@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Universal coalgebra: a theory of systems
J.J.M.M. Rutten
Computer Science/Department of Software Technology

CS-R9652 1996



Report CS-R9652
ISSN 0169-118X

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



Universal Coalgebra:
a Theory of Systems

J.J.M.M. Rutten
CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
email: janr@cwi.nl, http: www.cwi.nl/~janr

Abstract

In the semantics of programming, finite data types such as finite lists, have traditionally
been modelled by initial algebras. Later final coalgebras were used in order to deal with infinite
data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover,
as models for certain types of automata and more generally, for (transition and dynamical)
systems.

An important property of initial algebras is that they satisfy the familiar principle of
induction. Such a principle was missing for coalgebras until the work of Aczel (1988) on
a theory of non-wellfounded sets, in which he introduced a proof principle nowadays called
coinduction. It was formulated in terms of bisimulation, a notion originally stemming from
the world of concurrent programming languages (Milner, 1980; Park, 1981). Using the notion
of coalgebra homomorphism, the definition of bisimulation on coalgebras can be shown to be
formally dual to that of congruence on algebras (Aczel and Mendler, 1989).

Thus the three basic notions of universal algebra: algebra, homomorphism of algebras,
and congruence, turn out to correspond to: coalgebra, homomorphism of coalgebras, and
bisimulation, respectively. In this paper, the latter are taken as the basic ingredients of a the-
ory called universal coalgebra. Some standard results from universal algebra are reformulated
(using the afore mentioned correspondence) and proved for a large class of coalgebras, leading
to a series of results on, e.g., the lattices of subcoalgebras and bisimulations, simple coalgebras
and coinduction, and a covariety theorem for coalgebras similar to Birkhoff’s variety theorem.

AMS Subject Classification (1991): 68Q10, 68Q55

CR Subject Classification (1991): D.3.1, F.1.2, F.3.2

Keywords € Phrases: Coalgebra, algebra, dynamical system, transition system, bisimulation,
universal coalgebra, universal algebra, congruence, homomorphism, induction, coinduction.



Contents

8

9

Introduction

Coalgebras, homomorphisms, and bisimulations
Systems, systems, systems, ...

Limits and colimits of systems

Basic facts on bisimulations

Subsystems

Three isomorphism theorems

Simple systems and coinduction

Final systems

10 Existence of final systems

11 Examples of coinductive definitions

12 Examples of proofs by coinduction

13 Induction and coinduction

14 Comparing systems

15 Cofreeness and covarieties of systems

16 Dynamical systems and symbolic dynamics

17 Notes and related work

18 Appendix

16

20

23

25

27

28

29

32

35

37

38

41

43

45

46



1 Introduction

In the semantics of programming, data types are usually presented as algebras (cf. [LS81]). For
instance, the collection of finite words A* over some alphabet A is an algebra

(A", a: (14 (A x A")) — A™),

where o maps * (the sole element of the singleton set 1 = {x}) to the empty word and a pair {a, w)
to a-w. This example is typical in that A* is an initial algebra. Initial algebras are generalizations
of least fixed points, and satisfy familiar inductive proof and definition principles.

For infinite data structures, the dual notion of coalgebra has been used as an alternative to
the algebraic approach [AM82]. For instance, the set A of finite and infinite words over A can
be described by the pair

(A%, v: A® — (14 (A x A>))),

where v maps the empty word to * and a non-empty word to the pair consisting of its head (the
first letter) and tail (the remainder). It is a coalgebra because « is a function from the carrier
set A to an expression involving A*, that is, 1 + (A x A™), as opposed to the algebra above,
where o was a function into the carrier set A*. Again the example is typical because A* is a final
coalgebra, which generalizes the notion of greatest fixed point.

Coalgebras had previously been found to be suitable for the description of the dynamics of
systems such as deterministic automata (cf. [AM80, MA86]). Traditionally these are represented
as tuples

(Q,4,6:QxA—-Q,0:Q— B),

consisting of a set of states (), an input alphabet A, a next state function ¢, and an output function
B (in addition an initial state is often specified as well). Alternatively, such an automaton can be
represented as a coalgebra of the form

(@, a:Q — (Q" x B)),

where Q* is the set of all functions from A to @, and a can be defined in an obvious manner from
6 and B (and vice versa). Coalgebras are nowadays also used to describe the behaviour of classes
in object-oriented languages, see [Rei95] and [Jac96b, Jac96¢|.

Similarly, Peter Aczel uses a coalgebraic description of (nondeterministic transition) systems
in constructing a model for a theory of non-wellfounded sets [Acz88]. Maybe more importantly, he
also introduces a proof principle for final coalgebras called strong extensionality. It is formulated
in terms of the notion of bisimulation relation, originally stemming from the field of concurrency
semantics [Mil80, Par81]. Using the notion of coalgebra homomorphism, the definition of bisimula-
tion can be shown [AM89, RT94] to be formally dual to that of congruence on algebras. Moreover
one can formulate definition and proof principles for final coalgebras (generalizing Aczel’s princi-
ple of strong extensionality), which are the coalgebraic counterpart of the inductive principles for
initial algebras, and which therefore are called coinductive [RT93].

These observations, then, have led to the development in the present paper of a general theory
of coalgebras called universal coalgebra, along the lines of universal algebra. Universal algebra (cf.
[Coh81, MT92]) deals with the features common to the many well-known examples of algebras
such as groups, rings, etc. The central concepts are Y-algebra, homomorphism of Y-algebras,
and congruence relation. The corresponding notions [RT94] on the coalgebra side are: coalgebra,
homomorphism of coalgebras, and bisimulation equivalence. These notions constitute the basic
ingredients of our theory of universal coalgebra. (More generally, the notion of substitutive relation
corresponds to that of bisimulation relation; hence congruences, which are substitutive equivalence
relations, correspond to bisimulation equivalences.) Adding to this the above-mentioned observa-
tion that various dynamical systems (automata, transition systems, and many others as we shall
see) can be represented as coalgebras, makes that we speak of universal coalgebra as a theory of



systems. We shall go even as far as, at least for the context of the present paper, to consider
coalgebras and systems as synonyms.

The correspondence between the basic elements of the theories of algebra and coalgebra are
summarized in the following table:

|| Universal algebra: | Universal coalgebra: ||
(X-)algebra coalgebra = system
algebra homomorphism system homomorphism
substitutive relation bisimulation relation
(congruence relation) | (bisimulation equivalence)

As mentioned above, universal algebra plays a guiding role in the development of universal alge-
bra as a theory of coalgebras (= systems). Much of this involves replacing the central notions
from universal algebra by the corresponding coalgebraic notions, and see whether the resulting
statements can actually be proved. Often, facts on Y-algebras turn out to be valid (in their trans-
lated version) for systems as well. Examples are basic observations on quotients and subsystems,
and the so-called three isomorphism theorems. In other cases, more can be said in the world of
coalgebras about the dual of an algebraically important notion than about that notion itself. For
instance, initial algebras play a role of central importance. Initial coalgebras are usually trivial
but final coalgebras are most relevant. A related example: initial algebras are minimal: they
have no proper subalgebras. This property is equivalent to the familiar induction proof principle.
Dually, final coalgebras are simple: they have no proper quotients, which can be interpreted as a
so-called coinductive proof principle.

In a previous paper [Rut95], the above programme has been carried out for one particular
family of systems: unlabelled nondeterministic transition systems (also called frames). As it
turns out, all observations on such systems apply to many other kinds of systems as well, such as
deterministic and nondeterministic automata, binary systems, and hyper systems. Also the afore
mentioned infinite data structures, which can be interpreted as dynamical systems as well, are
examples to which the theory applies.

All these different examples can be conveniently described in one single framework, using
(some basic) category theory. Each of these classes of systems turns out to be the collection of
coalgebras of a particular functor, and different functors are needed for different types of systems.
In that respect, the world of universal algebra is simpler because of the existence of a general,
non-categorical way of describing all ¥-algebras at the same time, namely as sets with operations,
the type of which is specified by the signature ¥. (A categorical treatment is also feasible in the
algebraic case, though; see [Man76].)

The generality of the coalgebraic theory presented here thus lies in the fact that all results
are formulated for coalgebras of a collection of well-behaved functors on the category of sets and
functions, and thereby apply to a great number of different systems. This number can be seen
to be larger still by varying the category involved. Taking, for instance, the category of complete
metric spaces rather than simply sets allows us to deal with (discrete time) dynamical systems
(Section 16).

Some familiarity with the basic elements of category theory, therefore, will be of use when
reading this paper. The notions of category and functor will be assumed to be known. Section
18 has been included to provide some background information. It contains some basic definitions,
facts (and notation) both on sets and functors on the category of sets, and is to be consulted when
needed. The family of (nondeterministic labelled) transition systems [Kel76, Plo81] will be used
as a running example throughout the first sections of the paper. Moreover, the reader might want
to refer to [Rut95], where many of the present observations are proved in a less abstract way for
this family.

Deep insights about groups are not obtained by studying universal algebra. Nor will universal
coalgebra lead to difficult theorems about (specific types of) systems. Like universal algebra, its



possible merit consists of the fact that it ‘... tidies up a mass of rather trivial detail, allowing
us to concentrate our powers on the hard core of the problem.” ([Coh81]). There are maybe two
aspects that we might want to add to this. Firstly, induction principles are well-known and much
used. The coinductive definition and proof principles for coalgebras are less well-known by far,
and often even not very clearly formulated. Universal coalgebra offers a simple context for a good
understanding of coinduction. Secondly, many families of systems look rather different from the
outside, and so do the corresponding notions of bisimulation. A systematic study of coalgebras
brings to light many sometimes unexpected similarities.

This paper both gives an overview of some of the existing insights in the theory of coalgebras,
and, in addition, presents some new material. Section 17 contains a brief description per section
of which results have been taken from the literature, as well as a discussion of related work. In
summary, the present theory was preceded by [Rut95], which at its turn builds on previous joint
work with Turi [RT93, RT94], from which a number of results on final systems is taken. Many
observations that are folklore in the context of particular examples (such as transition systems)
are generalized to arbitrary systems. The section on the existence of final systems is based on
results from Barr [Bar93]. The work of Jacobs on a coalgebraic semantics for object-oriented
programming [Jac96b] and coalgebraic specification [Jac95] has greatly influenced the sections on
cofree systems.

A synopsis of the contents is given by the second column of the following table, which extends
the one above. Its first column shows the corresponding algebraic notions. (See Section 13 for a
discussion on the formal relationship between the algebraic and the coalgebraic notions.)

|| Universal algebra: Universal coalgebra: ||

(X-)algebra

coalgebra = system

algebra homomorphism

system homomorphism

substitutive relation

bisimulation relation

congruence

bisimulation equivalence

subalgebra

subsystem

minimal algebra
(no proper subalgebras) <
induction proof principle

minimal system
(no proper subsystems)

simple algebra
(no proper quotients)

simple system
(no proper quotients) <=
coinduction proof principle

initial algebra
(is minimal, plus:
induction definition principle)

initial system
(often trivial)

final algebra
(often trivial)

final system
(is simple, plus:
coinduction definition principle)

free algebra (used in
algebraic specification)

free system
(often trivial)

cofree algebra
(often trivial)

cofree system (used in
coalgebraic specification)

variety (closed under subalgebras,
quotients, and products) <=
definable by a quotient
of a free algebra

variety (closed under subsystems,
quotients, and products)

covariety (closed under subalgebras,
quotients, and coproducts)

covariety (closed under subsystems,
quotients, and coproducts) <=
definable by a subsystem
of a cofree system




Note that this table is not to suggest that the theory of systems is dual to that of algebras. (If
so the paper would end here.) It is true that certain facts about algebras can be dualized and
then apply to systems. For instance, the fact that the quotient of a system with respect to a
bisimulation equivalence is again a system is dual to the fact that the quotient of an algebra
with respect to a congruence yields again an algebra. However, many notions that are defined in
both worlds in the same way, have entirely different properties. Examples are initial algebras and
initial systems, of which the former are of prime interest. Dually, final algebras are usually trivial
whereas final systems have interesting properties. Similarly, free algebras and cofree systems are
important: If Ay is an algebra that is free on a given set V, then we think of the elements of
V' as variables, with which (equations and therewith) classes of algebras can be defined. The
intuition behind a system S¢ that is cofree on a set C' is rather different. The elements of C
are best thought of as (labels or) colours. The system S¢ is in that view a universally (state)
coloured system with the universal property that for any system S (of the same type as S¢) and
any ‘colouring’ f : § — C, there exists a unique colour preserving homomorphism f S — Se.
Also S¢ gives rise to the definition of classes of systems, called covarieties, dualizing the notion
of variety of algebras. Covarieties will be characterized in a similar way (Section 15) to Birkhoft’s
variety theorem. The paper is concluded with a coalgebraic treatment of one-dimensional discrete
time dynamical systems. In particular, it is shown how the technique of symbolic dynamics in
essence is based on the existence of a cofree coalgebra in the category of complete metric spaces.

2 Coalgebras, homomorphisms, and bisimulations

The basic notions of coalgebra, homomorphism, and bisimulation relation are introduced. A
running example for this section will be the family of labelled transition systems. Many more
examples will follow in Section 3.

Let F' : Set — Set be a functor. An F'-coalgebra or F-system is a pair (S,ag) consisting of
a set S and a function ag : S — F(S). The set S is called the carrier of the system, also to
be called the set of states; the function ag is called the F'-transition structure (or dynamics) of
the system. When no explicit reference to the functor (i.e., the type of the system) is needed, we
shall simply speak of system and transition structure. Moreover, when no explicit reference to the
transition structure is needed, we shall often use S instead of (S, ag).

Example 2.1 Consider labelled transition systems (S,—g, A), consisting of a set S of states, a
transition relation —gC S x A x S, and a set A of labels [Kel76, HP79, Plo81]. As always, s——gs'
is used to denote (s,a,s') €—g. Define

B(X)=P(Ax X)= {VCAx X},

for any set X. (We shall see below that B is a functor from Set to Set.) A labelled transition
system (S, —g, A) can be represented as a B-system (S, ag) by defining

as: S — B(S), s— {{a,s') | s—gs'}.
And conversely, any B-system (S, ag) corresponds to a transition system (S, A, —g) by defining
s—gs' <= (a,s') € ag(s).

In other words, the class of all labelled transition systems coincides with the class of all B-systems.
O

Let (S,as) and (T,ar) be two F-systems, where F' is again an arbitrary functor. A function
f:8 — T is a homomorphism of F-systems, or F-homomorphism, if F(f)oas = ar o f:

T

F($) < F(T).

s—L -
as



Intuitively, homomorphisms are functions that preserve and reflect F-transition structures (see the
example below). We sometimes write f : (S, as) — (T, ar) to express that f is a homomorphism.
The identity function on an F-system (S, ag) is always a homomorphism, and the composition
of two homomorphisms is again a homomorphism. Thus the collection of all F-systems together
with F-system homomorphisms is a category, which we denote by Setp.

Example 2.1, continued: Let (S, A, —g) and (T, A, —7) be two labelled transition systems
with the same set A of labels, and let (S, ag) and (T, ar) be the corresponding representations as
B-systems. Per definition, a B-homomorphism f : (S, ag) — (T, ar) is a function f: S — T such
that B(f) o as = ar o f, where the function B(f), also denoted by P(A x f), is defined by

B(f)(V) = P(Ax f)(V) = {{a, f(5)) | (a,s) € V}.

Note that B is defined both on sets and on functions. Moreover, B can be shown to preserve
identities: B(1s) = 1p(g), and compositions: B(fog) = B(f)o B(g). In other words, B is indeed
a functor. One can easily prove that the equality B(f)oas = aro f is equivalent to the following
two conditions:

1. for all 5" in S, if s—>gs' then f(s)——f(s");

2. for all t in T, if f(s)—>>rt then there is s' in S with s——7s' and f(s') = t.
Thus a homomorphism is a function that is transition preserving and reflecting. O
An F-homomorphism f : S — T with an inverse f~! : T — S which is also a homomorphism is
called an isomorphism between S and T'. As usual, § 2 T means that there exists an isomorphism
between S and 7. An injective homomorphism is called monomorphism. Dually, a surjective
homomorphism is called epimorphism. Given systems S and T, we say that S can be embedded

into T if there is a monomorphism from § to T'. If there exists an epimorphism from S to T', T is
called a homomorphic image of S. In that case, T is also called a quotient of S.

