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Abstract

The Remote Desktop Protocol (RDP) is a protocol for accessing Microsoft
Windows Terminal Services. The protocol provides remote desktop ser-
vices, meaning a graphical desktop is sent to the client, and user input
(keyboard and mouse events) are sent to the server, all over a bandwidth-
narrow channel. The protocol is used by thin clients, i.e. clients with small
resources, to reach servers in a server-based computing environment.

There is an RDP-client called Rdesktop, written for Unix-like operating
systems. It has an X Window System graphical user interface and provides
access to Terminal Servers from the Unix environment. Rdesktop, however,
only supports version 4 of the RDP. The current version of RDP (August
2003) is 5.

Documentation of RDP can be acquired from Microsoft, but not without
signing a non-disclosure agreement (most often referred to as “NDA”). This
means it is not possible to create a program with the source code available
without breaking the agreement. Therefore, implementation of open source
RDP clients must be preceded by reverse engineering activities.

In this report we describe how we reverse engineered version 5 of RDP
and how we implemented support for it in rdesktop. We have implemented
support for basic RDP5 as well as support for clipboard operations between
the X Window System and Microsoft Windows.

Among the future work on rdesktop that will be possible to investigate
as a result of this thesis work are support for sound redirection, disk drive
redirection as well as support for more clipboard formats.

Keywords: Reverse Engineering, Network Analysis, Software Engineer-
ing, Network Security, Remote Desktop Protocol.



iv



v

Acknowledgments

During the work with this final thesis, we have had great help from a
number of people. I would like to thank the following persons:
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Introduction 1

Chapter 1

Introduction

1.1 Background

The Remote Desktop Protocol (RDP) [Mic04a] is used to access Microsoft
Windows Terminal Services [Mic04e] and provide remote desktop services
using a network channel with narrow bandwidth. Remote desktop services
are the ability to run programs on the server and get the output on the
local screen, sending keyboard and mouse events to the server.

“Official clients”, that is, clients written by or approved by Microsoft,
for RDP exist for Microsoft Windows [Mic04d] and Mac OS X [Mic04c].
There are also some commercial clients available for Unix-like environment
[Ent04], but there is only one client that is open source software, namely
rdesktop [ini03], written for the X Window System [Fou04b]. Since the
RDP is a closed protocol, parts of it have been reverse-engineered in order
to find the information needed to write rdesktop.

Rdesktop is used in ThinLinc, the main product of Cendio AB, to access
Windows Terminal Servers in setups that need that kind of access. This is
the reason why Cendio AB is sponsoring this thesis work.
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1.2 Motivation

There are one primary and one secondary reason motivating this final thesis
work.

• Primary Reason - Rdesktop Needs Enhancements

The primary reason for this thesis work is that rdesktop needs to be
enhanced with functionality that exists only in version 5 and higher
of the RDP, the version of the Remote Desktop Protocol used in
Microsoft Windows 2000 and newer.

• Secondary Reason - Documentation Needed for Further De-
velopment of Rdesktop

The secondary reason is that the documentation on RDP and internal
rdesktop functionality is very poor. We want to make it easier to add
functionality to rdesktop, by providing better documentation.

1.3 Problems to be Solved and Goals of The-
sis

The specific problem to solve in this final thesis is to add clipboard func-
tionality to rdesktop, allowing cut’n paste operations from Windows pro-
grams to X Window System programs, and vice versa. At the end of this
thesis work, we expect to be able to cut text in an instance of Microsoft
Word [Mic04b] running on a Windows Terminal Server, and paste it into
an instance of StarOffice Writer [Mic04f] running on a Linux host.

In order to solve this problem, we will investigate how version 5 of the
RDP works. We need to do this because Clipboard functionality exists
only in RDP version 5 and higher. When done with the investigation, we
will add RDP5 support to Rdesktop and continue by investigating how
clipboard data is transmitted over RDP5. When we have gathered enough
information, we will add clipboard functionality to rdesktop.

With regard to the poor documentation, we expect this report to be
helpful in future development of rdesktop.
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1.4 Outline of the Report

In chapter 2 we describe the concepts behind reverse-engineering network
protocols, and the methods we use to find the information we need in order
to implement RDP5 and clipboard support in rdesktop. The information
found using these techniques and also by reading various specification docu-
ments are documented in chapter 3, where we cover how the Remote Desk-
top Protocol is constructed. Chapter 4 covers how we implement RDP5
and clipboard support, including interoperability problems between the dif-
ferent clipboard paradigms used by the two platforms involved. Finally, we
draw conclusions and discuss possible extensions in chapter 5. As a service
for future developers, we have written appendix A where we describe the
different packets used in the protocol.

1.5 Target Audience

This report assumes basic knowledge of computer network protocols, com-
puter security and software implementation issues. Some understanding of
how Windows Terminal Services [Mic04e] work will also help for full com-
prehension of the report. Parts of chapter 4 are of use only if the reader
plans to do changes to rdesktop. Appendix A is of use only for the reader
that wants a deeper understanding of the packet structures used in RDP.

1.6 Typographical Conventions and Nomen-
clature

References to sourcecode filenames in this report are written in typewriter
style, like rdesktop.c. Datastructures and variables are in italic style, like
int testval.

In this document, we use RDP4 as a shorthand notation for Remote
Desktop Protocol version 4 and RDP5 for Remote Desktop Protocol version
5. RDP is used when we speak about the protocol in general.
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Chapter 2

Reverse-Engineering
Network Protocols

In this chapter we discuss reverse-engineering of network protocols. Some
background to the need of reverse-engineering is given, as well as some
political aspects. The problems of planning reverse-engineering activities
are briefly mentioned.

Finally, we discuss the methods we will use to find the information
needed to describe the protocols and implement support for RDP5 in rdesk-
top.

2.1 Introduction

2.1.1 Concepts

The concepts used in the reverse-engineering field seem not to be standard-
ized. Therefore, our definitions of some terms follow.

• Reverse Engineering
Depending on whom you ask, the term Reverse Engineering is used for
different things. In the academic world, the term is used to describe
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the problem of getting information out of large amounts of source
code, as a prelude to some software maintenance activity (see section
4.1.1). One example of this use of the term can be found in [MJS+00].

However, in other parts of the computer industry, the term is used in
a more general way, describing activities that in some way are used
to find unpublished information. This is how we use the term.

• Network Analysis
Network analysis is another term used in technical network communi-
ties. It describes methods and tools for analyzing raw network data
in order to find problems with a network, for example bottlenecks
and intrusions.

Another related term is “Retro engineering”, which is used when there
is a need to rewrite a standard in order to comply with already existing
and market-leading incorrect implementations. This has happened to for
example X.509 [Int97].

2.1.2 The Need for Reverse Engineering

Why is there a need for reverse-engineering methods? Some common an-
swers to this question are:

1. The source code of a piece of software might have been lost acci-
dentally, but new software needs to be written that uses the same
protocols for its communication.

2. The people that first wrote the software are not available at the mo-
ment, but the software needs to be modified by some reason. This is
part of the academic definition of reverse engineering.

3. Legacy data exists in a format that no existing software can parse.

4. There is no suitable software available for a client platform that needs
to communicate with some specific server application.

The task in this final thesis is of the last kind. There is a need to com-
municate with Windows Terminal Services from Unix-like platforms, but
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there is no client available. Since the protocol is only partially documented
outside Microsoft, reverse-engineering is needed for full functionality.

2.2 Political and Legal Aspects

This project had to take some non-technical matters into account. In this
section we will discuss the most important of them briefly.

2.2.1 Why Keeping a Network Protocol Secret?

As we will describe in chapter 3, the protocols used in rdesktop are only
partially documented. Here we discuss pros and cons of public protocols.

If a company has a truly superior protocol for a specific task, they may
choose to keep it secret in order to gain market shares while not leaking
the results of their research and development to their competitors.

However, the problem with this approach is that you completely lose
compatibility with existing products, something that is becoming more
and more important with time, as the computing environments grow in
complexity.

Also, it is very seldom possible to keep the protocol secret for a long
time, since reverse-engineering methods do exist. See section 2.3 for more
information.

Another reason for keeping the protocol secret, even though it is not
superior in any way, is as part of a larger plan to actually increase the
incompatibility with other products. By creating a set of products that
only communicate with each other, a large company can create it is own
market where the customer is forced to buy more products from the same
vendor when a certain functionality is needed, since the functionality will
not integrate as well if another vendors products are used. The plan may
not always work, since by using reverse engineering, other companies, or-
ganizations or individuals can create products that do communicate with
the large company’s products, even though the protocols were secret. An
example of this is the SMB file server Samba [dev03], providing Windows
file server services using a Unix machine as server.
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Yet another reason for keeping a protocol secret can be security. Some
people believe security is gained by keeping protocols closed. This principle
is often referred to as “Security by Obscurity”. In [CP98], the authors
come to the conclusion that “Security by Obscurity” is often useless since
the attacker quickly learns how the obscured system works. Other people
believe a security-sensitive protocol that cannot stand the eyes of the world
is not secure. The latter opinion is often found in Internet and Open Source
communities.

2.2.2 Legal Aspects

Various laws exist that either forbid or allow reverse engineering.
Since this final thesis work is written in Sweden, which is part of the Eu-

ropean Community, we have only investigated the laws governing reverse-
engineering in the EC. The situation in the USA is another subject.

Most relevant to our project is the “COUNCIL DIRECTIVE of 14 May
1991 on the legal protection of computer programs (91/250/EEC)” [cotEc].
As far as we can see as laymen in law interpretation this law permits us to
reverse-engineer the network protocols used in RDP. However, each party
interested in doing some kind of reverse-engineering should investigate the
relevant laws at that time.

2.3 Methods for Reverse Engineering

A number of common methods for reverse-engineering exists. We will de-
scribe some of them briefly. During our work, we have developed some
methods for our specific task that we will describe as well.

2.3.1 Common Reverse-Engineering Methods

Disassembler and Debugger

One way of finding out exactly what a piece of software is doing is to
examine the binary executable machine code. Given the machine instruc-
tions of a certain hardware platform it is possible to decode the machine
code into assembler instructions using a so called disassembler [Wik05b].
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However, since the assembler instructions are most often generated by a
compiler from some higher level language, you will get a very hard-to-read
representation of what the program does.

It is often possible to debug the program at an assembler code level in
order to find the correct lines of code in the program for your specific task.

However, this method is very time-consuming and tedious. It is not
practical for larger projects, but for small well-defined tasks it can be an
effective method. An example would be the task to find out how a certain
image format is encoded by running an image decoding program to see
what it is doing for a certain image that has a known content.

Man In The Middle Attack

When doing reverse-engineering of network protocols, a method known as
“Man In The Middle attack” [Wik05c], hereafter referred to as MITM
attack, can be very useful.

In the MITM attack, the network path between two communicating
computers is by some method altered in order to route the network pack-
ets through a third computer where a specially written piece of software
handles the packets. In figure 2.1, the normal path for packets that travel
between the client and the server is Network path A.

In order to use the MITM attack, we tell the client it should connect to
the computer running the MITM software instead of connecting to the real
server. That is, the packets will travel Network path C. When the packets
arrive to the MITM computer, they are processed by the MITM software
and then sent via Network path B to the server. Packets from the server
are handled the same way, but in the opposite direction.

The MITM software can either just listen to the packets (although a
network packet sniffer (see section 2.3.1) can do that job just as well or
even better) or process them in a more advanced fashion, for example by
replacing some part of the packet in order to instruct either the client or
the server to behave in a certain way.

There are several different types of MITM software. Either the software
is very simple and does nothing else than listening for packets, presenting
them without modification to the party operating the MITM software. For
this purpose, a network packet sniffer, as described below, can probably



10 2.3. Methods for Reverse Engineering

Client
Server

Network path A

Network path B

Network path C

MITM computer

����������
������

Figure 2.1: Man In The Middle attack

do the job just as well. The MITM software can also do more advanced
processing of the packages. It can, for example, replace parts of the packet
on its way, in order to instruct either the client or the server to behave in
a certain way. A real-world example of this was when the Samba [dev03]
project reverse-engineered part of the authorization protocols by using an
MITM software that replaced parts of the network packet stream in order
to force the native servers to talk to each other in a different way [Tri03].

Network Packet Sniffer

Another very useful tool when reverse-engineering network protocols is a
packet sniffer. A packet sniffer works by listening to the traffic of a network
interface and presenting the packets in a partially or fully parsed fashion.
Examples of such software are tcpdump [Lab04], snoop [Mic] and Ethereal
[Com04].

Depending on the network architecture, the packet sniffer can only listen
to packets where the host it is running on is the destination or source, or
on all hosts on the same broadcast domain.
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Run client Parse rdpproxy output with output from previous
Compare output 

runs

Change parameters

Figure 2.2: The iterative reverse-engineering process

2.3.2 Our Approach for Reverse Engineering RDP

An MITM attack is used in our task, for a motivation see section 2.3.3.
Our solution is of the more advanced type since we replace some bits in
the protocol in order to be able to read it in plaintext. That is, our proxy
modifies the data stream from the client to the server.

Finding the information needed for a full understanding of the protocol
is an iterative process with the following steps:

1. Sniff and save the network traffic between client and server using
rdpproxy (rdpproxy is our MITM software, see section 2.3.3).

2. Parse the network traffic using pparser.py (see section 2.3.3).

3. Analyze output from pparser.py. Modify pparser.py and rerun it
when finding new information.

4. Compare output from previous runs with this one.

5. Modify some parameter on the client (colour depth, for example)

6. Start again at step 1. In some cases after modifying rdpproxy.

The process is also illustrated in figure 2.2.
For example, given the qualified guess that the server would send a cryp-

tographic salt (a piece of randomness used during crypto protocol setup)
that would differ between two sessions (in fact, it should be different for all
sessions if it is cryptographically safe), by comparing the network packets
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sent from the server in two different sessions, we could find where and how
the server salt was sent, which was information we needed in order to find
out how to decrypt the session.

2.3.3 Reverse Engineering Tools Used and Developed

When we began investigating the existing implementation (rdesktop) and
the protocol we saw several subproblems:

• The protocol is only partially specified in documentation available
outside Microsoft, which means we needed to develop a way to see
the contents of the packets the parts in the network session exchange.

