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PrefaceThese notes treat the problem of counting the number of rational points on a curve de�nedover a �nite �eld. The notes are an extended version of an earlier set of notes AritmetiskAlgebraisk Geometri { Kurver by Johan P. Hansen [Han] on the same subject.In Chapter 1 we summarize the basic notions of algebraic geometry, especially rationalpoints and the Riemann-Roch theorem. For the convenience of the unexperienced algebraicgeometer, the chapter uses the language of classical algebraic geometry as e.g. in [Ful69]. InAppendix A the readers familiar with [Har77] may �nd a scheme/sheaf-theoretic formulationof Chapter 1. Moreover Appendix A contains proofs of many of the results stated in Chapter1 without proof.In Chapter 2 we introduce the Zeta function associated to a curve de�ned over Fq { afunction containing information on the number of rational points on the curve over all �nite�eld extensions of Fq . We prove that the Zeta function is a rational function obeying a certainfunctional equation. Furthermore we see how the Riemann hypothesis implies the Weil bound(Corollary 2.6) on the number of rational points on the curve.When �rst familiar with the notions of rational functions and the Riemann-Roch theo-rem, Chapter 2 is rather straightforward. In contrast to this, Chapter 3 is more technical andassumes knowledge of �eld theory, Galois theory and the intimate relation between a smoothprojective curve and its function �eld. Via this connection to �eld theory the Zeta functionas de�ned in Chapter 2, is in the beginning of Chapter 3 put into a wider context. Afterwardswe show the Riemann hypothesis for curves.In Appendix B the Weil bound (Corollary 2.6) is improved considerably. In Appendix Cwe give Weil's original proof of the Weil bound.S�ren Have HansenDepartment of Mathematics, University of Aarhus8000 Aarhus C, Denmarkemail: shave@mi.aau.dk
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Chapter 1Recollections from AlgebraicGeometryLet k = Fq be the �eld with q = pn elements, where n � 1 is arbitrary. For any m � 1 wehave the Frobenius automorphism F : Fq ! Fq raising to pth powers and F is a generator ofthe Galois group G = Gal(Fq=Fp).1.1 A�ne VarietiesDe�nition 1.1. A�ne n-space (over k) is the set of n-tuplesA n = A n(�k) = fP = (x1; : : : ; xn) j xi 2 �kg:The set of k-rational points in A n isA n(k) = fP = (x1; : : : ; xn) j xi 2 kg:Remark 1.2. G = Gal(�k=k) acts on A n by�:P = (�(x1); : : : ; �(xn))and A n(k) = fP 2 A n j �:P = P for all � 2 Gg:We see that the number of Fq -rational points on A n is qn.De�nition 1.3. An a�ne algebraic set in A n is a setVI = fP 2 A n j f(P ) = 0 for all f 2 Igwhere I � �k[X1; : : : ; Xn] is an ideal. The ideal associated to an a�ne algebraic set V is theideal I(V ) = ff 2 �k[X1; : : : ; Xn] j f(P ) = 0 for all P 2 V g:7



