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Abstract

We report on the evaluation of a new method for audio source separation using only one sensor. The method
viewed as a generalization of Wiener filtering to locally stationary signals, where the sources are modelled using
spectral density dictionaries which are estimated during a training step. The experiments were designed to meas
separation performance varied with amount of training data, model complexity and the representativity of the t
data. The results show that model complexity and training data representativity are more important than the am
training data.

1  Introduction

Source separation techniques have many potential applications in speech and music signal processing includi
phonic music transcription (Plumbley et al., 2002). The classical blind source separation problem describes
instantaneous mixture where the number of available mixtures is at least equal to the number of sources. If the
are assumed to be both independent and Gaussian, the mixing matrix may be found and used to discover the
(Cardoso, 1998). The under-determined source separation problem (Lee et al., 1999) (where the number of so
greater than the number of mixtures) often arises with musical recordings as these may be available only in stere
and, sometimes, only in mono. Here, we consider the case of a single mixture: and as trad

blind estimation is not possible, we build a source model, based ona priori knowledge of the sources in a Bayesia
framework. If and were stationary Gaussian processes, the Bayesian optimal estimates would be obta

Wiener filtering (Wiener, 1949). For sources, such as audio sources, which are only locally stationary (non-Gauss
can represent each source with a Gaussian mixture model (GMM) (Bijaoui, 2002; Benaroya and Bimbot, 2003) a
eralise the Wiener filtering

1.1

where is the short-time Fourier transform (STFT) of the ith source estimate , is the STF

the mixture, is the variance of the Gaussian density of the ( ) component of the ith so

at the frequency component and are the weights associated with the pair of covariances and

(Benaroya, 2003) with which we model the shapes of the power spectral densities found within each source.

GMMs cannot take account of the possible variation in the amplitude of the power spectral densities. Gaussian
mixture models (GSMM) deal with this problem by introducing a slowly varying non-negative amplitude factor

so that the source is represented as , where is the underlying Gaussian process with

ance . The Wiener filtering then becomes (Portilla et al., 2001; Benaroya et al., 2003):

1.2

This basic approach can be used to develop a more realistic source model in which different spectral shapes may

different times with varying amplitudes: , i.e., we represent the source as a combinatio

slowly varying amplitude factors, and a set of stationary Gaussian processes with covariances (Be

et al., 2003). There are two different ways to develop this approach (Benaroya, 2003). In the GSMM approa
assume that only one component in the model is active at any one time, and we condition our source estimates
of active power spectral densities and an associated pair of amplitude factors. This is equivalent to assuming t
one instrument (per source) plays at any one time. Alternatively, it is possible to assume that more than one comp
the model (instrument) can be active at a time, and that these components can add, weighted by their individua
tudes, to generate the source. This second approach can be seen as the development of a dictionary of signal pa
totypes specific to each source: a power spectral density (PSD) dictionary model. The separation process
formulated as:
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1.3

for the two sub-dictionaries and which are characteristic of the two sources

, where . The aim is to express the observed mixture as a decomposition over the two sub-dic

ies (as in the denominator of equation (1.3)), estimating the corresponding amplitude coefficients for each
(Benaroya, 2003).

1.1  Training Step

The training step consists of the development of the PSD dictionaries from the training data. In the log-spectral d
vector quantization is first used to split the training data into the required number of model components (PSDs). In
ing the amplitude coefficients, on the basis of this initial model, we then iterate between estimating the sour

tionaries, and re-estimating the amplitude coefficients (Benaroya, 2003).

2 Experiments

For the experiments we used the first movement of Sonata No. 1 in D major op. 12 No. 1 by L. van Beethoven in
version, including separate violin and piano tracks (Paterson, 1999-2004). The two sources are violin and piano
are known to have quite distinct timbres. Specifically, the piano is known for its firm attack and the inharmonic na
its partials and the violin is known for its gradual attack and the relative strength of its higher partials. The m
excerpts used as training and test sources were taken from the different parts of the separate violin and piano t
most cases, the mixture, from which the sources are to be separated, was created by adding the test sources
cases the test mixture was taken from the part of the ensemble midi corresponding exactly to the location of the
ual test signals.