• The protocol is encrypted which means a packet sniffer will only see
random data.

• Possibly we would need to modify the data stream in order to under-
stand the protocol.

This quickly led us to the conclusion that an MITM attack would be a
good way to retrieve the data we needed.

We decided against using a debugger and/or a disassembler for several
reasons. First, our knowledge of network sniffing is much larger than our
knowledge of debuggers and disassemblers running on Windows. Secondly,
the company kindly hosting this final thesis work has a computer environ-
ment with much more Linux than Windows computers, meaning a solution
running without modifying the few Windows computers fits much better
into the environment. Also, debuggers and disassemblers for Windows most
often are commercial software, and the budget for this work is limited.

The fact that the author of rdesktop (Matt Chapman) already had de-
veloped the skeleton of an MITM software also helped, both by confirming
our decision and by providing us with a start in the process.

Rdpproxy

The MITM software that the rdesktop author had started writing when
we began our work is named “rdpproxy” [FC04] since it is “proxying”,
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in the meaning “forwarding traffic in both directions”, RDP. We have run
rdpproxy on Linux systems, although it should run without problems on
any unix and maybe on Windows.

The version we began with basically works as follows:

1. Rdpproxy is started on the MITM computer (see figure 2.1) with the
server name as a command line argument.

2. Rdpproxy listens to the RDP port (TCP port 3389).

3. When the client computer connects to the MITM computer, rdpproxy
connects to the server specified on its command line.

4. In the encryption setup the public key of the server is replaced by
another public key for which rdpproxy knows the private key. When
the client sends back its encrypted salt, rdpproxy decrypts it with its
private key and then reencrypts it with the public key sent from the
server. The client salt is stored and used together with the server salt
to calculate the session key.

5. Packets from the client are forwarded to the server.

6. Packets from the server are forwarded to the client.

7. All packets are printed as hexadecimal dumps to the standard out-
put, in plaintext since we do have the private session key which we
retrieved earlier in step 4.

We began by removing some hardcoded assumptions in the software.
This made rdpproxy work well with servers in Remote Administration
Mode. We still had some trouble with servers in Terminal Server Mode
due to the encrypted licensing negotiation. See section B.3 for a descrip-
tion of the different server modes available. Since we could choose what
mode the server should use, the licensing problems was not an issue. We
get an unencrypted transcript of what the client and the server is saying
to eachother, and that is what we need.

Later, we modified rdpproxy in order to support Terminal Server Mode
as well by modifying the decryption and encryption sequence for traffic
from the client to the server.
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RDPPROXY: waiting for connection...
#1, #1 from Client, type TPKT, l: 40, read 40 bytes
Client key substitution not done..
Trying to substitute crypt type..
Cannot decrypt, haven’t seen client random!
0000 03 00 00 28 23 e0 00 00 00 00 00 43 6f 6f 6b 69 ...(#......Cooki
0010 65 3a 20 6d 73 74 73 68 61 73 68 3d 61 64 6d 69 e: mstshash=admi
0020 6e 69 73 74 72 61 0d 0a nistra..
#2, #1 from Server, type TPKT, l: 11, read 11 bytes
0000 03 00 00 0b 06 d0 00 00 12 34 00 .........4.
#3, #2 from Client, type TPKT, l: 412, read 412 bytes
Client key substitution not done..
Trying to substitute crypt type..
Substituted crypt type
Cannot decrypt, haven’t seen client random!
0000 03 00 01 9c 02 f0 80 7f 65 82 01 90 04 01 01 04 ........e.......
0010 01 01 01 01 ff 30 19 02 01 22 02 01 02 02 01 00 .....0..."......
0020 02 01 01 02 01 00 02 01 01 02 02 ff ff 02 01 02 ................
0030 30 19 02 01 01 02 01 01 02 01 01 02 01 01 02 01 0...............
0040 00 02 01 01 02 02 04 20 02 01 02 30 1c 02 02 ff ....... ...0....
0050 ff 02 02 fc 17 02 02 ff ff 02 01 01 02 01 00 02 ................
0060 01 01 02 02 ff ff 02 01 02 04 82 01 2f 00 05 00 ............/...
0070 14 7c 00 01 81 26 00 08 00 10 00 01 c0 00 44 75 .|...&........Du
0080 63 61 81 18 01 c0 d4 00 04 00 08 00 20 03 58 02 ca.......... .X.
0090 01 ca 03 aa 1d 04 00 00 28 0a 00 00 53 00 41 00 ........(...S.A.
00a0 55 00 52 00 4f 00 4e 00 53 00 5f 00 54 00 4f 00 U.R.O.N.S._.T.O.
00b0 49 00 4c 00 45 00 54 00 00 00 00 00 04 00 00 00 I.L.E.T.........
00c0 00 00 00 00 0c 00 00 00 00 00 00 00 00 00 00 00 ................
00d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
0100 00 00 00 00 00 00 00 00 01 ca 01 00 00 00 00 00 ................
0110 08 00 07 00 01 00 00 00 00 00 00 00 00 00 00 00 ................
0120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
0130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
0150 00 00 00 00 00 00 00 00 04 c0 0c 00 09 00 00 00 ................
0160 00 00 00 00 02 c0 0c 00 01 00 00 00 00 00 00 00 ................
0170 03 c0 2c 00 03 00 00 00 72 64 70 64 72 00 00 00 ..,.....rdpdr...
0180 00 00 80 80 63 6c 69 70 72 64 72 00 00 00 a0 c0 ....cliprdr.....
0190 72 64 70 73 6e 64 00 00 00 00 00 c0 rdpsnd......

Figure 2.3: Sample output from rdpproxy
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As we can see in figure 2.3 the output from rdpproxy is quite raw. There
is some help for the human reader to understand the format: The number of
the packet and which part it originates from is printed, and there is an offset
that marks where in the packet a certain line is. Also, there is a textual
representation to the right which prints bytes that can be interpreted as
characters as the decoded characters which helps in understanding the text
strings in the protocol.

Understanding the Output of Rdpproxy with pparser.py

During our early efforts to understand the process we tried to hand-parse
some of the packets in the output from rdpproxy. Although it is cer-
tainly possible to understand the output of rdpproxy by hand, it is a time-
consuming and error-prone process, not to mention it is extremely boring.
If we would have had to hand-parse the packets each time we have made a
change in the configuration, a lot of time would have been wasted just on
reading hexdumps. We quickly decided we needed a better method to get
a human-readable output from rdpproxy. As we describe in section 2.3.2,
we quickly found we would have to analyze and compare a lot of different
rdpproxy outputs.

We investigated several possible ways before deciding how to create a
tool that would parse the output from rdpproxy:

• Reusing code from rdesktop was one option, since rdesktop already
has an RDP parser. This fell on the fact that rdesktop is written in C
which means it takes time to modify and recompile. Also, C is very
error-prone compared to other languages, since you have to do all
error handling yourself. While implementing parts of the RDP5 code
we found this very true. It took many times more time to implement
for example the logon packet parser in C than it took to parse it using
pparser.py.

• Building a plugin that would fit into Ethereal was another option.
Ethereal is a packetsniffer (see section 2.3.1) with a really userfriendly
graphical user interface. It can use plugins that parse the packets and
present the different packet parts in a hierarchical tree which makes
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it easy to understand the structure. However, we decided against this
alternative for several reasons:

– Documentation on how to write plugins for Ethereal was hard
to find.

– We needed a way to provide the output from rdpproxy in a
format that Ethereal could read. One option was to write a
libpcap file, but documentation on how to do this was hard to
find as well.

– We wanted real-time parsing, where we could see what happened
on the network in the same moment it happened. For example,
while finding out how clipboard worked, we wanted to do a clip-
board operation and at the same time see what channel was
used and what data was transferred at which moment. We did
not find any method to connect rdpproxy and Ethereal in a way
that would accomplish this goal.

– Documentation available stated that plugins must be written in
C, something we wanted to avoid for the same reasons we chose
not to use the available RDP parser in rdesktop.

• Building a new packet parser in a less error-prone language than C.
This was the option we chose. Building a packet parser that could
understand the output from rdpproxy enabled us to concentrate on
the contents of the packets, not how to convert them from one format
to another before trying to analyze them.

We built pparser.py, an RDP packet parser written in Python [Fou03].
We wrote it in Python since we know from previous experience that we
write textparsing applications very quickly in that language. Also, it has all
the features we wanted like object-orientation, extremely good textparsing
abilities and automatic memory handling. Since we knew we would have
to do a lot of modifications in order to test different theories, we wanted
an interpreting language which gives a short development cycle. Quoting
[Pre00]: “Designing and writing the program in Perl, Python, Rexx, or
TCL takes only about half as much time as writing it in C, C++, or Java
and the resulting program is only half as long”. Another factor that helped
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in the choice of language was that Python is extensively used at Cendio,
meaning local support would be available.

The parser is run from the command line and reads one input file of
the format rdpproxy outputs and writes one output file in one of serveral
textbased formats. It can read from standard input and write to stan-
dard output if desirable, which enables the real-time parsing we wanted by
standard unix output redirection methods (shell pipes).

A sample of the text format pparser.py outputs can be seen in figure
2.4. Note that this is the result of running pparser on parts of the rdpproxy
output in figure 2.3. The third packet has been left out for spacesaving
reasons. See appendix A for a complete documentation of packet contents.

The output format is still not understandable without knowledge about
the protocol, but it is much easier. The real advantage of the format
compared to the raw hexadecimal dump produced by rdpproxy is that
when we started comparing two or more sessions using methods described
in section 2.3.3, we did not have to spend time finding the correct bytes to
compare. The format produced by pparser.py is much easier to navigate,
since each interesting piece of data get its own line instead of being hidden
together with up to 15 other bytes on one line.

Another positive effect of building the packet parser was the fact that it
contains implicit documentation of the network protocol in a quite readable
way. We modified the parser to output LaTeX [Pro05] tables that we
include in this report. See appendix A for the output produced this way.
An advantage of this is that when we found errors in the way we parsed
the packets and modified the packet parser, this report would concur with
the new version automatically, as long as we regenerated the tables, an
automated process.

Finding Differences Between Different Sessions

As we mentioned in section 2.3.2, we compared the data sent between
the two parties in the session in different sessions in order to find out for
example what had changed when we changed some parameter. We used
several tools to do this:

• diff
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Unknown data: RDPPROXY: waiting for connection...
#1, #1 from Client, type TPKT, l: 40, read 40 bytes
TPKT from Client
Int8 (be) TPKT version (expected: 3) 0x03 (3)
Int8 (be) TPKT reserved (expected: 0) 0x00 (0)
Int16 (be) TPKT length 0x0028 (40)
ISO packet
Int8 (be) ISO hdr length 0x23 (35)
Int8 (be) ISO packet type 0xe0 (224) Connection request
Int16 (be) Dst ref 0x0000 (0)
Int16 (be) Src ref 0x0000 (0)
Int8 (be) Class 0x00 (0)

[unknown type] Remaining data RAW DATA (length 0x1d (29))
43 6f 6f 6b 69 65 3a 20 6d 73 74 73 68 61 73 68 Cookie: mstshash
3d 61 64 6d 69 6e 69 73 74 72 61 0d 0a =administra..

#2, #1 from Server, type TPKT, l: 11, read 11 bytes
TPKT from Server
Int8 (be) TPKT version (expected: 3) 0x03 (3)
Int8 (be) TPKT reserved (expected: 0) 0x00 (0)
Int16 (be) TPKT length 0x000b (11)
ISO packet
Int8 (be) ISO hdr length 0x06 (6)
Int8 (be) ISO packet type 0xd0 (208) Connection confirm
Int16 (be) Dst ref 0x0000 (0)
Int16 (be) Src ref 0x1234 (4660)
Int8 (be) Class 0x00 (0)

Figure 2.4: Sample output from pparser.py
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The standard unix command diff was used to compare output from
both rdpproxy and the parsed output from pparser.py. However,
the output from diff is sometimes hard to follow.

• ediff
We found that the ediff package in the Emacs [Fou04a] editor was a
very efficient way of finding differences in the files we were looking at.
Ediff is a frontend to the diff command that visualizes the differences
by showing both files at the same time and highlighting the differences
in a way that is very easy to follow.

Ediff can also calculate the differences between three different files,
something we sometimes did in order to find what was supposed
to change between sessions (cryptographic salts and signatures) and
what had changed because of some parameter change we did as part
of the iterative process (section 2.3.2).

2.4 Planning and Keeping Track of Data

Planning and time-estimating reverse-engineering activities are difficult.
Most projects in this area depend on some kind of breakthrough, and to
know when this breakthrough will occur is very hard.

While waiting for the breakthrough, both patience and a structured
work flow are of great importance. Keeping track of all information gained
through the process is essential since you do not know what small bits of
information might be the key to the problem.

We selected to use a simple diary for storing the information we found
during the process. We developed a very simple snippet of lisp code for
the Emacs editor that makes it possible to press a quick key combination
and just start to write whatever is in our minds at each moment. One file
for each day is created, with timestamps for each note, and a simple shell
script makes it possible to create a summary of the diary. We expected
this simple tool to be of great help in our work.
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Chapter 3

The Protocols Involved in
Terminal Services

In this chapter, we will discuss how RDP works as a network protocol.
We will begin by describing the protocol in general, to give an overview for
newcomers to RDP. We will however concentrate on the differences between
RDP version 4 and 5. This is beacuse the primary goal of this thesis is to
implement RDP5 support in rdesktop, and rdesktop already has support
for RDP version 4.

Apart from discussing and describing RDP, we will also discuss network
security and security-related protocols.

3.1 The RDP Network Stack

Similarly to most network protocols, RDP consists of several layers. Figure
3.1 gives an overview of how RDP4 is built. There are some differences
in RDP5, which we will describe later. For an in-depth reference of the
different packets involved in RDP, see appendix A.

Beginning from the bottom of the stack, there is a standard TCP
[STD81] connection from the client to port 3389 on the server.

On top of TCP, ISO DP 8073 packets are sent. This is a standard
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Application layer (similar to T.128)

TCP/IP, server port 3389

ISO DP 8073 (RFC905/2126)

Multipoint Communication Service (T.125)

Generic Conference Control

Security layer

Figure 3.1: The Remote Desktop Protocol, version 4

TCP/IP, server port 3389

Security layer

Application layer (RDP5)

Figure 3.2: The Remote Desktop Protocol, version 5
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defined in [PY97], meant to provide a way for ISO network standards
(built on the well-known OSI model, see [Tan02] p. 37 ff) to run on top of
the more commonly implemented TCP. This protocol is also referred to as
“TPKT”, for example in the network analysis program Ethereal [Com04].

