
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Universal coalgebra: a theory of systems

J.J.M.M. Rutten

Computer Science/Department of Software Technology

CS-R9652 1996

Report CS-R9652
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Universal Coalgebra:a Theory of SystemsJ.J.M.M. RuttenCWIP.O. Box 94079, 1090 GB Amsterdam, The Netherlandsemail: janr@cwi.nl, http: www.cwi.nl/�janrAbstractIn the semantics of programming, �nite data types such as �nite lists, have traditionallybeen modelled by initial algebras. Later �nal coalgebras were used in order to deal with in�nitedata types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover,as models for certain types of automata and more generally, for (transition and dynamical)systems.An important property of initial algebras is that they satisfy the familiar principle ofinduction. Such a principle was missing for coalgebras until the work of Aczel (1988) ona theory of non-wellfounded sets, in which he introduced a proof principle nowadays calledcoinduction. It was formulated in terms of bisimulation, a notion originally stemming fromthe world of concurrent programming languages (Milner, 1980; Park, 1981). Using the notionof coalgebra homomorphism, the de�nition of bisimulation on coalgebras can be shown to beformally dual to that of congruence on algebras (Aczel and Mendler, 1989).Thus the three basic notions of universal algebra: algebra, homomorphism of algebras,and congruence, turn out to correspond to: coalgebra, homomorphism of coalgebras, andbisimulation, respectively. In this paper, the latter are taken as the basic ingredients of a the-ory called universal coalgebra. Some standard results from universal algebra are reformulated(using the afore mentioned correspondence) and proved for a large class of coalgebras, leadingto a series of results on, e.g., the lattices of subcoalgebras and bisimulations, simple coalgebrasand coinduction, and a covariety theorem for coalgebras similar to Birkho�'s variety theorem.AMS Subject Classi�cation (1991): 68Q10, 68Q55CR Subject Classi�cation (1991): D.3.1, F.1.2, F.3.2Keywords & Phrases: Coalgebra, algebra, dynamical system, transition system, bisimulation,universal coalgebra, universal algebra, congruence, homomorphism, induction, coinduction.

1

Contents1 Introduction 32 Coalgebras, homomorphisms, and bisimulations 63 Systems, systems, systems, : : : 94 Limits and colimits of systems 165 Basic facts on bisimulations 206 Subsystems 237 Three isomorphism theorems 258 Simple systems and coinduction 279 Final systems 2810 Existence of �nal systems 2911 Examples of coinductive de�nitions 3212 Examples of proofs by coinduction 3513 Induction and coinduction 3714 Comparing systems 3815 Cofreeness and covarieties of systems 4116 Dynamical systems and symbolic dynamics 4317 Notes and related work 4518 Appendix 46

2

1 IntroductionIn the semantics of programming, data types are usually presented as algebras (cf. [LS81]). Forinstance, the collection of �nite words A� over some alphabet A is an algebrahA�; � : (1 + (A�A�))! A�i;where � maps � (the sole element of the singleton set 1 = f�g) to the empty word and a pair ha; wito a �w. This example is typical in that A� is an initial algebra. Initial algebras are generalizationsof least �xed points, and satisfy familiar inductive proof and de�nition principles.For in�nite data structures, the dual notion of coalgebra has been used as an alternative tothe algebraic approach [AM82]. For instance, the set A1 of �nite and in�nite words over A canbe described by the pairhA1; : A1 ! (1 + (A�A1))i;where maps the empty word to � and a non-empty word to the pair consisting of its head (the�rst letter) and tail (the remainder). It is a coalgebra because is a function from the carrierset A1 to an expression involving A1, that is, 1 + (A � A1), as opposed to the algebra above,where � was a function into the carrier set A�. Again the example is typical because A1 is a �nalcoalgebra, which generalizes the notion of greatest �xed point.Coalgebras had previously been found to be suitable for the description of the dynamics ofsystems such as deterministic automata (cf. [AM80, MA86]). Traditionally these are representedas tupleshQ; A; � : Q�A! Q; � : Q! Bi;consisting of a set of states Q, an input alphabet A, a next state function �, and an output function� (in addition an initial state is often speci�ed as well). Alternatively, such an automaton can berepresented as a coalgebra of the formhQ; � : Q! (QA �B)i;where QA is the set of all functions from A to Q, and � can be de�ned in an obvious manner from� and � (and vice versa). Coalgebras are nowadays also used to describe the behaviour of classesin object-oriented languages, see [Rei95] and [Jac96b, Jac96c].Similarly, Peter Aczel uses a coalgebraic description of (nondeterministic transition) systemsin constructing a model for a theory of non-wellfounded sets [Acz88]. Maybe more importantly, healso introduces a proof principle for �nal coalgebras called strong extensionality. It is formulatedin terms of the notion of bisimulation relation, originally stemming from the �eld of concurrencysemantics [Mil80, Par81]. Using the notion of coalgebra homomorphism, the de�nition of bisimula-tion can be shown [AM89, RT94] to be formally dual to that of congruence on algebras. Moreoverone can formulate de�nition and proof principles for �nal coalgebras (generalizing Aczel's princi-ple of strong extensionality), which are the coalgebraic counterpart of the inductive principles forinitial algebras, and which therefore are called coinductive [RT93].These observations, then, have led to the development in the present paper of a general theoryof coalgebras called universal coalgebra, along the lines of universal algebra. Universal algebra (cf.[Coh81, MT92]) deals with the features common to the many well-known examples of algebrassuch as groups, rings, etc. The central concepts are �-algebra, homomorphism of �-algebras,and congruence relation. The corresponding notions [RT94] on the coalgebra side are: coalgebra,homomorphism of coalgebras, and bisimulation equivalence. These notions constitute the basicingredients of our theory of universal coalgebra. (More generally, the notion of substitutive relationcorresponds to that of bisimulation relation; hence congruences, which are substitutive equivalencerelations, correspond to bisimulation equivalences.) Adding to this the above-mentioned observa-tion that various dynamical systems (automata, transition systems, and many others as we shallsee) can be represented as coalgebras, makes that we speak of universal coalgebra as a theory of3

systems . We shall go even as far as, at least for the context of the present paper, to considercoalgebras and systems as synonyms.The correspondence between the basic elements of the theories of algebra and coalgebra aresummarized in the following table:Universal algebra: Universal coalgebra:(�-)algebra coalgebra = systemalgebra homomorphism system homomorphismsubstitutive relation bisimulation relation(congruence relation) (bisimulation equivalence)As mentioned above, universal algebra plays a guiding role in the development of universal alge-bra as a theory of coalgebras (= systems). Much of this involves replacing the central notionsfrom universal algebra by the corresponding coalgebraic notions, and see whether the resultingstatements can actually be proved. Often, facts on �-algebras turn out to be valid (in their trans-lated version) for systems as well. Examples are basic observations on quotients and subsystems,and the so-called three isomorphism theorems. In other cases, more can be said in the world ofcoalgebras about the dual of an algebraically important notion than about that notion itself. Forinstance, initial algebras play a role of central importance. Initial coalgebras are usually trivialbut �nal coalgebras are most relevant. A related example: initial algebras are minimal : theyhave no proper subalgebras. This property is equivalent to the familiar induction proof principle.Dually, �nal coalgebras are simple: they have no proper quotients, which can be interpreted as aso-called coinductive proof principle.In a previous paper [Rut95], the above programme has been carried out for one particularfamily of systems: unlabelled nondeterministic transition systems (also called frames). As itturns out, all observations on such systems apply to many other kinds of systems as well, such asdeterministic and nondeterministic automata, binary systems, and hyper systems. Also the aforementioned in�nite data structures, which can be interpreted as dynamical systems as well, areexamples to which the theory applies.All these di�erent examples can be conveniently described in one single framework, using(some basic) category theory. Each of these classes of systems turns out to be the collection ofcoalgebras of a particular functor , and di�erent functors are needed for di�erent types of systems.In that respect, the world of universal algebra is simpler because of the existence of a general,non-categorical way of describing all �-algebras at the same time, namely as sets with operations,the type of which is speci�ed by the signature �. (A categorical treatment is also feasible in thealgebraic case, though; see [Man76].)The generality of the coalgebraic theory presented here thus lies in the fact that all resultsare formulated for coalgebras of a collection of well-behaved functors on the category of sets andfunctions, and thereby apply to a great number of di�erent systems. This number can be seento be larger still by varying the category involved. Taking, for instance, the category of completemetric spaces rather than simply sets allows us to deal with (discrete time) dynamical systems(Section 16).Some familiarity with the basic elements of category theory, therefore, will be of use whenreading this paper. The notions of category and functor will be assumed to be known. Section18 has been included to provide some background information. It contains some basic de�nitions,facts (and notation) both on sets and functors on the category of sets, and is to be consulted whenneeded. The family of (nondeterministic labelled) transition systems [Kel76, Plo81] will be usedas a running example throughout the �rst sections of the paper. Moreover, the reader might wantto refer to [Rut95], where many of the present observations are proved in a less abstract way forthis family.Deep insights about groups are not obtained by studying universal algebra. Nor will universalcoalgebra lead to di�cult theorems about (speci�c types of) systems. Like universal algebra, its4

possible merit consists of the fact that it `: : : tidies up a mass of rather trivial detail, allowingus to concentrate our powers on the hard core of the problem.' ([Coh81]). There are maybe twoaspects that we might want to add to this. Firstly, induction principles are well-known and muchused. The coinductive de�nition and proof principles for coalgebras are less well-known by far,and often even not very clearly formulated. Universal coalgebra o�ers a simple context for a goodunderstanding of coinduction. Secondly, many families of systems look rather di�erent from theoutside, and so do the corresponding notions of bisimulation. A systematic study of coalgebrasbrings to light many sometimes unexpected similarities.This paper both gives an overview of some of the existing insights in the theory of coalgebras,and, in addition, presents some new material. Section 17 contains a brief description per sectionof which results have been taken from the literature, as well as a discussion of related work. Insummary, the present theory was preceded by [Rut95], which at its turn builds on previous jointwork with Turi [RT93, RT94], from which a number of results on �nal systems is taken. Manyobservations that are folklore in the context of particular examples (such as transition systems)are generalized to arbitrary systems. The section on the existence of �nal systems is based onresults from Barr [Bar93]. The work of Jacobs on a coalgebraic semantics for object-orientedprogramming [Jac96b] and coalgebraic speci�cation [Jac95] has greatly inuenced the sections oncofree systems.A synopsis of the contents is given by the second column of the following table, which extendsthe one above. Its �rst column shows the corresponding algebraic notions. (See Section 13 for adiscussion on the formal relationship between the algebraic and the coalgebraic notions.)Universal algebra: Universal coalgebra:(�-)algebra coalgebra = systemalgebra homomorphism system homomorphismsubstitutive relation bisimulation relationcongruence bisimulation equivalencesubalgebra subsystemminimal algebra minimal system(no proper subalgebras) () (no proper subsystems)induction proof principlesimple algebra simple system(no proper quotients) (no proper quotients) ()coinduction proof principleinitial algebra initial system(is minimal, plus: (often trivial)induction de�nition principle)�nal algebra �nal system(often trivial) (is simple, plus:coinduction de�nition principle)free algebra (used in free systemalgebraic speci�cation) (often trivial)cofree algebra cofree system (used in(often trivial) coalgebraic speci�cation)variety (closed under subalgebras, variety (closed under subsystems,quotients, and products) () quotients, and products)de�nable by a quotientof a free algebracovariety (closed under subalgebras, covariety (closed under subsystems,quotients, and coproducts) quotients, and coproducts) ()de�nable by a subsystemof a cofree system5

Note that this table is not to suggest that the theory of systems is dual to that of algebras. (Ifso the paper would end here.) It is true that certain facts about algebras can be dualized andthen apply to systems. For instance, the fact that the quotient of a system with respect to abisimulation equivalence is again a system is dual to the fact that the quotient of an algebrawith respect to a congruence yields again an algebra. However, many notions that are de�ned inboth worlds in the same way, have entirely di�erent properties. Examples are initial algebras andinitial systems, of which the former are of prime interest. Dually, �nal algebras are usually trivialwhereas �nal systems have interesting properties. Similarly, free algebras and cofree systems areimportant: If AV is an algebra that is free on a given set V , then we think of the elements ofV as variables, with which (equations and therewith) classes of algebras can be de�ned. Theintuition behind a system SC that is cofree on a set C is rather di�erent. The elements of Care best thought of as (labels or) colours. The system SC is in that view a universally (state)coloured system with the universal property that for any system S (of the same type as SC) andany `colouring' f : S ! C, there exists a unique colour preserving homomorphism ~f : S ! SC .Also SC gives rise to the de�nition of classes of systems, called covarieties, dualizing the notionof variety of algebras. Covarieties will be characterized in a similar way (Section 15) to Birkho�'svariety theorem. The paper is concluded with a coalgebraic treatment of one-dimensional discretetime dynamical systems. In particular, it is shown how the technique of symbolic dynamics inessence is based on the existence of a cofree coalgebra in the category of complete metric spaces.2 Coalgebras, homomorphisms, and bisimulationsThe basic notions of coalgebra, homomorphism, and bisimulation relation are introduced. Arunning example for this section will be the family of labelled transition systems. Many moreexamples will follow in Section 3.Let F : Set ! Set be a functor. An F -coalgebra or F -system is a pair (S; �S) consisting ofa set S and a function �S : S ! F (S). The set S is called the carrier of the system, also tobe called the set of states ; the function �S is called the F -transition structure (or dynamics) ofthe system. When no explicit reference to the functor (i.e., the type of the system) is needed, weshall simply speak of system and transition structure. Moreover, when no explicit reference to thetransition structure is needed, we shall often use S instead of (S; �S).Example 2.1 Consider labelled transition systems (S;!S ; A), consisting of a set S of states, atransition relation!S� S�A�S, and a set A of labels [Kel76, HP79, Plo81]. As always, s a�!Ss0is used to denote hs; a; s0i 2!S . De�neB(X) = P(A�X) = fV � A�Xg;for any set X . (We shall see below that B is a functor from Set to Set .) A labelled transitionsystem (S;!S ; A) can be represented as a B-system (S; �S) by de�ning�S : S ! B(S); s 7! fha; s0i j s a�!Ss0g:And conversely, any B-system (S; �S) corresponds to a transition system (S;A;!S) by de�nings a�!Ss0 () ha; s0i 2 �S(s):In other words, the class of all labelled transition systems coincides with the class of all B-systems.2Let (S; �S) and (T; �T) be two F -systems, where F is again an arbitrary functor. A functionf : S ! T is a homomorphism of F -systems , or F -homomorphism, if F (f) � �S = �T � f :S //f���S T�� �TF (S) //F (f) F (T):6

Intuitively, homomorphisms are functions that preserve and reect F -transition structures (see theexample below). We sometimes write f : (S; �S)! (T; �T) to express that f is a homomorphism.The identity function on an F -system (S; �S) is always a homomorphism, and the compositionof two homomorphisms is again a homomorphism. Thus the collection of all F -systems togetherwith F -system homomorphisms is a category, which we denote by SetF .Example 2.1, continued: Let (S;A;!S) and (T;A;!T) be two labelled transition systemswith the same set A of labels, and let (S; �S) and (T; �T) be the corresponding representations asB-systems. Per de�nition, a B-homomorphism f : (S; �S)! (T; �T) is a function f : S ! T suchthat B(f) � �S = �T � f , where the function B(f), also denoted by P(A� f), is de�ned byB(f)(V) = P(A� f)(V) = fha; f(s)i j ha; si 2 V g:Note that B is de�ned both on sets and on functions. Moreover, B can be shown to preserveidentities: B(1S) = 1B(S), and compositions: B(f �g) = B(f)�B(g). In other words, B is indeeda functor. One can easily prove that the equality B(f)��S = �T �f is equivalent to the followingtwo conditions:1. for all s0 in S, if s a�!Ss0 then f(s) a�!T f(s0);2. for all t in T , if f(s) a�!T t then there is s0 in S with s a�!T s0 and f(s0) = t.Thus a homomorphism is a function that is transition preserving and reecting. 2An F -homomorphism f : S ! T with an inverse f�1 : T ! S which is also a homomorphism iscalled an isomorphism between S and T . As usual, S �= T means that there exists an isomorphismbetween S and T . An injective homomorphism is called monomorphism. Dually, a surjectivehomomorphism is called epimorphism. Given systems S and T , we say that S can be embeddedinto T if there is a monomorphism from S to T . If there exists an epimorphism from S to T , T iscalled a homomorphic image of S. In that case, T is also called a quotient of S.Remark 2.2 The above de�nitions are su�cient for our purposes but, more generally, monomor-phisms could be de�ned as homomorphism that are mono in the category SetF : that is, homo-morphisms f : S ! T such that for all homomorphisms k : U ! S and l : U ! S: if f � k = f � lthen k = l. Clearly injective homomorphisms are mono. One can show that for a large class offunctors, the converse of this statement holds as well. A dual remark applies to epimorphisms.Further details are given in Proposition 4.7. 2The following properties will be useful.Proposition 2.3 Every bijective homomorphism is necessarily an isomorphism.Proof: If f : (S; �S)! (T; �T) is an F -homomorphism and g : T ! S is an inverse of f then�S � g= F (g) � F (f) � �S � g= F (g) � �T � f � g= F (g) � �T ;thus g is a homomorphism. 2Lemma 2.4 Let S, T , and U be systems, and f : S ! T , g : S ! U , and h : U ! T anyfunctions.1. If f = h � g, g is surjective, and f and g are homomorphisms, then h is a homomorphism.2. If f = h � g, h is injective, and f and h are homomorphisms, then g is a homomorphism.7

