2(δ)/ log q + δ.

(3) H2(1/2− ε) = 1−Θ(ε2).

Now we state the bounds for random error-correcting codes.

Theorem 5.8. (1) For all n̂, q ∈ N and δ ∈ (0, 1 − 1/q), there exists a q-ary code of block

length n̂, minimum distance at least δ, and rate at least ρ = 1−Hq(δ, n̂).

(2) For all integers n̂, q, L ∈ N and δ ∈ (0, 1− 1/q), there exists a (δ, L)-list-decodable q-ary

code of block length n̂ and rate at least ρ = 1−Hq(δ, n̂)− 1/(L+ 1).

Proof. (1) Pick the codewords c1, . . . , cN in sequence ensuring that ci is at distance at least δ

from c1, . . . , ci−1. The union of the Hamming balls of radius δ around c1, . . . , ci−1 contains

at most (i − 1) · qHq(δ,n̂)·n̂ < (N − 1) · qHq(δ,n̂)·n̂, so there is always a choice of ci outside

these balls if we take N = dq(1−Hq(δ,n̂))·n̂e.
(2) We use the probabilistic method. Choose the N codewords randomly and independently

from Σn̂. The probability that there is a Hamming Ball of radius δ containing at least

L+ 1 codewords is at most

qn̂ ·
(

N

L+ 1

)
·

(
qHq(δ,n̂)·n̂

qn̂

)L+1

≤
(

N − 1

q(1−Hq(δ,n̂)−1/(L+1))·n̂

)L+1

,

which is less than 1 if we take N = dq(1−Hq(δ,n̂)−1/(L+1))·n̂e.

Note that while the rate bounds are essentially the same for achieving minimum distance δ and

achieving list-decoding radius δ (as we take large list size), the bounds are incomparable because

minimum distance δ only corresponds to unique decoding up to radius roughly δ/2. The bound for

list decoding is known to be tight up to the dependence on L (Problem 5.1), while the bound on

minimum distance is not tight in general. Indeed, there are families of “algebraic-geometric” codes

with constant alphabet size q, constant minimum distance δ > 0, and constant rate ρ > 0 where

ρ > 1 −Hq(δ, n̂) for sufficiently large n̂. (Thus, this is a rare counterexample to the phenomenon

“random is best”.) Identifying the best tradeoff between rate and minimum distance, even for binary

codes, is a long-standing open problem in coding theory.

Open Problem 5.9. For each constant δ ∈ (0, 1), identify the largest ρ > 0 such that for every

ε > 0, there exists an infinite family of codes Cn̂ ⊂ {0, 1}n̂ of rate at least ρ − ε and minimum

distance at least δ.

Let’s look at some special cases of the parameters in Theorem 5.8. For binary codes (q = 2), we

will be most interested in the case δ → 1/2, which corresponds to correcting the maximum possible
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fraction of errors for binary codes. (No nontrivial decoding is possible for binary codes at distance

greater than 1/2, since a completely random received word will be at distance roughly 1/2 with most

codewords.) In this case, Proposition 5.7 tells us that the rate approaches 1−H2(1/2− ε) = Θ(ε2),

i.e. the blocklength is n̂ = Θ(n/ε2) (for list size L = Θ(1/ε2)). For large alphabets q, Proposition 5.7

tells us that the rate approaches 1− δ as q grows. We will be most interested in the case δ = 1− ε
for small ε, so we can correct a δ = 1 − ε fraction of errors with a rate arbitrarily close to ε. For

example, we can achieve rate of ρ = .99ε, a list size of L = O(1/ε) and an alphabet of size poly(1/ε).

More generally, it is possible to achieve rate ρ = (1− γ)ε with an alphabet size of q = (1/ε)O(1/γ).

While we are primarily interested in list-decodable codes, minimum distance is often easier to

bound. The following allows us to translate bounds on minimum distance into bounds on list-

decodability.

Proposition 5.10 (Johnson Bound). (1) If C has minimum distance 1 − ε, then it is

(1−O(
√
ε), O(1/

√
ε))-list-decodable.

(2) If a binary code C has minimum distance 1/2 − ε, then it is (1/2 − O(
√
ε), O(1/ε))-

list-decodable.

Proof. We prove Item 1, and leave Item 2 as an exercise in the next chapter (Problem 6.3). The

proof is by inclusion-exclusion. Suppose for contradiction that there are codewords c1, . . . , cs at

distance less than 1− ε′ from some r ∈ Σn̂, for ε′ = 2
√
ε and s = d2/ε′e. Then:

1 ≥ fraction of positions where r agrees with some ci

≥
∑
i

agr(r, ci)−
∑

1≤i<j≤s
agr(ci, cj)

> sε′ −
(
s

2

)
· ε

≥ 2− 1 = 1

where the last inequality is by our setting of parameters. Contradiction.

Note the quadratic loss in the distance parameter. This means that optimal codes with respect

to minimum distance are not necessarily optimal with respect to list decoding. Nevertheless, if we

do not care about the exact tradeoff between the rate and the decoding radius, the above can yield

codes where the decoding radius is as large as possible (approaching 1 for large alphabets and 1/2

for binary alphabets).

5.1.3 Explicit Codes

As usual, most applications of error-correcting codes (in particular the original motivating one)

require computationally efficient encoding and decoding. For now, we focus on only the efficiency

of encoding.

Definition 5.11. A code Enc : {0, 1}n → Σn̂ is (fully) explicit if given a message m ∈ {0, 1}n and

an index i ∈ n̂, the i’th symbol of Enc(m) can be computed in time poly(n, log n̂, log |Σ|).
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The reason we talk about computing individual symbols of the codeword rather than the entire

codeword is to have a meaningful definition even for codes where the blocklength n̂ is superpoly-

nomial in the message length n. One can also consider weaker notions of explicitness, where we

simply require that the entire codeword Enc(m) can be computed in time poly(n̂, log |Σ|).
The constructions of codes that we describe will involve arithmetic over finite fields. See Re-

mark 3.25 for the complexity of constructing finite fields and carrying out arithmetic in such fields

.

In describing the explicit constructions below, it will be convenient to think of the codewords

as functions c : [n̂]→ Σ rather than as strings in Σn̂.

Construction 5.12 (Hadamard Code). For n ∈ N, the (binary) Hadamard code of message

length n is the binary code of blocklength n̂ = 2n consisting of all functions c : Zn2 → Z2 that are

linear (modulo 2).

Proposition 5.13. The Hadamard code:

(1) is explicit with respect to the encoding function that takes a message m ∈ Zn2 to the

linear function cm defined by cm(x) =
∑

imixi mod 2.

(2) has minimum distance 1/2, and

(3) is (1/2− ε,O(1/ε2)) list-decodable for every ε > 0.

Proof. Explicitness is clear by inspection. The minimum distance follows from the fact that for

every two distinct linear functions c, c′ : Zn2 → Z2, Prx[c(x) = c′(x)] = Prx[(c − c′)(x) = 0] = 1/2.

The list-decodability follows from the Johnson Bound.