On top of ISO DP 8073 lies Multipoint Communication Services (MCS),
defined in [T.193b]. This is a standard providing domain management,
channel management, data transfer, and token management. The latter is
not used in RDP. The domain management is sparsely used too, since it is
meant for protocols where more than two entities are communicating with
each other. The channel management is somehow used in RDP4, but there
is only one channel in use. In RDP5, more channels are used for example
for sending clipboard and sound data. The data transfer capability is used
to send the data between client and server.

The Generic Conference Control (T.124 [T.193a]) is almost invisible in
the protocol implementation. There is a minor exchange of GCC data in
each direction in the protocol setup phase, but its role is so small we will
not mention it further. Rdesktop implements GCC by sending a hardcoded
string to the server, and by skipping 21 bytes when reading one of the setup
packets from the server.

The security layer provides encryption of the data sent over the MCS.
The encryption algorithms used is covered in section 3.3.

On top of the protocol stack, the RDP application layer is the protocol
that defines how the graphic data is sent to the client, and how mouse and
keyboard data is sent to the server. This protocol is based on [MPP97],
but Microsoft has redefined it somewhat since then, especially in RDP5.
We will cover the changes later.

3.2 Changes in RDP5

In version 5 of the Remote Desktop Protocol, Microsoft has redesigned
parts of the protocol. Since we have no access to the design criteria of
Microsoft, we can only speculate in the design goals for this new version of
the protocol. Most probably, bandwidth savings were part of the specifica-
tion, but performance might have been on the list as well, since the server
now has to do less processing per packet, which means it can handle more
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simultaneous connections.
Figure 3.2 gives an overview of the new protocol. The difference between

RDP4 and RDP5 is that the ISO DP 8073, MCS, and GCC layers are
stripped away. Instead, a new more compact packet format is defined. For
a detailed view of an RDP5 packet, see section A.3.1.

Not all packets are of RDP5-type. The setup phase is exactly the same
as before, and all packets from the client to the server are still of the same
format as in RDP4. RDP5 packets are used only for graphic data from
the server. Other channels (clipboard, sound, etc.) still use RDP4-style
packets.

An interesting side-note is that using the old protocol, you could in
theory run RDP over non-TCP/IP connections (for example, you should
be able to run it directly on X.25), just by rewriting small parts of the
server and client. This is no longer possible with RDP5 packets, since the
abstraction layers are stripped off.

3.3 Cryptographic Protocols

The communication between client and server when using RDP is protected
by cryptographic protocols. The use of cryptography is however optional,
so if the network administrator so desires, he can choose not to use cryp-
tography for parts of the traffic, gaining some in performance.

The cryptography is a combination of asymmetric and symmetric cryp-
tography, using RSA and RC4.

3.3.1 A Brief Introduction to Cryptography

In order to understand the principles behind the cryptography used in
RDP, some knowledge about cryptography is needed. For a network-centric
overview of cryptography please refer to [Tan02]. For a more in-depth
source to cryptography information, refer to [Sch96].

Symmetric Encryption

When using symmetric encryption, both parts know a shared secret, most
often known as a key, or more specific a session key. The data encrypted
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with the key on one end is decrypted with the same key on the other end.
The problem here is key distribution. How can the two parts agree on

using a specific key in a secure way? One way is by calling the person
handling the computer in the other end and agree on a key. This quickly
becomes non practical when you have a need to communicate with a lot
of different computers, or want to use different keys each time a new con-
nection is setup, something that is desirable in order to limit the damage
caused by a key in the wrong hands.

One of the answers to this problem is asymmetric encryption.

Asymmetric Encryption

When using asymmetric encryption, also known as public-key encryption,
each key is divided into two parts. One of them is public, and the other one
secret. Encryption of data is done with the public part, decryption with
the private part. This means the public key is no secret, since no data can
be decrypted with it. Still, it can be used to send message that only the
part that owns the private part can read.

One problem with asymmetric encryption is that it is slow. When
encrypting large amounts of data it is therefore better to use symmetric
encryption. However, the problem with exchanging the secret key can be
solved by creating a random key and then sending it to the other part using
public-key encryption. This way, the best of both worlds are combined.

3.3.2 Encryption in RDP

As mentioned earlier, the encryption in RDP uses two well-known crypto-
graphic protocols, namely RC4, a symmetric crypto for stream encryption,
and RSA, an asymmetric crypto, for key setup in the session setup phase.

Session key setup

The key used for the stream encryption is negotiated during session setup
as follows:

1. The server sends its public key and a random string.
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2. The client encrypts another random string with the public key of the
server, using the RSA algorithm.

3. The server decrypts the random string from the client with the private
part of the public key it sent to the client.

4. The same RC4 session key is now created on the server and the client,
based on the random strings exchanged both ways.

5. Encrypted communication using RC4 can now start.

The exact procedure for generating the session key can be found in
secure.c of the rdesktop source code. It has not been necessary to mod-
ify this part of the software as a part of this thesis work, since the key
generation procedure is the same in both version 4 and 5 of the RDP.

Asymmetric Encryption in RDP4

In RDP4, a raw RSA key is sent as a raw data object marked by a tag and
a special string (“RSA1”). There is also a signature for the RSA key, but
rdesktop does not try to verify that. Since this thesis work concentrates on
RDP5 support, we will not go deeper into this subject.

Asymmetric Encryption in RDP5

When advertising to the server that we support RDP5, the server sends its
public key encapsulated in a X.509 certificate structure. The reason for this
is probably that Microsoft want to use standard libraries already available
in Microsoft Windows for parsing the keys. X.509 is an ITU standard
defined in [Int97]. There is also an Internet standard in [HPFS02] that
defines the format of the certificates.

The standard is however easily misinterpreted. See [Gut00] for an in-
depth reference on problems with today’s different X.509 implementations.
We had problems interfacing the X.509 structure sent by the server with
the OpenSSL libraries [tea03], since the algorithm of the key was set to
“MD5 with RSA encryption” instead of the correct “RSA encryption”. This
is an example of the interoperability problems of X.509. Since RDP5 is a
closed protocol, this is not a problem for Microsoft since they probably use
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the same libraries on both client and server, which means the same software
faults exist on both sides.

3.4 Security Issues

In the network world of today, a lot of information is sent using insecure
networks such as the public parts of Internet. At the same time, we are
becoming increasingly dependent on computers. A lot of sensitive data are
carried through today’s network, for example medical journals, financial
data, and military information. The implications of information leaks are
often very serious.

There are basically three ways of dealing with the need for privacy, in-
tegrity and authentication: plaintext over closed secure network, plaintext
over public and possibly insecure networks, and encrypted data transfer
over insecure public networks. We will discuss the three alternatives be-
low.

We do see a development where previously closed networks such as
Frame Relay and X.25 [Tan02] are replaced with data transfer over the
Internet, protected by encryption. This change of network techniques is
done because of both financial reasons–Internet connections have become
much cheaper lately–and for flexibility reasons. It is much easier to find an
Internet connection when you are on the road than an X.25 connection.

3.4.1 Plaintext over Closed Secure Networks

In the early days of networking, dedicated leased lines, most often Frame
Relay, X.25 or similar, where the only way to go if a network connection
was needed between point A and point B, for example between the offices of
a company. This was often expensive and in some cases the redundancy of
the connections was not that good–if a cable was damaged, the connection
could be down for quite a while.

Given the fact that the networks were private, protocol security was not
a top priority since the risk for information leak was low.
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3.4.2 Plaintext Over Public and Possibly Insecure Pub-
lic Networks

There are a large number of protocols that transfer information in plaintext
over insecure public networks such as the Internet. The prime examples
of this are HTTP [BLLM+99] used for the World Wide Web, and SMTP
[RFC01] used for electronic mail. Both are widely used plaintext protocols
used for important communication.

Sending email is sometimes compared with sending postcards–all the
mailmen on the way between the sender and the receiver can read what is
written on the back of the card without even the small problem of opening
the envelope. The comparison is basically a good one, though the problem
for a part interested in information sent using email is that the amount of
emails sent daily are enormous, making the process of finding the interesting
ones a major task.

There have been rumors lately (2003) about large governmental systems
that monitor most email traffic in the world, searching for keywords and
selecting “interesting” email and other forms of communication for manual
analysis. See [Uni03] for some interesting pointers to discussions about a
project named “Echelon”.

There are cryptographic extensions for both HTTP and SMTP, but for
the bulk of the traffic sent with both protocols, there is no guarantee that
the information is neither correct nor origins from the part it claims.

3.4.3 Encrypted Plaintext Over Public Insecure Net-
works

As mentioned earlier, we see a development where more and more infor-
mation is sent over the public networks, due to financial and flexibility
(practical) reasons. In the cases where leased lines are replaced by Internet
connections, most often some kind of protection mechanism is added.

One of the available methods for protecting the data is to use a Virtual
Private Network (VPN) [Tan02], a technique where all traffic between two
sites are protected using a so-called tunnel that is encrypting all the traffic
before sending it over the insecure network. The advantage of this method
is that no changes are needed in the applications used, they can still use
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plaintext communication. Among the disadvantages are the fact that it
is very often hard to setup VPNs in a correct way. Also, the price of the
software and hardware needed tend to be quite high. Another disadvantage
is that clients connecting via VPN to your internal network need to be as
secure as your internal clients, or security problems on the VPN client will
give an attacker access to the whole network.

Another method is to make sure that applications transferring sensitive
information encrypt their traffic. This way, all non-sensitive data must not
be encrypted, which decreases the amount of CPU power needed on both
sides of the connection.

See section 3.3 for more discussion about cryptographic protocols.

3.4.4 Do Secure Networks Really Exist?

A relevant question here is whether there is such a thing as a secure network.
Some people tend to believe that the network inside their firewall is secure,
so there is no need to update the computers on the network and all traffic
can safely be plaintext.

The danger with this assumption is that in order for it to be correct,
all parts on the internal network must be trusted. It is a fact that a lot of
attacks originate from for example employees who are unhappy with their
employer for some reason. Also, if one single computer on the internal
network is compromised, it can be used as a gateway to attack all the
poorly protected computers on the internal network.

Using plaintext protocols for sensitive data on internal networks is also
a bad idea since there exists methods for gaining access to the network
path between two computers given access to the same broadcast domain
as one of them. Such a method is ARP-spoofing, covered in [dVdVI98].

During our investigations of RDP we found that none of the available
RDP clients from Microsoft verified the public key of the server. This is a
rather serious security flaw as it opens up for MITM attacks such as the one
we used to find information about the protocol sent over the network (see
section 2.3.1). We have documented this problem and how we reported
it in appendix B. The security problem was also covered by a Swedish
newspaper, see [Nor04].
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Chapter 4

Implementation

In this chapter we discuss software maintenance in general, how rdesktop
works and how we introduced support for RDP5 in the software.

4.1 Understanding Existing Software

Part of the challenge in this final thesis is to understand and modify an
existing piece of software, rdesktop [rt03]. Some of this activity is tradi-
tional software maintenance, an area where there is academic research. In
this section, we will introduce the reader to the subject.

4.1.1 About Software Maintenance in General

A standard definition adopted by the IEEE in 1983 of “Software main-
tenance” follows: Software maintenance is the modification of a software
product after delivery to correct faults, to improve performance or other
attributes, or to adapt the product to a changed environment [Ins83]. This
is a very broad definition. In [LPW88], four main forms of software main-
tenance are listed:

1. Corrective Maintenance: eliminating errors in the program func-
tionality.
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2. Adaptive Maintenance: modifying the application to meet new
operational circumstances (such as a new environment).

3. Perfective Maintenance: enhancement (new operations and re-
finements to old functions).

4. Preventative Maintenance: modifying a program to improve its
future maintainability.

The implementation part of this thesis work is mostly about the third
form, perfective maintenance, since we add new functionality (the support
for version 5 of the Remote Desktop Protocol). However, it is also adaptive
maintenance, since we are modifying the program to enable its functionality
in a new environment–a new version of the Windows Terminal Services
Protocol. According to [LH93], about 80% of all software maintenance is
either perfective or adaptive. Of the remaining 20%, almost all is put into
corrective maintenance.

4.1.2 Tools for Understanding Existing Software

We have found that the number of good tools to help in software mainte-
nance activities are rather low. However, since rdesktop is a small program
(about 10,000 lines of code in C), rather simple tools are needed. Among
the tools used in the understanding of rdesktop are:

• cflow is a program that, given C-code, prints out the flow of the
program in a textual form. Each function call is listed together with
a reference to where the function called is located in the source an-
alyzed. This is most useful in the beginning of the analysis, since it
gives a quick overview of the program. After a while, you tend to
remember the relationships between different functions.

• Emacs is, according to its webpage [Fou04a], “the extensible, cus-
tomizable, self-documenting real-time display editor”. It has many
features that help when developing software. Among them are:

– etags is a utility program that produces a “TAGS” file. Emacs
reads the file produced and provides a function that makes it
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easy to jump to the definition of a called function, a global vari-
able and other symbols you need to find the definition of when
following the flow of a program.

– speedbar provides a window where you can navigate functions
defined in different source files in the directory you are currently
editing.

• grep is the standard Unix utility for finding text, for example func-
tion definitions, in files. It is possible to call grep from within emacs.
That way you get the results in a list Emacs can parse, making it
possible to jump to a certain search result using a keystroke.

4.2 Structure of the Software

In order to make further maintenance activities on rdesktop easier, we
intend to give a description of how rdesktop works internally.

4.2.1 A Well Designed Layered Network Program

As we have seen in section 3.1, RDP is a layered protocol. Rdesktop im-
plements this using a very naturally layered design where each layer in the
network stack is also implemented as a layer in the software. Each layer is
implemented in its own file for easy navigation. See figure 4.1.

4.2.2 The Files in the Rdesktop Source code

As a reference for future developers we will describe the different files in
the rdesktop source code with a small comment about each of them.

• rdesktop.c contains the main routine, command line parsing, and
support routines used by the rest of the program.