Remark 2.2 The above definitions are sufficient for our purposes but, more generally, monomor-
phisms could be defined as homomorphism that are mono in the category Setp: that is, homo-
morphisms f : § — T such that for all homomorphisms k: U — S and l: U — S: if fok= fol
then k£ = [. Clearly injective homomorphisms are mono. One can show that for a large class of
functors, the converse of this statement holds as well. A dual remark applies to epimorphisms.
Further details are given in Proposition 4.7. O

The following properties will be useful.
Proposition 2.3 Every bijective homomorphism is necessarily an isomorphism.
Proof: If f: (S, as) — (T,ar) is an F-homomorphism and g : T'— S is an inverse of f then

asog

= F(g)oF(f)oasoyg
= F(g)oarofog
= F(g)oar,

thus g is a homomorphism. O

Lemma 2.4 Let S, T, and U be systems, and f : S - T, g:S — U, and h : U — T any
functions.

1. If f =hoyg, g is surjective, and f and g are homomorphisms, then h is a homomorphism.

2. If f = hog, h is injective, and f and h are homomorphisms, then g is a homomorphism.



Proof: We prove 1., the proof of 2. is similar. Consider v € U and let s € S be such that
g(s) = u. Then
F(h) o ap(u)

= F(h)oayog(s)

F(h) o F(g) o as(s)
F(f)oag(s)
ar o f(s)
ar ohog(s)
= ar oh(u).

O

We now come to the third fundamental notion of universal coalgebra. A bisimulation between
two systems is intuitively a transition structure respecting relation between sets of states. Formally,
it is defined, for an arbitrary set functor F' : Set — Set, as follows [AMS&9]: Let (S, ag) and (T, ar)
be F-systems. A subset R C S xT of the Cartesian product of S and T is called an F-bisimulation
between S and T if there exists an F-transition structure ag : R — F(R) such that the projections
from R to S and T are F-homomorphisms:

Y ™2

We shall also say, making explicit reference to the transition structures, that (R, ag) is a bisim-
ulation between (S,ag) and (T, ar). If (T,ar) = (S,ag) then (R,ag) is called a bisimulation
on (S,ag). A bisimulation equivalence is a bisimulation that is also an equivalence relation. Two
states s and ¢ are called bisimilar if there exists a bisimulation R with (s,t) € R. (See Section 17
for some references to alternative categorical approaches to bisimulation.)

Example 2.1, continued: Consider again two (labelled transition systems represented as) B-
systems (S,ag) and (T,ar). We show that a B-bisimulation between S and T is a relation
R C S x T satistying, for all (s,t) € R,

1. for all s" in S, if s—25gs' then there is t' in T with t——t' and (s',t') € R;
2. for all ¢ in T, if t—=5t' then there is s’ in S with s——gs’ and (s',#') € R,

which is the familiar definition of bisimulation from concurrency theory [Mil80, Par81]. For let
R be a B-bisimulation with transition structure ag : R — B(R). As before, ap induces a
relation —rC R x A x R. Let (s,t) € R, and suppose s——gs'. Because s = m; (s, ) this implies
71 (s, t)—2sgs', and because 7, is a homomorphism, it follows that there is (s",#') € R with
(8,t)——>g(s",t') and 7 (s",t') = s'. Thus (s',#') € R. Because 7y is a homomorphism it follows
that t——t', which concludes the proof of clause 1. Clause 2 is proved similarly. Conversely,
suppose R satisfies clauses 1 and 2. Define ag : R — P(R), for (s,t) € R, by

agr(s,t) = {(s',t') € R| s-"gs" and t-"s7t' }.

It is immediate from clauses 1 and 2. that the projections are homomorphisms from (R, ag) to
(S,as) and (T,ar). (Note that in general ag is not the only transition structure on R having
this property.)



A concrete example of a bisimulation relation between two transition systems is the following.
Consider two systems S and T

b b .
S: al al T: l
!
tl

Then {(si,s;) | i,5 > 0yU{(s},s}) | 4,5 > 0} is a bisimulation on S. And {(s;,t) | i > 0}U {(s], )

)
i > 0} is a bisimulation between S and T'. Note that the function f: S — T defined by f(s;) =t
and f(s;) =t'is a homomorphism, and that there exists no homomorphism from T to S. |

The last observation of the example above (that f is a homomorphism) is an immediate conse-
quence of the following fundamental relationship between homomorphisms and bisimulations.

Theorem 2.5 Let (S,ag) and (T, ar) be two systems. A function f : S — T is a homomorphism
if and only if its graph G(f) is a bisimulation between (S, ag) and (T, ar).

Proof: Let a: G(f) — F(G(f)) be such that (G(f),a) is a bisimulation between (S, ag) and
(T, ar). Let w1 and w9 be the projections from G(f) to S and T'. Because m is bijective it has
an inverse 7, ' : (S, as) — (G(f), @) which is also a homomorphism. Because f = my o m; ', also
f is a homomorphism.

Conversely, suppose f is a homomorphism. We can take F((m;) ! oagom; as a transition structure
on G(f). This clearly turns 7 into a homomorphism. The same holds for my:

F(my) o (F(m) ' oagom)
= F(mgom ')oagom
= F(f)oagom
= arofom
= o omy.

(Because F'(m) is mono, there is only one transition structure on G(f).) |

Therefore homomorphisms are sometimes called functional bisimulations.

3 Systems, systems, systems, ...

The coalgebras, homomorphisms, and bisimulations of a number of functors that can be considered
as the basic building blocks for most systems are described. (All functors that are used are
described in Section 18.)

Deterministic systems

Deterministic systems exist in many different forms. The simplest ones are coalgebras of the
identity functor I(S) = S:

S
asl s—g8 <= ag(s) = 5.
S,
The notation s—gs’ for ag(s) = s’ is used as a shorthand, which puts emphasis on the fact that
ag actually gives the dynamics of the system (S, ag), and should be read as: in state s the system



S can make a transition step to state s’. The arrow notation will turn out to be particularly useful
for the characterization of homomorphisms and bisimulations. Formally, the above equivalence is
simply stating that any function is also a (functional) relation. Conversely, it is often convenient
to define the dynamics of a system by specifying its transitions (in particular when dealing with
nondeterministic systems, see below). For instance, specifying for the set of natural numbers
transitions

0 1 2 T

defines the deterministic system (N, succ), where succ is the successor function.
A homomorphism between two deterministic systems (S, ag) and (T, ar) is a function f : S —
T satisfying for all s in S,

s—s' = f(s)—F(s").

(Note that we have dropped the subscripts from — g and — 7, a convention we shall often apply.)
Thus homomorphisms are transition preserving functions. A bisimulation between deterministic
systems S and T is any relation R C S x T such that, forall s€ Sand t € T,

(s,t) € R and s—s' and t—t' = (s',t') € R.

Thus bisimulations between deterministic systems are transition respecting relations. For instance,
there is an obvious bisimulation relation between the above system (N, succ), and the system

»

Not only are there many deterministic systems (take any set and any function from the set to
itself), many of them have a more interesting dynamics than one would expect at first sight, in
spite of the fact that the functor at stake is trivial. For instance, let A be any set (alphabet) and

let AZ be the set of all so-called bi-infinite sequences (words) over A. It can be given the following
dynamics:

4Z
shiftl shift(¢) = Am. d(m +1).
A2
This example is of central importance in the theory of symbolic dynamics (cf. [BP96]). There the

set of bi-infinite words is supplied with a metric, by which the shift example becomes even more
interesting. See Section 16 for some observations about such ‘metric systems’.

Termination

Any set S carries a coalgebra structure of the constant functor F(S) = 1:

S
QSl sl = as(s) = x,
1

3

where 1 = {*}. Thus S can be viewed as a system with trivial dynamics, in which no state can
take a step and every state s terminates, as expressed by the arrow notation s|. Any function
between such systems trivially is a homomorphism and any relation a bisimulation. Thus the
category Set; of all systems of the constant functor is just (isomorphic to) the category of sets.

10



Deterministic systems with termination are coalgebras of the functor F(S) =1+ S:

S
aSl s—s' <= ag(s) =5, s| < ag(s) ==

1+ 5,

Such a system can in a state s either make a transition to a state s’ or terminate. Homomorphisms
(and bisimulations) are as before, with the additional property that terminating states are mapped
to (related to) terminating states. Note that homomorphisms not only preserve but also reflect
transitions: if f: S — T is a homomorphism and f(s)——t, for s € S and t € T', then there exists
s' € § with s—s' and f(s') =t.

An example of a deterministic system with termination is the system of the extended natural

numbers [AM82] N = {0,1,2,...} U {oc}, with dynamics

Qo 2 1 01,

which, equivalently, can be defined as

N * ifn=0
predJ{ pred(n) =¢ n—1 if0<n# o0
v (o) if n = oo.

In this system, a natural number n can take precisely n transition steps and then terminates, and
the additional number oo only takes a step to itself and hence never terminates.

Input

Systems in which state transitions may depend on input are coalgebras of the functor F(S) = §4

(recall that S4 = {f: A — S}):

S

O‘Sl 55 == ag(s)(a) = ¢,

sS4,
where A is any set (to be thought of as an input alphabet) and the arrow can be read as: in
state s and given input a, the system can make a transition to state s’. Typical examples of
deterministic systems with input are deterministic automata, which traditionally are represented
as pairs (@, 6 : (@ x A) — @), consisting of a set ) of states and a state transition function é that
for every state g and input symbol a in A determines the next state 6{(q,a). (Often an initial state
and a set of final states is specified as well, but they can be dealt with separately.) As observed in

the introduction, in [AM82, MAS86], such automata are precisely the deterministic systems with
input mentioned above, because of the following bijection:

{f:Q@xA-Qt= {f:Q—-Q"}

A homomorphism between (S, ag) and (T, ar) is any function f : S — T satisfying for all s in S,
ain A,

s——s'" = f(s)—=f(s").
A bisimulation between systems S and T is now a relation R C S x T such that, for all a in A,

(s,t) € R and s—s" and t—t' = (s',t') € R.

11



For instance, all states in the following two systems are bisimilar:

Output
Transitions may also yield an output. Thus we consider coalgebras of the functor F'(S) = A x S:
S
O‘Sl 58" = as(s) = {(a,s'),
AxS,

where A is an arbitrary set and the arrow can be read as: in state s, one can ‘observe’ the output a,
and the system can make a transition to the state s’. An intuition that often applies is to consider
the output a as the ‘observable effect’ of the state transition. (Note that the same arrow notation
%5 is used both for transitions with input and with output. In general, the right interpretation
follows from the context.) Such systems are also called deterministic labelled transition systems
[Plo81]. Homomorphisms and bisimulations can be characterized by an obvious variation on the
descriptions above. A concrete example is the set A“ of infinite sequences over A, with

Av
(hyt)l (ag,al,...>£> (al,ag,...).
A x A¥,

The pair (h,t) assigns to an infinite sequence its head (the first element) and tail (the remainder).
Adding the possibility of termination yields, for instance, the following two variations, where the

functors involved are F(S) =1+ (A x S) and F(S)=A+ (A x S):

S S
l l
1+ (AxS), A+ (AxS).

An example of the first type is the set A* of finite and infinite streams, with

AOO
’Tl €l; (ao,al,...>ﬂ><a1,a2,...).
1+ (A x A®),

Similarly, the set AS® of non-empty finite and infinite streams over A is an example of the last

type, S — A+ (A x S).

12



Binary systems

Binary systems are coalgebras of the functor FI(S) = § x S. Now a transition yields two new
states:

S
QSl s—(81,82) <= as(s) = (s1,s2).
S xS,

A homomorphism between binary systems S and T is any function f : S — T satisfying for all s

in S,
s—(s1,82) = f(8)—(f(s1), f(s2)).

Similarly for bisimulations. A concrete example of a binary system is the set Z of integers with
transitions

—2 -1 0 1

Note that the fact that there are two outgoing transitions from each state should in this context
not be interpreted as a form of nondeterminism (see below): the system is perfectly deterministic
in that for each state one transition is possible, leading to a pair of new states. The system can
equivalently be defined by

Z
(pred, SUCC)l m— (m — 1,m + 1).
ZXZ,
Variations of binary systems can be obtained by adding labels (output) and the possibility of
termination:
S S S
szélle, (AxS)J(AxS), 1+((A><SJ/><(A><S)).

Examples of such systems are, respectively: the set of infinite node-labelled binary trees, where
each node is assigned its label in A, together with the nodes of the two subtrees; the set of infinite
arc-labelled binary trees, where a node is mapped to the two nodes of its subtrees, each together
with the label of the corresponding arc; and the set of all arc-labelled binary trees with finite and
infinite branches.

Nondeterministic systems
From one state, several transitions may be possible:
S
O‘Sl s—s' < ' € ag(s).
P(S),

A variation of this type of systems is obtained by adding labels, thus considering coalgebras of the

functor F(S) =P(A x S):
S
O‘Sl s—s' = (a,s') € ag(s).

P(A x S),

13



These are the nondeterministic labelled transition systems of Example 2.1, where homomorphisms
and bisimulations have been characterized as transition preserving and reflecting functions and
relations. Often one wishes to consider systems with bounded nondeterminism, in which from an
arbitrary state only a finite number of transitions is possible. Such systems can be modelled using
the finite powerset functor:

S

Ps(A X S),

and are called finitely branching. Yet another class of systems are the coalgebras of the functor

F(S) = Ps(S):

S
Pr(8)%,
which are called image finite: for every s in S and a in A, the number of reachable states {s’ |

a . .
s—>s'} is finite.

Hyper systems

The contravariant powerset functor can be used to model hyper systems, in which a state can
make nondeterministically a step to a set of states:

S
QS‘L s—V <= V € ag(s).
P(P(8)),

(Recall that P(S) = 2% and thus P(P(S)) = (2)%.) Here the arrow s—V should be read
as: from state s the system can reach the set V' of states (but not necessarily each individual
element of V). Using the definition of the contravariant powerset functor, one can show that a
homomorphism between hyper systems S and T is any function f : S — T satisfying, for all s in

Sand W CT,
s fIW) = fs) o W,

Bisimulations are generally not so easy to characterize. For the special case of a bisimulation
equivalence R C S x S on a hypersystem S, the following holds': for all s and s’ in S,

(s,s') € R= (for every R-equivalence class VC S, s -V < s' > V).

The reader is invited to try and model hyper systems using the covariant powerset functor, to
find that the notions of homomorphism and bisimulation are rather different in that case. This
example illustrates the importance of functors, which operate both on sets and on functions, in a
theory of coalgebras.

IThis type of bisimulation seems to be underlying many of the recently proposed probabilistic bisimulations
[L.S91, vGSS95]. Tt was found in joint work with Erik de Vink.

14



More examples

Some further examples are given, using functors that combine some of the basic constructions
mentioned above.

Transducers (cf. [Mil75]): essentially are (automata and hence) systems with input and output,
possibly with termination, such as

S S S
l | |
(B x S)4, B x 84, C+ (A x SB).

More traditionally (but isomorphically), transducers of the first type are represented as sets S
together with a transition function of type

(S x B)S*4,

Note that in the second type of system, the output does not depend on the input.

Graphs: A directed (1-)graph (V, E) consists of a set V of points (vertices) and an edge relation
E CV x V, representing the arcs of the graph. Graphs are in one-to-one correspondence with
nondeterministic systems because of the bijection

{f:V-oPV)}= PV xV).

Note that the standard notion of graph homomorphism is a function preserving the arc relation
[SS93], without necessarily reflecting it. In contrast, a homomorphism of (graphs as) nondeter-
ministic systems both preserves and reflects the arcs, as a consequence of the categorical definition
of homomorphism of F-coalgebras. Nevertheless, the traditional way of representing graphs and
arc-preserving homomorphisms between them can be modelled in the present framework by con-
sidering the following, so to speak many-sorted coalgebraic definition?: Consider the functor

F : (Set x Set) — (Set x Set), (X,Y)w— (1,X x X).
A graph (V, E) can be represented as a coalgebra of F' by defining;:

(V. E)

J{(L(M))

(1LV x V),

where s : E — V and t : E — V are the projections from E to V', which we call source and target.
An F-homomorphism

v, B) — L2 (v B

(L(SJ))l l(l,(S',t))

(1,VxV)——=(1,V' x V'),
(1,Fxf)

is a pair of functions f:V — V' and g : E — E’' such that
f(s(e)) = s'(g(e)), [f(t(e)) =t'(g(e)),

which is the usual definition of graph homomorphism.
Frames and models: A frame in the world of modal logic (cf. [Gol87]) is a directed graph, and
thus (as we have seen above) can be represented as a nondeterministic system. A model (V, E, f) is

2This definition was suggested by Andrea Corradini.