The advantages of the Hadamard code are its small alphabet (binary) and optimal distance

(1/2), but unfortunately its rate is exponentially small (ρ = n/2n). By increasing both the field

size and degree, we can obtain complementary properties

Construction 5.14 (Reed–Solomon Codes). For a prime power q and d ∈ N, the q-ary Reed–

Solomon code of degree d is the code of blocklength n̂ = q and message length n = (d + 1) · log q

consisting of all polynomials p : Fq → Fq of degree at most d.

Proposition 5.15. The q-ary Reed–Solomon Code of degree d:

(1) is explicit with respect to the encoding function that takes a vector of coefficients

m ∈ Fd+1
q to the polynomial pm defined by pm(x) =

∑d
i=0mix

i (assuming we have a

description of the field Fq).
(2) has minimum distance δ = 1− d/q, and

(3) is (1−O(
√
d/q), O(

√
q/d)) list-decodable.
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Proof. Again explicitness follows by inspection. The minimum distance follows from the fact that

two distinct polynomials of degree at most d agree in at most d points (else their difference would

have more than d roots). The list-decodability follows from the Johnson Bound.

Note that by setting q = O(d), Reed-Solomon codes simultaneously achieve constant rate and

constant distance, the only disadvantage being that the alphabet is of nonconstant size (namely

q = n̂ > n.)

Another useful setting of parameters for Reed-Solomon codes in complexity theory is q =

poly(d), which gives polynomial rate (n̂ = poly(n)) and distance tending to 1 polynomially fast

(δ = 1− 1/poly(n)).

The following codes “interpolate” between Hadamard and Reed-Solomon codes, by allowing the

number of variables, the degree, and field size all to vary.

Construction 5.16 (Reed–Muller Codes). For a prime power q and d,m ∈ N, the q-ary Reed–

Muller code of degree d and dimension m is the code of blocklength n̂ = qm and message length

n =
(
m+d
d

)
· log q consisting of all polynomials p : Fmq → Fq of (total) degree at most d.

Proposition 5.17. The q-ary Reed–Muller Code of degree d and dimension m:

(1) is explicit with respect to the encoding function that takes a vector of coefficients v ∈

F(m+d
d )

q to the corresponding polynomial pv.

(2) has minimum distance δ ≥ 1− d/q, and

(3) is (1−O(
√
d/q), O(

√
q/d)) list-decodable.

Proof. Same as for Reed–Solomon Codes, except we use the Schwartz-Zippel Lemma (Lemma 2.4)

to deduce the minimum distance.

Note that Reed–Solomon Codes are simply Reed–Muller codes of dimension m = 1, and

Hadamard codes are essentially Reed–Muller codes of degree d = 1 and alphabet size q = 2 (except

that the Reed–Muller code also contains affine linear functions).

5.2 List-Decoding Algorithms

In this section, we will describe efficient list-decoding algorithms for the Reed–Solomon code and

variants. It will be convenient to work with the following notation:

Definition 5.18. Let C be a code with encoding function Enc : {1, . . . , N} → Σn̂. For r ∈ Σn̂,

define LIST(r, ε) = {m ∈ Σn̂ : agr(Enc(m), r) > ε}.

Then the task of (1 − ε) list decoding (according to Definition 5.3) is equivalent to producing

the elements of LIST(r, ε) given r ∈ Σn̂. In this section, we will see algorithms that do this in time

polynomial in the bit-length of r, i.e. time poly(n̂, log |Σ|).
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5.2.1 Review of Algebra

The list-decoding algorithms will require some additional algebraic facts and notation:

• For every field F, F[X1, . . . , Xn] is the integral domain consisting of formal polynomials

Q(X1, . . . , Xn) with coefficients in F, where addition and multiplication of polynomials

is defined in the usual way.
• A nonzero polynomial Q(X1, . . . , Xn) is irreducible if we cannot write Q = RS where

R,S are nonconstant polynomials. For a finite field Fq of characteristic p and d ∈ N, a

univariate irreducible polynomial of degree d over Fq can be found in deterministically

in time poly(p, log q, d).
• F[X1, . . . , Xn] is a unique factorization domain. That is, every nonzero polynomial Q can

be factored as Q = Q1Q2 · · ·Qm, where each Qi is irreducible and this factorization is

unique up to reordering and multiplication by constants from F. Given the description of

a finite field Fpk and the polynomial Q, this factorization can be done probabilistically

in time poly(log p, k, |Q|) and deterministically in time poly(p, k, |Q|).
• For a nonzero polynomial Q(Y, Z) ∈ F[Y,Z] and f(Y ) ∈ F[Y ], if Q(Y, f(Y )) = 0, then

Z − f(Y ) is one of the irreducible factors of Q(Y,Z) (and thus f(Y ) can be found in

polynomial time). This is analogous to the fact that if c ∈ Z is a root of an integer

polynomial Q(Z), then Z − c is one of the factors of Q (and can be proven in the same

way, by long division).

5.2.2 List-Decoding Reed-Solomon Codes

Theorem 5.19. There is a polynomial-time (1 − ε) list-decoding algorithm for the q-ary Reed-

Solomon code of degree d, for ε = 2
√
d/q. That is, given a function r : Fq → Fq and d ∈ N, all

polynomials of degree at most d that agree with r on more than εq = 2
√
dq inputs can be found in

polynomial time.

In fact the constant of 2 can be improved to 1, matching the combinatorial list-decoding radius

for Reed–Solomon codes given by an optimized form of the Johnson Bound. See Problem 5.6.

Proof. We are given a received word r : Fq → Fq, and want to find all elements of LIST(r, ε) for

ε = 2
√
d/q.

Step 1: Find a low-degree Q “explaining” r. Specifically, Q(Y,Z) will be a nonzero bivariate

polynomial of degree at most dY in its first variable Y and dZ in its second variable, with the

property that Q(y, r(y)) = 0 for all y ∈ Fq. Each such y imposes a linear constraint on the

(dY +1)(dZ+1) coefficients ofQ. Thus, this system has a nonzero solution provided (dY +1)(dZ+1) >

q, and it can be found in polynomial time by linear algebra (over Fq).

Step 2: Argue that each f(Y ) ∈ LIST(r, ε) is a “root” of Q. Specifically, it will be the

case that Q(Y, f(Y )) = 0 for each f ∈ LIST(r, ε). The reason is that Q(Y, f(Y )) is a univariate

polynomial of degree at most dY + d · dZ , and has more than εq zeroes (one for each place that

f and r agree). Thus, we can conclude Q(Y, f(Y )) = 0 provided εq ≥ dY + d · dZ . Then we can
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enumerate all of the elements of LIST(r, ε) by factoring Q(Y,Z) and taking all the factors of the

form Z − f(Y ).

For this algorithm to work, the two conditions we need to satisfy are

(dY + 1)(dZ + 1) > q,

and

εq ≥ dY + d · dZ .

These conditions can be satisfied by setting dY = bεq/2c, dZ = bεq/(2d)c, and ε = 2
√
d/q.