• xwin.c contains the code for the graphic interface connecting to a
X Server. There are alternative graphic interfaces such as a SVGA
driver, although we will not cover them here since they are not part
of the standard rdesktop distribution.



34 4.2. Structure of the Software

Presentation layer (xwin.c)

RDP protocol implementation (rdp.c)

Security layer implementation (secure.c)

MCS layer (mcs.c)

ISO DP 8073 transport (iso.c)

TCP/IP layer (tcp.c)

Figure 4.1: Structure of rdesktop

• rdp.c contains code for sending and receiving RDP packets. A lot of
this code is used only during protocol setup.

• rdp5.c contains code that takes care of RDP5 packets.

• mcs.c contains code that parses and sends MCS packets.

• iso.c contains code for parsing and sending ISO DP 8073 packets.

• tcp.c contains code for sending and receiving tcp packets.

• ewmhints.c contains routines for communication with the window
manager.

• licence.c contains routines for license handling. See section B.4 for
discussion about how the licenses work.



Implementation 35

• orders.c contains code that processes orders (graphic data) from the
server.

• parse.h contains macros that operate on a STREAM structure (also
defined in this file). The macros are used to read and write data from
and to the server in a endian-independent way.

• proto.h contains prototypes for the public functions in the different
source files.

• types.h contains most of the types used in rdesktop.

• scancodes.h contains keyboard related definitions.

• secure.c contains cryptography-related code such as parsing of pub-
lic keys and encryption/decryption of data.

• xkeymap.c is used for keyboard mapping in the X Window System.

• bitmap.c contains routines for decompressing bitmaps (such as icons
and other small pictures) sent from the server.

• cache.c contains cache routines for bitmaps, fonts, desktops, and
pointers. Bitmaps, fonts, desktops, and pointers are sent only once
and then referenced to as cache identifiers in the protocol. A related
note is that fonts are not sent as a whole, but only the characters
needed right now are sent and cached. The server then keeps track
of which characters it has sent already and what cache identifiers are
on the client side.

• channels.c contains code for registering callback functions that should
be called whenever there are data on one of the RDP5 channels.

• cliprdr.c contains code that handles clipboard data between X Win-
dow System and Windows, and between different rdesktop sessions.
See section 4.4 for a discussion about this.

• ipc.c contains code for communication between different rdesktop
instances connected to the same X server. This is used by the clip-
board code. The communication is performed using X properties on
the root window, using code in xwin.c.
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The last three files (channels.c, cliprdr.c and ipc.c) are completely
new and an outcome of this final thesis.

4.2.3 Program Structure

We will here give a small introduction to how rdesktop works internally for
future developers and our own reference.

When rdesktop starts, the main method in rdesktop.c is executed.
It parses the command line options (using the getopt function, standard
for most Unix programs), initializes the graphic user interface, sets up
some other things (interprocess communication, clipboard) and then tries
to connect to the server specified on the command line.

The connection is made by calling rdp connect, defined in rdp.c. This
function calls sec connect, defined in secure.c which initializes some data
and calls mcs connect, defined in mcs.c. MCS first opens an ISO con-
nection using iso connect from iso.c and then negotiates its connection
parameters, including the channels needed for transferring graphics, clip-
board, sound and other data.

The ISO layer in iso.c creates it is own connection by using routines
from tcp.c.

After connection setup, the main function in rdesktop.c opens the
window (using UI functions from xwin.c) and then calls rdp main loop,
defined in rdp.c. This is the main program loop.

The main program loop works by trying to read packets from the server,
handling them as they are received. Reading a packet is a multi layer
process, where rdp recv calls sec recv which calls mcs recv, which calls
iso recv which in turn calls tcp recv. Worth noting here is that the data
structure received is statically allocated in tcp.c, although the actual data
size is allocated dynamically each time a packet is received using xrealloc,
defined in rdesktop.c.

All packet handling is done on STREAM structures using macros from
parse.h.

Sending packets is a similar process. When sending an RDP packet,
you initialize a STREAM structure using the function rdp init data and
giving a maximum length of the packet. This function calls sec init with
flags and a max length, adding the length of the RDP header to the max
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length it got as an argument. This process is repeated down through the
MCS, ISO and TCP layers. After initializing the packet, the data is filled
into the STREAM structure using macros from parse.h.

4.3 The Implementation of RDP5 in rdesk-
top

The implementation of RDP5 in rdesktop was done in two stages. First,
we made sure we could speak RDP5 with the server with the same feature
set as with RDP4. Then we added support for channels which opened the
path for clipboard support. The implementation of clipboard support is
covered in section 4.4.

One of the major goals of the implementation was to keep as much of
the original code as untouched as possible, and to provide an option to run
with RDP4 if desired. Therefore, we decided to implement a command line
flag for RDP5 support. In the current version (autumn 2003), RDP4 is
still the default and RDP5 can be enabled using a flag. Rdesktop v2.0 will
probably use RDP5 by default.

All the RDP5-specific code is within conditional blocks that trigger on
the value of a variable named use rdp5. However, even when running in
RDP4 mode, some of the output on the network has changed compared to
previous version. This is, however, normal–the native RDP5 clients output
this data as well.

We list the changes needed for RDP5 support:

• Makefile: Added rdp5.o to the list of objects to be compiled.

• configure: Added support for a new debug primitive.

• constants.h: Added constants used in RDP5.

• iso.c Made connection request contain user name. Made packet
receiving code recognize RDP5 packets, forwarding them not to the
MCS layer but to the RDP5 handling code in rdp5.c.

• bitmap.c: Added support for new bitmap compression (does not use
a useless length field in the T.128 specification anymore).
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• mcs.c: Added new target parameters (more channels). This pro-
vides better length calculation for the outgoing MCS data. Also, new
functions for sending data to a specific MCS channel were added.

• orders.c: Made sure not to discard bufsize, row size and final size
when handling BMPCACHE requests, they are used in RDP5.

• rdesktop.c: Added new command line flags and their parsing.

• rdesktop.h: Added new debug primitives and rdp5 channel structure
definitions.

• rdp.c: Added new logon packet. Trigger server to start sending
RDP5 packets by setting a value in the general capability set.

• secure.c: Added code for parsing the new type of cryptography-
related packets of RDP5-type (X.509 based). Also added code that
tells the server we support RDP5.

• rdp5.c: Implemented parsing of RDP5 packets and dispatching them
to the correct order or cache handling routine.

4.4 Implementation of Clipboard Support

Implementing clipboard support in rdesktop was a surprisingly hard task.
The actual implementation was done in a few days, but we had to do a lot
of thinking before finding out all the principles.

The reason this was such a hard task is that the principles behind
the clipboards in the X Window System and Microsoft Windows are very
different and that the clipboard in X Window System is not very well
documented.

4.4.1 Introduction to the Clipboard in the X Window
System

The clipboard in the X Window System is documented in [RM93], section 2.
This text is, however, written for people already familiar with the concepts
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of the X Window System. Another text is [Ben93], which describes the
concepts involved in a better way. However, the examples in the latter uses
the Xt toolkit, something we do not want to do in rdesktop (it cannot be
done without rewriting large parts of the user interface code, and we do
not want to depend on the Xt library).

The basic principle is that a window where a user makes some kind of
gesture that indicates the user wants to select something acquires ownership
of a so called selection. When another window detects a gesture indicating
that the user of it wants to paste, it checks whether any application owns
the selection. If so, it asks the application for what clipboard formats
are available, and then asks for the data itself using a format code. The
format codes are in form of so called atoms (an X Window System term, see
[GS96]). The available formats are defined both in the ICCCM ([RM93])
and by applications themselves. That is, two applications of the same type
can exchange information in their own format if desirable.

We call this a pull system–it is the client that wants the data that must
check what formats are available, if any.

There are two selections, PRIMARY and CLIPBOARD. However, how
they should be used is not regulated in a formal standard but instead relies
on common understanding in the X Window System programming world.
[Ben93] proposes some ways of solving this, and we try to follow this in our
implementation.

4.4.2 Introduction to the Clipboard in Microsoft Win-
dows

The clipboard in Microsoft Windows is documented in [Cor03]. Basically,
when an application puts something in the clipboard, all other applications
get a notification. This way they can lighten up their paste buttons/menu
options. Embedded in the notification is a list of formats available, meaning
a text application can choose not to enable pasting when it knows it cannot
handle any of the formats available.

We call this a push system–the client with the data tells the other clients
it has data.
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4.4.3 Clipboard and RDP

By studying the data stream from the server when executing different clip-
board operations on a native Windows client (see section 2.3.2), we discov-
ered several facts about the type of protocol used for sending clipboard data
over an RDP5 connection. A virtual channel in the MCS layer is used to
transfer the data packets. Just as with the clipboard when running locally
on Windows, a clipboard announcement is sent when there is clipboard
data available on any of the two sides of the connection. For details about
the clipboard packets, refer to section A.3.2.

4.4.4 Merging the Principles of the X Window System
and Microsoft Windows

There are several subproblems in implementing clipboard support in rdesk-
top. The underlying problem is to merge the push system in Microsoft
Windows, as discussed in section 4.4.2, with the pull system in the X Win-
dow System, discussed in section 4.4.1. Apart from that, there are other
problems:

1. In order to support clipboard transfers from X applications to Win-
dows, we need to know when there are clipboard data available. There
is no natural way to do that.

2. We need to map X Window System formats to Microsoft Windows
formats.

3. There is sometimes a need for conversion between different formats.
Text can sometimes be received in UTF-8 in X, but the Unicode text
format transported to Windows seems to be UCS-2.

We chose to handle the first problem with a simple approach. Each
time we start rdesktop, we announce a static list of formats available to the
Windows server. This means we do not care if there is any clipboard data
available in the X Window System. Also, each time we have transferred
data to Windows, we send another announcement in order to invalidate the
server-side clipboard cache. If we do not do this, Windows will not ask for
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clipboard data the next time it wants to paste, and since there is no way
to know when the clipboard in X changes owner, that would mean we do
not always get the correct data.

When there is a request for data from the Microsoft Windows server,
we check if there is any data available on PRIMARY and then on CLIP-
BOARD. If there is, we send this. Otherwise, we just send an empty string,
something we must do in order to avoid hung applications on the server
side.

Regarding the second problem, we choose to implement a rather lim-
ited version of clipboard support. We only support transfer of plain text
between Windows and X (both directions). This means we can limit the
amount of conversion needed. Other formats will probably be implemented
in the future, but that is outside the scope of this final thesis. Also, we
do not support any conversion of UTF8 to UCS-2 (two different ways of
representing character data) or vice versa. We do however support trans-
fer of all Windows clipboard formats between two rdesktops. That is, if
the user cuts or copies from a Windows application in one rdesktop, past-
ing in another rdesktop running another Windows application will work
seamlessly, retaining whatever format the Windows applications find ap-
propriate. This is implemented using a simple interprocess communication
between the different rdesktop processes.
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Chapter 5

Discussion and Conclusion

In this chapter, we will discuss our work and summarize what has been
done. We will also list some possible future work.

5.1 Discussion

When we began working on this thesis work, we had a quite well-defined
problem to solve– the need for clipboard support in Rdesktop. This prob-
lem proved to contain a large set of subproblems, many of them impossible
to anticipate in the beginning.

The subproblems ranged from large questions such as what method to
use for the reverse-engineering needed, to small questions, such as what
datatype was hidden in a small part of the datastream.

During our work, we simply tried to solve the problems as they occured.
We identified the problem, found a set of possible solutions, and chose the
solution that fit best into the work we had already done. Since our workflow
was an iterative process (see section 2.3.2), we were prepared for that we
might have to reimplement some things several times in order to get the
desired results.

We found the task interesting and stimulating. Even though it took
a while to gain results that are possible to explain to non-experts on the
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subject, we could see progress almost every week during the period when we
were investigating the protocol and implementing support for it in rdesktop.

5.2 Conclusion

In section 1.2, we motivated this thesis work by the following reasons:

1. Enhance rdesktop in order to support RDP5 and clipboard

2. Provide documentation in order to ease further development of rdesk-
top

Regarding the first item, we have succeeded in adding support for RDP5
to rdesktop, including generic code for virtual channel handling. We have
also succeeded in adding basic support for clipboard operations. About
2000 lines of code in use today in rdesktop were created as a result of this
final thesis.

Regarding the second item, we believe new and current developers of
rdesktop will find this report helpful as a reference.

Apart from fulfilling the goals motivating the thesis, we have developed
a method, the iterative process described in section 2.3.2, for our Reverse
Engineering needs. We have also developed and enhanced several tools for
our work:

1. rdpproxy was enhanced to be able to correctly read and forward RDP5
messages. By using an existing tool, we definitely saved large amounts
of time.

2. pparser.py was developed from scratch to ease parsing and under-
standing output from rdpproxy. Developing a tool for this purpose
was a great timesaver. Without this tool, we most probably would
not have succeeded in fulfilling the goals of the thesis work.

The parser also will be of use in further rdesktop development, and
the structure of it might be of interest for other people in need of
writing packet parsers, since we developed an object-oriented way of
parsing packets that proved to work very well.
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3. Our diary that we mentioned in 2.4 proved very useful, making it
possible to go back to information found earlier.

5.3 Future work

As of autumn 2003, there are a number of things to be done on rdesktop
to support all of RDP5. Among them are:

1. Sound redirection (virtual channel).

2. Serial and parallel port redirection (virtual channel).

3. Disk drive redirection (virtual channel).

4. Capability negotiation (allow/disallow for example desktop backgrounds
and themes). The packet handling for this information is hardcoded
in rdesktop at the time of writing.

5. Support for more clipboard formats when transferring data between
the X Window System and Microsoft Windows.

6. Support for compression of the data packets.

Also, the security layer should be able to verify the peer when connect-
ing in order to prevent man in the middle attacks, and it should also verify
the signature of data packets. This functionality is missing at the time of
writing.

Another area of interest is to develop a software that can connect to
servers running Citrix Metaframe [Inc04]. It might be possible to use
Rdesktop for this purpose since the protocols are related.

5.4 Concluding Remarks

During the work, we found and reported some rather serious security flaws
in Microsoft’s client implementations. We have learned and discussed the
theory behind the flaws, and some of the ethics behind reporting such flaws
in a responsible manner. See appendix B.
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We have learned a lot about network protocols in general, how to parse
binary protocols, and how to do reverse-engineering of them. This is knowl-
edge that will be of great use for us in the future.