15



a frame (V| E) together with a function f: ® — P(V), where @ is a collection of atomic formulas
in some given modal logic. Intuitively, f specifies for each formula in which states v in V' it holds.
Because of the isomorphism

{f:2->PV)}= {f: V- P@)}
it is easily verified that models correspond to systems of type:

v

l

P(®) x P(V).

As it turns out, homomorphisms and bisimulations for these systems correspond precisely to the
so-called p-morphisms and zig-zag relations of modal logic.
Resumptions: are systems of type

S

|

(P(B x S))A.

In other words, resumptions are nondeterministic systems with input and output. They play
a central role in the semantics of (nondeterministic and parallel) programming languages (cf.

[HP79, BV96)).

4 Limits and colimits of systems

We want to prove statements like: the union of a collection of bisimulations is again a bisimulation;
the quotient of a system with respect to a bisimulation equivalence is again a system; and: the
kernel of a homomorphism is a bisimulation equivalence. These facts are well-known for certain
systems such as nondeterministic labelled transition systems. As it turns out, they do not depend
on particular properties of such examples, and actually apply to (almost) all systems we have seen
sofar. Therefore, this section presents a number of basic categorical constructions that will enable
us, in the subsequent sections, to prove all these statements for all systems at the same time.

There are three basic constructions in the category Setp of F-systems that are needed: the
formation of coproducts (sums), coequalizers, and pullbacks (cf. Section 18). In this section, they
are discussed in some detail for arbitrary F-systems. The family of labelled transition systems is
used again as a running example.

(We shall see that in Setp coproducts and coequalizers exist, for arbitrary functors F. If
the functor F' preserves pullbacks, then pullbacks exist in Setp. For completeness, a general
description of limits and colimits of systems is presented at the end of this section. In summary,
Setr has all colimits, for any F'. And Setp has all limits that are preserved by F'.)

Coproducts

Coproducts (as well as coequalizers and, more generally any type of colimit) in Setp are as easy
as they are in the category Set. The coproduct (or sum) of two F-systems (S, ag) and (T, ar) can
be constructed as follows. Let ig : S — (S+T) and iy : T — (S +T) be the injections of S and T
into their disjoint union. It is easy to see that there is a unique function v : (S+7T) — F(S+T)
such that both ig and 7; are homomorphisms:

16



The function v acts on S as F(is) o as and on T as F(ir) o ar. The system (S + T, v) has the
following universal property: for any system (U, «y) and homomorphisms & : (S, as) — (U, ay)
and ! : (T,ar) — (U, ay) there exists a unique homomorphism h : (S + T, v) — (U, ay) making
the following diagram commute:

That is (S+ 1T, 7) is the coproduct of (S, ag) and (T, ar). Similarly, the coproduct of an indexed
family {S;};es of systems can be constructed.

Example 4.1 Recall from Example 2.1 that labelled transition systems (lts) are B-systems where
B(X) = P(A x X). The coproduct of two lts’s (S, as) and (T, ay) consists of the disjoint union
S + T of the sets of states together with a B-transition structure v: S+ 7T — B(S + T), defined
for sin S and ¢ in T by

v(s) = as(s), v(t) = ar(t).

Because Ax SCAX(S+T)and AxT C Ax(S+T) (identifying for convenience S + T and
S UT), this defines indeed a function from S + T into B(S + T). O

Coequalizers

Next we show how in Setr a coequalizer of two homomorphisms can be constructed. Consider
two homomorphisms f : (S,as) — (T,ar) and g : (S,ag) — (T,ar). We have to find a system
(U,ay) and a homomorphism h : (T, ap) — (U, ay) such that

1. hof="hog;

2. for every homomorphism h' : (T, ar) — (U',ays) such that h' o f = h' o g, there exists a
unique homomorphism [ : (U, ay) — (U’, ay') with the property that loh = h'.

Since (per definition) f and g are functions f : S — T and g : S — T in Set, there exists a
coequalizer h : T — U in Set (see Section 18). Consider F(h) o ap : T — F(U). Because

F(h)oarof

— F(h)o F(f)oas

= F(hof)oag

= F(hog)oag

— F(h)o F(g)oas
(h

= F(h)oarog,

and h : T — U is a coequalizer, there exists a unique function ay : U — F(U) making the
following diagram commute:

%
%

S T
I
T
F(f) Fny Y

F(S)——=F(T)——= F(U)
F(g)

%U

ay

Thus (U,ay) is an F-system and h is a homomorphism. One easily checks that the universal
property (2) is satisfied.

17



Example 4.1, continued: Let (S,as) and (T, ar) be again two lts’s and consider homomor-
phisms f, g : (S,as) — (T,ar). Let R be the smallest equivalence relation on T' that contains
the set

{(f(s),9(s)) | s € S},

and let ¢ : T'— T'/R be the function that maps ¢ in T to its R-equivalence class [t]g. Then T/R
can be supplied with a B-transition structure ap : T/R — B(T/R) by specifying transitions

tlr—[t'|r < 3t" € [t'|r, t——rt".

It is moreover the only possible choice for ag making ¢ : T — T/R into a homomorphism. A
special instance of this example is obtained by taking a bisimulation equivalence on a B-system,
say

71, 7o (R,ar) — (T, ar).

Then the coequalizer of m; and 79 is the quotient T'/R, showing that the quotient of an lts with
respect to a bisimulation equivalence yields again an lts. This observation will be generalized in
Proposition 5.8. O

The results above are summarized for future reference in the following.

Theorem 4.2 Let F': Set — Set be any functor. In the category Setr of F-systems, all coprod-
ucts and all coequalizers exist, and are constructed as in Set. O

(Weak) pullbacks

The existence of pullbacks in Setr depends on the functor F'. More specifically, if F': Set — Set
preserves pullbacks then pullbacks exist in Setp: Let f : (S,as) = (T,ar) and g : (U,ay) —

(T, ar) be homomorphisms. Let
P——>5
‘!
U——T

g9

be the pullback of f and g in Set, with P = {(s,u)

f(s) = g(u)}. Because F preserves pullbacks,

F(ﬂ)l

F(U)—s F(T

r(P) 2L B(s)
) F(g)

~

is a pullback of F(f) and F(g) in Set. Consider agom : P — F(S) and ay oms : P — F(U).

Because
F(f)oasom

= arofom

= aT (o] g o) 7'('2

= F(g)oayom,
there exists, by the fact that F(P) is a pullback, a unique function ap : P — F(P) such that
F(m)oap =agom and F(m)oap = ay onme. Thus (P,ap) is an F-system, and 7; and 7y are
homomorphisms. It is easily verified that (P,ap) is a pullback of f and g in Setp.

Note that as a consequence, the pullback (P,ap) is a bisimulation on S and U: P C S x U

and the projections m; and w9 are homomorphisms.

As it turns out, the pullback of two homomorphisms is a bisimulation even in the case that F'
only preserves weak pullbacks (cf. Section 18).

18



Theorem 4.3 Let F : Set — Set be a functor that preserves weak pullbacks, and let f : (S, ag) —
(T,ar) and g : (U,ay) — (T, ar) be homomorphisms of F-systems. Then the pullback (P, m, 72)
of f and g in Set is a bisimulation on S and T.

Proof: The proof is essentially the same as the proof of the existence of pullbacks in Setp
in case F' preserves pullbacks. The only difference is that F(P) is now, by assumption, a weak
pullback. As a consequence, there exists again a (no longer necessarily unique) transition structure
ap: P — F(P) on P such that m; and w9 are homomorphisms. O

Example 4.1, continued: Let f : (S,ag) — (T,ar) and g : (U,ay) — (T,ar) be homo-
morphisms of 1ts’s. Because lts’s are B-systems and the functor B preserves weak pullbacks (cf.
Section 18), the above argumentation applies. The following gives a more direct construction.
As above, let P = {(s,u) | f(s) = g(u)}. It can be supplied with a B-transition structure by
specifying transitions

(s,u)—(s" ') < f(s') =g(u') and s—>gs" and u—"yu'.

It is straightforward to prove that the projections from P to S and U are homomorphisms. Thus
P is a bisimulation. A special case is obtained by taking only one homomorphism f : (S, ag) —
(T, ar) and considering the pullback of f and f. The resulting set is P = {(s,s') | f(s) = f(s")},
which is the kernel of f. It follows that it is a bisimulation (equivalence). Again, this will be
proved in greater generality in Proposition 5.7. O

Because this result will be called upon time and again, and because all functors we have seen in the
examples sofar do preserve weak pullbacks (but for the contravariant powerset functor, cf. Section
18), we shall assume in the sequel that when talking about an arbitrary functor F, it preserves
weak pullbacks:

Convention 4.4 In the rest of this paper, set functors F : Set — Set are assumed to preserve
weak pullbacks. If (the proof of) a lemma, proposition, or theorem actually makes use of this
assumption, then it is marked with an asterisk. O

Limits and colimits, generally

This section is concluded with the observation that the above constructions of coproducts, coequal-
izers, and pullbacks can be generalized by means of the so-called forgetful functor U : Setp — Set,
which sends systems to their carrier: U(S,ag) = S, and homomorphisms f : (S,as) — (T, ar) to
the function f: S — T. (see, e.g., [Bar93]).

Theorem 4.5 The functor U : Setp — Set creates colimits. This means that any type of colimit
in Sety etists, and is obtained by first constructing the colimit in Set and next supplying it (in a
unique way) with an F-transition structure. O

Similarly, there is the following general statement about limits in Setp.

Theorem 4.6 If F': Set — Set preserves a (certain type of) limit, then the functor U : Setp —
Set creates that (type of ) limit. This means that any type of limit in Set that is preserved by F
also exists in Setp, and is obtained by first constructing the limit in Set and next supplying it (in
a unique way) with an F-transition structure. O

19



Epi’s and mono’s in Setp

Using the results of this section, we are now in a position to supply the details announced in
Remark 2.2 about epi’s and mono’s in the category Setp of F-systems.

Proposition 4.7 Let F : Set — Set be a functor and f : (S,as) — (T, ar) an F-homomorphism.

1. The homomorphism f is an epimorphism (i.e., surjective) if and only if f is epi in the
category Setp.

2. If the homomorphism f is a monomorphism (i.e., injective) then it is mono in the category
Setp. If the functor F' preserves weak pullbacks then the converse is also true: if f is mono
then it is injective.

Proof: We use the following categorical characterization of epi’s [Bor94|[Proposition 2.5.6]. Let
C be an arbitrary category. An arrow a : A — B in C is epi if and only if the following diagram
is a pushout in C:

B

;

B.

By Theorem 4.5, the forgetful functor U : Setp — Set creates colimits and hence pushouts.

a
—_—

-

—_
1B

Moreover it is easily verified that U preserves any colimit that it creates. So in particular U
preserves pushouts. Thus we obtain the following equivalence:

I
(S,a5) — (T, ar) s—Ls7
fl llT is a pushout in Setp <= fl llT is a pushout in Set.
(T,ar) —— (T, ar) T—=T
T T

As a consequence, the homomorphism f is epi in Setp if and only if the function f is epi, and
hence surjective, in Set.

For mono’s, the dual of the characterization for epi’s can be used. Let C be an arbitrary category.
An arrow a : A — B in C is mono if and only if the following diagram is a pullback in C:

A A
1Al la
A .
Assume that F' preserves weak pullbacks. Because weak pullbacks of mono’s are ordinary pullbacks
(Proposition 18.2), F' preserves pullbacks of mono’s. By Theorem 4.6, the forgetful functor U :

Setp — Set creates such pullbacks. Again one can easily prove that U also preserves them. The
argument can now be finished as in the case of epi’s. O

1a
—_

—_—
a

5 Basic facts on bisimulations

This section deals with arbitrary F-systems. All results are straightforward for the special case of
labelled transition systems. In fact, some of them have already been proved for 1ts’s in Example
4.1.

Let S, T and U be three F-systems with transition structures ag, ar and ay, respectively.

Proposition 5.1 The diagonal Ag of a system S is a bisimulation.

20



Proof: Follows from Theorem 2.5 and the observation that Ag equals the graph of the identity
lg: S — 8. O

The inverse of a bisimulation is a bisimulation.

Theorem 5.2 Let (R, aR) be a bisimulation between systems S and T'. The inverse R™* of R is
a bisimulation between T and S.

Proof: Leti: R — R ! be the isomorphism sending (s,t) € R to (t,s) € R~!. Then (R™!, F(i)o
aproi 1) is a bisimulation between T and S. O

Next we show that the composition and union of bisimulations is again a bisimulation. The
following lemma will be helpful.

Lemma 5.3 The image (f,g)(T) = {(f(t),g9(t)) | t € T} of two homomorphisms f:T — S and
g: T — U is a bisimulation on S and U.

Proof: Consider the following diagram:

where the function j is defined by j(t) = (f(¢), g(t)), the function ¢ is any right inverse for j (which
exists by the axiom of choice because j is surjective): joi =1, and m; and 7y are projections. Note
that everything in this diagram commutes. The set (f, g)(T") can be given a transition structure

v {f,9)(T) = F((f,9)(T)) by defining
vy=F(j)oaroi.
It follows that ({f,g)(T'), v) is a bisimulation on S and U because

F(m)ony
= F(m)oF(j)oaroci
= F(moj)oaroi
= F(f)oaroi
= agofoi
= Qg oy,

and similarly for 5. O

Theorem* 5.4 3 The composition R o Q of two bisimulations R C S xT and Q CT x U is a
bisimulation between S and U.

Proof: Recall from Section 18 that R o () is equal to the image (r; o x1, g2 0 z2)(X) of the
pullback:

T X x
PN
T R T2 g1 Q q2
YN N
S T U.

3Recall from Convention 4.4 that the asterisk indicates the assumption that the functor F preserves weak
pullbacks.

21



(Here z;, 7;, and ¢; are projections.) Because F' preserves weak pullbacks, the pullback X can be
supplied with a transition structure, by Theorem 4.3. By Lemma 5.3, R o () is a bisimulation on

S and U. O

Similarly, the union of bisimulations is again a bisimulation.

Theorem 5.5 The union |J, Ry of a family {Ry}r of bisimulations between systems S and T is
again a bisimulation.

Proof: Recall from Section 18 that J, Ry is the image of
S<E S R LT,

where k and [ are the componentwise projections. By Theorem 4.2, the coproduct of a family of
systems is again a system. It follows from Lemma 5.3 that the union is a bisimulation. O

Corollary 5.6 The set of all bisimulations between systems S and T is a complete lattice, with
least upperbounds and greatest lowerbounds given by

\/kRk = (UkRk)a
/\kRk = U{R | R is a bisirnulation between S and T with R C /\kRk}

In particular, the greatest bisimulation between S and T ewists, and is denoted by ~ (s 1y. It is the
union of all bisimulations:

~(S,T)= U{R | R is a bistmulation between S and T }.
We shall write
s~y t == (s,t) €~y < there exists a bisimulation R with (s,t) € R.

The greatest bisimulation on one single system S, denoted by ~g, is a bisimulation equivalence.
O

We shall simply write ~ for the greatest bisimulation relation when the systems are clear from
the context. Moreover, we write ~p when explicit reference to the type of systems is needed.
Bisimulation equivalences and homomorphisms are related by the following two propositions.

Proposition* 5.7 The kernel K(f) of a homomorphism f : S — T is a bisimulation equivalence.

Proof: Note that K(f) = G(f) o G(f)~'. K(f) is transitive. The result follows from Theorem
5.4. An alternative proof consists of the observation that K(f) is a pullback of f with itself and
then applying Theorem 4.3. O

Conversely, any bisimulation equivalence on a system is the kernel of a homomorphism:

Proposition 5.8 Let R be a bisimulation equivalence on a system S. Let eg : S — S/R be the
quotient map of R. Then there is a unique transition structure ag/p : S/R — F(S/R) on S/R
such that eg : S — S/R is a homomorphism:

s—= >S/R
[

as | ®s/r
4

F(S F(S/R).