Note that the rate of Reed-Solomon codes is ρ = (d + 1)/q = Θ(ε2). The alphabet size is q =

Ω̃(n/ρ) = Ω̃(n/ε2). In contrast, the random codes of Theorem 5.8 achieve ρ ≈ ε and q = poly(1/ε).

It is not known whether the ε =
√
d/q bound on the list-decodability of Reed–Solomon codes can

be improved, even with inefficient decoding.

Open Problem 5.20. Do there exist constants ε, ρ ∈ (0, 1) with ε <
√
ρ and an infinite sequence

of prime powers q such that the q-ary Reed–Solomon code of degree d = bρqc is (1 − ε,poly(q))-

list-decodable?

5.2.3 Parvaresh–Vardy Codes

Our aim is to improve the rate-distance tradeoff to ρ = Θ̃(ε). Intuitively, the power of the Reed–

Solomon list-decoding algorithm comes from the fact that we can interpolate the q points (y, r(y))

of the received word using a bivariate polynomial Q of degree roughly
√
q in each variable (think

of d = O(1) for now). If we could use m variables instead of 2, then the degrees would only have to

be around q1/m.

First attempt: Replace Step 1 with finding an (m+1)-variate polynomial Q(Y,Z1, . . . , Zm) of de-

gree dY in Y and dZ in each Zi such thatQ(y, r(y), r(y), . . . , r(y)) = 0 for every y ∈ Fq. Then, we will

be able to choose a nonzero polynomialQ of degree roughly q1/m such thatQ(Y, f(Y ), . . . , f(Y )) = 0

for every f ∈ LIST(r, ε), and hence it follows that Z − f(Y ) divides the bivariate polynomial

Q∗(Y,Z) = Q(Y, Z, . . . , Z). Unfortunately, Q∗ might be the zero polynomial even if Q is nonzero.

Second attempt: Replace Step 1 with finding an (m + 1)-variate polynomial Q(Y,Z1, . . . , Zm)

of degree dY in Y and dZ = h−1 in each Zi such that Q(y, r(y), r(y)h, r(y)h
2
, . . . , r(y)h

m−1
) = 0 for

every y ∈ Fq. Then, it follows that Q∗(Y,Z) = Q(Y,Z, Zh, . . . , Zh
m−1

) is nonzero if Q is nonzero

because every monomial in Q with individual degrees at most h− 1 in Z1, · · · , Zm gets mapped to

a different power of Z. However, here the difficulty is that the degree of Q∗(Y, f(Y )) is too high

(roughly d∗ = dY + d · hm > dmZ ) for us to satisfy the constraint εq ≥ d∗.

Parvaresh–Vardy codes get the best of both worlds by providing more information with

each symbol — not just the evaluation of f at each point, but the evaluation of m − 1

other polynomials f1, . . . , fm−1, each of which is still of degree d (as is good for arguing that

95



Q(Y, f(Y ), f1(Y ), . . . , fm−1(Y )) = 0, but can be viewed as raising f to successive powers of h for

the purposes of ensuring that Q∗ is nonzero.

To introduce this idea, we need some additional algebra.

• For univariate polynomials f(Y ) and E(Y ), we define f(Y ) mod E(Y ) to be the remain-

der when f is divided by E. If E(Y ) is of degree k, then f(Y ) mod E(Y ) is of degree at

most k − 1.
• The ring F[Y ]/E(Y ) consists of all polynomials of degree at most k − 1 with arithmetic

modulo E(Y ) (analogous to Zn consisting of integers smaller than n with arithmetic

modulo n). If E is irreducible, then F[Y ]/E(Y ) is a field (analogous to Zp being a field

when p is prime). Indeed, this is how the finite field of size pk is constructed: take F = Zp
and E(Y ) to be an irreducible polynomial of degree k over Zp, and then F[Y ]/E(Y ) is

the (unique) field of size pk.
• A multivariate polynomial Q(Y, Z1, . . . , Zm) can be reduced modulo E(Y ) by writing it

as a polynomial in variables Z1, . . . , Zm with coefficients in F[Y ] and then reducing each

coefficient modulo E(Y ). After reducing Q modulo E, we think of Q as a polynomial in

variables Z1, . . . , Zm with coefficients in the field F[Y ]/E(Y ).

Construction 5.21 (Parvaresh–Vardy Codes). For a prime power q, integers m, d, h ∈ N, and

an irreducible polynomial E(Y ) of degree larger than d, the q-ary Parvaresh–Vardy Code of degree

d, power h, redundancy m, and irreducible E is defined as follows:

• The alphabet is Σ = Fmq .
• The blocklength is n̂ = q.
• The message space is Fd+1

q , where we view each message as representing a polynomial

f(Y ) of degree at most d over Fq.
• For y ∈ Fq, the y’th symbol of the Enc(f) is

[f0(y), f1(y), . . . , fm−1(y)],

where fi(Y ) = f(Y )h
i

mod E(Y ).

Theorem 5.22. For every prime power q, integer 0 ≤ d < q, and irreducible polynomial E of

degree d + 1, the q-ary Parvaresh–Vardy code of degree d, redundancy m = dlog(q/d)e, power

h = 2, and irreducible E has rate ρ = Ω̃(d/q) and can be list-decoded in polynomial time up to

distance δ = 1− Õ(d/q).

Proof. We are given a received word r : Fq → Fmq , and want to find all elements of LIST(r, ε), for

some ε = Õ(d/q).

Step 1: Find a low-degree Q “explaining” r. We find a nonzero polynomial

Q(Y,Z0, . . . , Zm−1) of degree at most dY in its first variable Y and at most h − 1 in each of

the remaining variables, and satisfying Q(y, r(y)) = 0 for all y ∈ Fq.
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Such a Q exists and can be found by linear algebra in time poly(q,m) provided that:

dY · hm > q. (5.1)

Moreover, we may assume that Q is not divisible by E(Y ). If it is, we can divide out all the

factors of E(Y ), which will not affect the conditions Q(y, r(y)) = 0 since E has no roots (being

irreducible).

Step 2: Argue that each f(Y ) ∈ LIST(r, ε) is a “root” of a related univariate polynomial

Q∗. First, we argue as before that for f ∈ LIST(r, ε), we have

Q(Y, f0(Y ), . . . , fm−1(Y )) = 0. (5.2)

Since each fi has degree at most deg(E)− 1 = d, this will be ensured provided

εq ≥ dY + (h− 1) · d ·m. (5.3)

Once we have this, we can reduce both sides of Equation (5.2) modulo E(Y ) and deduce

0 = Q(Y, f0(Y ), f1(Y ), . . . , fm−1(Y )) mod E(Y )

= Q(Y, f(Y ), f(Y )h, . . . , f(Y )h
m−1

) mod E(Y )

Thus, if we define the univariate polynomial

Q∗(Z) = Q(Y,Z, Zh, . . . , Zh
m−1

) mod E(Y ),

then f(Y ) is a root of Q∗ over the field Fq[Y ]/E(Y ).

Observe that Q∗ is nonzero because Q is not divisible by E(Y ) and has degree at most h− 1 in

each Zi. Thus, we can find all elements of LIST(r, ε) by factoring Q∗(Z). Constructing Q∗(Z) and

factoring it can be done in time poly(q, d, hm) = poly(q).