Worth noticing is that our implementation of RDP5 and clipboard sup-
port has been made entirely without use of commercial software. All soft-
ware used in the process was either open source [ini03] or developed in-
house. The only commercial software involved was the Windows servers
used to test the functionality.
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Appendix A

A complete RDP session,
packet by packet

In this appendix, we list the different kinds of packets involved in RDP5.
We also give some comments related to the contents of them in order to
clarify things we have found hard to understand.

The motivation behind this appendix is that we want to ease further
development of rdesktop by providing better documentation.

This appendix contains a number of tables representing parts of net-
work packets transferred as part of RDP. The tables were generated using
pparser.py and the following command line options: ./pparser.py -f
LATEX -n -l /xjobb/report/figures/pktfigs/ ../sniff/report.1.out.

An example table is table A.1.
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C2 TPKT from Client
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPKT ver-

sion
3 0x03 (3)

1 Int8 (be) TPKT
reserved

0 0x00 (0)

2 Int16 (be) TPKT
length

0x019c
(412)

4 TPDU See C2-0

Table A.1: Example packetpart table

Let us examine the different parts of the table.
At the top left corner of the table is a packetpart identifier. The iden-

tifier begins with either an S, meaning the packet originated at the server
side of the connection, or a C, meaning the packet originated on the client
side of the connection.

Following the character is a number which is the sequence number for
the whole packet. There is one sequence number for the server, and one
for the client. That is, C1 comes before C2, but S1 might have arrived
from the server in between. The text around the figures will explain the
relationships between the packets.

Each network packet is represented by 0 to n tables in order to get
tables that are small enough to fit into the pages of the document, yet still
readable. The identifier of a subpart have a dash (-) after the character and
packet sequence number, and then another sequence number identifying the
subpacket. A subpacket can have another subpacket, identified by another
dash and a new sequence number. As an example, S1-0-0 is a subpacket
of S1-0 which is a subpacket of S1.

Please note that a subpacket in this context does not necessarily mean
it is a subpacket protocolwise. The subpackets here are often subpackets
because of the size of the table which had to fit into one page for clarity.

Continuing with the upper right corner, there is a textual description
of the packetpart.

The next line of the table is the table header. We will explain each
column below:
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• Offset is the offset within the packet for this particular data. The
offset begins at 0 and is measured in octets (which is the same as a
byte on most machines).

• Datatype is the datatype of the data. There are two main types
of datatypes. One is “primitive” datatypes like integers, strings, and
raw bytedata. The other one is pointers to subpacket. In the latter
case, the Description and Expected Value columns are empty, and
the Value column is a reference to a subpacket.

• Description is a textual description of the data. In some cases this
is empty, which most often means we do not know the function of the
data.

• Exp. val is the expected value of the data. During our reverse-
engineering process this was of great help in finding when a packet
was abnormal, or when our parsing went wrong. In some cases it
has information about the remaining length of a packet calculated py
pparser.py to be compared with the remaining length value accord-
ing to the packet.

• Value is the real value of the data. It can also be a pointer to a
subpacket table.

Following the table header is the actual data in the packetpart, one line
per value.

A.1 Protocol Phases

The protocol has two basic phases. The setup phase, where a TCP connec-
tion is made, channels are allocated, and a login packet is sent (although
login can also be done manually): and the session phase where normal op-
erations occur, like graphic data being sent from the server, and mouse and
keyboard operations are being sent from the client.

We will describe the different types of packets exchanged during the
different phases below.
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A.2 The Setup Phase

A.2.1 ISO DP 8073 Connection Setup

The setup phase starts from the bottom of the protocol graph (figure 3.1)
by setting up an ISO DP 8073 connection between the parts.

C1 TPKT from Client
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPKT ver-

sion
3 0x03 (3)

1 Int8 (be) TPKT
reserved

0 0x00 (0)

2 Int16 (be) TPKT
length

0x0023 (35)

4 TPDU See C1-0
17 Latin1

String(22)
mstshash Cookie:

mst-
shash=demo1

39 Int16 (le) Unknown 0x0a0d
(2573)

C1-0 TPDU
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPDU hdr

length
0x1e (30)

1 Int8 (be) TPDU
packet type

0xe0 (224)
Connection
request

2 Int16 (be) Dst ref 0x0000 (0)
4 Int16 (be) Src ref 0x0000 (0)
6 Int8 (be) Class 0x00 (0)

Table A.2: ISO Connection Request

The ISO Connection Request, illustrated in table A.2, is the first packet
sent from the client when initiating an RDP connection. This packet is part
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of ISO DP 8073 defined in RFC2126 [PY97]. The packet is a TPDU (de-
fined in ISO 8073) encapsulated in a so called TPKT (defined in RFC2126).

Note that the mstshash and the 16 bit integer in the TPKT is not part
of the standard, but a Microsoft extension. We do not know the function
of this data, but it could have something to do with the Active X control
version of the client and its integration with a web server.

S1 TPKT from Server
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPKT ver-

sion
3 0x03 (3)

1 Int8 (be) TPKT
reserved

0 0x00 (0)

2 Int16 (be) TPKT
length

0x000b (11)

4 TPDU See S1-0
S1-0 TPDU
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPDU hdr

length
0x06 (6)

1 Int8 (be) TPDU
packet type

0xd0 (208)
Connection
confirm

2 Int16 (be) Dst ref 0x0000 (0)
4 Int16 (be) Src ref 0x1234

(4660)
6 Int8 (be) Class 0x00 (0)

Table A.3: ISO Connection Response

As a response to the connection request, the server sends a Connection
Response, also part of the ISO DP 8073. This packet is illustrated in table
A.3.
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A.2.2 Multipoint Communication Service Protocol Setup,
Connect Initial

Now when the client has a transport for its MCS packets, it starts setting up
the next layer in the protocol graph, the Multipoint Communication Service
protocol (MCS), defined in [T.193b]. The MCS setup packet (named MCS
Connect Initial in the documentation) is packed with a lot of data. Due to
the large amounts of data, we have had to split the packet into different
tables. See tables A.4 to A.14 for the different parts.

C2 TPKT from Client
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPKT ver-

sion
3 0x03 (3)

1 Int8 (be) TPKT
reserved

0 0x00 (0)

2 Int16 (be) TPKT
length

0x019c
(412)

4 TPDU See C2-0
C2-0 TPDU
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPDU hdr

length
0x02 (2)

1 Int8 (be) TPDU
packet type

0xf0 (240)
Data

2 Int8 (be) TPDU eot 128 0x80 (128)
3 MCS packet See C2-0-0
C2-0-0 MCS packet
Offset Datatype Description Exp. val. Value
0 MCS Con-

nect Initial
See C2-0-0-
0

Table A.4: MCS Connect Initial, TPKT, ISO, and MCS packet headers.

First in the packet are the TPKT and TPDU packet headers, see table
A.4. The packetpart C2-0-0 is mainly there because of a design problem
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in pparser.py, but due to time constraints we did not fix that.

C2-0-0-0 MCS Connect Initial
Offset Datatype Description Exp. val. Value
0 BER tag

32613
MCS Conn
initial

32613 32613

2 VariableInt(2) BER length 0x0190
(400)

5 BER tag 4 OCTET-
STRING

4 4

6 VariableInt(1) BER length 0x0001 (1)
7 KLIInt(8) Calling Do-

main Value
0x01 (1)

8 BER tag 4 OCTET-
STRING

4 4

9 VariableInt(1) BER length 0x0001 (1)
10 KLIInt(8) Called Do-

main Value
0x01 (1)

11 BER tag 1 BOOLEAN 1 1
12 VariableInt(1) BER length 0x0001 (1)
13 KLIInt(8) Upward flag

Value
0xff (255)

14 Domain Pa-
rameters

Target See C2-0-0-
0-0

33 Domain Pa-
rameters

Min See C2-0-0-
0-1

52 Domain Pa-
rameters

Max See C2-0-0-
0-2

71 MCS initial
userdata

See C2-0-0-
0-3

90 [unknown
type]

Remaining
MCS conn
initial data

See C2-0-0-
0-4

Table A.5: MCS Connect Initial
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BER is an abbreviation for Basic Encoding Rules [Wik05a] , a way of
packing integers for network transfer.

The more interesting contents of the packet starts in table A.5. This
packet is defined in section 10.1 in [T.193b]. It consists of several parts, the
largest being the three domain parameter sets in table A.6, A.7 and A.8.
These define for example how many channels the clients might open and
other parameters. The fourth large part is the User data block, visualized
in table A.9.
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C2-0-0-0-0 Domain Parameters Target
Offset Datatype Description Exp. val. Value
0 BER tag 48 Target 48 48
1 VariableInt(1) BER length 0x0019 (25)
2 BER tag 2 INTEGER 2 2
3 VariableInt(1) BER length 0x0001 (1)
4 KLIInt(8) Channels

Value
0x22 (34)

5 BER tag 2 INTEGER 2 2
6 VariableInt(1) BER length 0x0001 (1)
7 KLIInt(8) Users Value 0x02 (2)
8 BER tag 2 INTEGER 2 2
9 VariableInt(1) BER length 0x0001 (1)
10 KLIInt(8) Tokens

Value
0x00 (0)

11 BER tag 2 INTEGER 2 2
12 VariableInt(1) BER length 0x0001 (1)
13 KLIInt(8) Priorities

Value
0x01 (1)

14 BER tag 2 INTEGER 2 2
15 VariableInt(1) BER length 0x0001 (1)
16 KLIInt(8) Throughput

Value
0x00 (0)

17 BER tag 2 INTEGER 2 2
18 VariableInt(1) BER length 0x0001 (1)
19 KLIInt(8) Height

Value
0x01 (1)

20 BER tag 2 INTEGER 2 2
21 VariableInt(1) BER length 0x0002 (2)
22 KLIInt(16) PDUsize

Value
0xffff
(65535)

24 BER tag 2 INTEGER 2 2
25 VariableInt(1) BER length 0x0001 (1)
26 KLIInt(8) Protocol

Value
0x02 (2)

Table A.6: MCS Connect Initial, Domain Parameters (Target)
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C2-0-0-0-1 Domain Parameters Min
Offset Datatype Description Exp. val. Value
0 BER tag 48 Min 48 48
1 VariableInt(1) BER length 0x0019 (25)
2 BER tag 2 INTEGER 2 2
3 VariableInt(1) BER length 0x0001 (1)
4 KLIInt(8) Channels

Value
0x01 (1)

5 BER tag 2 INTEGER 2 2
6 VariableInt(1) BER length 0x0001 (1)
7 KLIInt(8) Users Value 0x01 (1)
8 BER tag 2 INTEGER 2 2
9 VariableInt(1) BER length 0x0001 (1)
10 KLIInt(8) Tokens

Value
0x01 (1)

11 BER tag 2 INTEGER 2 2
12 VariableInt(1) BER length 0x0001 (1)
13 KLIInt(8) Priorities

Value
0x01 (1)

14 BER tag 2 INTEGER 2 2
15 VariableInt(1) BER length 0x0001 (1)
16 KLIInt(8) Throughput

Value
0x00 (0)

17 BER tag 2 INTEGER 2 2
18 VariableInt(1) BER length 0x0001 (1)
19 KLIInt(8) Height

Value
0x01 (1)

20 BER tag 2 INTEGER 2 2
21 VariableInt(1) BER length 0x0002 (2)
22 KLIInt(16) PDUsize

Value
0x420
(1056)

24 BER tag 2 INTEGER 2 2
25 VariableInt(1) BER length 0x0001 (1)
26 KLIInt(8) Protocol

Value
0x02 (2)

Table A.7: MCS Connect Initial, Domain Parameters (Minimum)
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C2-0-0-0-2 Domain Parameters Max
Offset Datatype Description Exp. val. Value
0 BER tag 48 Max 48 48
1 VariableInt(1) BER length 0x001c (28)
2 BER tag 2 INTEGER 2 2
3 VariableInt(1) BER length 0x0002 (2)
4 KLIInt(16) Channels

Value
0xffff
(65535)

6 BER tag 2 INTEGER 2 2
7 VariableInt(1) BER length 0x0002 (2)
8 KLIInt(16) Users Value 0xfc17

(64535)
10 BER tag 2 INTEGER 2 2
11 VariableInt(1) BER length 0x0002 (2)
12 KLIInt(16) Tokens

Value
0xffff
(65535)

14 BER tag 2 INTEGER 2 2
15 VariableInt(1) BER length 0x0001 (1)
16 KLIInt(8) Priorities

Value
0x01 (1)

17 BER tag 2 INTEGER 2 2
18 VariableInt(1) BER length 0x0001 (1)
19 KLIInt(8) Throughput

Value
0x00 (0)

20 BER tag 2 INTEGER 2 2
21 VariableInt(1) BER length 0x0001 (1)
22 KLIInt(8) Height

Value
0x01 (1)

23 BER tag 2 INTEGER 2 2
24 VariableInt(1) BER length 0x0002 (2)
25 KLIInt(16) PDUsize

Value
0xffff
(65535)

27 BER tag 2 INTEGER 2 2
28 VariableInt(1) BER length 0x0001 (1)
29 KLIInt(8) Protocol

Value
0x02 (2)

Table A.8: MCS Connect Initial, Domain Parameters (Maximum)
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C2-0-0-0-3 MCS initial userdata
Offset Datatype Description Exp. val. Value
0 BER tag 4 Userdata

length
4 4

1 VariableInt(2) BER length 0x012f (303)
4 Int16 (be) 5 0x0005 (5)
6 Int16 (be) 20 0x0014 (20)
8 Int8 (be) 124 0x7c (124)
9 Int16 (be) 1 0x0001 (1)
11 Int16 (be) |

0x8000
Remaining
length
(should be
294)

0x0126
(294)

13 Int16 (be) 8 0x0008 (8)
15 Int16 (be) 15 0x0010 (16)
17 Int8 (be) 0 0x00 (0)
18 Int16 (be) 49153 0x01c0

(448)
20 Int8 (be) 0 0x00 (0)
21 Int32 (le) 0x61637544

”Duca”
0x61637544
(1633908036)

25 Int16 (be) |
0x8000

Remaining
length
(should be
280)

0x0118
(280)

27 MCS user-
data/clientinfo

See C2-0-0-
0-3-0

48 Tagged data See C2-0-0-
0-3-1

Table A.9: MCS Connect Initial, User data part

There are several values in the MCS Initial User data part (table A.9)
that are unknown to us. They can be recognized by the lack of descrip-
tion. We simply use the same values as the native clients transfer over the
network and it seems to work very well.
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C2-0-0-0-3-0 MCS userdata/clientinfo
Offset Datatype Description Exp. val. Value
0 Int16 (le) Client info

tag
49153 0xc001

(49153)
2 Int16 (le) Client info

length
136 in
rdesktop,
276 bytes
remaining

0x00d4
(212)

4 Int16 (le) RDP ver-
sion

0x0001
for RDP4,
0x0004 for
RDP5

0x0004 (4)

6 Int16 (le) 8 0x0008 (8)
8 Int16 (le) Width 0x0320

(800)
10 Int16 (le) Height 0x0258

(600)
12 Int16 (le) 51713 0xca01

(51713)
14 Int16 (le) 43523 0xaa03

(43523)
16 Int32 (le) Keylayout 0x0000041d

(1053)
20 Int32 (le) Client build 0x00000a28

(2600)
24 Unicode

string(16)
Hostname SAURONS-

TOILET..
40 Int32 (le) 4 0x00000004

(4)
44 Int32 (le) 0 0x00000000

(0)
48 Int32 (le) 12 0x0000000c

(12)
52 [unknown

type]
Reserved
data

See C2-0-0-
0-3-0-0

75 ColorDepth
(Int16 (le))

(client) 0xca01
(51713)(8
bits depth)

77 Int16 (le) 0 0x0001 (1)
79 [unknown

type]
Remaining
client data

See C2-0-0-
0-3-0-1

Table A.10: MCS Connect Initial, User data part, client info part
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C2-0-0-0-3-0-0 [unknown type] Reserved data
Offset Datatype Description Exp. val. Value
0 RAW 00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
................