8 CHAPTER 1. RECOLLECTIONS FROM ALGEBRAIC GEOMETRYAn an a�ne algebraic set is de�ned over k, if its de�ning ideal is generated by elements ink[X1; : : : ; Xn]. If V is de�ned over k, the k-rational points on V consists ofV (k) = V \ A n(k):We may put a topology on A n by taking the VI to be the closed sets of the topology.Remark 1.4. Let f(X) 2 k[X1; : : : ; Xn] og P 2 A n . Thenf(�:P ) = �:(f(P ))for all � 2 G = Gal(�k=k) as � acts trivially on f 's coe�cients. So if V is de�ned over k, theaction of G on A n induces an action of G on V andV (k) = fP 2 V j �:P = P for all � 2 Gg:De�nition 1.5. An a�ne algebraic set V is called a variety, if I(V ) is a prime ideal in�k[X1; : : : ; Xn]. V is said to be de�ned over k if the underlying algebraic set is. If V is de�nedover k we call k[V ] = k[X1; : : : ; Xn]=I(V=k)(I(V=k) = I(V ) \ k[X1; : : : ; Xn]) the a�ne coordinate ring of V . Notice that k[V ] is adomain so we may think of k[V ] as polynomial functions on V . The quotient �eld k(V ) ofk[V ] is called the function �eld of V over k. In a similar manner one de�nes �k[V ] and �k(V ).Remark 1.6. If V is de�ned over k, G = Gal(�k=k) induces an action on �k[V ] og �k(V ) byacting on the coe�cients. We may then identify k[V ] (resp. k(V )) as the sub-rings of �k[V ](resp. �k(V )) invariant under this action.1.2 Projective VarietiesDe�nition 1.7. Projective n-space Pn (over k) is by de�nition the set of all (n+ 1)-tuples(x0; : : : ; xn) 2 A n+1 n f0gmodulo the equivalence relation �(x0; : : : ; xn) � (y0; : : : ; yn) , 9� 2 �k� : xi = �yi for all i.We write an element in Pn in homogeneous coordinates as (x0 : : : : : xn). We also de�ne thek-rational points in Pn Pn(k) = f(x0 : : : : : xn) 2 Pn j xi 2 k for all ig:We see that, as A n bijects with the set f(x0; : : : ; xn) 2 A n+1 : xi 6= 0g, Pn may in a naturalway be identi�ed with n + 1 copies of A n . With a suitable topology (de�ned below) on Pnthese sets becomes open in Pn, hence we have a covering of Pn with n+1 open a�ne varieties.



1.2. PROJECTIVE VARIETIES 9Remark 1.8. G = Gal(�k=k) acts on Pn by acting on the the homogeneous coordinates�:(x0 : : : : : xn) = (�(x0) : : : : : �(xn)) � 2 G.Hence Pn(k) = fP 2 Pn j �:P = P for all � 2 Ggand the number of k-rational points in Pn is qn�1q�1 :De�nition 1.9. A projective algebraic set is a setVI = fP 2 Pn j f(P ) = 0 for all homogenous f 2 Igwhere I � �k[X0; : : : ; Xn] is a homogeneous ideal. The ideal associated to a projective algebraicset V is the ideal I(V ) = ff 2 �k[X0; : : : ; Xn] j f(P ) = 0 for all P 2 V g:A projective algebraic set V is de�ned over k if its de�ning ideal I is generated by polynomialsin k[X0; : : : ; Xn]. If V is de�ned over k, the k-rational points on V consists ofV (k) = V \ Pn(k) = fP 2 V j �:P = P for all � 2 Gg:As in the a�ne case, the VI de�ne a topology of closed sets on Pn.De�nition 1.10. A projective variety is a projective algebraic set V whose de�ning ideal isa homogeneous prime ideal. Like in the a�ne case, V is de�ned over k as a projective varietyif this is the case for V seen as an algebraic set.De�nition 1.11. Let V be a projective variety de�ned over k. Choose an open a�ne subsetU � Pn such that V \U 6= ;. Then by de�nition the function �eld k(V ) of V equals k(V \U):Similarly with �k(V ).De�nition 1.12. Let V1 og V2 be projective varieties. A rational map from V1 � Pm toV2 � Pn is a map given by rational functions	 : V1 �! V2P = (x0 : : : : : xm) 7! (f0(P ) : : : : : fn(P ))where fi 2 �k(V1) are such that whenever they are all de�ned, the image (f0(P ) : : : : : fn(P ))de�nes a point in V2. If there exists a rational map � : V2 ! V1 such that ��	 = id (whenever	 is de�ned) and 	 �� = id (whenever � is de�ned), 	 (and �) are birational maps and wesay that V1 and V2 are birational. In case the compositions are de�ned everywhere, 	 (and�) are isomorphisms and we say that V1 and V2 are isomorphic. If there exists a � 2 �k� suchthat �f0; : : : ; �fn 2 k(V1) we say that 	 is de�ned over k.Remark 1.13. If 	 : V1 �! V2 is as above, G = Gal(�k=k) induces an action on 	(�:	)(P ) = ((�:f0)(P ) : : : : : (�:fn)(P )): � 2 GWith this notation 	 is de�ned over k if and only if �:	 = 	 for all � 2 G:



10 CHAPTER 1. RECOLLECTIONS FROM ALGEBRAIC GEOMETRY1.3 CurvesDe�nition 1.14. A curve V is a variety of dimension one, that isdim(V ) := dim �k[V ]mP = 1for all P 2 V , (mP � �k[V ] is the maximal ideal of all functions vanishing in P ). Although itmay not be obvious at �rst, this de�nition is coherent with ones geometric intuition.Example 1.15 (Hermitian Curve). Let q = r2 and consider the curve in P2 (over k) givenby the equation C1 : Xr+10 +Xr+11 +Xr+12 = 0: (1.1)Assume char(k) = 2. Let us determine the number of k-rational points on C1.In the casewhere x2 = 0 we may assume that x1 = 1 and we must then solve the equation xr+10 + 1 = 0:This equation has r+ 1 solutions in k hence we have 3(r+1) k-rational points on C1 with atleast one homogeneous coordinate equal to zero.Now, if all xi 6= 0 we may assume x2 = 1 and we must then solve the equation xr+10 +xr+11 + 1 = 0. For any � 2 k n f0; 1g the equation xr+11 = � has r+ 1 solutions for x1 and theequation xr+10 + � + 1 = 0 has r + 1 solutions for x0: So there are (r � 2)(r � 1)2 k-rationalpoints on C1 with all coordinates di�erent from zero. Summing up, we have the total numberof k-rational points on C1 jC1(k)j = (r � 2)(r � 1)2 = qpq + 1:Example 1.16 (Klein Quartic). Consider the curve in P2 (over k) de�ned by the equationC2 : X30X1 +X31X2 +X32X0 = 0: (1.2)The number of k-rational points on C2 equals q + 1 for q = 2; 4; 16; 32: For q = 8 the numberis 24.Example 1.17. In P2 (over Fq2 ) we have the curveC3 : Xq1X2 +X1Xq2 = Xq+10 : (1.3)Now, for any x0 2 Fq2 the equation xq1 + x1 = xq+10 has q solutions in �k. Let x1 be one ofthese. We would like to show that x1 2 Fq2 , so we calculatexq21 + xq1 = �xq1 + x1�q = �xq+10 �q = xq2�10 xq+10 = xq+10 = xq1 + x1to get xq21 = x1, hence x1 2 Fq2 . So the curve has exactly q � q2 = q3 Fq2 -rational points inthe a�ne part x2 = 1 of P2. Outside, i.e. for x2 = 0, there is a single point (0 : 1 : 0) on C3.Hence the total number of Fq2 -rational points on C3 is 1 + q3.



1.3. CURVES 11De�nition 1.18. A curve C is said to be smooth in P 2 C if the local ring �k[V ]mP is a discretevaluation ring. Then mP is a principal ideal and a generator of mP is called a uniformisingparameter. C is smooth if it is smooth in all P 2 C.From now on we assume all curves to be smooth and projective unless other-wise stated.Remark 1.19. Let f1; : : : ; fm 2 I be generators of the ideal de�ning the curve C � Pn. C issmooth in P 2 C if and only ifrank264 @f1@x0 : : : @f1@xn... . . . ...@fm@x0 : : : @fm@xn375 = n� 1:(See Remark A.9).The ideal of the tangent space to V in P = (a1 : : : : : an) is generated by� mXj=1 @fi@xj (P )(Xj � aj) j i = 1; : : : ; m�:Example 1.20. The curves in P2C1 : Xr+10 +Xr+11 + xr+12 = 0C2 : X30X1 +X31X2 +X32X0 = 0C3 : Xq1X2 +X1Xq2 = Xq+10are all smooth.Remark 1.21. Assume the curve C � Pn is smooth in P 2 C. Let H = V (h); h 2�k[X0; : : : ; Xn] be a hyperplane in Pn through P which does not contain the tangent to Vin P . Then h 2 mP � �k[V ]mP is a uniformising parameter in P as h 62 m2P .Remark 1.22. Let C � Pn be a curve over k de�ned by the ideal I � �k[X0; : : : ; Xn]. Forf 2 �k[X0; : : : ; Xn] let f (q) be the polynomial obtained by raising the coe�cients of f to qthpowers. Put I(q) = ideal generated by ff (q) : f 2 Igand let C(q) be the associated curve. There is natural morphism, the qth-power Frobeniusmorphism, given by � : C �! C(x0 : : : : : xn) 7�! (xq0 : : : : : xqn):