For this algorithm to work, we need to satisfy Conditions (5.1) and (5.3). We can satisfy Con-

dition (5.3) by setting dY = dεq − dhme, in which case Condition (5.1) is satisfied for

ε =
1

hm
+
dhm

q
= Õ(d/q), (5.4)

for h = 2 and m = dlog(q/d)e. Observing that the rate is ρ = d/(mq) = Ω̃(d/q), this completes the

proof of the theorem.

Note that the obstacles to obtaining an tradeoff ρ ≈ ε are the factor of m in expression for the

rate ρ = d/(mq) and the factor of hm in Equation (5.4) for ε. We remedy these in the next section.

5.2.4 Folded Reed–Solomon Codes

In this section, we show how to obtain an optimal rate-distance tradeoff, where the rate ρ is

arbitrarily close to the agreement parameter ε.

Consider the Parvaresh–Vardy construction with polynomial E(Y ) = Y q−1 − γ, where γ is

a generator of the multiplicative group F∗q ; it can be shown that E(Y ) is irreducible. (That is,

{γ, γ2, . . . , γq−1} = Fq\{0}.) Then it turns out that f q(Y ) mod E(Y ) = f(Y q) mod E(Y ) = f(γY ).
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So, we set h = q and the degree of fi(Y ) = fh
i
(Y ) mod E(Y ) = f(γiY ) is d even though E has

degree q− 1. For each nonzero element y of Fq, the y’th symbol of the PV encoding of f(Y ) is then

[f(y), f(γy), . . . , f(γm−1y)] = [f(γj), f(γj+1), . . . , f(γj+m−1)], (5.5)

where we write y = γj .

Thus, the symbols of the PV encoding have a lot of overlap. For example, the γj ’th symbol and

the γj+1’th symbol share all but one component. Intuitively, this means that we should only have

to send a 1/m fraction of the symbols of the codeword, saving us a factor of m in the rate. (The

other symbols can be automatically filled in by the receiver.) Thus, the rate becomes ρ = d/q, just

like in Reed–Solomon codes.

More formally, we use the following codes.

Construction 5.23 (Folded Reed–Solomon Codes). For a prime power q, a generator γ of

F∗q , integers m, d ∈ N, the q-ary folded Reed–Solomon code of degree d, folding parameter m, and

generator γ is defined as follows:

• The alphabet is Σ = Fmq .
• The blocklength is n̂ = b(q − 1)/mc.
• The message space is Fd+1

q , where we view each message as representing a polynomial

f(Y ) of degree at most d over Fq.
• For k ∈ [n̂], the k’th symbol of Enc(f) is

[f(γ(k−1)m), f(γ(k−1)m+1), . . . , f(γk·m−1)].

We now show that these codes can be efficiently list-decoded at distance arbitrarily close to

1− ρ, where ρ = d/q is the rate.

Theorem 5.24. For every prime power q, integers 0 ≤ d,m ≤ q, and generator γ of F∗q , the q-ary

folded Reed–Solomon code of degree d, folding parameter m, and generator γ has rate at least

ρ = d/q and can be list-decoded in time qO(m) up to distance δ = 1− d/q −O(
√

1/m).

Note that this theorem is most interesting (and improves on the Reed–Solomon decoding of

Theorem 5.19) when m is larger than q/d, in contrast to the setting of parameters in Theorem 5.22,

where m is logarithmic in q. We can afford the larger setting of m because now the rate ρ does not

depend on m, and it is this change in parameters that enables us to save us the factor of hm in

Equation (5.4). However, the running time, list size, and alphabet size do grow exponentially with

m.

Proof. We are given a received word r : [n̂] → Fmq , and want to find all elements of LIST(r, ε) for

an appropriate choice of ε = d/q +O(
√

1/m).

Step 0: Unpack to a PV received word. From r, we will obtain a received word r′ : Fq → Fm′q
for the Parvaresh–Vardy code of degree d, power h = q, redundancy m′ = b

√
m− 1c, and irreducible
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E(Y ) = Y q−1 − γ. Specifically, following Equation (5.5), each symbol of r yields m −m′ symbols

of r′. If r agrees with the FRS encoding of f in more than εn̂ positions, then r′ will agree with the

PV encoding of f in more than εn̂ · (m−m′) positions. We have

εn̂ · (m−m′) ≥ ε · ((q − 1)/m− 1) · (m−m′) = (ε−O(1/
√
m)) · q.

Thus our task is now to find LIST(r′, ε′) for ε′ = ε − O(1/
√
m), which we do in a similar manner

to the decoding algorithm for Parvaresh–Vardy codes.

Step 1: Find a low-degree Q “explaining” r′. We find a nonzero polynomial

Q(Y,Z0, . . . , Zm′−1) satisfying Q(y, r′(y)) = 0 for all y ∈ Fq and such that Q has degree at most

dY in its first variable Y and total degree at most dZ = 1 in the Zi variables. That is, Q only has

monomials of the form Y jZi for j ≤ dY . The number of these monomials is (dY + 1) ·m′, so we can

find such a Q in time poly(q,m′) = poly(q,m) provided:

(dY + 1) ·m′ > q. (5.6)

As before, we may assume that Q is not divisible by E(Y ). (Note that using total degree 1 instead

of individual degrees h−1 in the Zi’s requires an exponentially larger setting of m′ compared to the

setting of m needed for Equation (5.1). However, this will provide a significant savings below. In

general, it is best to consider a combination of the two constraints, requiring that the total degree

in the Zi’s is at most some dZ and that the individual degrees are all at most h− 1.)

Step 2: Argue that each f(Y ) ∈ LIST(r′, ε′) is a “root” of a related univariate polynomial

Q∗. First, we argue as before that for f ∈ LIST(r′, ε′), we have

Q(Y, f0(Y ), . . . , fm′−1(Y )) = 0, (5.7)

where fi(Y ) = fh
i
(Y ) mod E(Y ) = f(γiY ). Since each fi has degree at most d, this will be ensured

provided

ε′q ≥ dY + d. (5.8)

Note the savings of the factor (h− 1) ·m as compared to Inequality (5.3); this is because we chose

Q to be of total degree 1 in the Zi’s instead of having individual degree 1.

Now, as in the Parvaresh–Vardy decoding, we can reduce both sides of Equation (5.7) modulo

E(Y ) and deduce

0 = Q(Y, f0(Y ), f1(Y ), . . . , fm−1(Y )) mod E(Y )

= Q(Y, f(Y ), f(Y )h, . . . , f(Y )h
m−1

) mod E(Y ).

Thus, if we define the univariate polynomial

Q∗(Z) = Q(Y,Z, Zh, . . . , Zh
m−1

) mod E(Y ),

then f(Y ) is a root of Q∗ over the field Fq[Y ]/E(Y ).