Proof: We prove 1., the proof of 2. is similar. Consider u 2 U and let s 2 S be such thatg(s) = u. ThenF (h) � �U (u)= F (h) � �U � g(s)= F (h) � F (g) � �S(s)= F (f) � �S(s)= �T � f(s)= �T � h � g(s)= �T � h(u): 2We now come to the third fundamental notion of universal coalgebra. A bisimulation betweentwo systems is intuitively a transition structure respecting relation between sets of states. Formally,it is de�ned, for an arbitrary set functor F : Set ! Set , as follows [AM89]: Let (S; �S) and (T; �T)be F -systems. A subset R � S�T of the Cartesian product of S and T is called an F -bisimulationbetween S and T if there exists an F -transition structure �R : R! F (R) such that the projectionsfrom R to S and T are F -homomorphisms:S���S Roo �1 //�2�� �R T�� �TF (S) F (R)oo F (�1) //F (�2) F (T):We shall also say, making explicit reference to the transition structures, that (R;�R) is a bisim-ulation between (S; �S) and (T; �T). If (T; �T) = (S; �S) then (R;�R) is called a bisimulationon (S; �S). A bisimulation equivalence is a bisimulation that is also an equivalence relation. Twostates s and t are called bisimilar if there exists a bisimulation R with hs; ti 2 R. (See Section 17for some references to alternative categorical approaches to bisimulation.)Example 2.1, continued: Consider again two (labelled transition systems represented as) B-systems (S; �S) and (T; �T). We show that a B-bisimulation between S and T is a relationR � S � T satisfying, for all hs; ti 2 R,1. for all s0 in S, if s a�!Ss0 then there is t0 in T with t a�!T t0 and hs0; t0i 2 R;2. for all t0 in T , if t a�!T t0 then there is s0 in S with s a�!Ss0 and hs0; t0i 2 R,which is the familiar de�nition of bisimulation from concurrency theory [Mil80, Par81]. For letR be a B-bisimulation with transition structure �R : R ! B(R). As before, �R induces arelation !R� R � A� R. Let hs; ti 2 R, and suppose s a�!Ss0. Because s = �1hs; ti this implies�1hs; ti a�!Ss0, and because �1 is a homomorphism, it follows that there is hs00; t0i 2 R withhs; ti a�!Rhs00; t0i and �1hs00; t0i = s0. Thus hs0; t0i 2 R. Because �2 is a homomorphism it followsthat t a�!T t0, which concludes the proof of clause 1. Clause 2 is proved similarly. Conversely,suppose R satis�es clauses 1 and 2. De�ne �R : R! P(R), for hs; ti 2 R, by�Rhs; ti = fhs0; t0i 2 R j s a�!Ss0 and t a�!T t0 g:It is immediate from clauses 1 and 2. that the projections are homomorphisms from (R;�R) to(S; �S) and (T; �T). (Note that in general �R is not the only transition structure on R havingthis property.) 8

A concrete example of a bisimulation relation between two transition systems is the following.Consider two systems S and T :S = s0��a //b s1��a //b � � �s00 s01 T = t��a BCED bGF��t0Then fhsi; sji j i; j � 0g[fhs0i; s0ji j i; j � 0g is a bisimulation on S. And fhsi; ti j i � 0g[fhs0i; t0i ji � 0g is a bisimulation between S and T . Note that the function f : S ! T de�ned by f(si) = tand f(s0i) = t0 is a homomorphism, and that there exists no homomorphism from T to S. 2The last observation of the example above (that f is a homomorphism) is an immediate conse-quence of the following fundamental relationship between homomorphisms and bisimulations.Theorem 2.5 Let (S; �S) and (T; �T) be two systems. A function f : S ! T is a homomorphismif and only if its graph G(f) is a bisimulation between (S; �S) and (T; �T).Proof: Let � : G(f) ! F (G(f)) be such that (G(f); �) is a bisimulation between (S; �S) and(T; �T). Let �1 and �2 be the projections from G(f) to S and T . Because �1 is bijective it hasan inverse ��11 : (S; �S) ! (G(f); �) which is also a homomorphism. Because f = �2 � ��11 , alsof is a homomorphism.Conversely, suppose f is a homomorphism. We can take F (�1)�1 ��S ��1 as a transition structureon G(f). This clearly turns �1 into a homomorphism. The same holds for �2:F (�2) � (F (�1)�1 � �S � �1)= F (�2 � �1�1) � �S � �1= F (f) � �S � �1= �T � f � �1= �T � �2:(Because F (�1) is mono, there is only one transition structure on G(f).) 2Therefore homomorphisms are sometimes called functional bisimulations .3 Systems, systems, systems, : : :The coalgebras, homomorphisms, and bisimulations of a number of functors that can be consideredas the basic building blocks for most systems are described. (All functors that are used aredescribed in Section 18.)Deterministic systemsDeterministic systems exist in many di�erent forms. The simplest ones are coalgebras of theidentity functor I(S) = S:S���SS; s�!Ss0 () �S(s) = s0:The notation s�!Ss0 for �S(s) = s0 is used as a shorthand, which puts emphasis on the fact that�S actually gives the dynamics of the system (S; �S), and should be read as: in state s the system9

S can make a transition step to state s0. The arrow notation will turn out to be particularly usefulfor the characterization of homomorphisms and bisimulations. Formally, the above equivalence issimply stating that any function is also a (functional) relation. Conversely, it is often convenientto de�ne the dynamics of a system by specifying its transitions (in particular when dealing withnondeterministic systems, see below). For instance, specifying for the set of natural numberstransitions0 // 1 // 2 // � � � ;de�nes the deterministic system (N ; succ), where succ is the successor function.A homomorphism between two deterministic systems (S; �S) and (T; �T) is a function f : S !T satisfying for all s in S,s�!s0) f(s)�!f(s0):(Note that we have dropped the subscripts from�!S and �!T , a convention we shall often apply.)Thus homomorphisms are transition preserving functions. A bisimulation between deterministicsystems S and T is any relation R � S � T such that, for all s 2 S and t 2 T ,hs; ti 2 R and s�!s0 and t�!t0) hs0; t0i 2 R:Thus bisimulations between deterministic systems are transition respecting relations. For instance,there is an obvious bisimulation relation between the above system (N ; succ), and the system� BCEDGF��Not only are there many deterministic systems (take any set and any function from the set toitself), many of them have a more interesting dynamics than one would expect at �rst sight, inspite of the fact that the functor at stake is trivial. For instance, let A be any set (alphabet) andlet AZ be the set of all so-called bi-in�nite sequences (words) over A. It can be given the followingdynamics:AZ��shiftAZ ; shift(�) = �m: �(m+ 1):This example is of central importance in the theory of symbolic dynamics (cf. [BP96]). There theset of bi-in�nite words is supplied with a metric, by which the shift example becomes even moreinteresting. See Section 16 for some observations about such `metric systems'.TerminationAny set S carries a coalgebra structure of the constant functor F (S) = 1:S���S1; s# () �S(s) = �;where 1 = f�g. Thus S can be viewed as a system with trivial dynamics, in which no state cantake a step and every state s terminates, as expressed by the arrow notation s#. Any functionbetween such systems trivially is a homomorphism and any relation a bisimulation. Thus thecategory Set1 of all systems of the constant functor is just (isomorphic to) the category of sets.10

Deterministic systems with termination are coalgebras of the functor F (S) = 1 + S:S���S1 + S; s�!s0 () �S(s) = s0; s# () �S(s) = �:Such a system can in a state s either make a transition to a state s0 or terminate. Homomorphisms(and bisimulations) are as before, with the additional property that terminating states are mappedto (related to) terminating states. Note that homomorphisms not only preserve but also reecttransitions: if f : S ! T is a homomorphism and f(s)�!t, for s 2 S and t 2 T , then there existss0 2 S with s�!s0 and f(s0) = t.An example of a deterministic system with termination is the system of the extended naturalnumbers [AM82] �N = f0; 1; 2; : : :g [f1g, with dynamics1@AGFED �� � � � // 2 // 1 // 0#;which, equivalently, can be de�ned as�N��pred1 + �N ; pred(n) =8<: � if n = 0n� 1 if 0< n 6=11 if n =1.In this system, a natural number n can take precisely n transition steps and then terminates, andthe additional number 1 only takes a step to itself and hence never terminates.InputSystems in which state transitions may depend on input are coalgebras of the functor F (S) = SA(recall that SA = ff : A! Sg):S���SSA; s a�!s0 () �S(s)(a) = s0;where A is any set (to be thought of as an input alphabet) and the arrow can be read as: instate s and given input a, the system can make a transition to state s0. Typical examples ofdeterministic systems with input are deterministic automata, which traditionally are representedas pairs (Q; � : (Q�A)! Q), consisting of a set Q of states and a state transition function � thatfor every state q and input symbol a in A determines the next state �hq; ai. (Often an initial stateand a set of �nal states is speci�ed as well, but they can be dealt with separately.) As observed inthe introduction, in [AM82, MA86], such automata are precisely the deterministic systems withinput mentioned above, because of the following bijection:ff : Q�A! Qg �= ff : Q! QAg:A homomorphism between (S; �S) and (T; �T) is any function f : S ! T satisfying for all s in S,a in A,s a�!s0) f(s) a�!f(s0):A bisimulation between systems S and T is now a relation R � S � T such that, for all a in A,hs; ti 2 R and s a�!s0 and t a�!t0) hs0; t0i 2 R:11

For instance, all states in the following two systems are bisimilar:s0@AGFa ED�� //b s1GFEDaBCoo�� bs2 EDBC a@AOO`` bBBBBBBBB tBC@AaGF // GFEDbBCoo
OutputTransitions may also yield an output. Thus we consider coalgebras of the functor F (S) = A� S:S���SA� S; s a�!s0 () �S(s) = ha; s0i;where A is an arbitrary set and the arrow can be read as: in state s, one can `observe' the output a,and the system can make a transition to the state s0. An intuition that often applies is to considerthe output a as the `observable e�ect' of the state transition. (Note that the same arrow notationa�! is used both for transitions with input and with output. In general, the right interpretationfollows from the context.) Such systems are also called deterministic labelled transition systems[Plo81]. Homomorphisms and bisimulations can be characterized by an obvious variation on thedescriptions above. A concrete example is the set A! of in�nite sequences over A, withA!��hh;tiA�A!; ha0; a1; : : :i a0�! ha1; a2; : : :i:The pair hh; ti assigns to an in�nite sequence its head (the �rst element) and tail (the remainder).Adding the possibility of termination yields, for instance, the following two variations, where thefunctors involved are F (S) = 1 + (A� S) and F (S) = A+ (A� S):S��1 + (A� S); S��A+ (A� S):An example of the �rst type is the set A1 of �nite and in�nite streams, withA1���1 + (A�A1); � # ; ha0; a1; : : :i a0�! ha1; a2; : : :i:Similarly, the set A1+ of non-empty �nite and in�nite streams over A is an example of the lasttype, S ! A+ (A� S).

12

Binary systemsBinary systems are coalgebras of the functor F (S) = S � S. Now a transition yields two newstates: S���SS � S; s�!hs1; s2i () �S(s) = hs1; s2i:A homomorphism between binary systems S and T is any function f : S ! T satisfying for all sin S, s�!hs1; s2i) f(s)�!hf(s1); f(s2)i:Similarly for bisimulations. A concrete example of a binary system is the set Z of integers withtransitions� � � �2oo // �1oo // 0oo // 1oo // � � � :Note that the fact that there are two outgoing transitions from each state should in this contextnot be interpreted as a form of nondeterminism (see below): the system is perfectly deterministicin that for each state one transition is possible, leading to a pair of new states. The system canequivalently be de�ned byZ��hpred, succiZ �Z ; m�!hm� 1;m+ 1i:Variations of binary systems can be obtained by adding labels (output) and the possibility oftermination:S��S �A� S; S��(A� S)� (A� S); S��1 + ((A� S)� (A� S)):Examples of such systems are, respectively: the set of in�nite node-labelled binary trees, whereeach node is assigned its label in A, together with the nodes of the two subtrees; the set of in�nitearc-labelled binary trees, where a node is mapped to the two nodes of its subtrees, each togetherwith the label of the corresponding arc; and the set of all arc-labelled binary trees with �nite andin�nite branches.Nondeterministic systemsFrom one state, several transitions may be possible:S���SP(S); s�!s0 () s0 2 �S(s):A variation of this type of systems is obtained by adding labels, thus considering coalgebras of thefunctor F (S) = P(A� S):S���SP(A� S); s a�!s0 () ha; s0i 2 �S(s):13

These are the nondeterministic labelled transition systems of Example 2.1, where homomorphismsand bisimulations have been characterized as transition preserving and reecting functions andrelations. Often one wishes to consider systems with bounded nondeterminism, in which from anarbitrary state only a �nite number of transitions is possible. Such systems can be modelled usingthe �nite powerset functor:S���SPf (A� S);and are called �nitely branching . Yet another class of systems are the coalgebras of the functorF (S) = Pf (S)A:S���SPf (S)A;which are called image �nite: for every s in S and a in A, the number of reachable states fs0 js a�!s0g is �nite.Hyper systemsThe contravariant powerset functor can be used to model hyper systems, in which a state canmake nondeterministically a step to a set of states:S���S�P(�P(S)); s�!V () V 2 �S(s):(Recall that �P(S) = 2S and thus �P(�P(S)) = (2S)S .) Here the arrow s�!V should be readas: from state s the system can reach the set V of states (but not necessarily each individualelement of V). Using the de�nition of the contravariant powerset functor, one can show that ahomomorphism between hyper systems S and T is any function f : S ! T satisfying, for all s inS and W � T ,s! f�1(W) () f(s)!W:Bisimulations are generally not so easy to characterize. For the special case of a bisimulationequivalence R � S � S on a hypersystem S, the following holds1: for all s and s0 in S,hs; s0i 2 R) (for every R-equivalence class V � S, s! V () s0 ! V):The reader is invited to try and model hyper systems using the covariant powerset functor, to�nd that the notions of homomorphism and bisimulation are rather di�erent in that case. Thisexample illustrates the importance of functors, which operate both on sets and on functions, in atheory of coalgebras.1This type of bisimulation seems to be underlying many of the recently proposed probabilistic bisimulations[LS91, vGSS95]. It was found in joint work with Erik de Vink.
14