Midi files were the main source of signals for the tests because of the difficulty in obtaining adequate amounts of t
and test material from real recordings. Often, with real recordings, only the real mixture is available and indi
instruments or instrument groups play solo for only short periods of time. Using midi also ensures that the ind
training and test sources will be exactly identical to the sources as they play within the ensemble, even if an en
mixture is used. The chief disadvantage of using midi files is that the testing may not be as demanding as a tes
audio signals; the regularity of midi files tending to make the separation task easier than it would otherwise be. I
to use midi files, they have to be converted into audio (typically Microsoft .wav format). The quality of the rend
instruments depends on the midi patches used and can be very variable. We would think that this problem is l
make the separation task easier because poorly rendered instruments have an “electronic” sound suggesting a si
bre which may be more easily distinguished in the spectral domain (e.g. it may be more concentrated or more re
its distribution in the vector space).

2.1 Evaluation Criteria

For evaluation, we use the Source-to-Interference Ratio (SIR) and the Source-to-Artefact Ratio (SAR) (Gribonva
2003). Given the original sources, and and their estimates and , the projections of the estimated sourc

the vector space spanned by the real sources are:  and .

2.1

Thus, the SIR measures the interference due to the residual of one source in the estimation of the other; whereas
is a measure of the amount of distortion in each estimate.

2.2 Experimental Questions

Three different factors which might affect the source separation were evaluated: the length of the training da
number of components in the model and the representativity of the training data. The effect of training data length
source separation performance was evaluated with the model complexity held constant. Unfortunately, varying th
of the training data also affects the representativity of the training data, but does not necessarily increase it. To d
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Ŝ2 t f,( )
ak t( )σk

2 f( )
k K2∈
∑

ak t( )σ2
k

k K1 K2∪∈
∑ f( )

---------------------------------------------------Sx t f,( )=

σ2
k f( ){ }k K1∈ σ2

k f( ){ }k K2∈ s1 t( )

s2 t( ) K1 K2∩ ∅=

ak

s1 s2 ŝ1 ŝ2

ŝ1 αs1 αs2 n1+ += ŝ2 βs1 βs2 n2+ +=

SIR1 20
α1 s1

α2 s2
------------------log=

SAR1
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this problem, the training data is lengthened systematically, i.e. it is always taken to start at the beginning of the
and continues for the indicated number of seconds. The training data lengths chosen were: 15s, 45s, 90s and 1
represents a practical computational limit under the present implementation running on a Dell workstation 360 P
4. During the training data length experiments, the number of model components for each source was held consta
In the model complexity experiments, the number of model components is increased to 32 and 64, while the traini
length is held constant at 45s.

The key factor in how “representative” the training data is of the test data is probably whether all of the notes found
test data are present in the training data. However, the similarity of tempo, rhythm and occurrence of distinctive p
of note runs or particular chords are also likely to be important. In these experiments the representativity of the t
data was varied while holding the length of the training data and the model complexity constant. The criterion for
sentativity which was used was subjective: eight different training selections were made (i.e. four for each instru
all of length 45s. The track which was considered most representative contained sections which were very nearly
cal to the test data; the track which was least representative was taken from a part of the piece where a stylistic i
occurs and the key changes. The selections for each instrument were made separately, but resulted in corre
selections coming from the same (to within approximately s) part of the piece. Training was only conducted
training data pairs of corresponding representativity. The case where the training data is identical to the test mate
also considered. In this case, the same 15 second segment was taken, for each instrument, for test and training
duce a training sample of 45 seconds in length, the test sample was concatenated three times. As an objective as
of representativity for comparison with the subjective assessment, a signal correlation was taken between the
data for a given instrument and the test data for that instrument. The experiments on representativity were run w
different degrees of model complexity, but only the results for a model size of 32 are shown here.