16 RAW 00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
................

32 RAW 00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
................

48 RAW 00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
................

Table A.11: MCS Connect Initial, User data part, client info, part 1
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C2-0-0-0-3-0-1 [unknown type] Remaining client data
Offset Datatype Description Exp. val. Value
0 RAW 00 00 00 00

10 00 07 00
01 00 00 00
00 00 00 00
................

16 RAW 00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
................

32 RAW 00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
................

48 RAW 00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
................

64 RAW 00 00 00 00
00 00 00 00
00 00 00 00
............

Table A.12: MCS Connect Initial, User data part, client info, part 2
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C2-0-0-0-3-1 Tagged data
Offset Datatype Description Exp. val. Value
0 Tagged dat-

apart
Unknown See C2-0-0-

0-3-1-0
23 Tagged dat-

apart
TAG CLI-
CRYPT

See C2-0-0-
0-3-1-1

46 Tagged dat-
apart

TAG CLI-
CHANNELS

See C2-0-0-
0-3-1-2

C2-0-0-0-3-1-0 Tagged datapart Unknown
Offset Datatype Description Exp. val. Value
0 Int16 (le) Tag 0xc004

(49156)
2 Int16 (le) Length 0x000c (12)
4 [unknown

type]
Data See C2-0-0-

0-3-1-0-0

C2-0-0-0-3-1-0-0 [unknown type] Data
Offset Datatype Description Exp. val. Value
0 RAW 09 00 00 00

00 00 00 00
........

C2-0-0-0-3-1-1 Tagged datapart TAG CLI CRYPT
Offset Datatype Description Exp. val. Value
0 Int16 (le) Tag 0xc002

(49154)
2 Int16 (le) Length 0x000c (12)
4 [unknown

type]
Data See C2-0-0-

0-3-1-1-0

C2-0-0-0-3-1-1-0 [unknown type] Data
Offset Datatype Description Exp. val. Value
0 RAW 01 00 00 00

00 00 00 00
........

Table A.13: MCS Connect Initial, User data part, client info
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C2-0-0-0-3-1-2 Tagged datapart TAG CLI CHANNELS
Offset Datatype Description Exp. val. Value
0 Int16 (le) Tag 0xc003

(49155)
2 Int16 (le) Length 0x002c (44)
4 RDP Chan-

nel data
Data See C2-0-0-

0-3-1-2-0

Table A.14: MCS Connect Initial, User data part, client info, part 1
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C2-0-0-0-3-1-2-0 RDP Channel data Data
Offset Datatype Description Exp. val. Value
0 Int32 (le) Number of

channels
0x00000003
(3)

4 Latin1
String(7 +
nullchar)

Channel #0
name

rdpdr

12 RDP Chan-
nel Flags

Channel #0
flags

0x80800000
(2155872256)
OPTION-
INITIALIZED,

OPTION-
COMPRESS-
RDP,

16 Latin1
String(7 +
nullchar)

Channel #1
name

cliprdr

24 RDP Chan-
nel Flags

Channel #1
flags

0xc0a00000
(3231711232)
OPTION-
INITIALIZED,

OPTION-
ENCRYPT-
RDP,

OPTION-
COMPRESS-
RDP,

OPTION-
SHOW-
PROTOCOL,

28 Latin1
String(7 +
nullchar)

Channel #2
name

rdpsnd

36 RDP Chan-
nel Flags

Channel #2
flags

0xc0000000
(3221225472)
OPTION-
INITIALIZED,

OPTION-
ENCRYPT-
RDP,

Table A.15: MCS Connect Initial, User data part, client info, part 2
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A.2.3 Multipoint Communication Service Protocol Setup,
Connect Response

As an answer to the MCS Connect Initial, the servers send a MCS Connect
Response. This as well is a packet filled with a lot of data. We have had
to divide it into tables A.16 to A.26.

S2 TPKT from Server
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPKT ver-

sion
3 0x03 (3)

1 Int8 (be) TPKT
reserved

0 0x00 (0)

2 Int16 (be) TPKT
length

0x05fe
(1534)

4 TPDU See S2-0
S2-0 TPDU
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPDU hdr

length
0x02 (2)

1 Int8 (be) TPDU
packet type

0xf0 (240)
Data

2 Int8 (be) TPDU eot 128 0x80 (128)
3 MCS packet See S2-0-0
S2-0-0 MCS packet
Offset Datatype Description Exp. val. Value
0 MCS Con-

nect Re-
sponse

See S2-0-0-
0

Table A.16: MCS Connect Initial, TPKT, ISP, and MCS headers
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S2-0-0-0 MCS Connect Response
Offset Datatype Description Exp. val. Value
0 BER tag

32614
MCS Conn
response

32614 32614

2 VariableInt(2) BER length 0x05f2
(1522)

5 BER tag 10 TAG-
RESULT

10 10

6 VariableInt(1) BER length 0x0001 (1)
7 KLIInt(8) Result

Value
0x00 (0)

8 BER tag 2 INTEGER 2 2
9 VariableInt(1) BER length 0x0001 (1)
10 KLIInt(8) Connection

id Value
0x00 (0)

’11 Domain Pa-
rameters

Target See S2-0-0-
0-0

30 MCS re-
sponse
userdata

User data See S2-0-0-
0-1

Table A.17: MCS Connect Response
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S2-0-0-0-0 Domain Parameters Target
Offset Datatype Description Exp. val. Value
0 BER tag 48 Target 48 48
1 VariableInt(1) BER length 0x001a (26)
2 BER tag 2 INTEGER 2 2
3 VariableInt(1) BER length 0x0001 (1)
4 KLIInt(8) Channels

Value
0x22 (34)

5 BER tag 2 INTEGER 2 2
6 VariableInt(1) BER length 0x0001 (1)
7 KLIInt(8) Users Value 0x03 (3)
8 BER tag 2 INTEGER 2 2
9 VariableInt(1) BER length 0x0001 (1)
10 KLIInt(8) Tokens

Value
0x00 (0)

11 BER tag 2 INTEGER 2 2
12 VariableInt(1) BER length 0x0001 (1)
13 KLIInt(8) Priorities

Value
0x01 (1)

14 BER tag 2 INTEGER 2 2
15 VariableInt(1) BER length 0x0001 (1)
16 KLIInt(8) Throughput

Value
0x00 (0)

17 BER tag 2 INTEGER 2 2
18 VariableInt(1) BER length 0x0001 (1)
19 KLIInt(8) Height

Value
0x01 (1)

20 BER tag 2 INTEGER 2 2
21 VariableInt(1) BER length 0x0003 (3)
22 KLIInt(24) PDUsize

Value
0xfff8
(65528)

25 BER tag 2 INTEGER 2 2
26 VariableInt(1) BER length 0x0001 (1)
27 KLIInt(8) Protocol

Value
0x02 (2)

Table A.18: MCS Connect Response, Domain parameters
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S2-0-0-0-1 MCS response userdata User data
Offset Datatype Description Exp. val. Value
0 BER tag 4 Userdata

length
4 4

1 VariableInt(2) BER length 0x05cc
(1484)

4 [unknown
type]

T.124 data See S2-0-0-
0-1-0

25 MSVariable-
Int(2)

Remaining
length (re-
maining
bytes: 1463)

0x05b5
(1461)

28 Tagged data Tagged data See S2-0-0-
0-1-1

S2-0-0-0-1-0 [unknown type] T.124 data
Offset Datatype Description Exp. val. Value
0 RAW 00 05 00 14

7c 00 01 2a
14 76 0a 01
01 00 01 c0
....|..*.v......

16 RAW 00 4d 63 44
6e .McDn

Table A.19: MCS Connect Response, User data and T.124 data
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S2-0-0-0-1-1 Tagged data Tagged data
Offset Datatype Description Exp. val. Value
0 Tagged dat-

apart
TAG SRV INFO See S2-0-0-

0-1-1-0
23 Tagged dat-

apart
TAG SRV SRV3 See S2-0-0-

0-1-1-1
46 Tagged dat-

apart
TAG SRV CRYPT See S2-0-0-

0-1-1-2
S2-0-0-0-1-1-0 Tagged datapart TAG SRV INFO
Offset Datatype Description Exp. val. Value
0 Int16 (le) Tag 0x0c01

(3073)
2 Int16 (le) Length 0x0008 (8)
4 TAG SRV INFOData See S2-0-0-

0-1-1-0-0

S2-0-0-0-1-1-0-0 TAG SRV INFO Data
Offset Datatype Description Exp. val. Value
0 Int16 (le) RDP ver-

sion
0x0004 (4)

2 Int16 (le) Unknown 8 0x0008 (8)

S2-0-0-0-1-1-1 Tagged datapart TAG SRV SRV3
Offset Datatype Description Exp. val. Value
0 Int16 (le) Tag 0x0c03

(3075)
2 Int16 (le) Length 0x0010 (16)
4 [unknown

type]
Data See S2-0-0-

0-1-1-1-0

Table A.20: MCS Connect Response, User data, tagged data
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S2-0-0-0-1-1-1-0 [unknown type] Data
Offset Datatype Description Exp. val. Value
0 RAW eb 03 03 00

ec 03 ed 03
ee 03 00 00
............

S2-0-0-0-1-1-2 Tagged datapart TAG SRV CRYPT
Offset Datatype Description Exp. val. Value
0 Int16 (le) Tag 0x0c02

(3074)
2 Int16 (le) Length 0x059d

(1437)
4 MCS re-

sponse
userdata
cryptinfo

Data See S2-0-0-
0-1-1-2-0

Table A.21: MCS Connect Response, User data, contents of
TAG SRV SRV3 and header of TAG SRV CRYPT

The contents of TAG SRV SRV3 is a mapping from RDP5 channels to
MCS channels, although we do not parse or use that at the time of writing.
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S2-0-0-0-1-1-2-0 MCS response userdata cryptinfo Data
Offset Datatype Description Exp. val. Value
0 Int32 (le) RC4 key

size
1/40 bit,
2/128 bit

0x00000001
(1)

4 Int32 (le) Encryption
level

0/None,
1/Low,
2/Med,
3/High

0x00000002
(2)

8 Int32 (le) Random
salt len

32 0x00000020
(32)

12 Int32 (le) RSA info len 1385 0x00000569
(1385)

16 [unknown
type]

Server salt See S2-0-0-
0-1-1-2-0-0

43 [unknown
type]

Cert header See S2-0-0-
0-1-1-2-0-1

70 Int32 (le) CA Certifi-
cate length

0x000001c2
(450)

74 Certificate (CA) See S2-0-0-
0-1-1-2-0-2

101 Int32 (le) Certificate
length

0x00000387
(903)

105 Certificate See S2-0-0-
0-1-1-2-0-3

132 [unknown
type]

Remaining
info

See S2-0-0-
0-1-1-2-0-4

Table A.22: MCS Connect Response, User data, cryptographic information
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S2-0-0-0-1-1-2-0-0 [unknown type] Server salt
Offset Datatype Description Exp. val. Value
0 RAW 51 f7 52 56

f6 1a ca d4
cd b0 84 e8
fc ad 41 62
Q.RV..........Ab

16 RAW 97 ad 82 86
8f 40 14 3e
72 c7 e4 de
f7 1e cc b1
.....@.>r.......

S2-0-0-0-1-1-2-0-1 [unknown type] Cert header
Offset Datatype Description Exp. val. Value
0 RAW 02 00 00 00

02 00 00 00
........

Table A.23: MCS Connect Response, User data, server salt, and certificate
header
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Certificate (CA)
Certificate:
Data:

Version: 3 (0x2)
Serial Number:

01:9e:3f:0b:13:9e:19:50
Signature Algorithm: sha1WithRSA
Issuer: L=TCDEMO, CN=WIN2KTERM
Validity

Not Before: Jun 29 15:41:56 1970 GMT
Not After : Jun 29 15:41:56 2049 GMT

Subject: L=TCDEMO, CN=WIN2KTERM
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (512 bit)

Modulus (512 bit):
00:a4:84:b4:ea:78:ca:df:4b:58:f7:1c:bd:71:68:
28:ce:78:1a:91:25:d0:6f:80:67:b7:d8:21:e5:c3:
a7:a1:a6:0b:0b:6c:90:05:80:a5:9d:c7:bd:d2:d8:
8b:cc:cf:34:0e:58:aa:87:86:92:12:8f:d2:aa:51:
98:e1:9e:4b:73

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints:
CA:TRUE, pathlen:0

1.3.6.1.4.1.311.18.8:
H.H.W.3.3.B.3.B.X.6.H.9.V.W.Y.9.G.R.2.T.6.X.W.4.
7.Y.W.8.K.9.Y.V.W.4.T...