More examplesSome further examples are given, using functors that combine some of the basic constructionsmentioned above.Transducers (cf. [Mil75]): essentially are (automata and hence) systems with input and output,possibly with termination, such asS��(B � S)A; S��B � SA; S��C + (A� SB):More traditionally (but isomorphically), transducers of the �rst type are represented as sets Stogether with a transition function of type(S �B)S�A:Note that in the second type of system, the output does not depend on the input.Graphs : A directed (1-)graph (V;E) consists of a set V of points (vertices) and an edge relationE � V � V , representing the arcs of the graph. Graphs are in one-to-one correspondence withnondeterministic systems because of the bijectionff : V ! P(V)g �= P(V � V):Note that the standard notion of graph homomorphism is a function preserving the arc relation[SS93], without necessarily reecting it. In contrast, a homomorphism of (graphs as) nondeter-ministic systems both preserves and reects the arcs, as a consequence of the categorical de�nitionof homomorphism of F -coalgebras. Nevertheless, the traditional way of representing graphs andarc-preserving homomorphisms between them can be modelled in the present framework by con-sidering the following, so to speak many-sorted coalgebraic de�nition2: Consider the functorF : (Set � Set)! (Set � Set); hX;Y i 7! h1; X �Xi:A graph (V;E) can be represented as a coalgebra of F by de�ning:(V;E)�� (1;hs;ti)(1; V � V);where s : E ! V and t : E ! V are the projections from E to V , which we call source and target .An F -homomorphism(V;E)��(1;hs;ti) //(f;g) (V 0; E0)�� (1;hs0;ti)(1; V � V) //(1;f�f)(1; V 0 � V 0);is a pair of functions f : V ! V 0 and g : E ! E0 such thatf(s(e)) = s0(g(e)); f(t(e)) = t0(g(e));which is the usual de�nition of graph homomorphism.Frames and models : A frame in the world of modal logic (cf. [Gol87]) is a directed graph, andthus (as we have seen above) can be represented as a nondeterministic system. A model (V;E; f) is2This de�nition was suggested by Andrea Corradini.15

a frame (V;E) together with a function f : �! P(V), where � is a collection of atomic formulasin some given modal logic. Intuitively, f speci�es for each formula in which states v in V it holds.Because of the isomorphismff : �! P(V)g �= ff : V ! P(�)g;it is easily veri�ed that models correspond to systems of type:V��P(�)�P(V):As it turns out, homomorphisms and bisimulations for these systems correspond precisely to theso-called p-morphisms and zig-zag relations of modal logic.Resumptions : are systems of typeS��(P(B � S))A:In other words, resumptions are nondeterministic systems with input and output. They playa central role in the semantics of (nondeterministic and parallel) programming languages (cf.[HP79, BV96]).4 Limits and colimits of systemsWe want to prove statements like: the union of a collection of bisimulations is again a bisimulation;the quotient of a system with respect to a bisimulation equivalence is again a system; and: thekernel of a homomorphism is a bisimulation equivalence. These facts are well-known for certainsystems such as nondeterministic labelled transition systems. As it turns out, they do not dependon particular properties of such examples, and actually apply to (almost) all systems we have seensofar. Therefore, this section presents a number of basic categorical constructions that will enableus, in the subsequent sections, to prove all these statements for all systems at the same time.There are three basic constructions in the category SetF of F -systems that are needed: theformation of coproducts (sums), coequalizers, and pullbacks (cf. Section 18). In this section, theyare discussed in some detail for arbitrary F -systems. The family of labelled transition systems isused again as a running example.(We shall see that in SetF coproducts and coequalizers exist, for arbitrary functors F . Ifthe functor F preserves pullbacks, then pullbacks exist in SetF . For completeness, a generaldescription of limits and colimits of systems is presented at the end of this section. In summary,SetF has all colimits, for any F . And SetF has all limits that are preserved by F .)CoproductsCoproducts (as well as coequalizers and, more generally any type of colimit) in SetF are as easyas they are in the category Set . The coproduct (or sum) of two F -systems (S; �S) and (T; �T) canbe constructed as follows. Let iS : S ! (S+T) and iT : T ! (S+T) be the injections of S and Tinto their disjoint union. It is easy to see that there is a unique function : (S + T)! F (S + T)such that both iS and iT are homomorphisms:S���S //iS S + T�� ��� T�� �Too iTF (S) //F (iS)F (S + T) F (T):ooF (iT)16

The function acts on S as F (iS) � �S and on T as F (iT) � �T . The system (S + T;) has thefollowing universal property: for any system (U; �U) and homomorphisms k : (S; �S) ! (U; �U)and l : (T; �T) ! (U; �U) there exists a unique homomorphism h : (S + T;) ! (U; �U) makingthe following diagram commute: US //iS <<k yyyyyyyyy S + TOOh ��� T:oo iTcc lFFFFFFFFFThat is (S+T;) is the coproduct of (S; �S) and (T; �T). Similarly, the coproduct of an indexedfamily fSigi2I of systems can be constructed.Example 4.1 Recall from Example 2.1 that labelled transition systems (lts) are B-systems whereB(X) = P(A �X). The coproduct of two lts's (S; �S) and (T; �T) consists of the disjoint unionS + T of the sets of states together with a B-transition structure : S + T ! B(S + T), de�nedfor s in S and t in T by(s) = �S(s); (t) = �T (t):Because A� S � A� (S + T) and A � T � A � (S + T) (identifying for convenience S + T andS [T), this de�nes indeed a function from S + T into B(S + T). 2CoequalizersNext we show how in SetF a coequalizer of two homomorphisms can be constructed. Considertwo homomorphisms f : (S; �S) ! (T; �T) and g : (S; �S) ! (T; �T). We have to �nd a system(U; �U) and a homomorphism h : (T; �T)! (U; �U) such that1. h � f = h � g;2. for every homomorphism h0 : (T; �T) ! (U 0; �U 0) such that h0 � f = h0 � g, there exists aunique homomorphism l : (U; �U)! (U 0; �U 0) with the property that l � h = h0.Since (per de�nition) f and g are functions f : S ! T and g : S ! T in Set , there exists acoequalizer h : T ! U in Set (see Section 18). Consider F (h) � �T : T ! F (U). BecauseF (h) � �T � f= F (h) � F (f) � �S= F (h � f) � �S= F (h � g) � �S= F (h) � F (g) � �S= F (h) � �T � g;and h : T ! U is a coequalizer, there exists a unique function �U : U ! F (U) making thefollowing diagram commute: S�� �S //f //g T���T //h U�� �U���F (S) //F (f) //F (g) F (T) //F (h) F (U)Thus (U; �U) is an F -system and h is a homomorphism. One easily checks that the universalproperty (2) is satis�ed. 17

Example 4.1, continued: Let (S; �S) and (T; �T) be again two lts's and consider homomor-phisms f; g : (S; �S) ! (T; �T). Let R be the smallest equivalence relation on T that containsthe setfhf(s); g(s)i j s 2 Sg;and let q : T ! T=R be the function that maps t in T to its R-equivalence class [t]R. Then T=Rcan be supplied with a B-transition structure �R : T=R! B(T=R) by specifying transitions[t]R a�![t0]R () 9t00 2 [t0]R; t a�!T t00:It is moreover the only possible choice for �R making q : T ! T=R into a homomorphism. Aspecial instance of this example is obtained by taking a bisimulation equivalence on a B-system,say �1; �2 : (R;�R)! (T; �T):Then the coequalizer of �1 and �2 is the quotient T=R, showing that the quotient of an lts withrespect to a bisimulation equivalence yields again an lts. This observation will be generalized inProposition 5.8. 2The results above are summarized for future reference in the following.Theorem 4.2 Let F : Set ! Set be any functor. In the category SetF of F -systems, all coprod-ucts and all coequalizers exist, and are constructed as in Set. 2(Weak) pullbacksThe existence of pullbacks in SetF depends on the functor F . More speci�cally, if F : Set ! Setpreserves pullbacks then pullbacks exist in SetF : Let f : (S; �S) ! (T; �T) and g : (U; �U) !(T; �T) be homomorphisms. Let P //�1���2 S�� fU //g Tbe the pullback of f and g in Set , with P = fhs; ui j f(s) = g(u)g. Because F preserves pullbacks,F (P) //F (�1)��F (�2) F (S)�� F (f)F (U) //F (g) F (T)is a pullback of F (f) and F (g) in Set . Consider �S � �1 : P ! F (S) and �U � �2 : P ! F (U).BecauseF (f) � �S � �1= �T � f � �1= �T � g � �2= F (g) � �U � �2;there exists, by the fact that F (P) is a pullback, a unique function �P : P ! F (P) such thatF (�1) ��P = �S � �1 and F (�2) ��P = �U � �2. Thus (P; �P) is an F -system, and �1 and �2 arehomomorphisms. It is easily veri�ed that (P; �P) is a pullback of f and g in SetF .Note that as a consequence, the pullback (P; �P) is a bisimulation on S and U : P � S � Uand the projections �1 and �2 are homomorphisms.As it turns out, the pullback of two homomorphisms is a bisimulation even in the case that Fonly preserves weak pullbacks (cf. Section 18). 18

Theorem 4.3 Let F : Set ! Set be a functor that preserves weak pullbacks, and let f : (S; �S)!(T; �T) and g : (U; �U)! (T; �T) be homomorphisms of F -systems. Then the pullback (P; �1; �2)of f and g in Set is a bisimulation on S and T .Proof: The proof is essentially the same as the proof of the existence of pullbacks in SetFin case F preserves pullbacks. The only di�erence is that F (P) is now, by assumption, a weakpullback. As a consequence, there exists again a (no longer necessarily unique) transition structure�P : P ! F (P) on P such that �1 and �2 are homomorphisms. 2Example 4.1, continued: Let f : (S; �S) ! (T; �T) and g : (U; �U) ! (T; �T) be homo-morphisms of lts's. Because lts's are B-systems and the functor B preserves weak pullbacks (cf.Section 18), the above argumentation applies. The following gives a more direct construction.As above, let P = fhs; ui j f(s) = g(u)g. It can be supplied with a B-transition structure byspecifying transitionshs; ui a�!hs0; u0i () f(s0) = g(u0) and s a�!Ss0 and u a�!Uu0:It is straightforward to prove that the projections from P to S and U are homomorphisms. ThusP is a bisimulation. A special case is obtained by taking only one homomorphism f : (S; �S) !(T; �T) and considering the pullback of f and f . The resulting set is P = fhs; s0i j f(s) = f(s0)g,which is the kernel of f . It follows that it is a bisimulation (equivalence). Again, this will beproved in greater generality in Proposition 5.7. 2Because this result will be called upon time and again, and because all functors we have seen in theexamples sofar do preserve weak pullbacks (but for the contravariant powerset functor, cf. Section18), we shall assume in the sequel that when talking about an arbitrary functor F , it preservesweak pullbacks:Convention 4.4 In the rest of this paper, set functors F : Set ! Set are assumed to preserveweak pullbacks. If (the proof of) a lemma, proposition, or theorem actually makes use of thisassumption, then it is marked with an asterisk. 2Limits and colimits, generallyThis section is concluded with the observation that the above constructions of coproducts, coequal-izers, and pullbacks can be generalized by means of the so-called forgetful functor U : SetF ! Set ,which sends systems to their carrier: U(S; �S) = S, and homomorphisms f : (S; �S)! (T; �T) tothe function f : S ! T . (see, e.g., [Bar93]).Theorem 4.5 The functor U : SetF ! Set creates colimits. This means that any type of colimitin SetF exists, and is obtained by �rst constructing the colimit in Set and next supplying it (in aunique way) with an F -transition structure. 2Similarly, there is the following general statement about limits in SetF .Theorem 4.6 If F : Set ! Set preserves a (certain type of) limit, then the functor U : SetF !Set creates that (type of) limit. This means that any type of limit in Set that is preserved by Falso exists in SetF , and is obtained by �rst constructing the limit in Set and next supplying it (ina unique way) with an F -transition structure. 2
19

Epi's and mono's in SetFUsing the results of this section, we are now in a position to supply the details announced inRemark 2.2 about epi's and mono's in the category SetF of F -systems.Proposition 4.7 Let F : Set ! Set be a functor and f : (S; �S)! (T; �T) an F -homomorphism.1. The homomorphism f is an epimorphism (i.e., surjective) if and only if f is epi in thecategory SetF .2. If the homomorphism f is a monomorphism (i.e., injective) then it is mono in the categorySetF . If the functor F preserves weak pullbacks then the converse is also true: if f is monothen it is injective.Proof: We use the following categorical characterization of epi's [Bor94][Proposition 2.5.6]. LetC be an arbitrary category. An arrow a : A ! B in C is epi if and only if the following diagramis a pushout in C: A //a��a B�� 1BB //1B B:By Theorem 4.5, the forgetful functor U : SetF ! Set creates colimits and hence pushouts.Moreover it is easily veri�ed that U preserves any colimit that it creates. So in particular Upreserves pushouts. Thus we obtain the following equivalence:(S; �S) //f��f (T; �T)�� 1T(T; �T) //1T (T; �T) is a pushout in SetF () S //f��f T�� 1TT //1T T is a pushout in Set .As a consequence, the homomorphism f is epi in SetF if and only if the function f is epi, andhence surjective, in Set .For mono's, the dual of the characterization for epi's can be used. Let C be an arbitrary category.An arrow a : A! B in C is mono if and only if the following diagram is a pullback in C:A //1A��1A A�� aA //a B:Assume that F preserves weak pullbacks. Because weak pullbacks of mono's are ordinary pullbacks(Proposition 18.2), F preserves pullbacks of mono's. By Theorem 4.6, the forgetful functor U :SetF ! Set creates such pullbacks. Again one can easily prove that U also preserves them. Theargument can now be �nished as in the case of epi's. 25 Basic facts on bisimulationsThis section deals with arbitrary F -systems. All results are straightforward for the special case oflabelled transition systems. In fact, some of them have already been proved for lts's in Example4.1.Let S, T and U be three F -systems with transition structures �S , �T and �U , respectively.Proposition 5.1 The diagonal �S of a system S is a bisimulation.20

Proof: Follows from Theorem 2.5 and the observation that �S equals the graph of the identity1S : S ! S. 2The inverse of a bisimulation is a bisimulation.Theorem 5.2 Let (R;�R) be a bisimulation between systems S and T . The inverse R�1 of R isa bisimulation between T and S.Proof: Let i : R! R�1 be the isomorphism sending hs; ti 2 R to ht; si 2 R�1. Then (R�1; F (i)��R � i�1) is a bisimulation between T and S. 2Next we show that the composition and union of bisimulations is again a bisimulation. Thefollowing lemma will be helpful.Lemma 5.3 The image hf; gi(T) = fhf(t); g(t)i j t 2 Tg of two homomorphisms f : T ! S andg : T ! U is a bisimulation on S and U .Proof: Consider the following diagram: hf; gi(T){{ �1wwwwwwwww ##�2 HHHHHHHHH�� iS Too f //gOOj U;where the function j is de�ned by j(t) = hf(t); g(t)i, the function i is any right inverse for j (whichexists by the axiom of choice because j is surjective): j�i = 1, and �1 and �2 are projections. Notethat everything in this diagram commutes. The set hf; gi(T) can be given a transition structure : hf; gi(T)! F (hf; gi(T)) by de�ning = F (j) � �T � i:It follows that (hf; gi(T);) is a bisimulation on S and U becauseF (�1) � = F (�1) � F (j) � �T � i= F (�1 � j) � �T � i= F (f) � �T � i= �S � f � i= �S � �1;and similarly for �2. 2Theorem� 5.4 3 The composition R � Q of two bisimulations R � S � T and Q � T � U is abisimulation between S and U .Proof: Recall from Section 18 that R � Q is equal to the image hr1 � x1; q2 � x2i(X) of thepullback: X��x1~~~~ ��x2@@@@R��r1���� ��r2@@@@ Q��q1~~~~ q2@@@@S T U:3Recall from Convention 4.4 that the asterisk indicates the assumption that the functor F preserves weakpullbacks. 21

(Here xi, ri, and qi are projections.) Because F preserves weak pullbacks, the pullback X can besupplied with a transition structure, by Theorem 4.3. By Lemma 5.3, R �Q is a bisimulation onS and U . 2Similarly, the union of bisimulations is again a bisimulation.Theorem 5.5 The union SkRk of a family fRkgk of bisimulations between systems S and T isagain a bisimulation.Proof: Recall from Section 18 that SkRk is the image ofS PiRioo k //l T;where k and l are the componentwise projections. By Theorem 4.2, the coproduct of a family ofsystems is again a system. It follows from Lemma 5.3 that the union is a bisimulation. 2Corollary 5.6 The set of all bisimulations between systems S and T is a complete lattice, withleast upperbounds and greatest lowerbounds given by_kRk = ([kRk);^kRk =[fR j R is a bisimulation between S and T with R �^kRkg:In particular, the greatest bisimulation between S and T exists, and is denoted by �hS;T i. It is theunion of all bisimulations:�hS;T i=[fR j R is a bisimulation between S and T g:We shall writes �hS;T i t () hs; ti 2�hS;T i () there exists a bisimulation R with hs; ti 2 R.The greatest bisimulation on one single system S, denoted by �S, is a bisimulation equivalence.2We shall simply write � for the greatest bisimulation relation when the systems are clear fromthe context. Moreover, we write �F when explicit reference to the type of systems is needed.Bisimulation equivalences and homomorphisms are related by the following two propositions.Proposition� 5.7 The kernel K(f) of a homomorphism f : S ! T is a bisimulation equivalence.Proof: Note that K(f) = G(f) �G(f)�1. K(f) is transitive. The result follows from Theorem5.4. An alternative proof consists of the observation that K(f) is a pullback of f with itself andthen applying Theorem 4.3. 2Conversely, any bisimulation equivalence on a system is the kernel of a homomorphism:Proposition 5.8 Let R be a bisimulation equivalence on a system S. Let �R : S ! S=R be thequotient map of R. Then there is a unique transition structure �S=R : S=R ! F (S=R) on S=Rsuch that �R : S ! S=R is a homomorphism:S //�R���S S=R�� �S=R���F (S) //F (�R)F (S=R):22