( )mj (S/R)

22



Proof: Immediate from the observation that eg is a coequalizer of the projections from R to S
and Theorem 4.2. Alternatively and more concretely, ag/p can be defined on an R-equivalence
class by F'(eg) o ag(s), where s is any element of the equivalence class. O

The following facts will be useful.
Proposition* 5.9 Let f : S — T be a homomorphism.
1. If RC S x S is a bisimulation on S, then f(R) is a bisimulation on T.

2. If Q CT x T is a bisimulation on T, then f~1(Q) is a bisimulation on S.

Proof: Immediate from Theorem 5.4, and the observation that f(P) = G(f) ! o P o G(f) and
fHQ)=G(f)oQoG(f)™ =

6 Subsystems

Let (S,ag) be a system and let V' be a subset of S with inclusion mapping 7 : V' — S. If there
exists a transition structure ay on V such that i : (V,ay) — (S, as) is a homomorphism, then V
is called a subsystem (or subcoalgebra) of S. There is at most one such transition structure.

Proposition 6.1 Let (S,ag) be a system and let i : V — S be a subset of S. If k,1:V — F(V)
are such that i is a homomorphism both from (V. k) to (S,ag) and from (V1) to (S,ag), then
k=1.

Proof: If V is non-empty, the equality follows from F'(i)ok = agoi = F(i) ol and the fact that
F (i) is mono, by Proposition 18.1. The case that V =} is trivial. O

For instance, a subsystem of a labelled transition system (Example 2.1) is a set of states that is
closed under (outgoing) transitions; subsystems of graphs are (full) subgraphs; and subsystems of
trees are subtrees.

The empty set and S are always subsystems of (S, ag). A system is called minimal if it does
not have any proper subsystem (i.e., different from () and S).

Subsystems can be characterized in terms of bisimulations as follows.

Proposition* 6.2 Let S be a system. A subset V C S is a subsystem if and only if the diagonal
Ay of V is a bisimulation on S.

Proof: Let i : V — S be the inclusion homomorphism of a subsystem V in §. Because Ay is
equal to G(7) (the graph of 7), it is a bisimulation by Theorem 2.5. For the converse, suppose that
Ay = G(i) is a bisimulation on (S, ag). Because m; : G(i) — V is an isomorphism, the transition
structure on G(7) induces a transition structure on V. |

Theorem™ 6.3 Let S and T be two systems and f : S — T a homomorphism.
1. If V.C S is a subsystem of S, then f(V') is a subsystem of T'.
2. If W C T is a subsystem of T, then f~1(W) is a subsystem of S.

Proof: The theorem follows, by Proposition 5.9 and Proposition 6.2, from the observation that

Af(V) = f(Av), and Af—l(W) = fﬁl(Aw)

Unions and intersections of subsystems are again subsystems.

Theorem™ 6.4 The collection of all subsystems of a system S is a complete lattice, in which least
upperbounds and greatest lowerbounds are given by union and intersection.

23



Proof: Let {Vi} be a collection of subsystems of a system S.
U, Vi: For every k, the set Ay, is a bisimulation by Proposition 6.2. Because

AUka = U AV’“
k

it follows from Theorem 5.5 that it is a bisimulation. Thus J,V} is a subsystem, again by
Proposition 6.2.

N, Vk: By Proposition 18.3, F' preserves intersections. More specifically, F' transforms the pullback
diagram of the intersection of the sets {Vj}, into a pullback diagram of the sets F({Vj}) (see
the proof of Proposition 18.3). It follows from Theorem 4.6 that there exists a (unique) transition
structure on (1, Vi such that the inclusion mapping from (1, Vi to S is a homomorphism. O

Theorem 6.4 allows us to give the following definitions. Let (S, ag) be a system and X a subset
of S. The subsystem of (S, ag) generated by X, denoted by (X), is defined as

(X) = ﬂ{V | V is a subsystem of S and X CV }.

So (X) is the smallest subsystem of S containing X. If S = (X) for some subset X of S then S
is said to be generated by X. The subsystem generated by a singleton set {s} is denoted by (s).

Dually, one can also look at the greatest subsystem [X] of S that is contained in X: using
again Theorem 6.4, it is defined by

[X] = U{V | V is a subsystem of S and V C X }.
There is the following characterization, which will be of use in the sequel.

Proposition 6.5 Let X be a subset of a system S and i : [X] — S the inclusion homomorphism.
Any homomorphism f: T — S such that f(T) C X, factorizes through [X]. That is, there ezists
a unique homomorphism f':T — [X| such that

T—S
A.
N
[X].

Proof: By Theorem 6.3, f(T) is a subsystem of S and since f(T') C X, by assumption, it follows
that f(T') C [X]. Defining f'(¢) = f(t) gives us a function with i o f' = f. It is a homomorphism
by Lemma 2.4. It is unique because ¢ is mono. O

Examples 6.6 Some examples of subsystems.

1. Let (S, as) be a labelled transition system (Example 2.1). The subsystem (s) generated by
an element s in S consists of all states

U{s'\ﬂso,...,sn, s=8)—— - ——8, =8}
n>0

2. Recall from Section 3 that a directed graph is a system of type

24



One can define the largest subsystem C(S) of S in which all states have a self cycle, by
C(S)=[{s€ S| s—s}].

Generally C(S) is a strict subset of {s € S | s—s}. For instance, if § = {s,s'} with
transitions s—s and s—s’, then the subsystem C(S) is empty. |

This section is concluded with a note on the size of subsystems generated by one element. For
future reference, we give the following definition.

Definition 6.7 A functor F' bounded if there exists a set V such that for every F-system (S, ag)
and every s in S, there exists an injective function from the carrier of the subsystem (s) into the

set V (cf. [KM96]). |

In other words, the size of any subsystem generated by one element is bounded by the size of
V. As we shall see in Section 10, this condition is sufficient to guarantee the existence of a final
F-coalgebra.

Examples 6.8 Two examples of functors that are bounded, and one of a functor that is not.

1. P¢(S) ={V | V C S and V is finite }: Let (S,ag) be a Py-system and s in S. For any
n, there are only finitely many reachable states. Therefore (s) has at most countably many
elements, and can be embedded in A. More generally, any type of powerset functor P,
which assigns to a set the set of all subsets with cardinality less than or equal to a given
cardinal k, is bounded.

2. F(S)=Ax (B — S): Let (S,as) be an F-system and s in S. If  is the size (cardinality)
of B then the number of elements of (s) is bounded by > {x | i > 0}. Any set with at least
that number of elements is a bound for F.

3. P: The unrestricted powerset is not bounded. O

7 Three isomorphism theorems

This section contains three theorems, which are well-known in universal algebra, on the existence
of isomorphisms between systems.

The first isomorphism theorem states that any homomorphism factorizes through a pair con-
sisting of an epimorphism and a monomorphism.

Theorem* 7.1 (First isomorphism theorem,)
Let f : S — T be a homomorphism. Then there is the following factorization of f:

S T
f(5)
€K (f) Tﬁ Iz
S/K(f),

where i is the inclusion monomorphism of f(S) in T, p is a monomorphism, f' is an epimorphism
(with f'(s) = f(s) for all s), and e (y) is the quotient map of the kernel K(f) of f.

25



Proof: By Theorem 6.3, f(S) is a subsystem of T. It follows from Lemma 2.4 that f' is a
homomorphism, and because it is surjective, it is an epimorphism. By Proposition 5.7, K(f) is a
bisimulation equivalence on S, and by (the proof of) Proposition 5.8, S/K(f) is the coequalizer
of the projection homomorphism of K(f). The homomorphisms from S/K(f) to f(S) and T are
given by the coequalizer property. Since the former is bijective, it is an isomorphism by Proposition
2.3. The latter is a monomorphism because i is. O

Theorem™ 7.2 Let f : S — T be a homomorphism and R a bisimulation equivalence on S which
is contained in the kernel of f. Then there is a unique homomorphism f : S/R — T such that
f="Foen:

s —* S/R

I
¥
x i
T
Proof: There is precisely one function f for which foegr = f. It follows from Lemma 2.4 that

it is a homomorphism. Alternatively, the existence of the homomorphism f is given by fact that
S/R is a coequalizer of the projection homomorphisms from R to S. O

The second isomorphism theorem states that there is a ono-to-one correspondence between
subsystems of a quotient of a system S and quotients of subsystems of S.

Theorem* 7.3 (Second isomorphism theorem)
Let S be a system, T a subsystem of S, and R a bisimulation equivalence on S. Let T® be defined
by TH ={se S|3teT, (s,t) € R}. The following facts hold:

1. TE is o subsystem of S.
2. Q=Rn (T xT) is a bisimulation equivalence on T'.
3. T/Q=TF/R.

Proof: Since T# = 7, (my~'(T)), it is a subsystem of S by Theorem 6.3. Because RN (T x T') =
7, (T) Ny '(T), it is a subsystem of R, by the same theorem, and hence it is a bisimulation
equivalence on T'. Consider the quotient homomorphism eg : S — S/R, and let € : T'— S/R be
its restriction to 7. Because e(T') = eg(TF#) = T#/R, and K(¢) = Q, it follows from Theorem 7.1
that T/Q = T#/R. o

Let S be a system, T" a subsystem of S, and R a bisimulation equivalence on S. If RN(T'xT) = Ap
then R is said to separate T' (because, equivalently: for all ¢,¢' € T, if ¢ # t' then (¢,t') ¢ R). In
this case, the above theorem yields that T = TF/R.

Theorem* 7.4 (Third isomorphism theorem)
Let S be a system, and let R and Q) be bisimulation equivalences on S such that R C Q). There is
a unique homomorphism 6 : S/R — S/Q such that § o ep = €q:

s —"~S/R
\ y
EQ V

S/Q.

Let R/Q denote the kernel of 0: it is a bisimulation equivalence on S/R and induces an isomor-

phism ¢' . (S/R)/(R/Q) — S/Q such that § = 6" oep/q:

§/R——"">(S/R)/(R/Q)
0J{ -7 -7
s/Q.~

26



Proof: The existence of # follows from Theorem 7.2. Because € is surjective also 6 is surjective.
The existence of the isomorphism #’ is now given by Theorem 7.1. O

8 Simple systems and coinduction

An algebra is called simple if it does not have proper quotients. We apply the same definition
to systems: a system S is simple if it has no proper quotients (homomorphic images): i.e., every
epimorphism f : § — T is an isomorphism. Theorem 8.1 below gives a number of equivalent
characterizations of simplicity, the most important of which is the so-called coinduction proof
principle: for every bisimulation R on S, R C Ag (recall that Ag = {(s,s) | s € S}). Equivalently,
for all s and s’ in S,

! !
S~gS =>s==s.

The principle states that in order to prove the equality of two states in S, it is sufficient to show
that they are bisimilar. We shall see examples of the use of this surprisingly strong proof principle
in Section 12. In Section 13, it will be related to the more familiar principle of induction in a way
that will justify the chosen terminology.

Theorem™ 8.1 Let S be a system. The following are equivalent:
1. S is simple.
2. S satisfies the coinduction proof principle: for every bisimulation R on S, R C Ag.
3. Ag is the only bisimulation equivalence on S.

4. For any system T, and functions f: T — S and g: T — S: if f and g are homomorphisms
then f = g.

5. The quotient homomorphism € : S — S/~, where ~ denotes the greatest bisimulation on S,
1s an isomorphism.

Proof: 1= 3: Let R be a bisimulation equivalence on S and consider the quotient homomorphism
er:S — S/R. If S is simple then e is an isomorphism. Thus R = Ag.

3= 1: Let f: S — T be an epimorphism. Since the kernel of f is a bisimulation equivalence, it
follows from 3 that it is equal to Ag. By Theorem 7.1, S/Ag = f(S), hence S = T. Thus S is
simple.

2 = 4: Let T be a system, and let f: T — S and g : T — S be homomorphisms. Define

Q=A{{f(t),9(®)) [t €T}

Since Q = G(f) "' oG(g) (recall that G(f) is the graph of f), it is a bisimulation by Theorem 5.4.
It follows from 2 that Q C Ag. Thus f = g.

4 = 2: Let R be a bisimulation on S. By definition, its projections 7; : R — S and 73 : R — S
are homomorphisms. It follows from 4 that m; = 7, hence R C Ag.

3 & 2: Immediate from the observation that the greatest bisimulation on S is an equivalence.

1 = 5: Immediate.

5 = 3: Suppose that € : S — S/~ is an isomorphism. Let R be a bisimulation equivalence on S.
Because R C~ and ~ is the kernel of €, there exists by Theorem 7.2 a (unique) homomorphism
f:S/R — S/~ such that foer = e. Since € is an isomorphism this implies that e is injective.
Thus R = Ag. O

Every system can be made simple by taking the quotient with respect to its greatest bisimulation.
This is a consequence of the following.

27



Proposition* 8.2 For every system S and bisimulation equivalence R on S, the quotient S/R is
simple if and only if R = ~.

Proof: <: Let @ be a bisimulation on S/~. We show that Q@ C Ag/~. Then it follows
from Theorem 8.1 that S/~ is simple. Consider € : S — S/~. By Proposition 5.9 ¢ '(Q) is a
bisimulation on S and hence is included in ~. This implies @ C Ag/~..

=: Let @) be a bisimulation on S. We show that ) C R. By definition the projections 7 : Q — S
and my : Q@ — S are homomorphisms. Consider the compositions e oy : Q@ — S/R and € o 7o :
@ — S/R. By assumption, S/R is simple. It follows from Theorem 8.1 that eom; = eomy, whence
@ C R. Therefore R =~. O

9 Final systems

An F-system (P,7) is final* if for any F-system (S, ag) there exists precisely one homomorphism
fs + (S;as) — (P,m). (In other words, (P,7) is a final object in the category Setp. As a
consequence, any two final systems are isomorphic.) Final systems are of special interest because
they have a number of pleasant properties.

First of all, the transition structure on a final system is an isomorphism (Lambek, cf. [SP82]).

Theorem 9.1 Let (P,x) be a final F-system. Then © : P — F(P) is an isomorphism.

Proof: Because (F(P), F(w)) is an F-system, there exists by the finality of P a unique homo-
morphism f : (F(P),F(n)) — (P,w). Again by finality, the composition of the homomorphisms
m and f:

wl lF(w) lﬂ'
F

is equal to 1p, since 1p is also a homomorphism. It follows from the fact that f is a homomorphism
that the reverse composition equals the identity on F(P). O

Final systems allow coinductive proofs.

Theorem 9.2 [RT93] Final systems (are simple and hence) satisfy the coinduction proof princi-
ple: for any bisimulation R on P, R C Ap.

Proof: Immediate from Theorem 8.1(4). |

A final system can be considered as a universal domain of canonical representatives for bisimulation
equivalences classes in the following way.

Theorem* 9.3 [RT93] Let S be an F-system, P a final F-system, and fg : S — P the unique
homomorphism from S to P. For all s and s’ in S,

s~gs & fs(s) = fs(s).
Thus fs(s) represents the ~g-equivalence class of s.

Proof: =: Let R be a bisimulation on S with (s,s’) € R. By Proposition 5.9(1), fs(R) is
a bisimulation on P. By definition, (fs(s), fs(s')) € fs(R). By Theorem 9.2, P satisfies the
coinduction proof principle: fs(R) C Ap, whence fs(s) = fs(s').

<: Because Ap is a bisimulation on P, f;l(A) is a bisimulation on S, by Proposition 5.9(2). If
fs(s) = fs(s') then (s, s") € fg'(A), thus s ~g s |

4We prefer final to terminal, which we associate with malady.

28



The element fg(s) in the final system can be viewed as the ‘observable behaviour’ of s. (For
that reason, fg is called final semantics in [RT93].) The following simple example may serve to
illustrate this.

Example 9.4 Consider the functor F(S) = Ax S of deterministic transition systems with output.
For this functor, (A%, (h,t)) (Section 3) is final: Consider a system S with dynamics (v,n): S —
(A x S). The function from fg: S — A*, which assigns to a state s in S with transitions

ap ai
s 2 My
the infinite word

(a0, ar, ...) (= (o(s), v(n(s)), v(n(n(s))), ...)),

is the only homomorphism between S and A“. If the output symbols a; are interpreted as the
observations corresponding to the individual transition steps, then fs(s) can be viewed as the
observable behaviour of the entire transition sequence (computation) starting in s. O

Finally, the existence of a unique homomorphism from a given system into a final system P can
be used as a way of giving definitions. Therefore, P is said to satisfy the coinduction definition
principle. We shall see examples of this in Section 11.