12 CHAPTER 1. RECOLLECTIONS FROM ALGEBRAIC GEOMETRYWe must verify that � actually maps C to C(q), so let P = (x0 : : : : : xn) 2 C, f (q) 2 I(q).Then f (q)(�((x0 : : : : : xn))) = f (q)((xq0 : : : : : xqn))= f((x0 : : : : : xn))q = 0as char(k) = p and P 2 C. As k is perfect C(q) ' C, so we see that the k-rational points onC are exactly the �xed points under �.1.4 Divisors and the Riemann-Roch theoremDe�nition 1.23. Let C be a curve de�ned over k. A divisor on C is a formal sumD = XP2X nP � P P 2 C; nP 2 Zwhere �nitely many nP are non-zero. The collection of P 's for which nP is non-zero is calledthe support of D. The degree of a divisor D is given bydeg(D) = XP2X nP deg(P )where deg(P ) = minfm j P 2 C(Fqm )g. Let Div(C) (resp. Div0(C)) be the divisors on C(resp. the divisors on C of degree zero). We have a partial ordering � on Div(C) de�ned byD � D0 , nP � n0P for all P 2 Cfor D0 =Pn0P � P:G = Gal(�k=k) acts on Div(C) and Div0(C) by�:D = XP2X nP � (�:P ): � 2 GA divisor D is de�ned over k, if �:D = D for all � 2 G: The group of divisors de�ned over kare denoted Divk(C) (resp. Div0k(C)).De�nition 1.24. Let C be a curve de�ned over k and let f 2 �k(V ) n f0g be a rationalfunction on C. Then the divisor of f is given bydiv(f) = XP2X �P (f) � Pwhere �P is the discrete valuation belonging to the discrete valuation ring �k[C]mP . Twodivisors D and D0 are linearly equivalent if the divisor D � D0 is a divisor of a rational



1.4. DIVISORS AND THE RIEMANN-ROCH THEOREM 13function. We usually write this as D � D0. If �P (f) = n > 0, f is said to have a zero in P oforder n and if �P (f) = m < 0, f is said to have a pole in P of order m.Let D 2 Div(C). Introduce the notationL(D) = ff 2 �k(V ) n f0g j div(f) +D � 0g [ f0gand `(D) = dim�k L(D):If D0 =Pi nPi �Pi � Pj mPj �Pj (nPi; mPj > 0) we may thus identify L(D0) with the vectorspace of rational functions on C with poles only in the points Pi and there of order no morethan nPi and with zeros in Pj with multiplicity at least mPj .Proposition 1.25. Let C be a curve de�ned over k and let D 2 Divk(C). The vector spaceL(D) has a �k-basis of functions in k(C).Proof. Let f 2 L(D) be arbitrary. It will su�ce to show that f is a �k-linear combinationof vectors in k(C). There exists a minimal n such that f 2 Fqn (C) \ L(D). Pick a basisf�1; : : : ; �ng for Fqn over k. Put wi = n�1Xk=0 �k(�i)�k(f) i = 1; : : : ; nwhere � is a generator of Gal(Fqn =Fq ). Then wi 2 k(C) for all i as �(wi) = wi (�n = id). Wehave the identity 264�1 : : : �n�1(�1)... . . . ...�n : : : �n�1(�n)375264 f...�n�1(f)375 = 264w1...wn375and as the matrix represents the automorphism � : Fqn ! Fqn in the base f�1; : : : ; �ng it isinvertible, hence f may be written uniquely as a linear combination of the wi's.Remark 1.26. By introducing the notationLk(D) = ff 2 k(V ) n f0g j div(f) +D � 0g [ f0gand `k(D) = dimk Lk(D);Proposition 1.25 gives us that`k(D) = dimk Lk(D) = dim�k L(D) = `(D):



14 CHAPTER 1. RECOLLECTIONS FROM ALGEBRAIC GEOMETRYTheorem 1.27 (Riemann-Roch). Let C be a curve de�ned over k. There exists a divisorK 2 Divk(C) and an integer g � 0 (the genus of C) such that`(D)� `(K �D) = deg(D) + 1� g (1.4)`k(D)� `k(K �D) = deg(D) + 1� g: (1.5)Proof. Combine Theorem A.17 with Remark 1.26.Corollary 1.28. With assumptions as above, we havea) `(K) = gb) deg(K) = 2g � 2.c) If deg(D) > 2g � 2, we have deg(K �D) < 0 and`(D) = deg(D) + 1� g:Proof. See Corollary A.18.Proposition 1.29. Let C � P2 be a (smooth) curve of degree d. Then the genus g of C isgiven by the formula g = 12(d� 1)(d� 2):Proof. See Proposition A.19.