Proof: Immediate from the observation that �R is a coequalizer of the projections from R to Sand Theorem 4.2. Alternatively and more concretely, �S=R can be de�ned on an R-equivalenceclass by F (�R) � �S(s), where s is any element of the equivalence class. 2The following facts will be useful.Proposition� 5.9 Let f : S ! T be a homomorphism.1. If R � S � S is a bisimulation on S, then f(R) is a bisimulation on T .2. If Q � T � T is a bisimulation on T , then f�1(Q) is a bisimulation on S.Proof: Immediate from Theorem 5.4, and the observation that f(P) = G(f)�1 � P �G(f) andf�1(Q) = G(f) �Q �G(f)�1. 26 SubsystemsLet (S; �S) be a system and let V be a subset of S with inclusion mapping i : V ! S. If thereexists a transition structure �V on V such that i : (V; �V)! (S; �S) is a homomorphism, then Vis called a subsystem (or subcoalgebra) of S. There is at most one such transition structure.Proposition 6.1 Let (S; �S) be a system and let i : V ! S be a subset of S. If k; l : V ! F (V)are such that i is a homomorphism both from (V; k) to (S; �S) and from (V; l) to (S; �S), thenk = l.Proof: If V is non-empty, the equality follows from F (i) � k = �S � i = F (i) � l and the fact thatF (i) is mono, by Proposition 18.1. The case that V = ; is trivial. 2For instance, a subsystem of a labelled transition system (Example 2.1) is a set of states that isclosed under (outgoing) transitions; subsystems of graphs are (full) subgraphs; and subsystems oftrees are subtrees.The empty set and S are always subsystems of (S; �S). A system is called minimal if it doesnot have any proper subsystem (i.e., di�erent from ; and S).Subsystems can be characterized in terms of bisimulations as follows.Proposition� 6.2 Let S be a system. A subset V � S is a subsystem if and only if the diagonal�V of V is a bisimulation on S.Proof: Let i : V ! S be the inclusion homomorphism of a subsystem V in S. Because �V isequal to G(i) (the graph of i), it is a bisimulation by Theorem 2.5. For the converse, suppose that�V = G(i) is a bisimulation on (S; �S). Because �1 : G(i)! V is an isomorphism, the transitionstructure on G(i) induces a transition structure on V . 2Theorem� 6.3 Let S and T be two systems and f : S ! T a homomorphism.1. If V � S is a subsystem of S, then f(V) is a subsystem of T .2. If W � T is a subsystem of T , then f�1(W) is a subsystem of S.Proof: The theorem follows, by Proposition 5.9 and Proposition 6.2, from the observation that�f(V) = f(�V); and �f�1(W) = f�1(�W): 2Unions and intersections of subsystems are again subsystems.Theorem� 6.4 The collection of all subsystems of a system S is a complete lattice, in which leastupperbounds and greatest lowerbounds are given by union and intersection.23

Proof: Let fVkgk be a collection of subsystems of a system S.SkVk: For every k, the set �Vk is a bisimulation by Proposition 6.2. Because�SkVk =[k �Vk ;it follows from Theorem 5.5 that it is a bisimulation. Thus SkVk is a subsystem, again byProposition 6.2.TkVk: By Proposition 18.3, F preserves intersections. More speci�cally, F transforms the pullbackdiagram of the intersection of the sets fVkgk into a pullback diagram of the sets F (fVkgk) (seethe proof of Proposition 18.3). It follows from Theorem 4.6 that there exists a (unique) transitionstructure on TkVk such that the inclusion mapping from TkVk to S is a homomorphism. 2Theorem 6.4 allows us to give the following de�nitions. Let (S; �S) be a system and X a subsetof S. The subsystem of (S; �S) generated by X , denoted by hXi, is de�ned ashXi =\fV j V is a subsystem of S and X � V g:So hXi is the smallest subsystem of S containing X . If S = hXi for some subset X of S then Sis said to be generated by X . The subsystem generated by a singleton set fsg is denoted by hsi.Dually, one can also look at the greatest subsystem [X] of S that is contained in X : usingagain Theorem 6.4, it is de�ned by[X] =[fV j V is a subsystem of S and V � X g:There is the following characterization, which will be of use in the sequel.Proposition 6.5 Let X be a subset of a system S and i : [X]! S the inclusion homomorphism.Any homomorphism f : T ! S such that f(T) � X, factorizes through [X]. That is, there existsa unique homomorphism f 0 : T ! [X] such thatT //f f 0 BBBBBBBB S[X]:OO i���Proof: By Theorem 6.3, f(T) is a subsystem of S and since f(T) � X , by assumption, it followsthat f(T) � [X]. De�ning f 0(t) = f(t) gives us a function with i � f 0 = f . It is a homomorphismby Lemma 2.4. It is unique because i is mono. 2Examples 6.6 Some examples of subsystems.1. Let (S; �S) be a labelled transition system (Example 2.1). The subsystem hsi generated byan element s in S consists of all states[n�0fs0 j 9s0; : : : ; sn; s = s0�!� � ��!sn = s0g:2. Recall from Section 3 that a directed graph is a system of typeS���P(S); s�!s0 () s0 2 �(s): 24

One can de�ne the largest subsystem C(S) of S in which all states have a self cycle, byC(S) = [fs 2 S j s�!sg]:Generally C(S) is a strict subset of fs 2 S j s�!sg. For instance, if S = fs; s0g withtransitions s�!s and s�!s0, then the subsystem C(S) is empty. 2This section is concluded with a note on the size of subsystems generated by one element. Forfuture reference, we give the following de�nition.De�nition 6.7 A functor F bounded if there exists a set V such that for every F -system (S; �S)and every s in S, there exists an injective function from the carrier of the subsystem hsi into theset V (cf. [KM96]). 2In other words, the size of any subsystem generated by one element is bounded by the size ofV . As we shall see in Section 10, this condition is su�cient to guarantee the existence of a �nalF -coalgebra.Examples 6.8 Two examples of functors that are bounded, and one of a functor that is not.1. Pf (S) = fV j V � S and V is �nite g: Let (S; �S) be a Pf -system and s in S. For anyn, there are only �nitely many reachable states. Therefore hsi has at most countably manyelements, and can be embedded in N . More generally, any type of powerset functor P�,which assigns to a set the set of all subsets with cardinality less than or equal to a givencardinal �, is bounded.2. F (S) = A� (B ! S): Let (S; �S) be an F -system and s in S. If � is the size (cardinality)of B then the number of elements of hsi is bounded byPf�i j i � 0g. Any set with at leastthat number of elements is a bound for F .3. P: The unrestricted powerset is not bounded. 27 Three isomorphism theoremsThis section contains three theorems, which are well-known in universal algebra, on the existenceof isomorphisms between systems.The �rst isomorphism theorem states that any homomorphism factorizes through a pair con-sisting of an epimorphism and a monomorphism.Theorem� 7.1 (First isomorphism theorem)Let f : S ! T be a homomorphism. Then there is the following factorization of f :S //f##f 0 GGGGGGGGG %%�K(f) Tf(S) ;;i wwwwwwwwwS=K(f);OO �= OO�where i is the inclusion monomorphism of f(S) in T , � is a monomorphism, f 0 is an epimorphism(with f 0(s) = f(s) for all s), and �K(f) is the quotient map of the kernel K(f) of f .25

Proof: By Theorem 6.3, f(S) is a subsystem of T . It follows from Lemma 2.4 that f 0 is ahomomorphism, and because it is surjective, it is an epimorphism. By Proposition 5.7, K(f) is abisimulation equivalence on S, and by (the proof of) Proposition 5.8, S=K(f) is the coequalizerof the projection homomorphism of K(f). The homomorphisms from S=K(f) to f(S) and T aregiven by the coequalizer property. Since the former is bijective, it is an isomorphism by Proposition2.3. The latter is a monomorphism because i is. 2Theorem� 7.2 Let f : S ! T be a homomorphism and R a bisimulation equivalence on S whichis contained in the kernel of f . Then there is a unique homomorphism �f : S=R ! T such thatf = �f � �R: S //�R !!f BBBBBBBBB S=R�� �f���TProof: There is precisely one function �f for which �f � �R = f . It follows from Lemma 2.4 thatit is a homomorphism. Alternatively, the existence of the homomorphism �f is given by fact thatS=R is a coequalizer of the projection homomorphisms from R to S. 2The second isomorphism theorem states that there is a ono-to-one correspondence betweensubsystems of a quotient of a system S and quotients of subsystems of S.Theorem� 7.3 (Second isomorphism theorem)Let S be a system, T a subsystem of S, and R a bisimulation equivalence on S. Let TR be de�nedby TR = fs 2 S j 9t 2 T; (s; t) 2 Rg: The following facts hold:1. TR is a subsystem of S.2. Q = R \ (T � T) is a bisimulation equivalence on T .3. T=Q �= TR=R.Proof: Since TR = �1(�2�1(T)), it is a subsystem of S by Theorem 6.3. Because R\ (T � T) =��11 (T) \ ��12 (T), it is a subsystem of R, by the same theorem, and hence it is a bisimulationequivalence on T . Consider the quotient homomorphism �R : S ! S=R, and let � : T ! S=R beits restriction to T . Because �(T) = �R(TR) = TR=R, and K(�) = Q, it follows from Theorem 7.1that T=Q �= TR=R. 2Let S be a system, T a subsystem of S, and R a bisimulation equivalence on S. If R\(T�T) = �Tthen R is said to separate T (because, equivalently: for all t; t0 2 T , if t 6= t0 then (t; t0) 62 R). Inthis case, the above theorem yields that T �= TR=R.Theorem� 7.4 (Third isomorphism theorem)Let S be a system, and let R and Q be bisimulation equivalences on S such that R � Q. There isa unique homomorphism � : S=R! S=Q such that � � �R = �Q:S //�R !!�Q BBBBBBBB S=R�� ����S=Q:Let R=Q denote the kernel of �: it is a bisimulation equivalence on S=R and induces an isomor-phism �0 : (S=R)=(R=Q)! S=Q such that � = �0 � �R=Q:S=R //�R=Q��� (S=R)=(R=Q)uu �0l l l l l l l lS=Q: 26

Proof: The existence of � follows from Theorem 7.2. Because �Q is surjective also � is surjective.The existence of the isomorphism �0 is now given by Theorem 7.1. 28 Simple systems and coinductionAn algebra is called simple if it does not have proper quotients. We apply the same de�nitionto systems: a system S is simple if it has no proper quotients (homomorphic images): i.e., everyepimorphism f : S ! T is an isomorphism. Theorem 8.1 below gives a number of equivalentcharacterizations of simplicity, the most important of which is the so-called coinduction proofprinciple: for every bisimulation R on S, R � �S (recall that �S = fhs; si j s 2 Sg). Equivalently,for all s and s0 in S,s �S s0) s = s0:The principle states that in order to prove the equality of two states in S, it is su�cient to showthat they are bisimilar. We shall see examples of the use of this surprisingly strong proof principlein Section 12. In Section 13, it will be related to the more familiar principle of induction in a waythat will justify the chosen terminology.Theorem� 8.1 Let S be a system. The following are equivalent:1. S is simple.2. S satis�es the coinduction proof principle: for every bisimulation R on S, R � �S.3. �S is the only bisimulation equivalence on S.4. For any system T , and functions f : T ! S and g : T ! S: if f and g are homomorphismsthen f = g.5. The quotient homomorphism � : S ! S=�, where � denotes the greatest bisimulation on S,is an isomorphism.Proof: 1) 3: Let R be a bisimulation equivalence on S and consider the quotient homomorphism�R : S ! S=R. If S is simple then �R is an isomorphism. Thus R = �S .3) 1: Let f : S ! T be an epimorphism. Since the kernel of f is a bisimulation equivalence, itfollows from 3 that it is equal to �S . By Theorem 7.1, S=�S �= f(S), hence S �= T . Thus S issimple.2) 4: Let T be a system, and let f : T ! S and g : T ! S be homomorphisms. De�neQ = fhf(t); g(t)i j t 2 Tg:Since Q = G(f)�1 �G(g) (recall that G(f) is the graph of f), it is a bisimulation by Theorem 5.4.It follows from 2 that Q � �S . Thus f = g.4) 2: Let R be a bisimulation on S. By de�nition, its projections �1 : R ! S and �2 : R ! Sare homomorphisms. It follows from 4 that �1 = �2, hence R � �S .3, 2: Immediate from the observation that the greatest bisimulation on S is an equivalence.1) 5: Immediate.5) 3: Suppose that � : S ! S=� is an isomorphism. Let R be a bisimulation equivalence on S.Because R �� and � is the kernel of �, there exists by Theorem 7.2 a (unique) homomorphism�f : S=R ! S=� such that �f � �R = �. Since � is an isomorphism this implies that �R is injective.Thus R = �S . 2Every system can be made simple by taking the quotient with respect to its greatest bisimulation.This is a consequence of the following. 27

Proposition� 8.2 For every system S and bisimulation equivalence R on S, the quotient S=R issimple if and only if R = �.Proof: (: Let Q be a bisimulation on S=�. We show that Q � �S=�. Then it followsfrom Theorem 8.1 that S=� is simple. Consider � : S ! S=�. By Proposition 5.9 ��1(Q) is abisimulation on S and hence is included in �. This implies Q � �S=�.): Let Q be a bisimulation on S. We show that Q � R. By de�nition the projections �1 : Q! Sand �2 : Q ! S are homomorphisms. Consider the compositions � � �1 : Q ! S=R and � � �2 :Q! S=R. By assumption, S=R is simple. It follows from Theorem 8.1 that ���1 = ���2, whenceQ � R. Therefore R =�. 29 Final systemsAn F -system (P; �) is �nal4 if for any F -system (S; �S) there exists precisely one homomorphismfS : (S; �S) ! (P; �). (In other words, (P; �) is a �nal object in the category SetF . As aconsequence, any two �nal systems are isomorphic.) Final systems are of special interest becausethey have a number of pleasant properties.First of all, the transition structure on a �nal system is an isomorphism (Lambek, cf. [SP82]).Theorem 9.1 Let (P; �) be a �nal F -system. Then � : P ! F (P) is an isomorphism.Proof: Because (F (P); F (�)) is an F -system, there exists by the �nality of P a unique homo-morphism f : (F (P); F (�)) ! (P; �). Again by �nality, the composition of the homomorphisms� and f : P��� //� F (P) //f�� F (�) P�� �F (P) //F (�) F (F (P)) //F (f) F (P):is equal to 1P , since 1P is also a homomorphism. It follows from the fact that f is a homomorphismthat the reverse composition equals the identity on F (P). 2Final systems allow coinductive proofs.Theorem 9.2 [RT93] Final systems (are simple and hence) satisfy the coinduction proof princi-ple: for any bisimulation R on P , R � �P .Proof: Immediate from Theorem 8.1(4). 2A �nal system can be considered as a universal domain of canonical representatives for bisimulationequivalences classes in the following way.Theorem� 9.3 [RT93] Let S be an F -system, P a �nal F -system, and fS : S ! P the uniquehomomorphism from S to P . For all s and s0 in S,s �S s0 () fS(s) = fS(s0):Thus fS(s) represents the �S-equivalence class of s.Proof:): Let R be a bisimulation on S with hs; s0i 2 R. By Proposition 5.9(1), fS(R) isa bisimulation on P . By de�nition, hfS(s); fS(s0)i 2 fS(R). By Theorem 9.2, P satis�es thecoinduction proof principle: fS(R) � �P , whence fS(s) = fS(s0).(: Because �P is a bisimulation on P , f�1S (�) is a bisimulation on S, by Proposition 5.9(2). IffS(s) = fS(s0) then hs; s0i 2 f�1S (�), thus s �S s0. 24We prefer �nal to terminal , which we associate with malady.28