10 Existence of final systems

A final F-system need not always exist. For instance, if F' is the powerset functor P (of non-
deterministic systems) and P were a final P-system, then Theorem 9.1 implies P = P(P), a
contradiction because the cardinality of P(P) is strictly greater than that of P. For many func-
tors, though, final systems do exist. We shall briefly describe two ways of constructing final
systems and give some concrete examples.

For many functors F' : Set — Set, the following construction yields a final system. Let
' F(1) — 1 be the unique function from F(1) to the one element set 1. The inverse limit of the
following sequence:

where F"t! = F o F™, is defined as

P = {{zg,z1,22,...) |V >0, 2, € F"(1) and F"(!)(@ny1) = Tn}.

The set P is a categorical limit of the sequence. If F(P) is again a limit of the same sequence,
then F is called (w°P-)continuous. In that case, there exists a unique (mediating) bijection from
F(P) to P, the inverse of which, say = : P — F(P), turns P into an F-system (P, ), which can
be easily shown to be a final F-system (cf. [SP82]).

Let the class of polynomial functors consist of all functors that we can build from the following
basic functors: the constant functor A (where A is any set), the identity functor I, sum +, product
x, and the function space functor F(X) = X4, where A again an arbitrary set. (Note that this
definition if somewhat non-standard in that the function space functor is usually not included.)

Theorem 10.1 All polynomial functors are continuous and hence have a final system.
Below we give a few concrete examples.

Examples 10.2 An explicit description of some final systems is given, on the basis of which a
direct proof not using the continuity of the functor of their finality can be easily given as well.
(The sets A, B, and C below are arbitrary.)

1. I(S) = S: The one element set 1 is a final system for the identity functor.

29



2. F(S) = A x S: For this functor, the system (A%, (h,t)) is final (cf. Example 9.4).
3. F(S) =14 (A x S): the system (A>, 7) (Section 3) is final.

4. A special case: if A =1 then the previous final system is (isomorphic to) (A, pred), the set
of extended natural numbers (Section 3).

5. F(S) = A x SB: the system (AP, 7) is final [MAS6], where
T AP o A x (AP)P

is defined, for ¢ in AB", by 7(¢) = (é(e), ), with for b in B and v in B*,

(Here € is the empty sequence and - denotes concatenation of finite sequences.)

6. F(S) = C + (A x SP): Note that this example subsumes all of the above examples. The
following set can be given a transition structure similarly to the definition of 7 in the previous
example, turning it into a final system [Jac96¢|:

{$:B* - (A+C)| Yve B*, ¢(v) € C = (Yw € B*, ¢(v-w) = ¢(v))}.

7. F(S) =14+ ((Ax S)x (AxS)): The following system (7', 7) is final. It consists of the set
T of all binary arc-labelled trees (possibly containing finite and infinite branches):

T = {¢:{0,1}* > (1+(Ax A))]
Yo e {0,1}", ¢(v) € 1 = (Yw € {0,1}*, ¢(v - w) = ¢(v))},
and the function 7: T — 1+ ((A X T) x (A x T)), defined for ¢ € T by

o= if ¢(e) = *
m(¢) = { ({ar, #1), {az, ¢9)) if ¢(€) = (a1, as),

where ¢; is defined for v € {0,1}* by ¢;(v) = ¢({a;) - v).
|

The class of polynomial functors contains most but not all of the functors we have encountered
sofar. Notably the powerset functor P is not polynomial. Now we have already seen at the
beginning of this section that no final system exists for this functor. However, we shall see that for
the finite powerset Py a final system exists. It cannot be obtained by the inverse limit construction
described above, since Py is not continuous. Fortunately there exist other more general ways of
finding final systems, one of which is discussed next. It is a variation on the following naive
approach, which almost works. First we form the coproduct (disjoint union) of all F-systems:

(U,B) = U{(Si,ai) | (Si; ;) is an F-system }.
Next the quotient of U is taken with respect to the greatest bisimulation on U:
(Pm) = (U/ ~v, Bry)-

We claim that (P,7) is final: let (S,a) be any F-system. There exists a homomorphism from S
to P by composing the embedding homomorphism of S into the coproduct U with the quotient
homomorphism € : U — P. Because P is simple by Theorem 8.2, this homomorphism is unique
by Theorem 8.1.

This argument has, of course, a flaw: the coproduct of all systems does not exist (its carrier
would generally be a proper class). For many functors, however, it is not necessary to take the

30



coproduct of all systems, but it is sufficient to consider only a ‘generating’ set of designated
systems. More precisely, suppose that (F' is such that) there exists a set of F-systems

G={(Gi,a;) | i €1}
(for some index set I), with the property that
V(S,as)Vs € SI(Gi,a;) € G, (Gi, ;) = (s).

(Recall that (s) is the subsystem of S generated by the singleton set {s}.) Such a set G is called
a set of generators® because every F-system (S, ag) can be obtained as a quotient of a coproduct
of elements of G as follows: Choose for any s € § a system G5 in G. Then there exists a surjective
homomorphism

q:| {G.|s€ S} — 5,

which is determined by the homomorphisms, for all s € S, G, =, (s) — S (the latter homomor-
phism is the embedding of the subsystem (s) in §).
Now the construction proceeds as before: let

(U,8) = | {(Gi, ) | (G, ) € G},
and let again
(Paﬂ-) = (U/ ~U, /3NU)'

We claim that (P, ) is final: let (S,a) be any F-system. Because (P,7) is simple (as before),
it is sufficient to prove the existence of a homomorphism from any system S to P. Consider the

following diagram:
q

LH{Gs | s € S}

S
|
|
|
Ifs
|
|
y

(P,m).

The existence of the homomorphism ¢ was established above, and € : (U,3) — (P,7) is the
quotient homomorphism. The homomorphism [ is determined by the embeddings, for all s € S, of
G, in U. The existence of the homomorphism fg follows from Theorem 7.2, whose conditions can
be seen to be fulfilled as follows: by the First Isomorphism Theorem (7.1) S = | |{G, | s € S}/K(q)
(recall that K stands for kernel); K(q) is a bisimulation, by Proposition 5.7, and hence (K (q))
is a bisimulation on U, by Proposition 5.9; consequently, I(K(q)) C~y= K(e€), which implies
K(q) C K(eol). This concludes the proof of the finality of (P, 7). We have proven the following.

Theorem™ 10.3 Any functor F for which a set of generators exists, has a final F-system. O
For all bounded functors (Definition 6.7), a set of generators exists.

Theorem™ 10.4 For every bounded functor F, a set of generators, and hence a final F-system,
exists.

5See [Bor94][Proposition 4.5.2] for two equivalent characterizations of this notion.

31



Proof: Let V be a set such that for any system (S,as) and any subsystem (s) = (T,5) of
(S,as), T can be embedded in V. The following is a set of generators for F':

{{U,7) |l UCV andv:U — F(U)}.

For let (s) = (T,8) be a subsystem of a system (S,as), and let i : T — V be injective. Let
b: T — i(T) be the corresponding bijection. Then (s) is isomorphic with (i(T"), F(b) o Bob™1).
Applying Theorem 10.3 yields the existence of a final system. O

Examples 10.5 The above results apply to many functors.

1. The functor F(S) = A x S is bounded (Examples 6.8) and hence has a final system (which
we already knew from Theorem 10.1). In fact, it is not to difficult to prove that all polynomial
functors are bounded.

2. A prototypical example of a functor that is not polynomial, P, is bounded by A/ (Examples
6.8). Hence a final Ps-system exists.

3. Similarly, the functor F(S) = (P;(S))* of image finite labelled transition systems (Section 3)
is bounded, and thus has a final system (P, 7). Using a word from the world of programming
semantics [Mil75], we call the elements of P (image finite) processes. O

In the same way, one can find sets of generators for all possible combinations of the basic functors
mentioned above:

Theorem 10.6 For all functors that we can build from the following basic functors: the polyno-
mial ones (A, I, +, x, (=)*), and Py, a set of generators ewists. Consequently, all these functors
have a final coalgebra. O

The proof of the existence of a final system for bounded functors is more general but at the same
time less constructive than the first method, for continuous functors, where explicit descriptions
of final systems (as in Examples 10.2) can be easily given. In general, we have no such concrete
characterizations for the final systems of functors involving Py, such as the set of processes in
Examples 10.5. (See however [RT94] for a description of a final system for Py as a subset of an
inverse limit.)

11 Examples of coinductive definitions

We mention the general principle of coinductive definitions and give a few examples.

Let S be a set and (P, m) a final F-system. Given a transition structure a : § — F(S) there
exists by the finality of P a unique homomorphism f, : S — P. Thus, specifying a transition
structure a on S uniquely defines a function f, : § — P which is consistent with that specification
in that it is a homomorphism:

We say that the function f, is defined by coinduction from (the specification) a. As we shall see
shortly, a gives ‘the first step’ of the action of f,. Therefore f, is sometimes called the coinductive
extension of a.

Examples 11.1 Typically the coinduction definition principle is used to define functions from
(products of) a final system to itself. Here are a few examples.

32



1.

Zipping’ two infinite streams: Recall from Examples 10.2 that the system (A%, (h,t)) of
infinite streams over A is final for the functor F(S) = A x S. In order to define a function
fzip that merges two streams into one by alternatingly taking an element from the first and
the second, we define a transition structure zip : (A¥ x A¥) —» A x (A¥ x A¥) by

zip{v,w) = (a,{w,v')), where (h,t)(v) = (a,v').

Then by coinduction there exists a unique homomorphism f,;, : AY x A — A“. Because it
is a homomorphism, it satisfies

(b, t)( faipla - 0", w)) = (a, feip(w,v'))

Note that this equation expresses the fact that f,;, is a consistent extension of zip: it repeats
infinitely often the first step of zip, namely taking the first element from the left stream and
swapping the remainder of the left stream with the right stream.

‘Zipping’ two infinite streams: We repeat the same example with a small variation of pre-
sentation. Rather than defining the function zip directly, we specify the corresponding
transitions in A x A“ by means of the following conditional rule

(v,w) = (w,v")

We use the symbol — for the transitions in A (determined by the function (h,t)), and
the symbol = for the transitions in A“ x A% that we are defining. The rule should be read
as: if the transition of the premise (upper part) is possible, then so is the transition of the
conclusion (lower part). Then = is formally defined as the smallest relation on A¥ x A*
that satisfies this rule. From =, we derive an alternative definition of the function zip, by
putting

zip(v, w) = (a, (w,v')) <= (v,w) = (w,v').
The function f,;, can now be conveniently characterized by the rule

a !
v —

3
.fzip<v7w> L’ fzip(wvv’>
which is identical in shape to the rule that has been used in the definition of zip.

Defining concrete infinite streams: Let in the previous example a and b be elements of A.
The infinite streams (ab)* and (ba)“ can be formally introduced by putting a transition
structure on the set 2 = {0, 1} as follows:

0=%1and1==0.

By coinduction there there exists a unique homomorphism f: 2 — A satisfying:

£(0) =5 (1) and (1) == £(0).

Now put (ab)® = f(0) and (ba)* = f(1). Similarly one defines a* and b“.

33



4. Concatenation of streams: The system (A7) of finite and infinite streams over A is final
for the functor F(S) =14 (A x S) (Examples 10.2). The concatenation of two streams can
be defined by specifying the following transitions on A® x A* (using a notation similar to
that of the previous example):

v - v v| and w - w' wv]| and w|

(v,w) == (v, w) (v,w) == (v,w') (v, w)l}

(The transitions in the premises correspond to the transition structure .) As before, this
defines a transition structure conc: A® x A® — 1+ (A x A™®), by

* if (v, w){}
(a, (v, w")) if (v,w) == (v, w').

cone(v, w) = {

By coinduction, there exists a unique function feone : A® X A® — A, For notational
convenience, we shall write v - w = feone{v,w). Again the resulting function f.,n. satisfies
the same (in shape, that is) rules that have been used in the definition of conc above:

v — o v| andw —— w' v | and w]

a a
veow — v -w veow — v-w v-w]

Note that v -e€ = € - v = v does not come out of this characterization immediately: we shall
prove it in Section 12 using the coinduction proof principle.

5. Concatenation of other structures: Without mentioning the details, let us observe that
concatenation of other structures like trees or processes (Examples 10.5) can be defined in
essentially the same way as the previous example.

6. Addition of natural numbers: A special case of concatenation of streams is obtained by taking
A = 1. Now the functor looks like F(S) =1+ S5 (since 1+ (Ax S)=1+(1xS5)=1+85.)
Recall from Examples 10.2 that it has (N, pred), the extended natural numbers, as a final
system. We write & for the function f.,,. in this case, which satisfies as before

n—n' n| andm-—m' n| andm|

ndem—n'E&m nPm—neEm nem)
We shall prove in Section 12 that @ indeed is (a coinductively defined version of) addition.

7. Merging two processes: The system of nondeterministic processes (P,w) is final for the
functor F(S) = A — P;(S) (Examples 10.5). In the same style as above, we define a merge
(or interleaving) operation on P x P by specifying the following transitions:

p— p qg— ¢ pl andgql
(pg) = (0,q) (p,q) = (p.¢) (p, )l

As before, this determines a transition structure merge : P — (A — Pz(P)). (Note that
one has to check that the transition relation = is image finite, which is immediate from
the fact that — is.) By coinduction, there exists a function fierge : P X P — P, which is
characterized by

p—p g q pl and gl
fmerge<p7q> i) fme’rge<plaq> f’me’rge<paq> L) fmer_qe(p: ql> fmerge(p:q>l

The merge of two processes is sometimes called parallel composition.

34



A common feature of all the examples above is that the definition of a function f : S — P by
coinduction amounts to the definition of a transition structure a : S — F(S). A good under-
standing of coinduction, therefore, should be based on a thorough knowledge of transition system
specifications, of which we have seen examples above. The classification of schemes or formats of
such transition system specifications (as in, e.g., [GV92] and [vG96]) could be called the study of
corecursion, in the same way as recursion theory studies schemes for inductive definitions. See also
[MD97] for some further thoughts on corecursion in the context of non-wellfounded set theory.

12 Examples of proofs by coinduction
Recall from Section 8 the coinduction proof principle, for a system S:
for every bisimulation R on §, R C Ag.

As we have seen, the principle is valid for all simple systems and hence for all final systems. It is
quite a bit more powerful than one might suspect at first sight.

Examples 12.1 Typically the coinduction proof principle is used to prove properties of coinduc-
tively defined functions, such as the ones defined in Examples 11.1.

1. Zipping’ infinite streams: We prove that zip{a®, b*) = (ab)®. The relation R C A¥ x A,
consisting of the following two pairs

R = {(zip(a®, b*), (ab)*), (zip(b*, a*), (ba)*)}
is a bisimulation: We have to prove (cf. Section 3) for all a in A and (v, w) in R:
(a) v - o' and w 5 w' = (W', w') € R.
Consider the first pair of R. The only transition step of its left component is
zip(a®, b*) - zip(b¥, a*),
whereas its right component can take the step
(ab)¥ —% (ba)®.

The pair of resulting states, (zip(b”, a*), (ba)*), is again an element of R. Thus we have
proved that the first pair in R has the bisimulation property. Similarly for the second
pair. Now A% is final and hence satisfies the coinduction proof principle, which tells us that
R C A 4, proving the equality we were after.

2. Concatenating the empty stream: For any finite or infinite stream v € A, left concatenation
with the empty stream e is the identity, because R = {{e - v, v) | v € A*®} is easily shown
to be a bisimulation on the final system A; that is (cf. Section 3), for all (v, w) in R, (a)
above holds as well as

(b) v| <= wl|.
Similarly, right concatenation with € is the identity.
3. Concatenation of streams is associative: This follows by coinduction from the fact that

R={((u-v) w, u-(v-w))|u,v,w € A*}

is a bisimulation relation on A*. Rather than showing this, it turns out to be convenient to
prove that S = RU A4~ is a bisimulation. Consider a pair in S. If it is in A4~ then there

35



is nothing to prove since by Proposition 5.1, the diagonal is a bisimulation. Otherwise, the
pair is of the form ((u-v) - w, u-(v-w)) in R. If u = € then it follows from the previous
example that

(e-v) - w=v-w= € (v-w),

which implies that our pair is in A 4« after all, bringing us back to the case we have already
considered. If u is not the empty sequence, it can take an a step to u', for some a and u'.
In that case, there are transitions

(u-v)- w5 (u-v)-w, andu-(v-w) == u'-(v-w),

which concludes the proof since the resulting pair is in R again. The reader is invited to
prove directly that R (without taking the union with A 4« ) is a bisimulation. This is quite
possible but involves a few more case distinctions (as to whether v and w are empty or not).