Chapter 2The Zeta functionSo that no confusion arises, we repeat the assumption that all curves are smooth and projec-tive.2.1 IntroductionLet C � Pn be a curve de�ned over k(= Fq ) and let Nm denote the number of Fqm -rationalpoints on C. When we just consider the number of Fq -rational points, we usually write N .De�nition 2.1. The Zeta function of C over k is the formal power seriesZ(t; C=k) = exp� 1Xm=1Nm tmm �:We see that Z(t; C=k) stores information on the number of Fqm -rational points on C for allm � 1:Remark 2.2. As C � Pn, Nm is less than or equal to the number of Fqm -rational points Pn,that is Nm � qmn � 1qm � 1 < (n + 1)qmnby Remark 1.8. So for m � n + 1 we have Nmm < qmn and the series1Xm=1Nm tmmhas radius of convergence q�n which makes Z(t; C=k) an analytic function on the open discwith this radius. We also notice that the logarithmic derivative of Z(t; C=k) isddt�ln(Z(t; C=k))� = Z(t; C=k)0Z(t; C=k) = 1Xm=1Nmtm�1 (2.1)15



16 CHAPTER 2. THE ZETA FUNCTIONso we may recover the Nm asNm = 1(m� 1)!� dmdtm ln(Z(t; C=k))���t=0:Remark 2.3. The Zeta function may be de�ned for arbitrary smooth projective varieties, andwas originally de�ned so by Weil in [Wei49]. In this paper Weil conjectured some remarkablyproperties of the Zeta function, the Weil conjectures. Quickly after this, Weil himself settledthe matters in the case of curves (see Appendix C for his proof), but the general case wasunsolved until 1974, where Deligne in [Del74] by means of the 'new' Algebraic Geometry�nally resolved the question.Theorem 2.4 (Weil Conjectures for curves). Let C be a curve de�ned over k of genusg and let Z(t; C=k) be its associated Zeta function.Rationality: The Zeta function may be written asZ(t; C=k) = P (t)(1� t)(1� qt) (2.2)where P (t) 2 Z[t] is of degree 2g.Functional equation: The Zeta function satis�es the functional equationZ� 1qt ; C=k� = q1�gt2�2gZ(t; C=k): (2.3)The Riemann hypothesis: The polynomial P (t) may be factored asP (t) = 2gYi=1(1� �it) where j�ij2 = q for all i. (2.4)Before proving the theorem, we derive some corollaries.Corollary 2.5. With the notation above, we haveNm = 1 + qm � 2gXi=1 �mi : (2.5)Proof. By taking the logarithmic derivative ofZ(t; C=k) = Q2gi=1(1� �it)(1� t)(1� qt)



2.1. INTRODUCTION 17(2.1) gives us that1Xm=1Nmtm�1 = 11� t + q1� qt + 2gXi=1 ��i1� �it= 2gXi=1�� 1Xm=0�m+1i tm�+ 1Xm=0 qm+1tm + 1Xm=0 tm:Now compare coe�cients.Corollary 2.6 (Weil bound). Let C be a curve of genus g de�ned over k. Then the numberNm of Fqm -rational points on C is bounded byjNm � 1 + qmj � 2g qm2 : (2.6)Proof. From Corollary 2.5 we havejNm � 1 + qmj = �� 2gXn=1 �mi �� � 2gj�ijm = 2g qm2 ;the last equality coming from Theorem 2.4.Remark 2.7. This bound may in most situations be improved considerably. See Appendix Bfor an introduction to these techniques.Example 2.8. Consider the elliptic (genus g = 1) curve C in P2 de�ned over F2 by theequation X30 +X31 +X32 = 0:It is easily veri�ed that the curve has F2 -rational points f(0 : 1 : 1); (1 : 1 : 0); (1 : 0 : 1)g,that is N1 = 3 and granting the theorem, the Zeta function may then be written as3 = N1 = ddt ln(Z(t; C=F2))��t=0 = � a+4t1+at+2t2 + 11�t + 21�2t�t=0:Hence a = 0 and P (t) = 1 + 2t2 = (1� ip2t)(1 + ip2t):Now Corollary 2.5 implies Nm = 1 + 2m � (ip2)m � (�ip2)m and therebyNm = 8><>:1 + 2m m � 1 mod 21 + 2m + 2(p2)m m � 2 mod 41 + 2m � 2(p2)m m � 0 mod 4