The element fS(s) in the �nal system can be viewed as the `observable behaviour' of s. (Forthat reason, fS is called �nal semantics in [RT93].) The following simple example may serve toillustrate this.Example 9.4 Consider the functor F (S) = A�S of deterministic transition systems with output.For this functor, (A!; hh,ti) (Section 3) is �nal: Consider a system S with dynamics hv; ni : S !(A� S). The function from fS : S ! A!, which assigns to a state s in S with transitionss a0�! s1 a1�! � � � ;the in�nite wordha0; a1; : : :i (= hv(s); v(n(s)); v(n(n(s))); : : :i);is the only homomorphism between S and A! . If the output symbols ai are interpreted as theobservations corresponding to the individual transition steps, then fS(s) can be viewed as theobservable behaviour of the entire transition sequence (computation) starting in s. 2Finally, the existence of a unique homomorphism from a given system into a �nal system P canbe used as a way of giving de�nitions. Therefore, P is said to satisfy the coinduction de�nitionprinciple. We shall see examples of this in Section 11.10 Existence of �nal systemsA �nal F -system need not always exist. For instance, if F is the powerset functor P (of non-deterministic systems) and P were a �nal P-system, then Theorem 9.1 implies P �= P(P), acontradiction because the cardinality of P(P) is strictly greater than that of P . For many func-tors, though, �nal systems do exist. We shall briey describe two ways of constructing �nalsystems and give some concrete examples.For many functors F : Set ! Set , the following construction yields a �nal system. Let! : F (1)! 1 be the unique function from F (1) to the one element set 1. The inverse limit of thefollowing sequence: 1 F (1)oo ! F 2(1)oo F (!) � � � ;ooF 2(!)where Fn+1 = F � Fn, is de�ned asP = fhx0; x1; x2; : : :i j 8n � 0; xn 2 Fn(1) and Fn(!)(xn+1) = xng:The set P is a categorical limit of the sequence. If F (P) is again a limit of the same sequence,then F is called (!op-)continuous . In that case, there exists a unique (mediating) bijection fromF (P) to P , the inverse of which, say � : P ! F (P), turns P into an F -system (P; �), which canbe easily shown to be a �nal F -system (cf. [SP82]).Let the class of polynomial functors consist of all functors that we can build from the followingbasic functors: the constant functor A (where A is any set), the identity functor I , sum +, product�, and the function space functor F (X) = XA, where A again an arbitrary set. (Note that thisde�nition if somewhat non-standard in that the function space functor is usually not included.)Theorem 10.1 All polynomial functors are continuous and hence have a �nal system.Below we give a few concrete examples.Examples 10.2 An explicit description of some �nal systems is given, on the basis of which adirect proof|not using the continuity of the functor|of their �nality can be easily given as well.(The sets A, B, and C below are arbitrary.)1. I(S) = S: The one element set 1 is a �nal system for the identity functor.29

2. F (S) = A� S: For this functor, the system (A!; hh,ti) is �nal (cf. Example 9.4).3. F (S) = 1 + (A� S): the system (A1; �) (Section 3) is �nal.4. A special case: if A = 1 then the previous �nal system is (isomorphic to) (�N ; pred), the setof extended natural numbers (Section 3).5. F (S) = A� SB : the system (AB� ; �) is �nal [MA86], where� : AB� ! A� (AB�)Bis de�ned, for � in AB� , by �(�) = h�(�); i, with for b in B and v in B�, (b)(v) = �(hbi � v):(Here � is the empty sequence and � denotes concatenation of �nite sequences.)6. F (S) = C + (A � SB): Note that this example subsumes all of the above examples. Thefollowing set can be given a transition structure similarly to the de�nition of � in the previousexample, turning it into a �nal system [Jac96c]:f� : B� ! (A+ C) j 8v 2 B�; �(v) 2 C) (8w 2 B�; �(v � w) = �(v))g:7. F (S) = 1 + ((A � S)� (A� S)): The following system (T; �) is �nal. It consists of the setT of all binary arc-labelled trees (possibly containing �nite and in�nite branches):T = f� : f0; 1g� ! (1 + (A�A)) j8v 2 f0; 1g�; �(v) 2 1) (8w 2 f0; 1g�; �(v � w) = �(v))g;and the function � : T ! 1 + ((A� T)� (A� T)), de�ned for � 2 T by�(�) = � � if �(�) = �(ha1; �1i; ha2; �2i) if �(�) = ha1; a2i,where �i is de�ned for v 2 f0; 1g� by �i(v) = �(haii � v). 2The class of polynomial functors contains most but not all of the functors we have encounteredsofar. Notably the powerset functor P is not polynomial. Now we have already seen at thebeginning of this section that no �nal system exists for this functor. However, we shall see that forthe �nite powerset Pf a �nal system exists. It cannot be obtained by the inverse limit constructiondescribed above, since Pf is not continuous. Fortunately there exist other more general ways of�nding �nal systems, one of which is discussed next. It is a variation on the following naiveapproach, which almost works. First we form the coproduct (disjoint union) of all F -systems:(U; �) =Gf(Si; �i) j (Si; �i) is an F -system g:Next the quotient of U is taken with respect to the greatest bisimulation on U :(P; �) = (U= �U ; ��U):We claim that (P; �) is �nal: let (S; �) be any F -system. There exists a homomorphism from Sto P by composing the embedding homomorphism of S into the coproduct U with the quotienthomomorphism � : U ! P . Because P is simple by Theorem 8.2, this homomorphism is uniqueby Theorem 8.1.This argument has, of course, a aw: the coproduct of all systems does not exist (its carrierwould generally be a proper class). For many functors, however, it is not necessary to take the30

coproduct of all systems, but it is su�cient to consider only a `generating' set of designatedsystems. More precisely, suppose that (F is such that) there exists a set of F -systemsG = f(Gi; �i) j i 2 Ig(for some index set I), with the property that8(S; �S)8s 2 S 9(Gi; �i) 2 G; (Gi; �i) �= hsi:(Recall that hsi is the subsystem of S generated by the singleton set fsg.) Such a set G is calleda set of generators5 because every F -system (S; �S) can be obtained as a quotient of a coproductof elements of G as follows: Choose for any s 2 S a system Gs in G. Then there exists a surjectivehomomorphismq :GfGs j s 2 Sg ! S;which is determined by the homomorphisms, for all s 2 S, Gs �=�! hsi ! S (the latter homomor-phism is the embedding of the subsystem hsi in S).Now the construction proceeds as before: let(U; �) =Gf(Gi; �i) j (Gi; �i) 2 Gg;and let again(P; �) = (U= �U ; ��U):We claim that (P; �) is �nal: let (S; �) be any F -system. Because (P; �) is simple (as before),it is su�cient to prove the existence of a homomorphism from any system S to P . Consider thefollowing diagram: FfGs j s 2 Sg //q&&l NNNNNNNNNNN S
�� fS������
�(U; �) $$� HHHHHHHHH (P; �):The existence of the homomorphism q was established above, and � : (U; �) ! (P; �) is thequotient homomorphism. The homomorphism l is determined by the embeddings, for all s 2 S, ofGs in U . The existence of the homomorphism fS follows from Theorem 7.2, whose conditions canbe seen to be ful�lled as follows: by the First Isomorphism Theorem (7.1) S �= FfGs j s 2 Sg=K(q)(recall that K stands for kernel); K(q) is a bisimulation, by Proposition 5.7, and hence l(K(q))is a bisimulation on U , by Proposition 5.9; consequently, l(K(q)) ��U= K(�), which impliesK(q) � K(� � l). This concludes the proof of the �nality of (P; �). We have proven the following.Theorem� 10.3 Any functor F for which a set of generators exists, has a �nal F -system. 2For all bounded functors (De�nition 6.7), a set of generators exists.Theorem� 10.4 For every bounded functor F , a set of generators, and hence a �nal F -system,exists.5See [Bor94][Proposition 4.5.2] for two equivalent characterizations of this notion.

31

Proof: Let V be a set such that for any system (S; �S) and any subsystem hsi = (T; �) of(S; �S), T can be embedded in V . The following is a set of generators for F :f(U;) j U � V and : U ! F (U)g:For let hsi = (T; �) be a subsystem of a system (S; �S), and let i : T ! V be injective. Letb : T ! i(T) be the corresponding bijection. Then hsi is isomorphic with (i(T); F (b) � � � b�1).Applying Theorem 10.3 yields the existence of a �nal system. 2Examples 10.5 The above results apply to many functors.1. The functor F (S) = A�SB is bounded (Examples 6.8) and hence has a �nal system (whichwe already knew from Theorem 10.1). In fact, it is not to di�cult to prove that all polynomialfunctors are bounded.2. A prototypical example of a functor that is not polynomial, Pf , is bounded by N (Examples6.8). Hence a �nal Pf -system exists.3. Similarly, the functor F (S) = (Pf (S))A of image �nite labelled transition systems (Section 3)is bounded, and thus has a �nal system (P; �). Using a word from the world of programmingsemantics [Mil75], we call the elements of P (image �nite) processes . 2In the same way, one can �nd sets of generators for all possible combinations of the basic functorsmentioned above:Theorem 10.6 For all functors that we can build from the following basic functors: the polyno-mial ones (A, I, +, �, (�)A), and Pf , a set of generators exists. Consequently, all these functorshave a �nal coalgebra. 2The proof of the existence of a �nal system for bounded functors is more general but at the sametime less constructive than the �rst method, for continuous functors, where explicit descriptionsof �nal systems (as in Examples 10.2) can be easily given. In general, we have no such concretecharacterizations for the �nal systems of functors involving Pf , such as the set of processes inExamples 10.5. (See however [RT94] for a description of a �nal system for Pf as a subset of aninverse limit.)11 Examples of coinductive de�nitionsWe mention the general principle of coinductive de�nitions and give a few examples.Let S be a set and (P; �) a �nal F -system. Given a transition structure � : S ! F (S) thereexists by the �nality of P a unique homomorphism f� : S ! P . Thus, specifying a transitionstructure � on S uniquely de�nes a function f� : S ! P which is consistent with that speci�cationin that it is a homomorphism: S //9! f� _____��8� P�� �F (S) //F (f�) F (P):We say that the function f� is de�ned by coinduction from (the speci�cation) �. As we shall seeshortly, � gives `the �rst step' of the action of f�. Therefore f� is sometimes called the coinductiveextension of �.Examples 11.1 Typically the coinduction de�nition principle is used to de�ne functions from(products of) a �nal system to itself. Here are a few examples.32

1. `Zipping' two in�nite streams : Recall from Examples 10.2 that the system (A! ; hh; ti) ofin�nite streams over A is �nal for the functor F (S) = A � S. In order to de�ne a functionfzip that merges two streams into one by alternatingly taking an element from the �rst andthe second, we de�ne a transition structure zip : (A! �A!)! A� (A! �A!) byziphv; wi = (a; hw; v0i); where hh; ti(v) = ha; v0i:Then by coinduction there exists a unique homomorphism fzip : A! �A! ! A!. Because itis a homomorphism, it satis�eshh; ti(fzipha � v0; wi) = (a; fziphw; v0i)Note that this equation expresses the fact that fzip is a consistent extension of zip: it repeatsin�nitely often the �rst step of zip, namely taking the �rst element from the left stream andswapping the remainder of the left stream with the right stream.2. `Zipping' two in�nite streams : We repeat the same example with a small variation of pre-sentation. Rather than de�ning the function zip directly, we specify the correspondingtransitions in A! �A! by means of the following conditional rulev a�! v0hv; wi a=) hw; v0i :We use the symbol �! for the transitions in A! (determined by the function hh; ti), andthe symbol =) for the transitions in A!�A! that we are de�ning. The rule should be readas: if the transition of the premise (upper part) is possible, then so is the transition of theconclusion (lower part). Then =) is formally de�ned as the smallest relation on A! � A!that satis�es this rule. From =), we derive an alternative de�nition of the function zip, byputtingziphv; wi = (a; hw; v0i) () hv; wi a=) hw; v0i:The function fzip can now be conveniently characterized by the rulev a�! v0fziphv; wi a�! fziphw; v0i ;which is identical in shape to the rule that has been used in the de�nition of zip.3. De�ning concrete in�nite streams : Let in the previous example a and b be elements of A.The in�nite streams (ab)! and (ba)! can be formally introduced by putting a transitionstructure on the set 2 = f0; 1g as follows:0 a=) 1 and 1 b=) 0:By coinduction there there exists a unique homomorphism f : 2! A1 satisfying:f(0) a�! f(1) and f(1) b�! f(0):Now put (ab)! = f(0) and (ba)! = f(1). Similarly one de�nes a! and b!.
33

4. Concatenation of streams : The system (A1; �) of �nite and in�nite streams over A is �nalfor the functor F (S) = 1+ (A� S) (Examples 10.2). The concatenation of two streams canbe de�ned by specifying the following transitions on A1 �A1 (using a notation similar tothat of the previous example):v a�! v0hv; wi a=) hv0; wi v # and w a�! w0hv; wi a=) hv; w0i v # and w#hv; wi+ :(The transitions in the premises correspond to the transition structure �.) As before, thisde�nes a transition structure conc : A1 �A1 ! 1 + (A1 �A1), byconchv; wi = � � if hv; wi+(a; hv0; w0i) if hv; wi a=) hv0; w0i.By coinduction, there exists a unique function fconc : A1 � A1 ! A1. For notationalconvenience, we shall write v � w = fconchv; wi. Again the resulting function fconc satis�esthe same (in shape, that is) rules that have been used in the de�nition of conc above:v a�! v0v � w a�! v0 � w v # and w a�! w0v � w a�! v � w0 v # and w#v � w# :Note that v � � = � � v = v does not come out of this characterization immediately: we shallprove it in Section 12 using the coinduction proof principle.5. Concatenation of other structures : Without mentioning the details, let us observe thatconcatenation of other structures like trees or processes (Examples 10.5) can be de�ned inessentially the same way as the previous example.6. Addition of natural numbers : A special case of concatenation of streams is obtained by takingA = 1. Now the functor looks like F (S) = 1 + S (since 1 + (A� S) = 1 + (1� S) �= 1 + S.)Recall from Examples 10.2 that it has (�N ; pred), the extended natural numbers, as a �nalsystem. We write � for the function fconc in this case, which satis�es as beforen�!n0n�m�!n0 �m n # and m�!m0n�m�!n�m0 n # and m#n�m# :We shall prove in Section 12 that � indeed is (a coinductively de�ned version of) addition.7. Merging two processes : The system of nondeterministic processes (P; �) is �nal for thefunctor F (S) = A! Pf (S) (Examples 10.5). In the same style as above, we de�ne a merge(or interleaving) operation on P � P by specifying the following transitions:p a�! p0hp; qi a=) hp0; qi q a�! q0hp; qi a=) hp; q0i p # and q#hp; qi+ :As before, this determines a transition structure merge : P ! (A ! Pf (P)). (Note thatone has to check that the transition relation =) is image �nite, which is immediate fromthe fact that �! is.) By coinduction, there exists a function fmerge : P � P ! P , which ischaracterized byp a�! p0fmergehp; qi a�! fmergehp0; qi q a�! q0fmergehp; qi a�! fmergehp; q0i p # and q#fmergehp; qi# :The merge of two processes is sometimes called parallel composition. 234

A common feature of all the examples above is that the de�nition of a function f : S ! P bycoinduction amounts to the de�nition of a transition structure � : S ! F (S). A good under-standing of coinduction, therefore, should be based on a thorough knowledge of transition systemspeci�cations , of which we have seen examples above. The classi�cation of schemes or formats ofsuch transition system speci�cations (as in, e.g., [GV92] and [vG96]) could be called the study ofcorecursion, in the same way as recursion theory studies schemes for inductive de�nitions. See also[MD97] for some further thoughts on corecursion in the context of non-wellfounded set theory.12 Examples of proofs by coinductionRecall from Section 8 the coinduction proof principle, for a system S:for every bisimulation R on S, R � �S :As we have seen, the principle is valid for all simple systems and hence for all �nal systems. It isquite a bit more powerful than one might suspect at �rst sight.Examples 12.1 Typically the coinduction proof principle is used to prove properties of coinduc-tively de�ned functions, such as the ones de�ned in Examples 11.1.1. `Zipping' in�nite streams : We prove that zipha!; b!i = (ab)!. The relation R � A! � A!,consisting of the following two pairsR = fhzipha!; b!i; (ab)!i; hziphb!; a!i; (ba)!igis a bisimulation: We have to prove (cf. Section 3) for all a in A and hv; wi in R:(a) v a�! v0 and w a�! w0) hv0; w0i 2 R.Consider the �rst pair of R. The only transition step of its left component iszipha!; b!i a�! ziphb!; a!i;whereas its right component can take the step(ab)! a�! (ba)!:The pair of resulting states, hziphb!; a!i; (ba)!i, is again an element of R. Thus we haveproved that the �rst pair in R has the bisimulation property. Similarly for the secondpair. Now A! is �nal and hence satis�es the coinduction proof principle, which tells us thatR � �A! , proving the equality we were after.2. Concatenating the empty stream: For any �nite or in�nite stream v 2 A1, left concatenationwith the empty stream � is the identity, because R = fh� � v; vi j v 2 A1g is easily shownto be a bisimulation on the �nal system A1; that is (cf. Section 3), for all hv; wi in R, (a)above holds as well as(b) v# () w#.Similarly, right concatenation with � is the identity.3. Concatenation of streams is associative: This follows by coinduction from the fact thatR = fh(u � v) � w; u � (v � w)i j u; v; w 2 A1gis a bisimulation relation on A1. Rather than showing this, it turns out to be convenient toprove that S = R [�A1 is a bisimulation. Consider a pair in S. If it is in �A1 then there35

is nothing to prove since by Proposition 5.1, the diagonal is a bisimulation. Otherwise, thepair is of the form h(u � v) � w; u � (v � w)i in R. If u = � then it follows from the previousexample that(� � v) � w = v � w = � � (v � w);which implies that our pair is in �A1 after all, bringing us back to the case we have alreadyconsidered. If u is not the empty sequence, it can take an a step to u0, for some a and u0.In that case, there are transitions(u � v) � w a�! (u0 � v) � w; and u � (v � w) a�! u0 � (v � w);which concludes the proof since the resulting pair is in R again. The reader is invited toprove directly that R (without taking the union with �A1) is a bisimulation. This is quitepossible but involves a few more case distinctions (as to whether v and w are empty or not).4. Concatenation of trees and processes is associative: by similar proofs.5. Addition of natural numbers : In Examples 11.1, addition (�) on the (extended) naturalnumbers �N has been de�ned in terms of concatenation. Here we show that � has theusual properties in terms of the successor function. Let s : �N ! �N be the inverse ofpred : (1 + �N)! �N , restricted to �N . Thus it is de�ned as usual, with s(1) =1. Becausepred(s(n)) = n there is a transition s(n) �! n, for any n in �N . The following holds, forany n and m in �N :(a) 0�m = m(b) s(n)�m = s(n�m).The �rst statement follows from example 2. above. The second follows by coinduction on �Nfrom the fact that R = fhs(n)�m; s(n�m)i j n;m 2 � �N g[� �N is a bisimulation, whichis immediate since both s(n)�m and s(n�m) can take a step to n�m, and hn�m; n�miis in � �N . Note that it follows from the previous example that addition is associative.6. Addition of natural numbers is commutative: Not much of a surprise, really. But just for thefun of it, we present a proof by coinduction (which the reader may want to compare withthe more familiar proof using mathematical induction). We prove, for all n and m,(a) n� s(m) = s(n)�m: This follows by coinduction from the fact thatR = fhn� s(m); s(n)�mi j n;m 2 �Ng [� �Nis a bisimulation: Consider a pair hn�s(m); s(n)�mi. If n = 0 then both componentsmake a transition to 0�m and we are done, since h0�m; 0�mi 2 � �N . Otherwise,we have transitionsn� s(m) �! pred(n) � s(m); and s(n)�m �! n�m:Now note that hpred(n)� s(m); n�mi = hpred(n)� s(m); s(pred(n))�mi, which isin R.(b) n�m = m� n: Using statement (a) as a lemma, we prove that the relationQ = fhn�m; m� ni j n;m 2 �Ngis a bisimulation. Consider a pair hn�m; m� ni and suppose that both are di�erentfrom 0 (the other three cases are trivial), say, n = s(n0) and m = s(m0). Then thereare transitionsn�m �! n0 �m; and m� n �! m0 � n:Now observe thatn0 �m = n0 � s(m0) = [the lemma (a)] s(n0)�m0 = n�m0;which implies that hn0 �m; m0 � ni is in Q.36