Signature Algorithm: sha1WithRSA
45:fa:79:30:e9:49:b9:42:59:fe:3c:2b:cf:85:e4:ed:fd:a6:
76:34:a2:46:35:ea:5d:41:2d:27:e9:af:78:ba:a3:04:21:c5:
08:2b:be:9b:c0:b8:02:74:4a:c1:77:5a:b3:5c:d4:49:14:bf:
51:92:cf:bd:56:69:8e:d5:52:a7

Table A.24: X.509 certificate (CA)
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Int32 (le) Certificate length 0x00000387 (903)
Certificate

Certificate:
Data:

Version: 3 (0x2)
Serial Number:

01:00:00:00:18
Signature Algorithm: sha1WithRSA
Issuer: L=TCDEMO, CN=WIN2KTERM
Validity

Not Before: Dec 31 23:00:00 1979 GMT
Not After : Jan 19 03:14:07 2038 GMT

Subject: CN=ncalrpc:WIN2KTER, L=ncalrpc:WIN2KTERM
Subject Public Key Info:

Public Key Algorithm: md5WithRSAEncryption
Unable to load Public Key

X509v3 extensions:
1.3.6.1.4.1.311.18.4: critical

....
1.3.6.1.4.1.311.18.2: critical

M.i.c.r.o.s.o.f.t. .C.o.r.p.o.r.a.t.i.o.n...
1.3.6.1.4.1.311.18.5: critical

.0................J.f.J.....3.d.2.6.7.9.5.4.-.
e.e.b.7.-.1.1.d.1.-.b.9.4.e.-.0.0.c.0.4.f.a.3.
0.8.0.d...3.d.2.6.7.9.5.4.-.e.e.b.7.-.1.1.d.1.
-.b.9.4.e.-.0.0.c.0.4.f.a.3.0.8.0.d...............

1.3.6.1.4.1.311.18.6: critical
.0......D.W.I.N.2.K.T.E.R.M...5.1.8.7.9.-.2.7
.0.-.2.1.7.9.3.3.3.-.7.6.6.9.9...T.C.D.E.M.O.....

X509v3 Authority Key Identifier: critical
0.....W.I.N.2.K.T.E.R.M..........

Signature Algorithm: sha1WithRSA
09:c4:77:a8:84:09:4d:ff:ba:a1:1f:7b:3a:64:22:27:e4:1d:
96:2f:1c:2c:28:ef:ce:ca:5e:ac:62:b6:81:98:37:21:53:2a:
87:94:18:70:c5:9e:29:f5:d7:be:32:0d:54:11:dd:cc:38:e5:
b4:8e:87:a5:17:c7:db:64:b5:c4

Table A.25: X.509 certificate (server)
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The server certificate is used in setting up the encryption (see section
3.3). Note that the public key algorithm is set to md5withRSAEncryption
in this example packet. That is incorrect because the value of the public
key is really RSAEncryption. This is the reason we get an error, “Unable to
load Public key”. In the rdesktop code, we set the type to RSAEncryption
and then load the key using OpenSSL [tea03] routines. The error does not
seem to exist with all versions of Windows, though.

S2-0-0-0-1-1-2-0-4 [unknown type] Remaining info
Offset Datatype Description Exp. val. Value
0 RAW 00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
................

Table A.26: MCS Connect Response, User data, unknown (padding?)
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A.2.4 Multipoint Communication Service Protocol Setup,
Erect Domain

C3 TPKT from Client
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPKT ver-

sion
3 0x03 (3)

1 Int8 (be) TPKT
reserved

0 0x00 (0)

2 Int16 (be) TPKT
length

0x000c (12)

4 TPDU See C3-0
C3-0 TPDU
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPDU hdr

length
0x02 (2)

1 Int8 (be) TPDU
packet type

0xf0 (240)
Data

2 Int8 (be) TPDU eot 128 0x80 (128)
3 MCS packet See C3-0-0
C3-0-0 MCS packet
Offset Datatype Description Exp. val. Value
0 Int8 (be) MCS type 0x01 (1)

EDRQ
1 EDRQ data See C3-0-0-

0

C3-0-0-0 EDRQ data
Offset Datatype Description Exp. val. Value
0 Int16 (le) SubHeight 0x0001 (1)
2 Int16 (le) SubInterval 0x0001 (1)

Table A.27: MCS Erect domain
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After the MCS Setup, the MCS Erect Domain request (EDrq) packet is
transferred from the client to the server. The EDrq is defined in section
10.6 of [T.193b]. Its use in RDP is questionable–RDP does not use any of
the domain management in T.125 so there is basically no need for telling
the server what the height of the domain is since it is always going to be
one. The EDrq packet is visualized in table A.27.
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A.2.5 Multipoint Communication Service Protocol Setup,
Attach User and MCS AUcf

C4 TPKT from Client
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPKT ver-

sion
3 0x03 (3)

1 Int8 (be) TPKT
reserved

0 0x00 (0)

2 Int16 (be) TPKT
length

0x0008 (8)

4 TPDU See C4-0
C4-0 TPDU
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPDU hdr

length
0x02 (2)

1 Int8 (be) TPDU
packet type

0xf0 (240)
Data

2 Int8 (be) TPDU eot 128 0x80 (128)
3 MCS packet See C4-0-0
C4-0-0 MCS packet
Offset Datatype Description Exp. val. Value
0 Int8 (be) MCS type 0x0a (10)

AURQ
1 [unknown

type]
See C4-0-0-
0

C4-0-0-0 [unknown type]
Offset Datatype Description Exp. val. Value

Table A.28: MCS Attach User



A complete RDP session, packet by packet 85

S3 TPKT from Server
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPKT ver-

sion
3 0x03 (3)

1 Int8 (be) TPKT
reserved

0 0x00 (0)

2 Int16 (be) TPKT
length

0x000b (11)

4 TPDU See S3-0
S3-0 TPDU
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPDU hdr

length
0x02 (2)

1 Int8 (be) TPDU
packet type

0xf0 (240)
Data

2 Int8 (be) TPDU eot 128 0x80 (128)
3 MCS packet See S3-0-0
S3-0-0 MCS packet
Offset Datatype Description Exp. val. Value
0 Int8 (be) MCS type 0x0b (11)

AUCF
1 AUCF data See S3-0-0-

0

S3-0-0-0 AUCF data
Offset Datatype Description Exp. val. Value
0 RT-

SUCCESSFUL
See S3-0-0-
0-0

19 Int16 (be) User id 0x0006 (6)

S3-0-0-0-0 RT-SUCCESSFUL
Offset Datatype Description Exp. val. Value
off RT-

SUCCESSFUL
0

Table A.29: MCS Attach User Confirm
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The MCS Attach User request, visualized in table A.28 from the client
follows the EDrq and tells the server we want to add a user to the domain.
The answer from the server comes in form of the MCS AUcf (“cf” probably
as in “confirm”) packet, as visualized in table A.29. This packet contains
the user id used in a lot of other requests.

A.2.6 Multipoint Communication Service Protocol Setup,
Channel Configuration

Now follows one pair of CJRQ (Channel Join ReQuest) and CJCF (Channel
Join ConFirm) for each channel in the connection. There are at least two
channels–one user specific channel and one global graphics data channel.
Also, there is one channel for each virtual channel in RDP5 for applica-
tions such as sound transfer, clipboard transfer, serial port redirection, and
similar.

The CJRQ/CJCF pairs conclude the setup phase of the RDP.
An example CJRQ is in table A.30 and a CJCF is in table A.31.

A.3 The Session Phase

The session phase consists of two types of packets–either TPKT with MCS
SDRQ or SDIN packets inside, or RDP5 “fastpath” data where the TPKT,
ISO and MCS structures are stripped away in favor of a very simple header.
The latter is a protocol defined by Microsoft. Documentation is not avail-
able to the public.

The contents of the packets from the server are mostly so called orders.
Orders are instructions from the server to the client to draw some kind of
graphics. The orders are defined in [MPP97]. We will not cover them here
since they are out of the scope of this report. The orders are processed in
orders.c in rdesktop.

The contents of the packets from the client are mostly keyboard and
mouse events.

It is interesting to note that the native client sends TPKT packets only;
no RDP5 packets are sent. The server however sends a large amount of
RDP5 packets. We suspect that this has to do with a security problem in
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C5 TPKT from Client
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPKT ver-

sion
3 0x03 (3)

1 Int8 (be) TPKT
reserved

0 0x00 (0)

2 Int16 (be) TPKT
length

0x000c (12)

4 TPDU See C5-0
C5-0 TPDU
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPDU hdr

length
0x02 (2)

1 Int8 (be) TPDU
packet type

0xf0 (240)
Data

2 Int8 (be) TPDU eot 128 0x80 (128)
3 MCS packet See C5-0-0
C5-0-0 MCS packet
Offset Datatype Description Exp. val. Value
0 Int8 (be) MCS type 0x0e (14)

CJRQ
1 CJRQ data See C5-0-0-

0

C5-0-0-0 CJRQ data
Offset Datatype Description Exp. val. Value
0 Int16 (be) User id 0x0006 (6)
2 Int16 (be) Channel id 0x03ef

(1007)

Table A.30: MCS Channel Join Request
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S4 TPKT from Server
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPKT ver-

sion
3 0x03 (3)

1 Int8 (be) TPKT
reserved

0 0x00 (0)

2 Int16 (be) TPKT
length

0x000f (15)

4 TPDU See S4-0
S4-0 TPDU
Offset Datatype Description Exp. val. Value
0 Int8 (be) TPDU hdr

length
0x02 (2)

1 Int8 (be) TPDU
packet type

0xf0 (240)
Data

2 Int8 (be) TPDU eot 128 0x80 (128)
3 MCS packet See S4-0-0
S4-0-0 MCS packet
Offset Datatype Description Exp. val. Value
0 Int8 (be) MCS type 0x0f (15)

CJCF
1 CJCF data See S4-0-0-

0

S4-0-0-0 CJCF data
Offset Datatype Description Exp. val. Value
0 RT-

SUCCESSFUL
See S4-0-0-
0-0

19 Int16 (be) Initiator
(user id)

0x0006 (6)

21 Int16 (be) Requested 0x03ef
(1007)

23 Int16 (be) Channel id 0x03ef
(1007)

S4-0-0-0-0 RT-SUCCESSFUL
Offset Datatype Description Exp. val. Value
off RT-

SUCCESSFUL
0

Table A.31: MCS Channel Join Confirm
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the protocol where the checksum on the RDP5 packets became the same if
the contents were the same (i.e., if you pressed the character ’f’ twice, the
packet would look exactly the same up to a certain point, rendering the
encryption useless). The fix might have been to send TPKTs instead.

Data transferred using TPKTs have a channel defined that gives the
destination on the receiver. This is used to differentiate for example graph-
ics data and clipboard data–they use different channels.

A.3.1 RDP5 packets

When transferring graphics data in RDP5 mode, the server uses the RDP5
packet format that is different from the TPKT-TPDU-MCS structure. The
new format has less overhead.

Basically, the new packet format begins with an 8 bit integer that has
the value 0x80 (for an encrypted packet) or 0x00 (for an unencrypted
packet) instead of the 0x03 used in TPKTs. This can be used to dif-
ferentiate the two formats when processing them. After this header byte
there is a length field of variable length, the crypto signature (if it is an
encrypted packet) and then the encrypted data.

The encrypted data consists of subpackets where each subpacket has an
8 bit integer telling what type of subpacket it is, a 16 bit integer telling the
length of the subpacket and then the data itself. The types of subpackets
we know of are listed in table A.32.

A randomly chosen RDP5 packet can be seen in table A.33.

A.3.2 Clipboard packets

The clipboard transfer is done using a series of packets transferred on its
own channel. The channel is allocated by the client both in the MCS
Connect Initial packet (see table A.14) and using CJRQ/CJCF pairs in the
channel setup (tables A.30 and A.31). In our case, the clipboard channel
is channel number 1005.

The flags value in the clipboard packets are documented in [Cor03].
Basically, the least significant byte is 3 for a standalone operation, 1 for
the first of several packets, 0 for a packet in the middle of several packets
and 2 for the last packet of several. The next byte is set to 1 if the packet
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Tag Type Comment
0x00 Orders
0x01 Bitmap
0x02 Palette
0x05 NullSystemPointer
0x06 DefaultSystemPointer
0x07 MonoPointer
0x08 Mouse Position
0x09 ColorPointer
0x0a CachedPointer
0x0b Pointer

Table A.32: RDP5 subpacket types

originates from the client, and to 0 if it originates from the server. The
rest of the 32 bit integer is set to 0.

The Ptype0 and Ptype1 flags exist only in standalone packets or in the
first of several packets. In table A.34 we have listed some possible values.

Clipboard Setup and Format Announce

In the beginning of the session, the server and client execute a clipboard
handshake. This is a three step process, where the server first tells the
client it wants to handshake (table A.35). The client responds with a
list of formats available on the client side (if any) (table A.36 and A.37),
and the server confirms this list with the packet in table A.38. The two
last packets are also transferred each time either the server or the client
have new clipboard data available. The part having new data sends the
announce packet, and the other part sends an acknowledge packet.

For space-saving and clarity reasons, We have removed the TPKT,
TPDU and MCS headers in the following packets.

The number of the format descriptions following the Remaining Length
field is calculated by dividing the value of Remaining Length with 36, the
size of a format description.
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S20 RDP5 packet from Server
Offset Datatype Description Exp. val. Value
0 Int8 (be) RDP5 start

byte
0x80 (128),
encrypted, 0
inputs

1 MSVariable-
Int(2)

Packet
length

1109 0x0455
(1109)

4 [unknown
type]

Cryptsig See S20-0

18 Palette See S20-1
32 Int16 (le) Partlen(?) 0x0308

(776)
34 [unknown

type]
Part data See S20-2

48 Orders See S20-3
62 Int16 (le) Partlen(?) 0x000c (12)
64 Orders Part data See S20-4
78 Bitmap up-

date
See S20-5

92 Int16 (le) Partlen(?) 0x0019 (25)
94 Bitmap up-

date
Part data See S20-6

108 Mouse
pointer
(b/w)

See S20-7

122 Int16 (le) Partlen(?) 0x0111
(273)

124 [unknown
type]

Part data See S20-8

138 [unknown
type]

Remaining
data

See S20-9

Table A.33: A RDP5 packet
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Ptype0 Ptype1 Comment
1 0 First handshake from server.
3 1 Acknowledge on our format announce.