3 Results

In Table 1 and Table 2 we present the results obtained by varying the training data length. It can be seen that hav
the same amount of training data as test data (i.e. 15 seconds in this case) is very detrimental to both separation
ance (as measured by SIR) and distortion (as measured by SAR). However, increasing the length of the training d
not improve performance without limit. A plateau effect in performance improvement with increasing training
length is also noticeable for the SAR measure.

Separation of the sources from the real mixture appears from these results to be more difficult than from the a
additive mixture. This is surprising because a real mixture in a midi is not that different from an additive mixture.
ever, in this case the additive mixture is made using the mean-subtracted time-frequency representations of the
Also, the SIR and SAR for the real mixture results are necessarily calculated comparing the source estimates
individual source test data, and not directly with the individual piano and violin parts within the mixture (which sh
nevertheless be identical.) The subjective sound quality is comparable between the two sets of results (and betw
reconstructed and the real mixture.)

As shown in Table 3, increasing model complexity has a stronger effect on separation performance than increasin
ing data length. There may be a limit to the possible improvement, for example in source 1 (violin), improvem
greater as number of model components is increased from 16 to 32, than from 32 to 64. However, for source
piano), the increase is greater for the change from 32 to 64 components.

Training Data
Length

Source 1 Source 2
SIR SAR SIR SAR

15 secs  2.9125 5.7404  6.3710 -0.3013

45 secs 13.7520 8.0123 16.5663 7.2946

90 secs 14.6497 8.1117 15.8787 7.7896

105 secs 13.7035 8.0142 15.2619 7.5703

TABLE 1.SIR/SAR Results for training data length with additive mixture.

Training Data
Length

Source 1 Source 2

SIR SAR SIR SAR
15 secs  4.0685 -3.4780  5.3919 -6.6188

45 secs 10.1969 -4.3277 16.7155 1.5826

90 secs 11.0827 -4.2927 16.9602 2.0133

105 secs 10.3203 -4.2153 16.8463 1.8384

TABLE 2.SIR/SAR results for training data length with real mixture.
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The results for training data representativity are shown in Table 4. Performance improves consistently from poor
tion performance when the training data is subjectively chosen as least representative to very high quality sep
when the training data is the test data itself. As the length of the training data was 45 seconds in all cases and an
mixture was always used a comparison may be made with the second row of Table 1. Performance with all traini
samples except “High” and “Identical” was worse than the 45 seconds case from Table 1. The “Identical” trainin
did produce another further improvement in performance and may indicate the limit of what can be achieved for a
training data length and model size.

3.1 Discussion

The results suggest that simply increasing the length of the training data will not continue to improve separation pe
ance, probably due to the fact that some parts of the longer pieces of training data will be unrepresentative of
sample. Model complexity was shown to be an important factor in separation performance and the experiments
that improving the model is more important than simply increasing the amount of training.

Experiments in varying the representativity of the training data show that this factor is important. There was a cle
between the subjective evaluation of how representative the training data was and the separation performance. T
less correspondence between the statistical correlation of the training and test data and subsequent separation
ance. An interesting area of further research would be to develop an objective measure of representativity, which
correspond more closely with the subjectively perceived representativity.
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Number of
model

components
Source 1 Source 2

SIR SAR SIR SAR
16 13.7520  8.0123 16.5663 7.2946

32 17.2859  8.8636 17.1988 8.8155

64 18.5109 10.0023 19.8171 9.7668

TABLE 3.SIR/SAR results for varying number of model components.

Data

Representativity
Source 1 Source 2

Training-
test

Correlation
SIR SAR

Training-
test

Correlation
SIR SAR

Low -18.5420  6.2249 4.9790 -20.6033 7.3355 3.8136

Low-medium -19.9118 11.8581 4.8998 -16.5463  8.9985 6.3051

Medium -19.1645 12.2724 6.3038 -22.7756 11.8009  6.4293

High -13.8901 17.2355  8.5127 -16.7644 16.4543  8.6029

Identical    4.6885 19.4205 10.1266    4.7390 19.4271 10.0696

TABLE 4.SIR/SAR results for training data representativity and model complexity.
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