(Clearly, concatenation of streams over a set A with more than one element is generally notcommutative.)7. The merge of processes : is commutative, since R = fhfmergehp; qi; fmergehq; pii j p; q 2 Pgis a bisimulation.13 Induction and coinductionWhy did we call the coinductive proof principle of Section 8 by that name? How does it relate toinduction? In short, coinduction is dual to induction in the following sense. Recall that a systemS satis�es the coinduction proof principle if and only if it satis�es one of the following two (byTheorem 8.1) equivalent conditions:1. S is simple, that is, it has no proper quotients .2. For every bisimulation relation R on S, R � �S .There is also the following dual proof principle for algebras . We say that an algebra A satis�esthe induction proof principle whenever one of the following two conditions, which turn out to beequivalent, holds:3. A is minimal, that is, it has no proper subalgebras .4. For every congruence relation R on A, �A � R.To make this more precise, we shall give the categorical de�nitions of algebra, homomorphism ofalgebras, and congruence relation, which are the algebraic counterparts of the coalgebraic notionsof coalgebra, homomorphism of coalgebras, and bisimulation, respectively (cf. Section 1). Thenthe equivalence of 3 and 4 is proved. Next these notions and the induction principle are illustratedby the example of the natural numbers, which will make clear that the above, somewhat abstractlyformulated induction principle, is just the familiar principle of mathematical induction.Let F : Set ! Set be a functor. An F -algebra is a pair (A;�A) consisting of a set A and afunction �A : F (A)! A. Let (A;�A) and (B;�B) be two F -algebras. A function f : A! B is ahomomorphism of F -algebras if f � �A = �B � F (f):F (A) //F (f)���A F (B)�� �BA //f B:Intuitively, homomorphisms are functions that preserve the F -algebra structure. An F -congruencerelation between two F -algebras (A;�A) and (B;�B) is a subset R � A � B for which thereexists an F -algebra structure �R : F (R) ! R such that the projections from R to A and B arehomomorphisms of F -algebras: F (A)���A F (R)oo F (�1) //F (�2)�� �R F (B)�� �BA Roo �1 //�2 B:(This de�nition of congruence is not to be confused with a congruence equivalence relation, whichis an equivalence relation on one and the same algebra that is moreover respected by the operators.In fact, the above de�nition is more general.) 37

Example 13.1 Any �-algebra [Coh81] is an F -algebra for a suitable choice of F (see, for instance,[RT94]). Here we look at one particular type of algebras, namely triples (A; 0A 2 A; sA : A! A)consisting of a (carrier) set A, a constant 0A, and a unary (successor) function sA. A concreteexample are the natural numbers (N ; 0; s). Such algebras can be represented as algebras of thefunctor F (X) = 1 +X , by de�ning�A : (1 +A) ! A; � 7! 0A; a 7! sA(a):If we have two such algebras (A; 0A 2 A; sA : A! A) and (B; 0B 2 B; sB : B ! B) and representthem as F -algebras (A;�A) and (B;�B), then one readily veri�es that a function f : A! B is a(1 + �)-homomorphism from (A;�A) to (B;�B) if and only if it satis�es the usual de�nition ofhomomorphism:f(0A) = 0B ; f(sA(a)) = sB(f(a)):Similarly, it is easy to prove that a (1 +�)-congruence relation R � A�B between (A;�A) and(B;�B) is substitutive:h0A; 0Bi 2 R; ha; bi 2 R) hsA(a); sB(b)i 2 R: 2As already mentioned above, an F -algebra A satis�es the induction proof principle if it satis�esclauses 3 and 4, which are next shown to be equivalent: If R is a congruence on A then �1(R)\�2(R)is a subalgebra of A. Assuming 3, this subalgebra is equal to A, or equivalently, �A � R. Thisproves 4. Conversely, if A0 � A is a subalgebra and i : A0 ! A is the inclusion homomorphismthen the kernel of i is easily shown to be a congruence on A0, and hence on A. Assuming 4,�A � R, which implies A � A0.We have seen that all �nal systems are simple and hence satisfy the coinduction proof principle.Dually, an initial algebra (for which there exists precisely one homomorphism into any givenalgebra) is minimal and hence satis�es the induction principle.Example 13.1, continued: The algebra (N ; 0; s) of the natural numbers is initial and henceminimal. Now minimality amounts to the well-known principle of mathematical induction: for allP � N ,if: 0 2 P and: for all n 2 N (n 2 P) s(n) 2 P) then: P = N ;since the if-part of the implication is just the assertion that P is a subalgebra of N . 2Note that for proofs by induction, formulation 3 is mostly used, whereas proofs by coinductionare best given, as we have seen in Section 12, using 2 (which is the dual of 4 rather than 3).Although we have only compared induction and coinduction as proof principles, the corre-sponding de�nition principles are similarly related. The main observation there is that de�nitionsby induction use the universal property of initiality, as opposed to de�nitions by coinduction,which are based on �nality.14 Comparing systemsAny deterministic system is a special kind of nondeterministic system. Similarly, any binary treecan be turned into a deterministic system by `cutting away' all left branches.Such statements can be formalized using the the following (categorical) notion. Let F : Set !Set and G : Set ! Set be two functors. A natural transformation � from F to G, denoted by
38

� : F!G, is a family fvS : F (S)! G(S) j S 2 Setg of functions satisfying the following naturalityproperty: for any function f : S ! T , the following diagram commutes:F (S) //F (f)���S F (T)�� �TG(S) //G(f) G(T):Any F -system (S; �S) can now be viewed as a G-system by composing �S with �S . Moreover, iff : (S; �S) ! (T; �T) is an F -homomorphism then it is also a G-homomorphism of the resultingG-systems; and, similarly, any F -bisimulation between F -systems is also a G-bisimulation of theresulting systems: S //f���S T�� �TF (S) //F (f)���S F (T)�� �TG(S) //G(f) G(T)
S���S Roo �1 //�2�� �R T�� �TF (S)���S F (R)�� �Roo F (�1) //F (�2) F (T)�� �TG(S) G(R)oo G(�1) //G(�2) G(T):The above is summarized in the following. (Recall|Corollary 5.6|that �F denotes the greatestF -bisimulation between two systems.)Theorem 14.1 A natural transformation � : F!G between set functors induces a functor, de-noted by � � (�) : SetF ! SetG which maps (S; �S) to (S; �S � �) and an F -homomorphismf : (S; �S) ! (T; �T) to the G-homomorphism f : (S; �S � �S) ! (T; �T � �T). Moreover, thisfunctor preserves bisimulations: for any s and t, s �F t) s �G t. 2Examples 14.2 A few examples of the use of natural transformations.1. Relabeling : Any function l : A! B induces a natural transformation � : A� (�)!B� (�),de�ned for a set S by �Sha; si = hl(a); si. Let �S : S ! (A � S) and �T : T ! (B � T)be deterministic transition systems with labels in A and B, respectively. Then a (B � (�))-homomorphism f : (S; �S � �S)! (T; �T) is characterized bys a�! s0) f(s) l(a)�! f(s0):2. Restriction: Let �S : Pf ((A [B) � S)! Pf (B � S) be de�ned, for any set S and V � Sby �S(V) = V \ (B � S). Then composing a nondeterministic transition system �S : S !Pf ((A [B)� S) with �S amounts to restricting its behavior to B-steps only.Given, conversely, a G-system (C;), there exist, under some conditions on F , a correspondingF -system (SC ; �) that when viewed as a G-system (SC ; �SC � �), `resembles' (C;) most. Moreprecisely:Theorem� 14.3 Let F and G be functors and � : F!G a natural transformation. Suppose thatfor any set V , the functor V �F has a �nal system (where V is the constant functor that sends anyset to V). Then there exists for any G-system (C;) an F -system (SC ; �) and a G-homomorphism� : (SC ; �SC � �) ! (C;) satisfying the following universal property: for any F -system (U; �U)39

and any G-homomorphism f : (U; �U � �U) ! (C;) there exists a unique F -homomorphism~f : (U; �U)! (SC ; �) such that � � ~f = f :U //9 ~f ____ ++8 f���U SC //��� � C
�� F (U) //F (~f)___���U F (SC)�� �SCG(U) //G(~f)___ 22G(f)G(SC) //G(�) G(C):The F -system (SC ; �) (and �) is called cofree on the G-system (C;). Note that the functor V �Fis bounded whenever F is, in which case a (V � F)-�nal system exists by Theorem 10.4.Proof: By assumption, S � F has a �nal system (T; �). Let � = h�1; �2i, where �1 : T ! Sand �2 : T ! F (T). By Theorem 14.1, (T; �T � �2) is a G-system. Let B = ft 2 T j t �G �1(t)g.De�ne (SC ; �) = [B], the largest F -subsystem of (T; �2) that is contained in the subset B:SC��� //i T�� �2F (SC) //F (i) F (T);where i is the inclusion F -homomorphism. It is by Theorem 14.1 also a G-homomorphism i :(SC ; �SC � �) ! (T; �T � �2). By Theorem 2.5, its graph is a G-bisimulation, hence c �G i(c) forany c in SC . By de�nition of B also i(c) �G �1(i(c)), and because composition of bisimulationrelations is again a bisimulation (Theorem 5.4), it follows that c �G �1(i(c)). Therefore the graphof �1 � i is a G-bisimulation, and so �1 � i : (SC ; �SC � �) ! (C;) is a G-homomorphism, byTheorem 2.5. That is, the outer square below commutes:SC��� //i T //�1���2 C
�� F (SC) //F (i)���SC F (T)���TG(SC) //G(i) G(T) //G(�1) G(C):(Note that the right rectangle generally does not commute.) De�ne � = �1 � i. We claim that(SC ; �) and � satisfy the universal property of the theorem: Consider any F -system (U; �U) andG-homomorphism f : (U; �U � �U) ! (C;). By �nality of T , there exists a unique S � F -homomorphism h : U ! T : U��hf;�U i //h T�� h�1;�2iS � F (U) //(S�F)(h)S � F (T):Commutativity of this diagram implies that �1 � h = f and h : (U; �U) ! (T; �2) is an F -homomorphism. By Theorem 2.5, its graph is an F -bisimulation and hence, by Theorem 14.1,40

a G-bisimulation between (U; �U � �U) and (T; �T � �2). Thus u �G h(u), for any u 2 U .Because f is a G-homomorphism, also u �G f(u), again by Theorem 2.5. Because inverse andcomposition of bisimulations yield bisimulations again (Theorems 5.2 and 5.4), it follows thath(u) �G f(u) = �1(h(u)). Thus h(U) � B, which implies, by Proposition 6.5, that h factorizesthrough SC = [B]: there exists a unique F -homomorphism ~f : (U; �U)! (SC ; �) such thatU //h !!~f BBBBBBBB TSC :OO i���By Theorem 14.1, it is also a G-homomorphism from (U; �U � �U) to (SC ; �SC � �). Since� � ~f = �1 � i � ~f = �1 � h = f;~f is the F -homomorphism we have been looking for. Its uniqueness follows from that of h and thefactorization. 2(By a standard argument in category theory, it follows that the assignment of (SC ; �) to (C;)actually extends to a functor from SetG to SetF , which is right adjoint to � � (�).)Examples 14.4 We give a few examples of cofree systems.1. A simple instantiation of Theorem 14.3 is obtained by taking G = 1, the functor that isconstant 1. Then there is only one natural transformation from a functor F to 1, and thefunctor it induces from SetF to Set sends each F -system to its carrier. (Recall from Section3 that Set1 �= Set .) If F is bounded then it follows from the construction above that, fora set C, the �nal (C � F)-system SC is cofree on C (cf. [Jac95]). We like to think of theelements of C as `colours'. In that view, SC can be regarded as a universally C-colouredF -system: � : SC ! C gives the colours of the states in SC ; and for any F -system U andany `colouring' f : U ! C there exists a unique F -homomorphism ~f : U ! SC which iscolour consistent: � � ~f = f : U //9 ~f___ **8 fSC //� C:2. For a concrete example of the preceding situation, let F = I , the identity functor. Then forany set C, the system hh; ti : C! ! C �C! is a �nal (C � I)-system, and so t : C! ! C!,with colouring h : C! ! C, is cofree on the set C.15 Cofreeness and covarieties of systemsWe show how any subsystem of a cofree system determines a well-behaved class of systems, calleda covariety, and briey illustrate how this can been seen as a way of system speci�cation.Let in this section F : Set ! Set be a bounded functor, and C a set, of colours. Let SC , withcolouring � : SC ! C, be an F -system that is cofree on C. Recall from Examples 14.4 that wecan take for SC any �nal (C � F)-system, which exists because C � F is bounded. Consider asubsystem i : S ! SC . Let the class K(S) consist of all F -systems (U; �U) with the property thatfor any colouring function f : U ! C, the (by cofreeness uniquely determined) F -homomorphism
41

~f factorizes though S: CU //~f >>8 f }}}}}}}} AAAA SCOO �S:OO i(Note that f and � are functions and the other arrows are F -homomorphisms.) Such classes arewell behaved in the following sense.Theorem� 15.1 The class K(S) of F -systems de�ned above is closed under the formation of1. subsystems;2. homomorphic images;3. and sums. 2Such a class is called a covariety .Proof:1. Let U be a system in K(S) and j : U 0 ! U a subsystem. Any colouring f 0 : U 0 ! C can beextended to a colouring f : U ! C such that f � j = f 0. Because � � ~f � j = f � j = f 0, theunique extension of f 0 to an F -homomorphism from U 0 to SC is ~f 0 = ~f � j. Because U is inK(S), ~f factorizes through S, and hence so does ~f 0. Thus U 0 is in K(S).2. Let U be a system in K(S) and q : U ! U 0 a surjective homomorphism. Any colouringf 0 : U 0 ! C induces a colouring f = f 0 � q on U . Because � � ~f 0 � q = f 0 � q = f; it followsfrom the cofreeness of SC that ~f = ~f 0 � q. Because U is in K(S) there exists g : U ! Ssuch that i � g = ~f . The kernel K(q) is included in K(~f), since ~f = ~f 0 � q. The factthat q is a surjective homomorphism, implies the existence (by Theorems 7.1 and 7.2) of ahomomorphism g0 : U 0 ! S such that g0 � q = g. Since ~f 0 � q = ~f = i � g = i � g0 � q, itfollows from the surjectivity of g that ~f 0 = i � g0. Thus U 0 is in K(S).3. A family of colourings ffig on a family fUig of systems in K(S) determines a colouringP fi : Pi Ui ! C. Because each of the induced homomorphisms ~fi factorizes through S,their sum Pi ~fi :Pi Ui ! SC is readily seen to factorize through S as well. 2Example 15.2 An example of such a class de�nition is obtained by taking F = I , the identityfunctor, and C = 2 = f0; 1g. The system t : 2! ! 2!, with colouring h : 2! ! 2, is cofree on theset 2. Consider the following subsystem S of 2!:(01)! // (10)!oo 0! BCEDGF�� 1! BCEDGF��The class K(S) contains all systems (U; �U) which consist of one and two cycles only: �U ��U(u) =u, for all u in U . 2Returning to the general case again, the following theorem is a kind of converse of the previousone. It states that any covariety is determined by a subsystem of a cofree system.Theorem� 15.3 For any covariety K there exists a set of colours C and a subsystem S of thecofree F -system SC, such that K = K(S). 42