Observe that Q∗ is nonzero because Q is not divisible by E(Y ) and has degree at most h − 1

in each Zi. Thus, we can find all elements of LIST(r′, ε′) by factoring Q∗(Z). Constructing and

factoring Q∗(Z) can be done in time poly(q, hm) = qO(m).
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For this algorithm to work, we need to satisfy Conditions (5.6) and (5.8). We can satisfy Con-

dition (5.6) by setting dY = bq/m′c, in which case Condition (5.8) is satisfied for

ε′ ≥ 1/m′ + d/q.

Recalling that ε′ = ε−O(1/
√
m) and m′ = b

√
m− 1c, we can take ε = d/q +O(1/

√
m).

Setting parameters appropriately gives:

Theorem 5.25. The following holds for all constants ε, γ > 0. For every n ∈ N, there is an explicit

code of message length n and rate ρ = ε − γ that can be list-decoded in polynomial time from

distance 1− ε, with alphabet size q = poly(n).

The polynomials in the running time, alphabet size, and list size depend exponentially on γ;

specifically they are of the form nO(1/γ2). Nonconstructively, it is possible to have alphabet size

(1/ε)O(ε/γ) and list size O(1/γ) (see discussion after Theorem 5.8), and one could hope for running

time that is a fixed polynomial in n, with an exponent that is independent of γ. Recent work has

achieved these parameters, albeit with a randomized construction of codes; it remains open to have

a fully explicit and deterministic construction. However, for a fixed constant-sized alphabet, e.g.

q = 2, it is still not known how to achieve list-decoding capacity.

Open Problem 5.26. For any desired constants ρ, δ > 0 such that ρ > 1 −H2(δ), construct an

explicit family of of codes Encn : {0, 1}n → {0, 1}n̂ that have rate at least ρ and are δ-list-decodable

in polynomial time.

5.3 List-decoding views of samplers and expanders

In this section, we show how averaging samplers and expander graphs can be understood as variants

of list-decodable codes. The general list decoding framework we use to describe these connections

will also allow us to capture the other pseudorandom objects we study in this survey.

We begin with the syntactic correspondence between the three objects, so we can view each as

a function Γ : [N ]× [D]→ [M ]:

Construction 5.27 (Syntactic Correspondence of Expanders, Samplers, and Codes).

(1) Given a bipartite multigraph G with N left vertices, M right vertices, and left-degree D,

we let Γ : [N ]× [D]→ [M ] be its neighbor function, i.e. Γ(x, y) is the y’th neighbor of x

in G.

(2) Given a sampler Samp : [N ]→ [M ]D, we define Γ : [N ]× [D]→ [M ] by

Γ(x, y) = Samp(x)y.

(3) Given a code Enc : [N ]→ [q]D, we set M = q ·D, associate the elements of [q]× [D] with

[M ], and define Γ : [N ]× [D]→ [M ] by

Γ(x, y) = (y,Enc(x)y).

100



The correspondence between expanders and samplers is identical to the one from Problem 4.7,

which shows that the vertex expansion of G is equivalent to the hitting sampler properties of Samp.

Note that codes correspond to expanders and samplers where the first component of a neigh-

bor/sample equals the edge-label/sample-number. Conversely, any such expander/sampler can be

viewed as a code. Many constructions of expanders and samplers have or can be easily modified to

have this property. This syntactic constraint turns out to be quite natural in the setting of samplers.

It corresponds to the case where we have D functions f1, . . . , fD : [M ] → [0, 1], we are interested

in estimating the total average (1/D)
∑

i µ(fi), but can only evaluate each fi on a single sample.

We now consider the following generalized notion of list decoding.

Definition 5.28. For a function Γ : [N ]× [D]→ [M ], a set T ⊂ [M ], and ε ∈ [0, 1), we define

LISTΓ(T, ε) = {x : Pr
y

[Γ(x, y) ∈ T ] > ε} and

LISTΓ(T, 1) = {x : ∀y Γ(x, y) ∈ T}.

More generally, for a function f : [M ]→ [0, 1], we define

LISTΓ(f, ε) = {x : E
y
[f(Γ(x, y))] > ε}.

We can formulate the list-decoding property of Enc, the averaging sampler property of Samp,

and the vertex expansion property of Γ in this language as follows:

Proposition 5.29. Let Enc and Γ be as in Construction 5.27. Then Enc is (1 − 1/q − ε,K) list-

decodable iff for every r ∈ [M ]D, we have

|LISTΓ(Tr, 1/q + ε)| ≤ K,

where Tr = {(y, ry) : y ∈ [D]}.

Proof. Observe that, for each x ∈ [N ] and r ∈ [M ]D,

Pr
y

[Γ(x, y) ∈ Tr] = Pr
y

[(y,Enc(x)y) ∈ Tr]

= Pr
y

[Enc(x)y = ry]

= agr(Enc(x), r).

Thus |LIST(Tr, 1/q + ε)| ≤ K if and only if there are at most K messages x whose encodings have

agreement greater than 1/q+ ε with r, which is the same as being (1−1/q− ε,K) list-decodable.

Proposition 5.30. Let Samp and Γ be as in Construction 5.27. Then

(1) Samp is a (δ, ε) averaging sampler iff for every function f : [M ]→ [0, 1], we have

|LISTΓ(f, µ(f) + ε)| ≤ δN.
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(2) Samp is a (δ, ε) boolean averaging sampler iff for every set T ⊂ [M ], we have

|LISTΓ(T, µ(T ) + ε)| ≤ δN.

Proof. Observe that x ∈ LISTΓ(f, µ(f) + ε) if and only if x is a “bad” set of coin tosses for Samp

— namely (1/D) ·
∑D

i=1 f(zi) > µ(f) + ε, where (z1, . . . , zD) = Samp(x). Thus Samp errs with

probability at most δ over x
R←U[N ] if and only if |LISTΓ(f, µ(f)+ε)| ≤ δN . The boolean averaging

sampler case follows by viewing boolean functions f as characteristic functions of sets T .

Noting that the sets Tr in Proposition 5.29 have density µ(Tr) = 1/q, we see that the averaging-

sampler property implies the standard list-decoding property:

Corollary 5.31. If Samp is a (δ, ε) boolean averaging sampler of the form Samp(x)y =

(y,Enc(x)y), then Enc is (1− 1/q − ε, δN) list-decodable.

Note, however, that the typical settings of parameters of samplers and list-decodable codes are very

different. With codes, we want the alphabet size q to be as small as possible (e.g. q = 2) and the

blocklength D to be linear or polynomial in the message length n = logN , so M = qD is also

linear or polynomial in n = logN . In contrast, we usually are interested in samplers for functions

on exponentially large domains (e.g. M = 2Ω(n)).

In Chapter 6, we will see a converse to Corollary 5.31 when the alphabet size is small: if Enc is

(1− 1/q − ε, δN), list-decodable, then Samp is an (δ/ε, q · ε) averaging sampler.

For expanders, it will be convenient to state the list-decoding property in terms of the following

variant of vertex expansion, where we only require that sets of size exactly K expand:

Definition 5.32. For K ∈ N, a bipartite multigraph G is an (= K,A) vertex expander if all sets

S consisting of K left-vertices, the neighborhood N(S) is of size at least A ·K.