. Concatenation of trees and processes is associative: by similar proofs.

. Addition of natural numbers: In Examples 11.1, addition () on the (extended) natural
numbers N has been defined in terms of concatenation. Here we show that © has the
usual properties in terms of the successor function. Let s : A/ — A be the inverse of
pred : (1 +N) — N, restricted to N'. Thus it is defined as usual, with s(co) = co. Because

pred(s(n)) = n there is a transition s(n) — m, for any n in A/. The following holds, for
any n and m in A

(a) 0@&m=m

(b) s(n) @ m = s(n&m).
The first statement follows from example 2. above. The second follows by coinduction on N
from the fact that B = {(s(n) ®m, s(n®m)) [n,m € A} U A is a bisimulation, which

is immediate since both s(n) ®m and s(n@®m) can take a step to n®m, and (n Bm, n & m)
is in AN. Note that it follows from the previous example that addition is associative.

. Addition of natural numbers is commutative: Not much of a surprise, really. But just for the
fun of it, we present a proof by coinduction (which the reader may want to compare with
the more familiar proof using mathematical induction). We prove, for all n and m,

(a) m & s(m) = s(n) & m: This follows by coinduction from the fact that
R={(n® s(m), s(n) & m) | n,mGN}UAN

is a bisimulation: Consider a pair (n @ s(m), s(n)@®m). If n = 0 then both components
make a transition to 0 @ m and we are done, since (0 & m, 0 & m) € A./V' Otherwise,
we have transitions

n @ s(m) — pred(n) & s(m), and s(n) ®m — n & m.
Now note that (pred(n) & s(m), n ®@m) = (pred(n) & s(m), s(pred(n)) & m), which is
in R.
(b) n@® m = m @ n: Using statement (a) as a lemma, we prove that the relation
Q={nem, men)|nmeN}

is a bisimulation. Counsider a pair (n @ m, m ® n) and suppose that both are different
from 0 (the other three cases are trivial), say, n = s(n') and m = s(m'). Then there

are transitions
n®&m-—n' ®m, and mPn — m' @ n.
Now observe that
n'®@m = n' ®s(m') = [the lemma (a)] s(n') &m' = n®m/,

which implies that (n’ @ m, m' ®n) is in Q.

36



(Clearly, concatenation of streams over a set A with more than one element is generally not
commutative.)

7. The merge of processes: is commutative, since R = {{fmerge(P; @), fmerge(a,p)) | P,q € P}
is a bisimulation.

13 Induction and coinduction

Why did we call the coinductive proof principle of Section 8 by that name? How does it relate to
induction? In short, coinduction is dual to induction in the following sense. Recall that a system
S satisfies the coinduction proof principle if and only if it satisfies one of the following two (by
Theorem 8.1) equivalent conditions:

1. S is simple, that is, it has no proper quotients.
2. For every bisimulation relation R on S, R C Ag.

There is also the following dual proof principle for algebras. We say that an algebra A satisfies
the induction proof principle whenever one of the following two conditions, which turn out to be
equivalent, holds:

3. A is minimal, that is, it has no proper subalgebras.
4. For every congruence relation R on A, A4 C R.

To make this more precise, we shall give the categorical definitions of algebra, homomorphism of
algebras, and congruence relation, which are the algebraic counterparts of the coalgebraic notions
of coalgebra, homomorphism of coalgebras, and bisimulation, respectively (cf. Section 1). Then
the equivalence of 3 and 4 is proved. Next these notions and the induction principle are illustrated
by the example of the natural numbers, which will make clear that the above, somewhat abstractly
formulated induction principle, is just the familiar principle of mathematical induction.

Let F : Set — Set be a functor. An F-algebra is a pair (A, a4) consisting of a set A and a
function a4 : F(A) — A. Let (A,a4) and (B, ap) be two F-algebras. A function f: A — Bisa
homomorphism of F-algebras if foas = ago F(f):

Fa) 2YL p()

;

Intuitively, homomorphisms are functions that preserve the F-algebra structure. An F'-congruence
relation between two F-algebras (A,a4) and (B,ap) is a subset R C A x B for which there
exists an F-algebra structure ag : F(R) — R such that the projections from R to A and B are
homomorphisms of F-algebras:

aa
A f

F(A)<—~ F(R) —= F(B)

-

R

™1 ™2

(This definition of congruence is not to be confused with a congruence equivalence relation, which
is an equivalence relation on one and the same algebra that is moreover respected by the operators.
In fact, the above definition is more general.)

37



Example 13.1 Any ¥-algebra [Coh81] is an F-algebra for a suitable choice of F' (see, for instance,
[RT94]). Here we look at one particular type of algebras, namely triples (A, 04 € A, s4: A — A)
consisting of a (carrier) set A, a constant 04, and a unary (successor) function s4. A concrete
example are the natural numbers (A, 0,s). Such algebras can be represented as algebras of the

functor FI(X) =1+ X, by defining
aA:(]—}—A)—>A7 * > 04, al—).sA(a).

If we have two such algebras (A, 04 € A, sa: A — A) and (B, Og € B, sg : B — B) and represent
them as F-algebras (A,a4) and (B, ap), then one readily verifies that a function f: A — Bisa
(1 + —)-homomorphism from (A4,a4) to (B,ap) if and only if it satisfies the usual definition of
homomorphism:

f(04) =0p, f(sal(a))=sp(f(a)).

Similarly, it is easy to prove that a (1 + —)-congruence relation R C A x B between (A, a4) and
(B, ag) is substitutive:

(04,08) € R, (a,b) € R= (sa(a),sp(b)) € R.
O

As already mentioned above, an F-algebra A satisfies the induction proof principle if it satisfies
clauses 3 and 4, which are next shown to be equivalent: If R is a congruence on A then m; (R)N7wy(R)
is a subalgebra of A. Assuming 3, this subalgebra is equal to A, or equivalently, Ay C R. This
proves 4. Conversely, if A’ C A is a subalgebra and i : A’ — A is the inclusion homomorphism
then the kernel of i is easily shown to be a congruence on A’, and hence on A. Assuming 4,
A, C R, which implies A C A’.

We have seen that all final systems are simple and hence satisfy the coinduction proof principle.
Dually, an initial algebra (for which there exists precisely one homomorphism into any given
algebra) is minimal and hence satisfies the induction principle.

Example 13.1, continued: The algebra (N0, s) of the natural numbers is initial and hence
minimal. Now minimality amounts to the well-known principle of mathematical induction: for all

PCWN,
ift 0€P and:forallneN (ne P = s(n)€P) then: P =N,

since the if-part of the implication is just the assertion that P is a subalgebra of N. O

Note that for proofs by induction, formulation 3 is mostly used, whereas proofs by coinduction
are best given, as we have seen in Section 12, using 2 (which is the dual of 4 rather than 3).

Although we have only compared induction and coinduction as proof principles, the corre-
sponding definition principles are similarly related. The main observation there is that definitions
by induction use the universal property of initiality, as opposed to definitions by coinduction,
which are based on finality.

14 Comparing systems

Any deterministic system is a special kind of nondeterministic system. Similarly, any binary tree
can be turned into a deterministic system by ‘cutting away’ all left branches.

Such statements can be formalized using the the following (categorical) notion. Let F' : Set —
Set and G : Set — Set be two functors. A natural transformation v from F to G, denoted by

38



v: F—G,is afamily {vs : F(S) — G(S) | S € Set} of functions satisfying the following naturality
property: for any function f: S — T, the following diagram commutes:

Any F-system (S,ag) can now be viewed as a G-system by composing ag with vg. Moreover, if
f:(S,as) = (T,ar) is an F-homomorphism then it is also a G-homomorphism of the resulting
G-systems; and, similarly, any F-bisimulation between F-systems is also a G-bisimulation of the
resulting systems:

s— 7T o S R T

-k

F(f) F(T F(S

|

) ) (
) ) (§

as

FlS )mF(R)mF(l;)T
) ey W) 55 G(T).

G G

(
(S

— G(T
G(f)

The above is summarized in the following. (Recall—Corollary 5.6—that ~5 denotes the greatest
F-bisimulation between two systems.)

Theorem 14.1 A natural transformation v : FF—G between set functors induces a functor, de-
noted by v o (=) : Setp — Setg which maps (S,as) to (S,vg o a) and an F-homomorphism
f:(S,as) = (T,ar) to the G-homomorphism f : (S,vs o ag) — (T,vr o ar). Moreover, this
functor preserves bisimulations: for any s and t, s ~pt = s ~qgt. O

Examples 14.2 A few examples of the use of natural transformations.

1. Relabeling: Any function [ : A — B induces a natural transformation A : A x (—=)—B x (—),
defined for a set S by Ag(a,s) = (l(a),s). Let ag : S - (Ax S)and ay : T — (B xT)
be deterministic transition systems with labels in A and B, respectively. Then a (B x (—))-
homomorphism f : (S, s o ag) — (T, ar) is characterized by

s—D s’ = f(s) 1 f(s),

2. Restriction: Let pg : Pf((AU B) x S)— Py(B x S) be defined, for any set S and V C S
by us(V) =V N (B x S). Then composing a nondeterministic transition system ag : S —
Ps((AUB) x S) with pug amounts to restricting its behavior to B-steps only.

Given, conversely, a G-system (C,~), there exist, under some conditions on F, a corresponding
F-system (Sc¢,a) that when viewed as a G-system (S¢,vs, o «), ‘resembles’ (C,v) most. More
precisely:

Theorem™ 14.3 Let F and G be functors and v : F—G a natural transformation. Suppose that
for any set V| the functor V X F' has a final system (where V is the constant functor that sends any
set to V). Then there exists for any G-system (C,~) an F-system (S¢,a) and a G-homomorphism
€: (Sc,vs, o) = (C,7) satisfying the following universal property: for any F-system (U, ay)

39



and any G-homomorphism f : (U,vy o ay) — (C,v) there exists a unique F-homomorphism

f:(U,ay) = (Sc,a) such that eo f = f:

The F-system (S¢, ) (and €) is called cofree on the G-system (C,~). Note that the functor V x F
is bounded whenever F' is, in which case a (V' x F)-final system exists by Theorem 10.4.

Proof: By assumption, § x F' has a final system (T,7). Let 7 = (m, ma), where my : T — S
and g : T — F(T'). By Theorem 14.1, (T, vy o mg) is a G-system. Let B={t € T |t ~g m (1)}
Define (S, ) = [B], the largest F-subsystem of (7', 72) that is contained in the subset B:

S¢ ——=T

where ¢ is the inclusion F-homomorphism. It is by Theorem 14.1 also a G-homomorphism i :
(Sc,vs, o ) = (T,vy omy). By Theorem 2.5, its graph is a G-bisimulation, hence ¢ ~¢ i(c) for
any ¢ in Sg. By definition of B also i(¢) ~¢g m (i(¢)), and because composition of bisimulation
relations is again a bisimulation (Theorem 5.4), it follows that ¢ ~¢ 71 (i(c)). Therefore the graph
of 7 o is a G-bisimulation, and so m o7 : (S¢,vs, 0o @) — (C,~) is a G-homomorphism, by
Theorem 2.5. That is, the outer square below commutes:

1 ™1

Sc T C

1]

F(Sc) o F(T) g
uscl vr
G(Sc) T G(T) T G(O).

(Note that the right rectangle generally does not commute.) Define € = m oi. We claim that
(S¢,a) and e satisfy the universal property of the theorem: Consider any F-system (U, ay) and
G-homomorphism f : (U,vy o ay) — (C,v). By finality of T, there exists a unique S x F-
homomorphism h: U — T

S x F(U)

— S x
(SxF)(h)

Commutativity of this diagram implies that m o h = f and h : (Uyay) — (T,m) is an F-
homomorphism. By Theorem 2.5, its graph is an F-bisimulation and hence, by Theorem 14.1,

40



a G-bisimulation between (U,vy o ayy) and (T,vp o m3). Thus u ~g h(u), for any v € U.
Because f is a G-homomorphism, also u ~g f(u), again by Theorem 2.5. Because inverse and
composition of bisimulations yield bisimulations again (Theorems 5.2 and 5.4), it follows that
h(u) ~g f(u) = m(h(u)). Thus h(U) C B, which implies, by Proposition 6.5, that h factorizes
through S = [B]: there exists a unique F-homomorphism f: (U,ay) — (Sc¢, @) such that

By Theorem 14.1, it is also a G-homomorphism from (U, vy o ay) to (S¢,vs, o «). Since
cof=moiof=moh= f,

f is the F-homomorphism we have been looking for. Its uniqueness follows from that of A and the
factorization. a

(By a standard argument in category theory, it follows that the assignment of (S¢, ) to (C,~)
actually extends to a functor from Set to Setp, which is right adjoint to v o (—).)

Examples 14.4 We give a few examples of cofree systems.

1. A simple instantiation of Theorem 14.3 is obtained by taking G = 1, the functor that is
constant 1. Then there is only one natural transformation from a functor F' to 1, and the
functor it induces from Setp to Set sends each F-system to its carrier. (Recall from Section
3 that Set; = Set.) If F'is bounded then it follows from the construction above that, for
a set C, the final (C' x F)-system S¢ is cofree on C (cf. [Jac95]). We like to think of the
elements of C' as ‘colours’. In that view, S¢ can be regarded as a universally C-coloured
F-system: € : S¢ — C gives the colours of the states in S¢; and for any F-system U and
any ‘colouring’ f : U — C there exists a unique F-homomorphism f : U — S¢ which is
colour consistent: €o f = f:

v

T T T
U-->Sc——C.
3f

2. For a concrete example of the preceding situation, let F' = I, the identity functor. Then for
any set C, the system (h,t) : C* —» C x C¥ is a final (C x I)-system, and so t : C¥ — C¥,
with colouring h : C* — C| is cofree on the set C.

15 Cofreeness and covarieties of systems

We show how any subsystem of a cofree system determines a well-behaved class of systems, called
a covariety, and briefly illustrate how this can been seen as a way of system specification.

Let in this section F': Set — Set be a bounded functor, and C a set, of colours. Let S¢, with
colouring € : S¢ — C, be an F-system that is cofree on C. Recall from Examples 14.4 that we
can take for S¢ any final (C' x F)-system, which exists because C' x F' is bounded. Consider a
subsystem i : S — S¢. Let the class K(S) consist of all F-systems (U, ay) with the property that
for any colouring function f : U — C, the (by cofreeness uniquely determined) F-homomorphism

41



f factorizes though S:

(Note that f and € are functions and the other arrows are F-homomorphisms.) Such classes are
well behaved in the following sense.

Theorem* 15.1 The class K(S) of F-systems defined above is closed under the formation of
1. subsystems;
2. homomorphic images;

3. and sums. O

Such a class is called a covariety.
Proof:

1. Let U be a system in K(S) and j : U' — U a subsystem. Any colouring f': U' — C can be
extended to a colouring f : U — C such that foj = f'. Because eo foj= foj= f' the
unique extension of f' to an F-homomorphism from U’ to S¢ is f' = f o 5. Because U is in

K(S), f factorizes through S, and hence so does f’. Thus U’ is in K(S).

2. Let U be a system in K(S) and ¢ : U — U’ a surjective homomorphism. Any colouring
f': U" — C induces a colouring f = f' oq on U. Because €0 f'og= f'oq = f, it follows
from the cofreeness of S¢ that f = f' o q. Because U is in K(S) there exists g : U — S
such that i o g = f. The kernel K(q) is included in K(f), since f = f'ogq. The fact
that g is a surjective homomorphism, implies the existence (by Theorems 7.1 and 7.2) of a
homomorphism ¢’ : U' — S such that g' o ¢ = g. Since f’ oq = f =io0g=1i0g ogq,it
follows from the surjectivity of g that f’ =i og’. Thus U’ is in K(S).