Proof: Let K be a covariety. By assumption F is bounded, say by a set C. Let SC and � : SC ! Cbe as before. De�ne a subsystem i : S ! SC byS =[f ~f(U) j U 2 K and f : U ! Cg:(Recall that ~f(U) is a subsystem of SC by Theorem 6.3, and that the union of subsystems is againa subsystem by Theorem 6.4.) Clearly, K � K(S). For the converse, �rst note that S 2 K: thisfollows from the fact that S is the image of a homomorphismq :Xs2S Us ! S;where for each s in S an F -system Us 2 K and a colouring fs : Us ! C have been choosen suchthat s 2 ~fs(Us); and where q is determined by the homomorphisms ~fs. Now let T be any F -systemin K(S), and t 2 T . The size of the subsystem hti of T is bounded by that of C, because F isbounded by C. Thus there exists a colouring f : T ! C that is injective on hti. Because T 2 K,the induced homomorphism ~f factorizes through S via some homomorphism g:CT //~f >>f }}}}}}}} g AAAA SCOO �S:OO iBecause f = � � i � g and f is injective on hti, also g is injective on hti. Thus hti �= f(hti). Sincethe latter is a subsystem of S, which we have shown to be in K, also hti is in K. Because T is theimage of the homomorphismXt2T hti ! Twhich is determined by the inclusions of the subsystems hti in T , it follows that T 2 K. 2The above characterization of classes of systems is inspired by Birkho�'s variety theorem foralgebras (cf. [MT92][Theorem 5.2.16]), which states that a class of algebras is closed under theformation of subalgebras, quotients, and products , if and only if it is equationally de�nable. Thereis also another theorem by Birkho�, which asserts the soundness and completeness of a logicalcalculus for equations of varieties. It is unclear what a counterpart of the latter should be forsystems.For some speci�c types of systems, theorems similar to Theorem 15.3 exist. In particular,it would be interesting to connect our covariety theorem to the characterizations, in [Gol93], ofcertain classes of frames.16 Dynamical systems and symbolic dynamicsThe generality of the coalgebraic view on systems is further illustrated by a brief account of so-called one dimensional discrete time dynamical systems (X; f), consisting of a complete metricspace X (with distance function dX) and a continuous function f : X ! X . Such systems arecoalgebras of the identity functor on the category Met of complete metric spaces and continuousfunctions between them. Thus we are changing the scene for the �rst time by looking at a category43

1
a b

Figure 1: The graph of f�, for � > 4.di�erent from Set . One of the main themes in the theory of dynamical systems is the systematicstudy of orbits : if x 2 X then its orbit is the setfx; f1(x); f2(x); f3(x); : : :g;where fn+1(x) = f(fn(x)). (In our terminology, the orbit of x is just the subsystem hxi of (X; f)generated by the singleton x.) Questions to be addressed are, for instance, whether a point x isperiodic (x = fn(x), for some n � 0); whether there are many such periodic points and how theyare distributed over X (e.g., do they form a dense subset?); and whether orbits hxi and hyi aresimilar if we know that x and y are close, that is, dX (x; y) is small. Here we shall briey discussone important technique that is used in the world of dynamical systems to answer some of suchquestions, called symbolic dynamics (cf. [BP96]), by giving a coalgebraic account of one particularexample, taken from [Dev86]. As it turns out, the notion of cofreeness plays a crucial role.Let R denote the set of real numbers. The concrete example we shall consider is the quadraticfamily of systems (R; f�), which are parameterized by a real number �, and for which f� is de�nedby f� : R ! R; f�(x) = �x(1� x):More speci�cally, we shall assume � to be �xed with �> 4. (The reason for this choice is that themaximum �=4 in this case is strictly bigger than 1.) We shall write f for f�. Let a and b in R bethe points with f(a) = 1 = f(b) and a < b.A quick look at Figure 1 tells us that the dynamics of f on the intervals (�1; 0) and (1;+1)is easily understood: all orbits tend to �1. The same applies to the interval (a; b), since it ismapped by f to (1;+1), bringing us back to the previous case. Possibly more interesting dynamicbehavior may be expected from elements in the intervals [0; a] and [b; 1]. Now note that f mapseach of these intervals bijectively to [0; 1]. Consequently, [0; a] \ f�1(a; b) and [b; 1] \ f�1(a; b)have uninteresting dynamics as well: those points are mapped by f2 to (1;+1), where all orbitsgo to �1. This leaves us with ([0; a] [[b; 1]) \ f�1([0; a] [[b; 1]), which consists of four closedintervals. Continuing in this way, we �nd a setJ = 1\i=0(f i)�1([0; a] [[b; 1]);which can alternatively be characterized as the largest subsystem of (R; f) that is contained in[0; 1]. Its dynamics can in a surprisingly simple way be explained using symbolic dynamics, whichwe explain next using our own coalgebraic idiom.44

Let 2 be the set f0; 1g with the discrete metric (d2(0; 1) = 1). As before we shall consider theelements of 2 as colours. Consider the functor2�� : Met ! Met ; X 7! 2�X;where the Cartesian product is supplied with distance functiond(hi; xi; hj; yi) = d2(i; j) + 1=2 � dX (x; y):The set of in�nite sequences (2!; hh; ti) (where h : 2! ! 2 and t : 2! ! 2! are the head and tailfunctions), supplied with distance functiond2!(v; w) = 1Xi=0 d2(vi; wi)2i ;is a �nal (2��)-system: a proof is omitted but can be given using the techniques for the solutionof metric domain equations of [AR89] and [RT93]. Consequently, (2!; t) is a dynamical systemthat is cofree on the metric space 2. Now de�ne a colouring c : J ! 2 of J byc(x) = � 0 if x 2 [0; a],1 if x 2 [b; 1].By the universal property of the cofree system (2!; t) there exists a unique homomorphism ~c :(J; f)! (2!; t) with h � ~c = c. This homomorphism ~c can readily be shown to be an isomorphism.Thus (R; f) falls apart into two subsystems: (R � J; f), where all orbits tend to �1, and(J; f), whose dynamics is the same as that of (2!; t). The gain of this symbolic interpretation of(J; f) is that the dynamics of (2!; t) is well understood: it is the prototypical example of a chaoticsystem.17 Notes and related workThe use of �nal coalgebras in the semantics of systems (including automata and in�nite data typessuch as trees) dates back at least to [AM82]. Also Peter Aczel modelled (transition) systems ascoalgebras, in constructing a model for a theory of non-wellfounded sets [Acz88]. In a subsequentpaper on �nal coalgebras [AM89], a categorical de�nition of bisimulation was given. (Later wefound that a variation also occurs in [Ken88].) This categorical de�nition and the characterizationof (�nal coalgebras and) coinduction in terms thereof, has been the starting point of the presentpaper. It generalizes and extends [Rut95], where part of the theory of universal coalgebra isdeveloped for the special case of labelled transition systems. That paper was preceded by joint workwith Daniele Turi [RT93, RT94, TR97] on �nal coalgebra semantics for concurrent programminglanguages.The aim of the present paper has been both to give an overview of some of the existing insightsin coalgebra as well as to present some new material. Below we briey describe per section whichresults have been taken from the literature.Our references for universal algebra have been [Coh81] and [MT92]; for category theory, [ML71,Bor94]. The de�nition in Section 2 of F -bisimulation is from [AM89]. Theorem 2.5 generalizes[RT94][Proposition 2.8]. Most observations in Section 4 are standard in category theory (cf.[Bar93]). Some of the results in Sections 5 and 6 are generalizations of similar observationsin [RT94] and [Rut95], on the category of labelled transition systems. The notion of boundedfunctor is taken from [KM96], and is ultimately due to [Bar93]. Sections 7 and 8 generalize similarresults from [Rut95]. The results on �nal systems in Section 9 are from [RT93]. The resultspresented in Section 10 are from [Bar93, Bar94], which build on [AM89]. Their presentationhas been inuenced by [Tur96] and [KM96]. The example of the extended natural numbers inSections 11 and 12 was developed jointly with Bart Jacobs and Bill Rounds. The comparison ofinduction and coinduction in Section 13 extends the characterization in [RT94], which was givenin terms of congruences and bisimulations (see also [HJ96]). The recent work by Bart Jacobs on45

coalgebraic speci�cation [Jac95] and his use of cofreeness in a coalgebraic semantics for object-oriented programming [Jac96b] have been a source of inspiration for the writing of Section 14.The variety theorems of Section 15 answer a question raised in [Rut95]. Section 16 gives a acoalgebraic account of the dynamics of the quadratic family of dynamical systems, which occursin [Dev86]. This section does not present any new results but for the observation that one of theessential ingredients in symbolic dynamics is the notion of cofree system.In addition to the references mentioned above, work on (�nal) coalgebraic semantics includes[Tur96], which gives a systematic comparison of �nal coalgebra and initial algebra semantics forconcurrent languages; [Rei95], on object-oriented programming; [HL95], on a model for the lambdacalculus; [Len96], on a higher-order concurrent language; [Jac96a], on behaviour re�nement inobject-oriented programming.The following papers are using non-wellfounded sets as the starting point for semantics:[Rut92], [Acz94], and [FHL94], on processes and non-wellfounded sets; [BM96], a recent text-book on non-wellfounded sets and circularity; and [MD97], where corecursion is further studied inthat context.Other categorical approaches to bisimulation include [Abr91], on a domain for bisimulation;[WN95], on categories of transition systems; [Pit94], [Fio96], and [Pit96], on mixed induction-coinduction principles on domains in terms of relational properties; [HJ96], on functors on cat-egories of relations; [JNW96], on a characterization of bisimulation in terms of open maps andpresheaves. In [BV96], a metric domain for bisimulation can be found.AcknowledgementsThe numerous conversations with Bart Jacobs over the past two years during his stay at theCWI have greatly increased my understanding of category theory in general and of coalgebras inparticular. In addition to the above mentioned sections, also the idea of coalgebra as a generaltheory of (dynamical) systems has been inuenced by our intensive interaction. Many thanks toAndrea Corradini, Jan van Eijk, Jan Heering, Furio Honsell, Wilfried Meyer Viol, Larry Moss,Prakash Panangaden, Maarten de Rijke, Bill Rounds, Erik de Vink, for discussions; to AndreaCorradini, Bart Jacobs, and Elena Marchiori, for detailed comments on a draft version of thispaper; to Kees van Kemenade, for making the picture in Section 16. As always, I have learnedmuch from the comments of the Amsterdam Concurrency Group, headed by Jaco de Bakker.18 AppendixThis section is intended to give an overview of some basic facts on sets and categories, and alsoto mention one or two facts that may be less familiar. (The latter are indicated as propositions.)It is to be consulted when needed.On setsComposition of functions f : S ! T and g : T ! U is written as g � f : S ! U . We write 0 forthe empty set, and 1 = f�g for the one element set. The identity function on a set S is denotedby 1S : S ! S. The sets of natural numbers and integers are denoted byN = f0; 1; 2; : : :g; Z = f0; 1;�1; 2;�2; : : :g:The set of functions between sets S and T is denoted byST = ff : S ! Tg:Let A be any set. The following notation will be used for sets of streams (or sequences, or lists)over A:1. A�: the set of all �nite streams of elements of A; � denotes the empty stream.46

2. A+: the set of all non-empty �nite streams.3. A!: the set of all in�nite streams.4. A1 = A� [A!: the set of all �nite and in�nite streams.5. A1+ = A+ [A! : the set of all non-empty �nite and in�nite streams.Let S be any set and R an equivalence relation on S. Let the quotient set S=R be de�ned byS=R = f[s]R j s 2 Sg, with [s]R = fs0 j (s; s0) 2 Rg. Let �R : S ! S=R be the surjective mappingsending each element s to its equivalence class [s]R. It is called the quotient map of R.The diagonal (or equality) �S of a set S is given by�S = fhs; si 2 S � S j s 2 Sg:Let f : S ! T be any mapping. The kernel K(f) and the graph G(f) of f are de�ned as follows:K(f) = fhs; s0i j f(s) = f(s0)g;G(f) = fhs; f(s)i j s 2 Sg:For subsets V � S and W � T , letf(V) = ff(s) j s 2 V g;f�1(W) = fs j f(s) 2 Wg:The set f(S) is called the image of f . More generally, for functions f : S ! T and g : S ! U , theimage of f and g is de�ned byhf; gi(S) = fhf(s); g(s)i j s 2 Sg:Also the following notation will be used: for f : S ! T , R � S � S and Q � T � T ,f(R) = fhf(s); f(s0)i j hs; s0i 2 Rg;f�1(Q) = fhs; s0i j hf(s); f(s0)i 2 Qg:Let S, T and U be sets, R � S�T a relation between S and T , and Q � T �U a relation betweenT and U . The inverse R�1 of R is de�ned byR�1 = fht; si j hs; ti 2 Rg;and the composition R �Q of R and Q is de�ned byR �Q = fhs; ui j 9t 2 T; hs; ti 2 R and ht; ui 2 Qg:Note the di�erence in order between function composition and relation composition.On categoriesSome familiarity with the following notions will be helpful (but is not strictly necessary for un-derstanding the rest of the paper): category; functor; epi; mono; limit and colimit (in particular,pullback, coequalizer, initial object, �nal object); opposite category; product of categories.
47

On the category of setsThe category of sets and functions between them is denoted by Set . It is complete and cocomplete,i.e., all limits and colimits exist. A function is mono if and only if it is injective, and it is epi ifand only if it is surjective.Proposition 18.1 Let F : Set ! Set be an arbitrary functor. If f : S ! T is mono and S isnon-empty, then F (f) : F (S)! F (T) is mono as well.Proof: Let s0 2 S and de�ne g : T ! S byg(t) = � s if there is (a unique) s 2 S with t = f(s),s0 otherwise.Clearly, g � f = 1S and hence by functoriality of F , F (g) � F (f) = F (1S) = 1F (S). Thus F(f) isinjective, that is, mono. 2Below the functors that are used in this paper are described. First the basic functors are listed,which next are used to de�ne a number of composed functors:1. The identity functor: I : Set ! Set sends sets and functions to themselves.2. The constant functor A, where A is any set, maps any set to the set A, and any function tothe identity function 1A on A.3. Coproduct (or sum):+ : Set � Set ! SetIt maps two sets to their disjoint union; a pair of functions f : S ! S0 and g : T ! T 0 ismapped to f + g : (S + T) ! (S0 + T 0), sending s in S to f(s) and t 2 T to g(t). Thecoproduct of an indexed family of sets fSigi is denoted byXi Si:4. Product:� : Set � Set ! SetIt maps a pair of sets S and T to their Cartesian product S�T ; a pair of functions f : S ! S0and g : T ! T 0 is mapped to f � g : (S � T)! (S0 � T 0), sending hs; ti to hf(s); g(t)i.5. Function space:!: Setop � Set ! SetIt maps a pair of sets S and T to the set S ! T of all functions from S to T . A pair offunctions f : S0 ! S and g : T ! T 0 is mapped to (f ! g) : (S ! T) ! (S0 ! T 0), whichsends � 2 S ! T to g � � � f 2 S0 ! T 0. This functor will mostly be used with a �xedchoice, a set A say, for the left argument. Then it is denoted as follows:(�)A : Set ! Set :
48