3 2 Failed format announce. We resend the
format announce here a few times.

2 0 Format announce from server.
5 1 Clipboard data.
4 1 Server request for our clipboard data

Table A.34: Possible values for Ptype0 and Ptype1

Data Transfer

For small clipboard data transfers, everything is transferred in one packet
with the least significant byte in the flag set to 3. For larger transfers, the
data is split into packets of at most 1600 bytes in size where the first packet
has the flag byte set to 1, the middle packet has the flag bytes set to 0 and
the last packet has the flag byte set to 2. The Remaining length field is set
to the total length of the packets in all packets. The choice of 1600 bytes
size for the packets is a bit odd given the fact that the Maximum Transfer
Unit (MTU) of the most common network type (Ethernet) is 1500 bytes.
Fragmentation will occur.

The data transfer begins with a request packet from the part that wants
the data. Table A.39 lists such a packet, originating from the client.

The server responds with the clipboard data. Table A.40 lists such a
packet.
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S76-0-0-0 SDIN data
Offset Datatype Description Exp. val. Value
0 Int16 (be) Initiator

(user id)
0x0001 (1)

2 Int16 (be) Channel id 0x03ed
(1005)

4 Int8 (be) Flags 0xf0 (240)
5 MSVariable-

Int(1)
Data length 0x0020 (32)

7 Int32 (le) Flags(?) 0x00260008
(2490376)

11 RAW Crypto sig-
nature

8 bytes of
data

19 Clipboard
data

See S76-0-
0-0-0

S76-0-0-0-0 Clipboard data
Offset Datatype Description Exp. val. Value
0 Int32 (le) Clpbrd data

length
0x0000000c
(12)

4 Channel
data flags

Flags 0x00000003
(3) FLAG-
FIRST,

FLAG-
LAST,

8 Int16 (le) Ptype0 0x0001 (1)
10 Int16 (le) Ptype1 0x0000 (0)
12 Int32 (le) Remaining

length
0x00000000
(0)

16 Int32 (le) Unknown
(Pad?)

0x0006ff24
(458532)

Table A.35: Clipboard data, Handshake, packet 1/3
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C23-0-0-0 SDRQ data
Offset Datatype Description Exp. val. Value
0 Int16 (be) Initiator

(user id)
0x0006 (6)

2 Int16 (be) Channel id 0x03ed
(1005)

4 Int8 (be) Flags 0x70 (112)
5 MSVariable-

Int(2)
Data length 0x00b0

(176)
8 Int32 (le) Flags(?) 0x773f0008

(2000617480)
12 RAW Crypto sig-

nature
8 bytes of
data

20 Clipboard
data

See C23-0-
0-0-0

C23-0-0-0-0 Clipboard data
Offset Datatype Description Exp. val. Value
0 Int32 (le) Clpbrd data

length
0x0000009c
(156)

4 Channel
data flags

Flags 0x00000013
(19)
FLAG FIRST,
FLAG LAST,

8 Int16 (le) Ptype0 0x0002 (2)
10 Int16 (le) Ptype1 0x0000 (0)
12 Int32 (le) Remaining

length
0x00000090
(144)

16 Clipboard
format
description

#0 See C23-0-
0-0-0-0

38 Clipboard
format
description

#1 See C23-0-
0-0-0-1

60 Clipboard
format
description

#2 See C23-0-
0-0-0-2

82 Clipboard
format
description

#3 See C23-0-
0-0-0-3

104 Int32 (le) Unknown
(Pad?)

0x00000000
(0)

Table A.36: Clipboard data, Handshake, packet 2/3
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C23-0-0-0-0-0 Clipboard format description #0
Offset Datatype Description Exp. val. Value
0 Int32 (le) Numeric

code
0x0000000d
(13)

4 Unicode
string(16)

Text repre-
sentation

................

C23-0-0-0-0-1 Clipboard format description #1
Offset Datatype Description Exp. val. Value
0 Int32 (le) Numeric

code
0x00000010
(16)

4 Unicode
string(16)

Text repre-
sentation

................

C23-0-0-0-0-2 Clipboard format description #2
Offset Datatype Description Exp. val. Value
0 Int32 (le) Numeric

code
0x00000001
(1)

4 Unicode
string(16)

Text repre-
sentation

................

C23-0-0-0-0-3 Clipboard format description #3
Offset Datatype Description Exp. val. Value
0 Int32 (le) Numeric

code
0x00000007
(7)

4 Unicode
string(16)

Text repre-
sentation

................

Table A.37: Clipboard data, Handshake, packet 2/3
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S77-0-0-0 SDIN data
Offset Datatype Description Exp. val. Value
0 Int16 (be) Initiator

(user id)
0x0001 (1)

2 Int16 (be) Channel id 0x03ed
(1005)

4 Int8 (be) Flags 0xf0 (240)
5 MSVariable-

Int(1)
Data length 0x0020 (32)

7 Int32 (le) Flags(?) 0x00260008
(2490376)

11 RAW Crypto sig-
nature

8 bytes of
data

19 Clipboard
data

See S77-0-
0-0-0

S77-0-0-0-0 Clipboard data
Offset Datatype Description Exp. val. Value
0 Int32 (le) Clpbrd data

length
0x0000000c
(12)

4 Channel
data flags

Flags 0x00000003
(3) FLAG-
FIRST,

FLAG-
LAST,

8 Int16 (le) Ptype0 0x0003 (3)
10 Int16 (le) Ptype1 0x0001 (1)
12 Int32 (le) Remaining

length
0x00000000
(0)

16 Int32 (le) Unknown
(Pad?)

0x00010001
(65537)

Table A.38: Clipboard data, Handshake, packet 3/3
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C107-0-0-0 SDRQ data
Offset Datatype Description Exp. val. Value
0 Int16 (be) Initiator

(user id)
0x0006 (6)

2 Int16 (be) Channel id 0x03ed
(1005)

4 Int8 (be) Flags 0x70 (112)
5 MSVariable-

Int(1)
Data length 0x0024 (36)

7 Int32 (le) Flags(?) 0x3a700008
(980418568)

11 RAW Crypto sig-
nature

8 bytes of
data

19 Clipboard
data

See C107-
0-0-0-0

C107-0-0-0-0 Clipboard data
Offset Datatype Description Exp. val. Value
0 Int32 (le) Clpbrd data

length
0x00000010
(16)

4 Channel
data flags

Flags 0x00000013
(19) FLAG-
FIRST,

FLAG-
LAST,

8 Int16 (le) Ptype0 0x0004 (4)
10 Int16 (le) Ptype1 0x0000 (0)
12 Int32 (le) Remaining

length
0x00000004
(4)

16 Int32 (le) Requested
format code

0x0000000d
(13)

20 Int32 (le) Unknown
(Pad?)

0x00000000
(0)

Table A.39: Clipboard data request
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S182-0-0-0 SDIN data
Offset Datatype Description Exp. val. Value
0 Int16 (be) Initiator

(user id)
0x0001 (1)

2 Int16 (be) Channel id 0x03ed
(1005)

4 Int8 (be) Flags 0xf0 (240)
5 MSVariable-

Int(1)
Data length 0x002e (46)

7 Int32 (le) Flags(?) 0x00260008
(2490376)

11 RAW Crypto sig-
nature

8 bytes of
data

19 Clipboard
data

See S182-0-
0-0-0

S182-0-0-0-0 Clipboard data
Offset Datatype Description Exp. val. Value
0 Int32 (le) Clpbrd data

length
0x0000001a
(26)

4 Channel
data flags

Flags 0x00000003
(3) FLAG-
FIRST,

FLAG-
LAST,

8 Int16 (le) Ptype0 0x0005 (5)
10 Int16 (le) Ptype1 0x0001 (1)
12 Int32 (le) Remaining

length
0x0000000e
(14)

16 [unknown
type]

Clipboard
data

See S182-0-
0-0-0-0

39 Int32 (le) Unknown
(Pad?)

0x00000100
(256)

S182-0-0-0-0-0 [unknown type] Clipboard data
Offset Datatype Description Exp. val. Value
0 RAW 66 00 6f 00

6f 00 62 00
61 00 72
00 00 00
f.o.o.b.a.r...

Table A.40: Clipboard data sent from server
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Appendix B

Security Problems With
Microsoft’s RDP Client
Implementations

During our investigations of RDP we found that none of the available RDP
clients from Microsoft verified the public key of the server. This is a rather
serious security flaw as it opens up for Man In The Middle (MITM) attacks
such as the one we used to find information about the protocol sent over
the network.

It is worth to note that even if Microsoft would rewrite their client
and verify host keys, reverse-engineering would still be possible using other
techniques such as disassemblers and debuggers. Depending on the imple-
mentation of host key verification, MITM attacks might still be possible as
well.

This appendix will discuss the security problems in Microsoft’s RDP
implementation, found during the thesis work. We will also briefly mention
the licensing modes available in RDP, since the licensing mode in use has
implications for the encryption model used.
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B.1 The Problem

While setting up the session key as described in section 3.3.2 it is crucial
that we use the correct public key. If we use the wrong key, the server
cannot decrypt what we encrypted. However, if there is a party in the
middle doing a MITM attack as described in 2.3.1 that wants to decrypt
our conversation, it can replace the server’s public key with its own, sending
the new key down the line to the client. The client will then encrypt its
session key with this key, and send it to the MITM host which decrypts it
and then sends it further to the server, using the correct key of the server.

The only way you can know you are talking to the real server and not
to a malicious third party in the middle is by verifying that the server’s
public key is the correct one, belonging to the server. There are several
different methods for doing so.

B.1.1 Verifying the Host key - At the First Connection

One way of adding security in this context is to store the server’s public
key (the so-called host key) the first time a connection is made. This way,
subsequent connections will be protected from MITM attacks. By ensuring
that the first connection is made on a secure network (if they exist, see
section 3.4.4), a full protection from MITM attacks can be ensured.

The clients from Microsoft do not use this technique.

B.1.2 Verifying the Host Key - Manually

Another way of adding security is to verify the host key by creating a digital
fingerprint. This is an algorithm that creates a short binary number that
can be compared on the server and client side using some other secure
communcations channel.

This method is often used in combination with storage of the host key
after the first connect. That is, at the first connection you are given the
opportunity to verify the host key. At subsequent connects, the host key
is already verified and stored client-side.

The clients from Microsoft do not provide any way to find out what
fingerprint the server you are connecting to has. There is also no convenient
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nor documented way to find out what fingerprint a server has from the
server’s side.

B.1.3 Verifying the Host Key - Using a CA

Another way of adding security is to have a chain of certificates. This way
you can verify one key from a so called Certificate Authority and then
trust all keys that are signed with this key. A Certificate Authority (CA)
is a party that the client trusts that issues certificates for servers. This is
the technique used for many Internet sites using the Secure Sockets Layer
(SSL), commonly known as HTTPS. Another name for this concept is PKI
for “Public Key Infrastructure” [Tan02].

The X.509-based structure sent from the server in RDP5 has two keys,
where one (the actual server key) is signed by the other (the CA key).
However, there is no way to verify the CA key.

To summarize, none of the Microsoft clients we tried verified the host
key of the server, allowing for undetected MITM attacks at any time.

B.2 Reporting a Security Flaw In a Respon-
sible Way

Since we believe it is good Internet manners to report security problems in
order to make the Internet a safer place, we decided to report this problem.
There are different ways of reporting vulnerabilities of this type.

One way is to notify only the vendor and trust that they fix the problem
and notify their customers in a fast way. On the other end of the scale is
full disclosure with publication of tools that make it easy to exploit the
vulnerability.

We chose a middle way where we notified Microsoft of the problem and
then gave them some time to react. Since they did not react in a satisfying
way (actually, they did not seem to understand the problem at all) we went
public with the information by announcing the problem on BUGTRAQ
[Sec03a], a well known mailing list for this type of information. We did
not provide the tools we had (rdpproxy and pparser.py) since we did not
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want less serious individuals on the Internet to get their hands on the tools
needed too easily.

For a list of frequently asked questions about vulnerability reports, see
[Sec03b].

B.3 Licensing Modes

Since the licensing mode of the server affects the encryption setup, we
briefly discuss it here.

A Terminal Server can be in one of two different modes. Either it is in
Application Server Mode, which requires licensing per connecting machine
or per user (the latter only in Windows 2003), or in Remote Administration
Mode, a feature that allows remote administration of Windows servers
available in some Windows versions. The Remote Administration mode
has a limit of two concurrent connections per machine.

We discovered that the encryption setup is different in the two. In the
former, a X.509-based public key structure is used, in the latter a raw RSA
structure.

B.4 License Negotiation

During RDP setup, license negotiation takes place. This directly affected
our work with implementing RDP5 support for rdesktop.

The license negotiation used in RDP is quite complex. Basically, each
device that connects to a Terminal Server is granted a license. That is,
the licenses are granted per machine connected, not per user. Note that
in Windows 2003 Server, a “per user” licensing mode has appeared, but we
have not been able to investigate this.

Now, in earlier versions of Terminal Services, the license was granted
before the user logged in. This caused problems since you could easily run
out of licenses. In later versions, temporary licenses are granted at first
connect. If a valid user logs in, a permanent license is granted the next
time a connection is made.
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Regardless of this, the license negotiation at the protocol level is also
very complex. To start with, there is extra encryption added to the license
tokens. In RDP4, this meant the license tokens where encrypted once,
but in later versions they are encrypted with the transport encryption as
well, meaning two different encryptions on top of each other. This was
a problem when listening to the traffic between client and server using
rdpproxy, since the RC4 state got invalid when trying to decrypt and then
encrypt the license data. Therefore, we had to keep track of the RC4 state
to be able to correctly pass through the license negotiation between the
client and the server.
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