3. A family of colourings {f;} on a family {U;} of systems in K(S) determines a colouring
> fi:>.;Ui — C. Because each of the induced homomorphisms fl factorizes through S,
their sum ", fl :>; Ui — S¢ is readily seen to factorize through S as well. a

Example 15.2 An example of such a class definition is obtained by taking F' = I, the identity
functor, and C = 2 = {0, 1}. The system ¢ : 2* — 2% with colouring h : 2* — 2, is cofree on the
set 2. Consider the following subsystem S of 2¢:

(01)* ——= (10)* OD 1D

-

The class K(S) contains all systems (U, ay) which consist of one and two cycles only: ayoay(u) =
u, for all w in U. O

Returning to the general case again, the following theorem is a kind of converse of the previous
one. It states that any covariety is determined by a subsystem of a cofree system.

Theorem™ 15.3 For any covariety K there exists a set of colours C' and a subsystem S of the
cofree F'-system Sc, such that K = K(S5).

42



Proof: Let K be a covariety. By assumption F'is bounded, say by a set C. Let Sc and e : So — C
be as before. Define a subsystem ¢ : S — S¢ by

S=J{fU)|UeKand f:U - C}.

(Recall that f(U) is a subsystem of S¢ by Theorem 6.3, and that the union of subsystems is again
a subsystem by Theorem 6.4.) Clearly,  C K(S). For the converse, first note that S € K: this
follows from the fact that S is the image of a homomorphism

q:ZUs—ng,

sES

where for each s in S an F-system U; € K and a colouring f, : U; — C have been choosen such
that s € .fs(Us); and where ¢ is determined by the homomorphisms f,. Now let T' be any F-system
in £(S), and t € T. The size of the subsystem (t) of T is bounded by that of C, because F' is
bounded by C. Thus there exists a colouring f : T' — C that is injective on (t). Because T' € K,
the induced homomorphism f factorizes through S via some homomorphism g:

Because f = e€oiog and f is injective on (¢), also g is injective on (t). Thus (t) = f((t)). Since
the latter is a subsystem of S, which we have shown to be in K, also (t) is in K. Because T is the
image of the homomorphism

Yty T

teT
which is determined by the inclusions of the subsystems (t) in T', it follows that T' € K. O

The above characterization of classes of systems is inspired by Birkhoff’s variety theorem for
algebras (cf. [MT92][Theorem 5.2.16]), which states that a class of algebras is closed under the
formation of subalgebras, quotients, and products, if and only if it is equationally definable. There
is also another theorem by Birkhoff, which asserts the soundness and completeness of a logical
calculus for equations of varieties. It is unclear what a counterpart of the latter should be for
systems.

For some specific types of systems, theorems similar to Theorem 15.3 exist. In particular,
it would be interesting to connect our covariety theorem to the characterizations, in [Gol93], of
certain classes of frames.

16 Dynamical systems and symbolic dynamics

The generality of the coalgebraic view on systems is further illustrated by a brief account of so-
called one dimensional discrete time dynamical systems (X, f), consisting of a complete metric
space X (with distance function dx) and a continuous function f : X — X. Such systems are
coalgebras of the identity functor on the category Met of complete metric spaces and continuous
functions between them. Thus we are changing the scene for the first time by looking at a category

43



Figure 1: The graph of f,, for u > 4.

different from Set. One of the main themes in the theory of dynamical systems is the systematic
study of orbits: if x € X then its orbit is the set

{z, f1(2), f2(2), f(2), ...},

where f"*1(z) = f(f"(x)). (In our terminology, the orbit of z is just the subsystem (z) of (X, f)
generated by the singleton z.) Questions to be addressed are, for instance, whether a point z is
periodic (z = f™(z), for some n > 0); whether there are many such periodic points and how they
are distributed over X (e.g., do they form a dense subset?); and whether orbits (z) and (y) are
similar if we know that = and y are close, that is, dx (z,y) is small. Here we shall briefly discuss
one important technique that is used in the world of dynamical systems to answer some of such
questions, called symbolic dynamics (cf. [BP96]), by giving a coalgebraic account of one particular
example, taken from [Dev86]. As it turns out, the notion of cofreeness plays a crucial role.

Let R denote the set of real numbers. The concrete example we shall consider is the quadratic

family of systems (R, f,), which are parameterized by a real number p, and for which f, is defined
by

fui R =R, fulz) = pa(l - o).

More specifically, we shall assume p to be fixed with p > 4. (The reason for this choice is that the
maximum p/4 in this case is strictly bigger than 1.) We shall write f for f,. Let a and b in R be
the points with f(a) =1 = f(b) and a < b.

A quick look at Figure 1 tells us that the dynamics of f on the intervals (—o0,0) and (1, +0c)
is easily understood: all orbits tend to —oc. The same applies to the interval (a,b), since it is
mapped by f to (1, 4+00), bringing us back to the previous case. Possibly more interesting dynamic
behavior may be expected from elements in the intervals [0, a] and [b,1]. Now note that f maps
each of these intervals bijectively to [0,1]. Consequently, [0,a] N f~*(a,b) and [b,1] N f1(a,b)
have uninteresting dynamics as well: those points are mapped by f2? to (1,+00), where all orbits
go to —oc. This leaves us with ([0,a] U [b,1]) N f~'([0,a] U [b, 1]), which consists of four closed
intervals. Continuing in this way, we find a set

oo

J = (0. U B, 1)),

i=0

which can alternatively be characterized as the largest subsystem of (R, f) that is contained in
[0,1]. Its dynamics can in a surprisingly simple way be explained using symbolic dynamics, which
we explain next using our own coalgebraic idiom.

44



Let 2 be the set {0,1} with the discrete metric (d2(0,1) = 1). As before we shall consider the
elements of 2 as colours. Consider the functor

2x —: Met - Met, X — 2x X,
where the Cartesian product is supplied with distance function

d({i, ), (4,y)) = da(i,5) +1/2 - dx (2,y).

The set of infinite sequences (2¥, (h,t)) (where h : 2¥ — 2 and ¢ : 2* — 2“ are the head and tail
functions), supplied with distance function

e (v,) = 3 2 1)

oo
i=0
is a final (2 X —)-system: a proof is omitted but can be given using the techniques for the solution

of metric domain equations of [AR89] and [RT93]. Consequently, (2¢,t) is a dynamical system
that is cofree on the metric space 2. Now define a colouring ¢ : J — 2 of J by

_J 0 ifzel0,q,
C(m)_{ 1 ifax e [b1].

By the universal property of the cofree system (2¢,t) there exists a unique homomorphism ¢ :
(J, f) — (2¥,t) with ho¢ = ¢. This homomorphism ¢ can readily be shown to be an isomorphism.

Thus (R, f) falls apart into two subsystems: (R — J, f), where all orbits tend to —oo, and
(J, f), whose dynamics is the same as that of (2¥,¢). The gain of this symbolic interpretation of
(J, f) is that the dynamics of (2¢,t) is well understood: it is the prototypical example of a chaotic
system.

17 Notes and related work

The use of final coalgebras in the semantics of systems (including automata and infinite data types
such as trees) dates back at least to [AM82]. Also Peter Aczel modelled (transition) systems as
coalgebras, in constructing a model for a theory of non-wellfounded sets [Acz88]. In a subsequent
paper on final coalgebras [AM89], a categorical definition of bisimulation was given. (Later we
found that a variation also occurs in [Ken88].) This categorical definition and the characterization
of (final coalgebras and) coinduction in terms thereof, has been the starting point of the present
paper. It generalizes and extends [Rut95], where part of the theory of universal coalgebra is
developed for the special case of labelled transition systems. That paper was preceded by joint work
with Daniele Turi [RT93, RT94, TR97] on final coalgebra semantics for concurrent programming
languages.

The aim of the present paper has been both to give an overview of some of the existing insights
in coalgebra as well as to present some new material. Below we briefly describe per section which
results have been taken from the literature.

Our references for universal algebra have been [Coh81] and [MT92]; for category theory, [ML71,
Bor94]. The definition in Section 2 of F-bisimulation is from [AM89]. Theorem 2.5 generalizes
[RT94][Proposition 2.8]. Most observations in Section 4 are standard in category theory (cf.
[Bar93]). Some of the results in Sections 5 and 6 are generalizations of similar observations
in [RT94] and [Rut95], on the category of labelled transition systems. The notion of bounded
functor is taken from [KM96], and is ultimately due to [Bar93]. Sections 7 and 8 generalize similar
results from [Rut95]. The results on final systems in Section 9 are from [RT93]. The results
presented in Section 10 are from [Bar93, Bar94], which build on [AMS89]. Their presentation
has been influenced by [Tur96] and [KM96]. The example of the extended natural numbers in
Sections 11 and 12 was developed jointly with Bart Jacobs and Bill Rounds. The comparison of
induction and coinduction in Section 13 extends the characterization in [RT94], which was given
in terms of congruences and bisimulations (see also [HJ96]). The recent work by Bart Jacobs on

45



coalgebraic specification [Jac95] and his use of cofreeness in a coalgebraic semantics for object-
oriented programming [Jac96b] have been a source of inspiration for the writing of Section 14.
The variety theorems of Section 15 answer a question raised in [Rut95]. Section 16 gives a a
coalgebraic account of the dynamics of the quadratic family of dynamical systems, which occurs
in [Dev86]. This section does not present any new results but for the observation that one of the
essential ingredients in symbolic dynamics is the notion of cofree system.

In addition to the references mentioned above, work on (final) coalgebraic semantics includes
[Tur96], which gives a systematic comparison of final coalgebra and initial algebra semantics for
concurrent languages; [Rei95], on object-oriented programming; [HL95], on a model for the lambda
calculus; [Len96], on a higher-order concurrent language; [Jac96a], on behaviour refinement in
object-oriented programming.

The following papers are using non-wellfounded sets as the starting point for semantics:
[Rut92], [Acz94], and [FHL94], on processes and non-wellfounded sets; [BM96], a recent text-
book on non-wellfounded sets and circularity; and [MD97], where corecursion is further studied in
that context.

Other categorical approaches to bisimulation include [Abr91], on a domain for bisimulation;
[WNO5], on categories of transition systems; [Pit94], [Fio96], and [Pit96], on mixed induction-
coinduction principles on domains in terms of relational properties; [HJ96], on functors on cat-
egories of relations; [JNW96], on a characterization of bisimulation in terms of open maps and
presheaves. In [BV96], a metric domain for bisimulation can be found.

Acknowledgements

The numerous conversations with Bart Jacobs over the past two years during his stay at the
CWI have greatly increased my understanding of category theory in general and of coalgebras in
particular. In addition to the above mentioned sections, also the idea of coalgebra as a general
theory of (dynamical) systems has been influenced by our intensive interaction. Many thanks to
Andrea Corradini, Jan van Eijk, Jan Heering, Furio Honsell, Wilfried Meyer Viol, Larry Moss,
Prakash Panangaden, Maarten de Rijke, Bill Rounds, Erik de Vink, for discussions; to Andrea
Corradini, Bart Jacobs, and Elena Marchiori, for detailed comments on a draft version of this
paper; to Kees van Kemenade, for making the picture in Section 16. As always, I have learned
much from the comments of the Amsterdam Concurrency Group, headed by Jaco de Bakker.

18 Appendix

This section is intended to give an overview of some basic facts on sets and categories, and also
to mention one or two facts that may be less familiar. (The latter are indicated as propositions.)
It is to be consulted when needed.

On sets

Composition of functions f: S — T and g : T — U is written as go f : S — U. We write 0 for
the empty set, and 1 = {*} for the one element set. The identity function on a set S is denoted
by 15 : S — §. The sets of natural numbers and integers are denoted by

N=1{0,1,2,...}, Z2={0,1,-1,2,-2,...}.
The set of functions between sets S and T is denoted by
ST ={f:5 -1}

Let A be any set. The following notation will be used for sets of streams (or sequences, or lists)
over A:

1. A*: the set of all finite streams of elements of A; € denotes the empty stream.

46



2. A*: the set of all non-empty finite streams.

3. A¥: the set of all infinite streams.

4. A>® = A* U A¥: the set of all finite and infinite streams.

5. AP = At U A%: the set of all non-empty finite and infinite streams.

Let S be any set and R an equivalence relation on S. Let the quotient set S/R be defined by
S/R ={[s]r | s € S}, with [s]r = {s' | (s,s') € R}. Let eg : S — S/R be the surjective mapping
sending each element s to its equivalence class [s]g. It is called the quotient map of R.

The diagonal (or equality) Ag of a set S is given by

As={(s,s) e SxS|seS}
Let f: S — T be any mapping. The kernel K(f) and the graph G(f) of f are defined as follows:
K(f)={(s,s") | f(s) = f(s")},
G(f) ={(s,f(s)) | s € S}.
For subsets V C S and W C T, let
fV)={f(s)| s eV},
F7HW) = {s] f(s) e W}

The set f(S) is called the image of f. More generally, for functions f : S — T and g : S — U, the
image of f and g is defined by

(£,9)(S) ={(f(s),9(s)) | s € S}.

Also the following notation will be used: for f: S - T, RCSxSand Q CT x T,
F(R) ={{f(s), f(s") | (s,8") € R},
F7HQ) = {(s,8") | (£(s), f(s") € Q).

Let S, T and U be sets, R C S x T a relation between S and T', and Q C T x U a relation between
T and U. The inverse R~ of R is defined by

R~ ={{t,s) | (s,t) € R},
and the composition Ro () of R and ( is defined by
RoQ={(s,u) |t €T, (s,t) € R and (t,u) € Q}.

Note the difference in order between function composition and relation composition.

On categories

Some familiarity with the following notions will be helpful (but is not strictly necessary for un-
derstanding the rest of the paper): category; functor; epi; mono; limit and colimit (in particular,
pullback, coequalizer, initial object, final object); opposite category; product of categories.

47



On the category of sets

The category of sets and functions between them is denoted by Set. It is complete and cocomplete,
i.e., all limits and colimits exist. A function is mono if and only if it is injective, and it is epi if
and only if it is surjective.

Proposition 18.1 Let F : Set — Set be an arbitrary functor. If f : S — T is mono and S is
non-empty, then F(f): F(S) — F(T) is mono as well.

Proof: Let sg € S and define g : T'— S by

(1) = s if there is (a unique) s € S with t = f(s),
g\ = sg otherwise.

Clearly, g o f = 15 and hence by functoriality of F, F(g) o F(f) = F(1s) = 1p(g). Thus F(f) is

injective, that is, mono. O

Below the functors that are used in this paper are described. First the basic functors are listed,
which next are used to define a number of composed functors:

1. The identity functor: I : Set — Set sends sets and functions to themselves.

2. The constant functor A, where A is any set, maps any set to the set A, and any function to
the identity function 14 on A.

3. Coproduct (or sum):
+ : Set x Set — Set
It maps two sets to their disjoint union; a pair of functions f : S — S" and g : T — T' is

mapped to f+¢g: (S+T) — (S'"+7T'), sending s in S to f(s) and t € T to g(t). The
coproduct of an indexed family of sets {S;}; is denoted by

> S
4. Product:

X : Set x Set — Set

It maps a pair of sets S and T to their Cartesian product S xT'; a pair of functions f : § — S’
and g : T — T" is mapped to f x g: (S xT) — (S' xT"), sending (s,t) to (f(s),g(t)).

5. Function space:
—: SetP x Set — Set
It maps a pair of sets S and T to the set S — T of all functions from S to T. A pair of
functions f: 8" — S and g: T — T’ is mapped to (f — g) : (S = T) — (S’ = T"), which
sends € S - T togogo f €S — T This functor will mostly be used with a fixed

choice, a set A say, for the left argument. Then it is denoted as follows:

(—)*: Set — Set.

48



6. Powerset:
P : Set — Set

It maps a set S to the set of all its subsets P(S) = {V |V C S}. A function f: S5 — T is
mapped to P(f) : P(S) — P(T), which is defined, for any V C S, by P(f)(V) = f(V). We
shall also encounter the finite powerset: P;(S) = {V |V C S and V is finite }.