Thus, G is a (K,A) vertex expander in the sense of Definition 4.3 iff G is an (= K ′, A) vertex

expander for all positive integers K ′ ≤ K.

Proposition 5.33. For K ∈ N, Γ : [N ] × [D] → [M ] is an (= K,A) vertex expander iff for every

set T ⊂ [D]× [M ] such that |T | < KA, we have:

|LISTΓ(T, 1)| < K.

Proof.

Γ not an (= K,A) expander ⇔ ∃S ⊂ [N ] s.t. |S| = K and |N(S)| < KA

⇔ ∃S ⊂ [N ] s.t. |S| ≥ K and |N(S)| < KA

⇔ ∃T ⊂ [M ] s.t. |LIST(T, 1)| ≥ K and |T | < KA,

where the last equivalence follows because if T = N(S), then S ⊂ LIST(T, 1), and conversely if

S = LIST(T, 1) then N(S) ⊂ T .
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On one hand, this list-decoding property seems easier to establish than the ones for codes and

samplers because we look at LIST(T, 1) instead of LIST(T, µ(T ) + ε). On the other hand, to get

expansion (i.e. A > 1), we require a very tight relationship between |T | and |LIST(T, 1)|. In the

setting of codes or samplers, we would not care much about a factor of 2 loss in |LIST(T )|, as this

just corresponds to a factor of 2 in list size or error probability. But here it corresponds to a factor

of 2 loss in expansion, which can be quite significant. In particular, we cannot afford it if we are

trying to get A = (1− ε) ·D, as we will be in the next section.

5.4 Expanders from Parvaresh–Vardy Codes

Despite the substantial differences in the standard settings of parameters between codes, samplers,

and expanders, it can be very useful to translates ideas and techniques from one object to the other

using the connections described in the previous section. In particular, in this section we will see

how to build graphs with extremely good vertex expansion (A = (1− ε)D) from Parvaresh–Vardy

codes.

Consider the bipartite multigraph obtained from the Parvaresh–Vardy codes (Construction 5.21)

via the correspondence of Construction 5.27. That is, we define a neighbor function Γ : Fnq × Fq →
Fq × Fmq by

Γ(f, y) = [y, f0(y), f1(y), . . . , fm−1(y)], (5.9)

where f(Y ) is a polynomial of degree at most n − 1 over Fq, and we define fi(Y ) = f(Y )h
i

mod E(Y ), where E is a fixed irreducible polynomial of degree n over Fq. (Note that we are using

n− 1 instead of d to denote degree of f .)

Theorem 5.34. Let Γ : Fnq × Fq → Fm+1
q be the neighbor function of the bipartite multigraph

corresponding to the q-ary Parvaresh–Vardy code of degree d = n− 1, power h, and redundancy m

via Construction 5.27. Then Γ is a (Kmax , A) expander for Kmax = hm and A = q − nhm.

Proof. Let K be any integer less than or equal to Kmax = hm, and let A = q − nmh. By Propo-

sition 5.33, it suffices to show that for every set T ⊂ Fm+1
q of size at most AK − 1, we have

|LIST(T )| ≤ K − 1.

We begin by doing the proof for K = Kmax = hm, and later describe the modifications to

handle smaller values of K. The proof goes along the same lines as the list-decoding algorithm for

the Parvaresh–Vardy codes from Section 5.2.3.

Step 1: Find a low-degree Q vanishing on T . We find a nonzero polynomial

Q(Y,Z0, . . . , Zm−1) of degree at most dY = A − 1 in its first variable Y and at most h − 1 in

each of the remaining variables such that Q(z) = 0 for all z ∈ T . (Compare this to Q(y, r(y)) = 0

for all y ∈ Fq in the list-decoding algorithm, which corresponds to taking T = Tr.)

This is possible because

A · hm = AK > |T |.

Moreover, we may assume thatQ is not divisible by E(Y ). If it is, we can divide out all the factors

of E(Y ), which will not affect the conditions Q(z) = 0 since E has no roots (being irreducible).
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Step 2: Argue that each f(Y ) ∈ LIST(T, 1) is a “root” of a related univariate polynomial

Q∗. First, we argue as in the list-decoding algorithm that if f ∈ LIST(T, 1), we have

Q(Y, f0(Y ), . . . , fm−1(Y )) = 0.

This is ensured because

q > A− 1 + nmh.

(In the list-decoding algorithm, the left-hand side of this inequality was εq, since we were bounding

|LIST(Tr, ε)|.)
Once we have this, we can reduce both sides modulo E(Y ) and deduce

0 = Q(Y, f0(Y ), f1(Y ), . . . , fm−1(Y )) mod E(Y )

= Q(Y, f(Y ), f(Y )h
2
, . . . , f(Y )h

m−1
) mod E(Y )

Thus, if we define the univariate polynomial

Q∗(Z) = Q(Y,Z, Zh, . . . , Zh
m−1

) mod E(Y ),

then f(Y ) is a root of Q∗ over the field Fq[Y ]/E(Y ).

Observe that Q∗ is nonzero because Q is not divisible by E(Y ) and has degree at most h− 1 in

each Zi. Thus,

|LIST(T, 1)| ≤ deg(Q∗) ≤ h− 1 + (h− 1) · h+ (h− 1) · h2 + · · ·+ (h− 1) · hm−1 = K − 1.

(Compare this to the list-decoding algorithm, where our primary goal was to efficiently enumerate

the elements of LIST(T, ε), as opposed to bound its size.)

Handling smaller values of K. We further restrict Q(Y, Z1, . . . , Zm) to only have nonzero

coefficients on monomials of the form Y iMonj(Z1, . . . , Zm) for 0 ≤ i ≤ A− 1 and 0 ≤ j ≤ K − 1 ≤
hm − 1, where Monj(Z1, . . . , Zm) = Zj01 · · ·Z

jm−1
m and j = j0 + j1h+ · · ·+ jm−1h

m−1 is the base-h

representation of j. Note that this gives us AK > |T | monomials, so Step 1 is possible. Moreover

Mj(Z,Z
h, Zh

2
, . . . , Zh

m−1
) = Zj , so the degree of Q∗ is at most K − 1, and we get the desired

list-size bound in Step 3.

Setting parameters, we have:

Theorem 5.35. For every constant α > 0, every N ∈ N, K ≤ N , and ε > 0, there

is an explicit (K, (1 − ε)D) expander with N left-vertices, M right-vertices, left-degree D =

O((logN)(logK)/ε)1+1/α and M ≤ D2 ·K1+α. Moreover, D is a power of 2.

Proof. Let n = logN and k = logKmax. Let h = d(2nk/ε)1/αe and let q be the power of 2 in the

interval (h1+α/2, h1+α].

Set m = d(logKmax)/(log h)e, so that hm−1 ≤ Kmax ≤ hm. Then, by Theorem 5.34, the graph

Γ : Fnq × Fq → Fm+1
q defined in (5.9) is an (hm, A) expander for A = q− nhm. Since Kmax ≤ hm, it

is also a (Kmax , A) expander.