6. Powerset:P : Set ! SetIt maps a set S to the set of all its subsets P(S) = fV j V � Sg. A function f : S ! T ismapped to P(f) : P(S)! P(T), which is de�ned, for any V � S, by P(f)(V) = f(V). Weshall also encounter the �nite powerset: Pf (S) = fV j V � S and V is �nite g.7. Contravariant powerset:�P : Setop ! Setacts on sets as P does: �P(S) = P(S). A function f : S ! T is mapped to �P(f) : �P(T) !�P(S), which is de�ned, for any V � T , by �P(f)(V) = f�1(V). BecausefV j V � Sg �= 2S(by representing a subset by its characteristic function), the contravariant powerset functorcould equivalently be described as F (S) = 2S . (Note that the de�nition on functions wouldindeed be the same.) The contravariant powerset functor will in particular be considered incomposition with itself:�P � �P : Set ! Set :One easily veri�es that a function f : S ! T is mapped by this composition to�P(�P(f)) : �P(�P(S))! �P(�P(T)); V 7! fW � T j f�1(W) 2 Vg:Next a few examples are given of functors that are obtained by combining one or more of the basicfunctors mentioned above:1. F1(S) = 1 + S2. F2(S) = A� S3. F3(S) = 1 + (A� S)4. F4(S) = S � S5. F5(S) = P(A� S)6. F6(S) = (B � S)A7. F7(S) = 1 + ((A� S)� (A� S))The de�nition of how these functors act on functions, follows from the de�nitions of the basicfunctors above. For instance, the functor F6 sends a function f : S ! T to the function (B� f)A,which maps a function � in (B � S)A to the function ~� in (B � T)A, de�ned by ~�(a) = hb; f(s)i,where �(a) = hb; si.Next a few limit and colimit constructions in Set are described explicitly. A pullback offunctions f : S ! T and g : U ! T is a triple (P; k : P ! S; l : P ! U) with f � k = g � lsuch that for any set X and functions i : X ! S and j : X ! U with f � i = g � j there exists aunique (so-called mediating) function h : X ! P with k � h = i and l � h = j. In Set , a pullbackof functions f : S ! T and g : U ! T always exists: the setP = fhs; ui 2 S � U j f(s) = g(u)g;with projections �1 : P ! S and �2 : P ! U , is a pullback of f and g.If (P; k; l) is a pullback of two functions f and g that are mono then k and l are mono.We shall also need the following notion: a weak pullback is de�ned in the same way as apullback, but without the requirement that the mediating function be unique. Weak and strongare the same if all functions involved are mono:49

Proposition 18.2 A weak pullback consisting of mono's is an (ordinary) pullback. 2A coequalizer of two functions f : S ! T and g : S ! T is a pair (U; c : T ! U) withc � f = c � g such that for any function h : T ! V with h � f = h � g there exists a unique functioni : U ! V such that i � c = h. Also coequalizers always exist in Set : The quotient of T withrespect to the smallest equivalence relation on T that contains the setfhf(s); g(s)i j s 2 Sgis a coequalizer of f and g. For a set S and an equivalence relation R on S, the quotient map�R : S ! S=R can be readily seen to be the coequalizer of the projections from R to S:R //�1 //�2 S //�R S=R:The following diagrams show how in Set , the diagonal of a set S, and the kernel and the graph ofa function f : S ! T can be obtained as pullbacks:�S //�1���2 S�� 1SS //1S S; K(f) //�1���2 S�� fS //f T; G(f) //�1���2 S�� fT //1T T:The composition of two relations can be described by means of pullback and image as follows.Consider two relations R and Q R��r1���� ��r2==== Q��q1���� ��q2????S T U;with projections ri and qi. If we �rst take a pullbackX��x1~~~~ ��x2@@@@R��r1���� ��r2???? Q��q1���� ��q2????S T U;then it is easy to see that the composition of R and Q is the image of r1 � x1 and q2 � x2:R �Q = hr1 � x1; q2 � x2i(X):The union of a collection of relations fRi � S � Tgi can be obtained by means of coproduct andimage: consider S PiRioo k //l T;where k and l are the componentwise projections. Then[i Ri = hk; li(Xi Ri):The intersection of a collection fVkgk of subsets of a set S can be constructed by means of ageneralized pullback, which is so to speak a pullback of a whole family of arrows at the same time,as follows: TkVk //�� Vk�� ikVk0 //ik0 S;where fik : Vk ! Sgk are the inclusion mappings. Note that all functions are mono.50

Proposition 18.3 Let F : Set ! Set be a functor that preserves weak pullbacks, i.e., transformsweak pullbacks into weak pullbacks. Then F preserves intersections.Proof: Because F preserves weak pullbacks, the diagram above is transformed by F into a weakpullback diagram: F (TkVk) //�� F (Vk)�� F (ik)F (Vk0) //F (ik0) F (S):Because all functions in the original diagram are mono, and because F preserves mono's (Proposi-tion 18.1), all functions in the second diagram are mono as well. By Proposition 18.2, the diagramis again a pullback in Set . Thus F (TkVk) is (isomorphic to) TkF (Vk). 2As we shall see in Section 4 and Section 5, the requirement that functors preserve weak pullbacksis needed at various places in the theory. Therefore it is worthwhile to examine which functorshave this property. First an easy proposition.Proposition 18.4 If a functor F : Set ! Set preserves pullbacks then it also preserves weakpullbacks. 2Many (combinations of the) functors mentioned above preserve pullbacks and hence weak pull-backs. To mention a few relevant examples: constant functors, identity, A � (�), A + (�), (�)A(where A ia an arbitrary set). The proofs are easy. For instance, it is straightforward to provethat A � R, where R is the pullback of two functions f : S ! U and g : T ! U , is the pullbackof the functions A� f : A� S ! A� U and A� g : A� T ! A� U .An exception is the (covariant) powerset functor: Consider 1 = f0g and 2 = f0; 1g, and letf : 2! 1 be the unique constant function. ThenR = fh0; 0i; h0; 1i; h1; 0i; h1; 1igis a pullback of f with itself, but P(R) is not a pullback of Pf with itself. It is, however, a weakpullback. More generally, it is not di�cult to prove that P preserves weak pullbacks (cf. [Tur96]).There is one functor in our list above that does not even preserve weak pullbacks. It is thecontravariant powerset functor composed with itself (�P � �P). Take, for instance, S = fs1; s2; s3g,T = ft1; t2; t3g, U = fu1; u2g, f : S ! U de�ned by fs1 7! u1; s2 7! u1; s3 7! u2g and g : T ! Ude�ned by ft1 7! u1; t2 7! u2; t3 7! u2g. Then the image of the pullback of f and g is not a pullbackand not even a weak pullback.References[Abr91] S. Abramsky. A domain equation for bisimulation. Information and Computation,92(2):161{218, June 1991.[Acz88] P. Aczel. Non-well-founded sets. Number 14 in CSLI Lecture Notes. Center for theStudy of Languages and Information, Stanford, 1988.[Acz94] P. Aczel. Final universes of processes. In S. Brookes, M. Main, A. Melton, M. Mislove,and D. Schmidt, editors, Proceedings of the 9th International Conference on Mathemat-ical Foundations of Programming Semantics, volume 802 of Lecture Notes in ComputerScience, pages 1{28. Springer-Verlag, 1994.[AM80] M.A. Arbib and E.G. Manes. Machines in a category. Journal of Pure and AppliedAlgebra, 19:9{20, 1980. 51

[AM82] M.A. Arbib and E.G. Manes. Parametrized data types do not need highly constrainedparameters. Information and Control, 52(2):139{158, 1982.[AM89] P. Aczel and N. Mendler. A �nal coalgebra theorem. In D.H. Pitt, D.E. Ryeheard,P. Dybjer, A. M. Pitts, and A. Poigne, editors, Proceedings category theory and computerscience, Lecture Notes in Computer Science, pages 357{365, 1989.[AR89] P. America and J.J.M.M. Rutten. Solving reexive domain equations in a categoryof complete metric spaces. Journal of Computer and System Sciences, 39(3):343{375,December 1989.[Bar93] M. Barr. Terminal coalgebras in well-founded set theory. Theoretical Computer Science,114(2):299{315, June 1993.[Bar94] M. Barr. Additions and corrections to \terminal coalgebras in well-founded set theory".Theoretical Computer Science, 124(1):189{192, February 1994.[BM96] J. Barwise and L.S. Moss. Vicious Circles, On the Mathematics of Non-wellfoundedPhenomena. CSLI Lecture Notes. Center for the Study of Language and Information,Stanford, 1996.[Bor94] F. Borceux. Handbook of categorical algebra 1: basic category theory, volume 50 ofEncyclopedia of mathematics and its applications. Cambridge University Press, 1994.[BP96] M.-P. B�eal and D. Perrin. Symbolic dynamics and �nite automata. Report IGM 96-18,Universit�e de Marne-la-Vall�ee, 1996.[BV96] J.W. de Bakker and E. de Vink. Control Flow Semantics. Foundations of ComputingSeries. The MIT Press, 1996.[Coh81] P.M. Cohn. Universal algebra, volume 6 of Mathematics and its applications. D. ReidelPublishing Company, 1981.[Dev86] R.L. Devaney. An introduction to chaotic dynamical systems. The Benjamin/CummingsPublishing Company, 1986.[FHL94] M. Forti, F. Honsell, and M. Lenisa. Processes and hyperuniverses. In I. Privara,editor, Proceedings of the 19th International Symposium on Mathematical Foundationsof Computer Science, volume 841 of Lecture Notes in Computer Science, pages 352{363.Springer-Verlag, 1994.[Fio96] M. P. Fiore. A coinduction principle for recursive data types based on bisimulation.Information and Computation, 127(2):186{198, 1996.[Gol87] R. Goldblatt. Logics of time and computation. Number 7 in CSLI Lecture Notes. Centerfor the Study of Language and Information, Stanford, 1987.[Gol93] R. Goldblatt. Mathematics of modality. Number 43 in CSLI Lecture Notes. Center forthe Study of Language and Information, Stanford, 1993.[GV92] J.F. Groote and F. Vaandrager. Structured operational semantics and bisimulation asa congruence. Information and Computation, 100(2):202{260, October 1992.[HJ96] C. Hermida and B. Jacobs. Structural induction and coinduction in a �brational setting.Preprint, 1996.[HL95] F. Honsell and M. Lenisa. Final semantics for untyped �-calculus. In M. Dezani-Ciancaglini and G. Plotkin, editors, Proceedings of the 2nd Conference on Typed LambdaCalculus and Applications, volume 902 of Lecture Notes in Computer Science, pages249{265. Springer-Verlag, 1995. 52

[HP79] M. Hennessy and G.D. Plotkin. Full abstraction for a simple parallel programminglanguage. In J. Be�cv�a�r, editor, Proceedings of 8th Symposium on Mathematical Foun-dations of Computer Science, volume 74 of Lecture Notes in Computer Science, pages108{120. Springer-Verlag, 1979.[Jac95] B. Jacobs. Mongruences and cofree coalgebras. In V.S. Alagar and M. Nivat, editors,Algebraic Methods and Software Technology, number 936 in Lecture Notes in ComputerScience, pages 245{260. Springer-Verlag, 1995.[Jac96a] B. Jacobs. Behaviour-re�nement of object-oriented speci�cations with coinductive cor-rectness proofs. Report CSI-R9618, Computing Science Institute, University of Ni-jmegen, 1996. To appear in the proceedings of TAPSOFT'97.[Jac96b] B. Jacobs. Inheritance and cofree constructions. In P. Cointe, editor, European Con-ference on Object-Oriented Programming, number 1098 in Lecture Notes in ComputerScience, pages 210{231. Springer-Verlag, 1996.[Jac96c] B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C.B. Jones, C. Lengauer,and H.-J. Schek, editors, Object-Orientation with Parallelism and Persistence. KluwerAcademic Publishers, 1996.[JNW96] Andr�e Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps. In-formation and Computation, 127(2):164{185, 1996.[Kel76] R.M. Keller. Formal veri�cation of parallel programs. Communications of the ACM,19(7):371{384, 1976.[Ken88] R.E. Kent. The metric closure powerspace construction. In M. Main, A. Melton, M. Mis-love, and D. Schmidt, editors, Proceedings of the 3rd Workshop on Mathematical Foun-dations of Programming Language Semantics, volume 298 of Lecture Notes in ComputerScience, pages 173{199, New Orleans, 1988. Springer-Verlag.[KM96] Y. Kawahara and M. Mori. A small �nal coalgebra theorem. 1996. To appear.[Len96] M. Lenisa. Final semantics for a higher-order concurrent language. In H. Kirchner,editor, Proceedings of CAAP'96, volume 1059 of Lecture Notes in Computer Science,pages 102{118. Springer-Verlag, 1996.[LS81] D.J. Lehmann and M.B. Smyth. Algebraic speci�cation of data types: A syntheticapproach. Mathematical Systems Theory, 14:97{139, 1981.[LS91] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information andComputation, 94:1{28, 1991.[MA86] E.G. Manes and M.A. Arbib. Algebraic approaches to program semantics. Texts andmonographs in computer science. Springer-Verlag, 1986.[Man76] E.G. Manes. Algebraic theories, volume 26 of Graduate Texts in Mathematics. Springer-Verlag, 1976.[MD97] L.S. Moss and N. Danner. On the Foundations of Corecursion. Bulletin of the IGPL,1997. Special issue on papers from WoLLIC 1995, to appear.[Mil75] R. Milner. Processes: a mathematical model of computing agents. In H.E. Rose andJ.C. Shepherdson, editors, Logic Colloquium'73, volume 80 of Studies in Logic, pages157{173. North-Holland, 1975.[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com-puter Science. Springer-Verlag, Berlin, 1980.53

[ML71] S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Textsin Mathematics. Springer-Verlag, New York, 1971.[MT92] K. Meinke and J.V. Tucker. Universal algebra. In S. Abramsky, Dov.M. Gabbay, andT.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 1, pages189{411. Oxford University Press, 1992.[Par81] D.M.R. Park. Concurrency and automata on in�nite sequences. In P. Deussen, editor,Proceedings 5th GI conference, volume 104 of Lecture Notes in Computer Science, pages15{32. Springer-Verlag, 1981.[Pit94] A.M. Pitts. A co-induction principle for recursively de�ned domains. Theoretical Com-puter Science, 124(2):195{219, 1994.[Pit96] A.M. Pitts. Relational properties of domains. Information and Computation, 127(2):66{90, 1996.[Plo81] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19,Aarhus University, Aarhus, September 1981.[Rei95] H. Reichel. An approach to object semantics based on terminal coalgebras.MathematicalStructures in Computer Science, 5:129{152, 1995.[RT93] J.J.M.M. Rutten and D. Turi. On the foundations of �nal semantics: non-standard sets,metric spaces, partial orders. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg,editors, Proceedings of the REX Workshop on Semantics: Foundations and Applica-tions, volume 666 of Lecture Notes in Computer Science, pages 477{530, Beekbergen,June 1993. Springer-Verlag. FTP-available at ftp.cwi.nl as pub/CWIreports/AP/CS-R9241.ps.Z.[RT94] J.J.M.M. Rutten and D. Turi. Initial algebra and �nal coalgebra semantics for concur-rency. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proceedings ofthe REX School/Symposium `A decade of concurrency', volume 803 of Lecture Notes inComputer Science, pages 530{582. Springer-Verlag, 1994. FTP-available at ftp.cwi.nlas pub/CWIreports/AP/CS-R9409.ps.Z.[Rut92] J.J.M.M. Rutten. Processes as terms: Non-well-founded models for bisimulation. Math-ematical Structures in Computer Science, 2(3):257{275, 1992.[Rut95] J.J.M.M. Rutten. A calculus of transition systems (towards universal coalgebra). InA. Ponse, M. de Rijke, and Y. Venema, editors, Modal Logic and Process Algebra, abisimulation perspective, volume 53 of CSLI Lecture Notes, pages 231{256, Stanford,1995. CSLI Publications. FTP-available at ftp.cwi.nl as pub/CWIreports/AP/CS-R9503.ps.Z.[SP82] M.B. Smyth and G.D. Plotkin. The category-theoretic solution of recursive domainequations. SIAM Journal of Computation, 11(4):761{783, November 1982.[SS93] G. Schmidt and T. Str�ohlein. Relations and graphs, discrete mathematics for computerscientists. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, NewYork, 1993.[TR97] D. Turi and J.J.M.M. Rutten. On the foundations of �nal coalgebra semantics: non-well-founded sets, partial orders, metric spaces. Mathematical Structures in ComputerScience, 1997. To appear.[Tur96] D. Turi. Functorial operational semantics and its denotational dual. PhD thesis, VrijeUniversiteit, Amsterdam, September 1996.54

[vG96] R. van Glabbeek. The meaning of negative premises in transition system speci�cationsII. Report STAN-CS-TN-95-16, Department of Computer Science, Stanford University,1996. Extended abstract in: Automata, Languages and Programming, Proceedings 23thInternational Colloquium, ICALP '96, Paderborn, Germany, July 1996 (F. Meyer aufder Heide and B. Monien, eds.), LNCS 1099, Springer-Verlag, 1996, pp. 502-513.[vGSS95] R.J. van Glabbeek, S.A. Smolka, and B. Ste�en. Reactive, generative, and strati�edmodels of probabilistic processes. Information and Computation, 121:59{80, 1995.[WN95] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, Dov M. Gabbay,and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 4, pages1{148. Oxford Science Publications, 1995.

55