7. Contravariant powerset:
P : Set? — Set

acts on sets as P does: P(S) = P(S). A function f: S — T is mapped to P(f) : P(T) —
P(S), which is defined, for any V C T, by P(f)(V) = f~1(V). Because

{V|vcs)y=2’

(by representing a subset by its characteristic function), the contravariant powerset functor
could equivalently be described as F(S) = 2°. (Note that the definition on functions would
indeed be the same.) The contravariant powerset functor will in particular be considered in
composition with itself:

PoP : Set — Set.
One easily verifies that a function f : § — T is mapped by this composition to
P(P(f)): P(P(8)) = P(P(I), V= A{WCT|f ' (W)eV}

Next a few examples are given of functors that are obtained by combining one or more of the basic
functors mentioned above:

1. Fi(S)=1+§8

2. Fy(S)=AxS

3. F3(S) =1+ (AxS)
4. Fy(S)=85x 8

5. F5(S) =P(A x S)

6. F5(S) = (B x §)A

7. F7(S)=14+((Ax S)x(AxS))

The definition of how these functors act on functions, follows from the definitions of the basic
functors above. For instance, the functor Fg sends a function f : S — T to the function (B x f)*,
which maps a function ¢ in (B x §)# to the function ¢ in (B x T)*, defined by ¢(a) = (b, f(s))
where ¢(a) = (b, s).

Next a few limit and colimit constructions in Set are described explicitly. A pullback of
functions f : S - Tand g : U — T is a triple (P, k: P —» S, l: P — U) with fok =gol
such that for any set X and functions i : X — S and j : X — U with foi = goj there exists a
unique (so-called mediating) function h: X — P with koh =i and l o h = j. In Set, a pullback

of functions f: S — T and g : U — T always exists: the set
P={(s,u) € SxU| f(s) = g(u)},

with projections 7; : P — S and 7y : P — U, is a pullback of f and g.

If (P, k,1) is a pullback of two functions f and g that are mono then k and ! are mono.

We shall also need the following notion: a weak pullback is defined in the same way as a
pullback, but without the requirement that the mediating function be unique. Weak and strong
are the same if all functions involved are mono:

49



Proposition 18.2 A weak pullback consisting of mono’s is an (ordinary) pullback. O

A coequalizer of two functions f : S — T and g : § — T is a pair (U,c : T — U) with
co f = co g such that for any function h : T — V with ho f = ho g there exists a unique function
i : U — V such that i o ¢ = h. Also coequalizers always exist in Set: The quotient of T" with
respect to the smallest equivalence relation on 7' that contains the set

{(f(s),9(s)) | s € S}

is a coequalizer of f and g. For a set S and an equivalence relation R on S, the quotient map
er : S — S/R can be readily seen to be the coequalizer of the projections from R to S:

— > g% §/R.

The following diagrams show how in Set, the diagonal of a set S, and the kernel and the graph of
a function f : S — T can be obtained as pullbacks:

As—>5 K(f)—=S G(f)—=35
wzl lls ﬂzl lf Ty lf
S —— S Ss——T, T—T.

1s ’ ir

The composition of two relations can be described by means of pullback and image as follows.
Consider two relations R and @)

U

T1 R T2 41 Q // g2
v N %
S T )

with projections r; and ¢;. If we first take a pullback
X
zy \’”2
R
m s © 7 a2
/ K¢ <
S T U,
then it is easy to see that the composition of R and @ is the image of r; o 1 and g2 o x5:

RoQ = (rioxy, g2 0ox)(X).
The union of a collection of relations {R; C S x T'}; can be obtained by means of coproduct and
image: consider
S -k >, R o T,

where k and [ are the componentwise projections. Then
URi= (k00 R).

The intersection of a collection {Vj}s of subsets of a set S can be constructed by means of a
generalized pullback, which is so to speak a pullback of a whole family of arrows at the same time,
as follows:

|k

Vk’ X > Sa
Zkl

where {ij : Vi, — S} are the inclusion mappings. Note that all functions are mono.

50



Proposition 18.3 Let F : Set — Set be a functor that preserves weak pullbacks, i.e., transforms
weak pullbacks into weak pullbacks. Then F' preserves intersections.

Proof: Because F preserves weak pullbacks, the diagram above is transformed by F' into a weak
pullback diagram:

F(Va) — F(Vi)

]

F(igr)
Because all functions in the original diagram are mono, and because F' preserves mono’s (Proposi-

tion 18.1), all functions in the second diagram are mono as well. By Proposition 18.2; the diagram
is again a pullback in Set. Thus F([), Vi) is (isomorphic to) (), F(V). O

As we shall see in Section 4 and Section 5, the requirement that functors preserve weak pullbacks
is needed at various places in the theory. Therefore it is worthwhile to examine which functors
have this property. First an easy proposition.

Proposition 18.4 If a functor F : Set — Set preserves pullbacks then it also preserves weak
pullbacks. O

Many (combinations of the) functors mentioned above preserve pullbacks and hence weak pull-
backs. To mention a few relevant examples: constant functors, identity, A x (=), A + (=), (=)
(where A ia an arbitrary set). The proofs are easy. For instance, it is straightforward to prove
that A X R, where R is the pullback of two functions f: S — U and g : T' — U, is the pullback
of the functions A X f: AXxS > AxUand Axg: AxT — AxU.

An exception is the (covariant) powerset functor: Consider 1 = {0} and 2 = {0, 1}, and let
f :2 — 1 be the unique constant function. Then

R = {(0,0), (0,1), {1,0), (1,1)}

is a pullback of f with itself, but P(R) is not a pullback of P f with itself. It is, however, a weak
pullback. More generally, it is not difficult to prove that P preserves weak pullbacks (cf. [Tur96]).

There is one functor in our list above that does not even preserve weak pullbacks. It is the
contravariant powerset functor composed with itself ( P o P). Take, for instance, S = {sy, s2, s3},
T = {t1,ta,t3}, U = {ug,us}, f: S — U defined by {s; — w1, 89 — uy1,s3 —us}and g: T — U
defined by {t; — w1, ta — ua,t3 — us}. Then the image of the pullback of f and g is not a pullback
and not even a weak pullback.

References

[Abr91] S. Abramsky. A domain equation for bisimulation. Information and Computation,
92(2):161-218, June 1991.

[Acz88] P. Aczel. Non-well-founded sets. Number 14 in CSLI Lecture Notes. Center for the
Study of Languages and Information, Stanford, 1988.

[Acz94] P. Aczel. Final universes of processes. In S. Brookes, M. Main, A. Melton, M. Mislove,
and D. Schmidt, editors, Proceedings of the 9th International Conference on Mathemat-
ical Foundations of Programming Semantics, volume 802 of Lecture Notes in Computer
Science, pages 1 28. Springer-Verlag, 1994.

[AM80] M.A. Arbib and E.G. Manes. Machines in a category. Journal of Pure and Applied
Algebra, 19:9 20, 1980.

o1



[AMS82]

[AMS89]

[ARS9)

[Bar93]

[Bar94]

[BMO6]

[Bor94]

[BPY6]

[BV96]

[Coh81]

[Dev86]

[FHL94]

[Fio96]

[Gol87]

[Gol93]

(GV92]

[HJ96]

[HLO5]

M.A. Arbib and E.G. Manes. Parametrized data types do not need highly constrained
parameters. Information and Control, 52(2):139 158, 1982.

P. Aczel and N. Mendler. A final coalgebra theorem. In D.H. Pitt, D.E. Ryeheard,
P. Dybjer, A. M. Pitts, and A. Poigne, editors, Proceedings category theory and computer
science, Lecture Notes in Computer Science, pages 357-365, 1989.

P. America and J.J.M.M. Rutten. Solving reflexive domain equations in a category
of complete metric spaces. Journal of Computer and System Sciences, 39(3):343-375,
December 1989.

M. Barr. Terminal coalgebras in well-founded set theory. Theoretical Computer Science,

114(2):299 315, June 1993.

M. Barr. Additions and corrections to “terminal coalgebras in well-founded set theory”.
Theoretical Computer Science, 124(1):189 192, February 1994.

J. Barwise and L.S. Moss. Vicious Clircles, On the Mathematics of Non-wellfounded
Phenomena. CSLI Lecture Notes. Center for the Study of Language and Information,
Stanford, 1996.

F. Borceux. Handbook of categorical algebra 1: basic category theory, volume 50 of
FEncyclopedia of mathematics and its applications. Cambridge University Press, 1994.

M.-P. Béal and D. Perrin. Symbolic dynamics and finite automata. Report IGM 96-18,
Université de Marne-la-Vallée, 1996.

J.W. de Bakker and E. de Vink. Control Flow Semantics. Foundations of Computing
Series. The MIT Press, 1996.

P.M. Cohn. Universal algebra, volume 6 of Mathematics and its applications. D. Reidel
Publishing Company, 1981.

R.L. Devaney. An introduction to chaotic dynamical systems. The Benjamin/Cummings
Publishing Company, 1986.

M. Forti, F. Honsell, and M. Lenisa. Processes and hyperuniverses. In I. Privara,
editor, Proceedings of the 19th International Symposium on Mathematical Foundations
of Computer Science, volume 841 of Lecture Notes in Computer Science, pages 352—-363.
Springer-Verlag, 1994.

M. P. Fiore. A coinduction principle for recursive data types based on bisimulation.

Information and Computation, 127(2):186-198, 1996.

R. Goldblatt. Logics of time and computation. Number 7 in CSLI Lecture Notes. Center
for the Study of Language and Information, Stanford, 1987.

R. Goldblatt. Mathematics of modality. Number 43 in CSLI Lecture Notes. Center for
the Study of Language and Information, Stanford, 1993.

J.F. Groote and F. Vaandrager. Structured operational semantics and bisimulation as
a congruence. Information and Computation, 100(2):202 260, October 1992.

C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting.
Preprint, 1996.

F. Honsell and M. Lenisa. Final semantics for untyped A-calculus. In M. Dezani-
Ciancaglini and G. Plotkin, editors, Proceedings of the 2nd Conference on Typed Lambda
Calculus and Applications, volume 902 of Lecture Notes in Computer Science, pages
249 265. Springer-Verlag, 1995.

52



[HP79)

[Jac95]

[Jac96a]

[Jac96b]

[Jac96¢]

[INW96]

[Kel76]

[Keng&8]

[KMO6]

[Len96]

[LS81]

[LS91]

[MASG6]

[Man76]

[MD97]

[Mil75]

[Mil80]

M. Hennessy and G.D. Plotkin. Full abstraction for a simple parallel programming
language. In J. Bec¢var, editor, Proceedings of 8th Symposium on Mathematical Foun-
dations of Computer Science, volume 74 of Lecture Notes in Computer Science, pages

108-120. Springer-Verlag, 1979.

B. Jacobs. Mongruences and cofree coalgebras. In V.S. Alagar and M. Nivat, editors,
Algebraic Methods and Software Technology, number 936 in Lecture Notes in Computer
Science, pages 245 260. Springer-Verlag, 1995.

B. Jacobs. Behaviour-refinement of object-oriented specifications with coinductive cor-
rectness proofs. Report CSI-R9618, Computing Science Institute, University of Ni-
jmegen, 1996. To appear in the proceedings of TAPSOFT97.

B. Jacobs. Inheritance and cofree constructions. In P. Cointe, editor, European Con-
ference on Object-Oriented Programming, number 1098 in Lecture Notes in Computer
Science, pages 210-231. Springer-Verlag, 1996.

B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C.B. Jones, C. Lengauer,
and H.-J. Schek, editors, Object-Orientation with Parallelism and Persistence. Kluwer
Academic Publishers, 1996.

André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps. In-
formation and Computation, 127(2):164 185, 1996.

R.M. Keller. Formal verification of parallel programs. Communications of the ACM,
19(7):371 384, 1976.

R.E. Kent. The metric closure powerspace construction. In M. Main, A. Melton, M. Mis-
love, and D. Schmidt, editors, Proceedings of the 3rd Workshop on Mathematical Foun-
dations of Programming Language Semantics, volume 298 of Lecture Notes in Computer
Science, pages 173-199, New Orleans, 1988. Springer-Verlag.

Y. Kawahara and M. Mori. A small final coalgebra theorem. 1996. To appear.

M. Lenisa. Final semantics for a higher-order concurrent language. In H. Kirchner,
editor, Proceedings of CAAP’96, volume 1059 of Lecture Notes in Computer Science,
pages 102 118. Springer-Verlag, 1996.

D.J. Lehmann and M.B. Smyth. Algebraic specification of data types: A synthetic
approach. Mathematical Systems Theory, 14:97 139, 1981.

K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and
Computation, 94:1-28, 1991.

E.G. Manes and M.A. Arbib. Algebraic approaches to program semantics. Texts and
monographs in computer science. Springer-Verlag, 1986.

E.G. Manes. Algebraic theories, volume 26 of Graduate Texts in Mathematics. Springer-
Verlag, 1976.

L.S. Moss and N. Danner. On the Foundations of Corecursion. Bulletin of the IGPL,
1997. Special issue on papers from WoLLIC 1995, to appear.

R. Milner. Processes: a mathematical model of computing agents. In H.E. Rose and
J.C. Shepherdson, editors, Logic Colloquium’73, volume 80 of Studies in Logic, pages
157 173. North-Holland, 1975.

R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, 1980.

93



[ML71]

IMT92]

[Par81]

[Pit9]

[Pit96]

[Plo81]

[Rei95]

[RT93]

[RT94]

[Rut92]

[Rut95)

[SP82]

[$593]

[TRO7]

[Tur96]

S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1971.

K. Meinke and J.V. Tucker. Universal algebra. In S. Abramsky, Dov.M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 1, pages
189-411. Oxford University Press, 1992.

D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor,
Proceedings 5th GI conference, volume 104 of Lecture Notes in Computer Science, pages
15 32. Springer-Verlag, 1981.

A.M. Pitts. A co-induction principle for recursively defined domains. Theoretical Com-
puter Science, 124(2):195 219, 1994.

A.M. Pitts. Relational properties of domains. Information and Computation, 127(2):66
90, 1996.

G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19,
Aarhus University, Aarhus, September 1981.

H. Reichel. An approach to object semantics based on terminal coalgebras. Mathematical
Structures in Computer Science, 5:129-152, 1995.

J.J.M.M. Rutten and D. Turi. On the foundations of final semantics: non-standard sets,
metric spaces, partial orders. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg,
editors, Proceedings of the REX Workshop on Semantics: Foundations and Applica-
tions, volume 666 of Lecture Notes in Computer Science, pages 477 530, Beekbergen,
June 1993. Springer-Verlag. FTP-available at ftp.cwi.nl as pub/CWIreports/AP/CS-
R9241.ps.Z.

J.J.M.M. Rutten and D. Turi. Initial algebra and final coalgebra semantics for concur-
rency. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proceedings of
the REX School/Symposium ‘A decade of concurrency’, volume 803 of Lecture Notes in
Computer Science, pages 530 582. Springer-Verlag, 1994. FTP-available at ftp.cwi.nl
as pub/CWTIreports/AP /CS-R9409.ps.Z.

J.J.M.M. Rutten. Processes as terms: Non-well-founded models for bisimulation. Math-
ematical Structures in Computer Science, 2(3):257 275, 1992.

J.J.M.M. Rutten. A calculus of transition systems (towards universal coalgebra). In
A. Ponse, M. de Rijke, and Y. Venema, editors, Modal Logic and Process Algebra, a
bisimulation perspective, volume 53 of CSLI Lecture Notes, pages 231-256, Stanford,
1995. CSLI Publications. FTP-available at ftp.cwi.nl as pub/CWIreports/AP/CS-
R9503.ps.Z.

M.B. Smyth and G.D. Plotkin. The category-theoretic solution of recursive domain
equations. SIAM Journal of Computation, 11(4):761 783, November 1982.

G. Schmidt and T. Strohlein. Relations and graphs, discrete mathematics for computer
scientists. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, New
York, 1993.

D. Turi and J.J.M.M. Rutten. On the foundations of final coalgebra semantics: non-
well-founded sets, partial orders, metric spaces. Mathematical Structures in Computer
Science, 1997. To appear.

D. Turi. Functorial operational semantics and its denotational dual. PhD thesis, Vrije
Universiteit, Amsterdam, September 1996.

o4



[vG96]

[vGSS95]

[WNO3]

R. van Glabbeek. The meaning of negative premises in transition system specifications
II. Report STAN-CS-TN-95-16, Department of Computer Science, Stanford University,
1996. Extended abstract in: Automata, Languages and Programming, Proceedings 23th
International Colloquium, ICALP ’96, Paderborn, Germany, July 1996 (F. Meyer auf
der Heide and B. Monien, eds.), LNCS 1099, Springer-Verlag, 1996, pp. 502-513.

R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative, and stratified
models of probabilistic processes. Information and Computation, 121:59 80, 1995.

G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, Dov M. Gabbay,
and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 4, pages
1 148. Oxford Science Publications, 1995.

95