Note that the number of left-vertices in Γ is qn ≥ N , and the number of right-vertices is

M = qm+1 ≤ q2 · h(1+α)·(m−1) ≤ q2 ·K1+α
max .
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The degree is

D = q ≤ h1+α = O(nk/ε)1+1/α = O((logN)(logKmax)/ε)1+1/α.

To see that the expansion factor A = q − nhm ≥ q − nhk is at least (1− ε)D = (1− ε)q, note

that

nhk ≤ (ε/2) · h1+α ≤ εq,
where the first inequality holds because hα ≥ 2nk/ε.

Finally, the construction is explicit because a description of Fq for q a power of 2 (i.e. an

irreducible polynomial of degree log q over F2) as well as an irreducible polynomial E(Y ) of degree

n over Fq can be found in time poly(n, log q) = poly(logN, logD).

These expanders are of polylogarithmic rather than constant degree. But the expansion is almost

as large as possible given the degree (A = (1−ε) ·D), and the size of the right-hand side is almost as

small as possible (in a (K,A) expander, we must have M ≥ KA = (1− ε)KD). In particular, these

expanders can be used in the data structure application of Problem 4.10 — storing a K-sized subset

of [N ] using K1.01 · polylog(N) bits in such a way that membership can be probabilistically tested

by reading 1 bit of the data structure. (An efficient solution to that application actually requires

more than the graph being explicit in the usual sense, but also that there are efficient algorithms

for finding all left-vertices having at least some δ fraction neighbors in a given set T ⊂ [M ] of

right vertices, but the expanders above can be shown to have that property by a variant of the

list-decoding algorithm above.)

A deficiency of the expander of Theorem 5.35 is that the size of the right-hand side is polynomial

in K and D (for constant α), whereas the optimal bound is M = O(KD/ε). Achieving the latter,

while keeping the left-degree polylogarithmic, is an open problem:

Open Problem 5.36. Construct (= K,A) bipartite expanders with N left-vertices, degree D =

poly(logN), expansion A = .99D, and M = O(KD) right-hand vertices.

We remark that a construction where D is quasipolynomial in logN is known.

5.5 Exercises

Problem 5.1 (Limits of List Decoding). Show that if there exists a q-ary code C ⊂ Σn̂ of rate

ρ that is (δ, L) list-decodable, then ρ ≤ 1−Hq(δ, n̂) + (logq L)/n̂

Problem 5.2 (Concatenated Codes). For codes Enc1 : {1, . . . , N} → Σn1
1 and Enc2 : Σ1 →

Σn2
2 , their concatenation Enc : {1, . . . , N} → Σn1n2

2 is defined by

Enc(m) = Enc2(Enc1(m)1)Enc2(Enc1(m)2) · · ·Enc2(Enc1(m)n1).

This is typically used as a tool for reducing alphabet size, e.g. with Σ2 = {0, 1}.

(1) Prove that if Enc1 has minimum distance δ1 and Enc2 has minimum distance δ2, then

Enc has minimum distance at least δ1δ2.
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(2) Prove that if Enc1 is (1 − ε1, `1) list-decodable and Enc2 is (δ2, `2) list-decodable, then

Enc is ((1− ε1`2) · δ2, `1`2) list-decodable.

(3) By concatenating a Reed–Solomon code and a Hadamard code, show that for every

n ∈ N and ε > 0, there is a (fully) explicit code Enc : {0, 1}n → {0, 1}n̂ with blocklength

n̂ = O(n2/ε2) with minimum distance at least 1/2 − ε. Furthermore, show that with

blocklength n̂ = poly(n, 1/ε), we can obtain a code that is (1/2 − ε,poly(1/ε)) list-

decodable in polynomial time. (Hint: the inner code can be decoded by brute force.)

Problem 5.3 (List Decoding implies Unique Decoding for Random Errors). (1)

Suppose that C ⊂ {0, 1}n̂ is a code with minimum distance at least 1/4 and rate at most

αε2 for a constant α > 0, and we transmit a codeword c ∈ C over a channel in which each

bit is flipped with probability 1/2 − 2ε. Show that if α is a sufficiently small constant

(independent of n̂ and ε), then all but exponentially small probability over the errors, c

will be the unique codeword at distance at most 1/2− ε from the received word r.

(2) Using Problem 5.2, deduce that for every ε > 0 and n ∈ N, there is an explicit code

of blocklength n̂ = poly(n, 1/ε) that can be uniquely decoded from (1/2 − 2ε) random

errors as above in polynomial time.

Problem 5.4 (Linear Codes). For a prime power q, a q-ary code C ⊂ Fn̂q is called linear if C is

a linear subspace of Fn̂q . That is, for every u, v ∈ C and α ∈ Fq, we have u+ v ∈ C and αu ∈ C.

(1) Verify that the Hadamard, Reed–Solomon, and Reed–Muller codes are all linear.

(2) Show that if C is linear, then the minimum distance of C equals the minimum weight of

C, which is defined to be minc∈C\{0} |{i : ci 6= 0}|/n̂.

(3) Show that if C is a subspace of dimension n, then its rate is n/n̂ and it has an encoding

function Enc : Fnq → Fn̂q that is a linear map. Moreover, the encoding function can

be made to have the property that there is a set S ⊂ [n̂] of n coordinates such that

Enc(m)|S = m for every m ∈ Fn̂q . (Here c|S is the projection of c onto the coordinates

in S.) Such encodings are called systematic, and will be useful when we study locally

decodable codes in Chapter 7.

(4) Find explicit systematic encodings for the Hadamard and Reed–Solomon codes.

(5) Show that the nonconstructive bound of Theorem 5.8, Part 1, can be achieved by a linear

code. That is, for all prime powers q, integers n, n̂ ∈ N, and δ ∈ (0, 1− 1/q), there exists

a linear q-ary code of block length n̂, minimum distance at least δ, and rate at least

ρ = n/n̂ provided ρ ≤ 1−Hq(δ, n̂). (Hint: chose a random linear map Enc : Fnq → Fn̂q and

use Part 2.)

106



Problem 5.5 (LDPC Codes). Given a bipartite multigraph G with N left-vertices and M right-

vertices, we can obtain a linear code C ⊂ {0, 1}N (where we view {0, 1} as the field of two elements)

by:

C = {c ∈ {0, 1}N : ∀j ∈ [M ] ⊕i∈Γ(j) ci = 0},
where Γ(j) denotes the set of neighbors of vertex j. When G has small left-degree D (e.g. D = O(1)),

then C is called a low-density parity check (LDPC) code.

(1) Show that C has rate at least 1−M/N .

(2) Show that if G is a (K,A) expander for A > D/2, then C has minimum distance at least

δ = K/N .

(3) Show that if G is a (K, (1− ε)D) expander for a sufficiently small constant ε, then C has

a polynomial-time δ-decoder for δ = (1− 3ε) ·K/N . Assume that G is given as input to

the decoder. (Hint: given a received word r ∈ {0, 1}n, flip all coordinates of r for which at

least 2/3 of the neighboring parity checks are not satisfied, and argue that the number of

errors decreases by a constant factor. It may be useful to use the results of Problem 4.10.)

By a probabilistic argument like Theorem 4.4, graphs G as above exist with D = O(1), K =

Ω(N), M = (1 − Ω(1))N , arbitrarily small constant ε > 0, and N → ∞, and in fact explicit

constructions are known. This yields explicit LDPC codes with constant rate and constant distance

(“asymptotically good LDPC codes”).

Problem 5.6 (Improved list decoding of Reed–Solomon Codes). (1) Show that

there is a polynomial-time algorithm for list decoding the Reed-Solomon codes of degree

d over Fq up to distance 1−
√

2d/q, improving the 1−2
√
d/q bound from Theorem 5.19.

(Hint: do not use fixed upper bounds on the individual degrees of the interpolating

polynomial Q(Y,Z), but rather allow as many monomials as possible.)

(2) (*) Improve the list-decoding radius further to 1−
√
d/q by using the following “method

of multiplicities”. First, require the interpolating polynomial Q(Y, Z) to have a zero of

multiplicity s at each point (y, r(y)) — that is, the polynomial Q(Y +y, Z+ r(y)) should

have no monomials of degree smaller than s. Second, use the fact that a univariate

polynomial R(Y ) of degree t can have at most t roots, counting multiplicities.

Problem 5.7 (Twenty Questions). In the game of 20 questions, an oracle has an arbitrary

secret s ∈ {0, 1}n and the aim is to determine the secret by asking the oracle as few yes/no

questions about s as possible. It is easy to see that n questions are necessary and sufficient. Here we

consider a variant where the oracle has two secrets s1, s2 ∈ {0, 1}n, and can adversarially decide to

answer each question according to either s1 or s2. That is, for a question f : {0, 1}n → {0, 1}, the

oracle may answer with either f(s1) or f(s2). Here it turns out to be impossible to pin down either

of the secrets with certainty, no matter how many questions we ask, but we can hope to compute

a small list L of secrets such that |L ∩ {s1, s2}| 6= 0. (In fact, |L| can be made as small as 2.) This

variant of twenty questions apparently was motivated by problems in Internet traffic routing.
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(1) Let Enc : {0, 1}n → {0, 1}n̂ be a code such that every two codewords in Enc agree in

at least a 1/2 − ε fraction of positions and that Enc has a polynomial-time (1/4 + ε, `)

list-decoding algorithm. Show how to solve the above problem in polynomial time by

asking the n̂ questions {fi} defined by fi(x) = Enc(x)i.

(2) Taking Enc to be the code constructed in Problem 1, deduce that n̂ = poly(n) questions

suffices.

5.6 Chapter Notes and References

Standard texts on coding theory include MacWilliams–Sloane [MS] and the Handbook of Cod-

ing Theory [PHB]. The lecture notes of Sudan [Sud2] present coding theory with an algorithmic

perspective, and Guruswami [Gur2] gives a thorough treatment of list decoding.

The field of coding theory began with Shannon’s seminal 1948 paper [Sha3], which proposed

the study of stochastic error models and proved that a random error-correcting code achieves an

optimal rate-distance tradeoff with high probability. The study of decoding from worst-case errors

began a couple of years later with the work of Hamming [Ham]. The notion of list decoding was

proposed independently in the late 1950’s, in the work of Elias [Eli1] and Wozencraft [Woz].

The nonconstructive bound for the tradeoff between rate and minimum distance of Theorem 5.8

(Part 1) is due to Gilbert [Gil1], and its extension to linear codes in Problem 5.4 (Part 5) is due

to Varshamov [Var]; together they are known as the Gilbert–Varshamov Bound. For more on the

algebraic geometric codes and how they can be used to beat the Gilbert–Varshamov Bound, see the

text by Stichtenoth [Sti1]. The nonconstructive bound for list decoding of Theorem 5.8 (Part 2)

is due to Elias [Eli3], and it has been extended to linear codes in [ZP, GHSZ, GHK]. The Johnson

Bound (Proposition 5.10) was proven for binary codes by Johnson [Joh2, Joh1]. An optimized form

of the bound can be found in [GS3].

The binary (q = 2) case of Reed–Muller codes was introduced independently by Reed [Ree]

and Muller [Mul] in the mid-50’s. Reed–Solomon codes were introduced in 1960 by Reed and

Solomon [RS]. Polynomial time unique-decoding algorithms for Reed–Solomon Codes include those

of Peterson [Pet] and Berlekamp [Ber2], . The first nontrivial list decoding algorithm was given by

Goldreich and Levin [GL]; while their algorithm is stated in the language of “hardcore bits for one-

way functions,” it can be viewed as an efficient “local” list-decoding algorithm for the Hadamard

Code. (Local decoding algorithms are discussed in Chapter 7.) The list-decoding algorithm for

Reed–Solomon Codes of Theorem 5.19 is from the seminal work of Sudan [Sud1], which sparked a

resurgence in the study of list decoding. The improved decoding algorithm of Problem 5.6, Part 2 is

due to Guruswami and Sudan [GS1]. Parvaresh–Vardy codes and their decoding algorithm are from

[PV]. Folded Reed–Solomon Codes and their capacity-achieving list-decoding algorithm are due to

Guruswami and Rudra [GR]. (In all cases, our presentation uses a simplified setting of parameters

compared to the original algorithms.) The list size, decoding time, and alphabet size of Folded

Reed–Solomon Codes have recently been improved in [Gur3, DL, GX], with the best parameters to

date being achieved in the randomized construction of [GX], while [DL] give a fully deterministic

construction.

The list-decoding views of expanders and samplers emerged out of work on randomness extrac-

tors (the subject of Chapter 6). Specifically, a close connection between extractors and expanders
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was understood already at the time that extractors were introduced by Nisan and Zuckerman [NZ].

An equivalence between extractors and averaging samplers was established by Zuckerman [Zuc2]

(building on previous connections between other types of samplers and expanders [Sip2, CW1]).

A connection between list-decodable codes and extractors emerged in the work of Trevisan [Tre1],

and the list-decoding view of extractors was crystallized by Ta-Shma and Zuckerman [TZ]. The list-

decoding formulation of vertex expansion and the construction of expanders from Parvaresh–Vardy

codes is due to Guruswami, Umans, and Vadhan [GUV].

Code concatenation (Problem 5.2) was introduced by Forney [For], who used it to construct

explicit, efficiently decodable binary codes that achieve capacity for random errors. Efficient list-

decoding algorithms for the concatenation of a Reed–Solomon code with a Hadamard code were

given in [GS2]. Low-density parity check (LDPC) codes (Problem 5.5) were introduced by Gal-

lager [Gal]. The use of expansion to analyze such codes and their decoding algorithm comes from

Sipser and Spielman [SS]. Explicit expanders suitable for Problem 5.5 were given by [CRVW]. The

surveys of Guruswami [Gur1, Gur2] describe the state of the art in expander-based constructions

of codes and in LDPC codes, respectively.

The question of Problem 5.7 (Twenty Questions) was posed in [CGL], motivated by Internet

traffic routing applications. The solution using list decoding is from [AGKS].
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