18 CHAPTER 2. THE ZETA FUNCTIONExample 2.9. The curve from Example 1.17C : Xq1X2 +X1Xq2 = Xq+10de�ned over Fq2 has genus g = 12(q � 1)q by Proposition 1.29 and the number of Fq2 -rationalpoints was found to be at least 1 + q3 = 1 + q2 + 2g q;hence the maximal allowed by the Weil bound, so C has exactly 1 + q3 Fq2 -rational points.With the usual notation we then have N2 = 1+q2+2gq , which substituted into Corollary 2.5gives 2g q = � 2gXi=1 �2i :This forces �i = p�q, henceNm = 1 + qm � im(pq)m � (�i)m(pq)mand thereby Nm = 8><>:1 + qm m � 1 mod 21 + qm + 2g(pq)m m � 2 mod 41 + 2m � 2g(pq)m m � 0 mod 4In particular, C has the maximal number of Fqm -rational points allowed by the Weil boundwhenever m � 2 mod 4. The existence of a curve with this genus and number of Fq2 -rationalpoints was only recently shown in [Han92, Prop. 3.2] and shortly after the equation for itgiven above was found in [HP93].Example 2.10 (Elliptic curves over F2). An elliptic curve (genus g = 1) de�ned over F2has an equation on Weierstrass form [Har77, IV.4.6]X21X2 + a1X0X1X2 + a3X1X22 �X30 � a2X20X2 � a4X0X22 � a6X32 = 0where ai 2 F2 . Obviously there are 32 possible equations, but 16 of these are discarded for nowsince they give singular curves. The remaining 16 can by elementary changes of coordinatesbe reduced to the following typesType 1 : X2X21 +X22X1 = X30 +X20X2 +X32Type 2 : X21X2 +X0X1X2 = X30 +X20X2 +X0X22Type 3 : X21X2 +X1X22 = X30Type 4 : X21X2 +X0X1X2 = X30 +X0X22Type 5 : X21X2 +X1X22 = X30 +X20X2:



2.1. INTRODUCTION 19The number of F2 -rational points for type 1,2,3,4,5 are 1,2,3,4,5 respectively. As in Exam-ple 2.9 we determine the associated Zeta functionsType 1 : X2X21 +X22X1 = X30X20X2 +X32 1� 2t+ 2t2(1� t)(1� 2t)Type 2 : X21X2 +X0X1X2 = X30 +X20X2 +X0X22 1 + 2t2(1� t)(1� 2t)Type 3 : X2! X2 +X1X22 = X30 1 + t+ 2t2(1� t)(1� 2t)Type 4 : X21X2X0X1X2 = X30 +X0X22 1 + 2t+ 2t2(1� t)(1� 2t)Type 5 : X21X2 +X1X22 = X30X20X2 1� 2t+ 2t2(1� t)(1� 2t)One may then from the Zeta functions calculate the number of F2r -rational points on thecurves and compare them to the Weil-bound.As the curves have di�erent numbers of F2 -rational points they are not isomorphic overF2 . In contrast to this, the substitutionX1 = X 01 +X 00 + �X 02X0 = X 00 +X 02X2 = X 02where � 2 F22 is determined by �2 + � + 1 = 0, de�nes an isomorphism (over F22 ) betweentype 5 and type 1 curves. In the same way, the curves of type 4 and type 2 are isomorphicover F22 by the substitution X1 = X 01 + �X 00X0 = X 00X2 = X 02with � as above. One may also show that the type 5 curve is isomorphic to the type 3 curveover F28 . So the �ve types of elliptic curves over F2 divide into two isomorphism classes overF 2 { but the 5 curves has di�erent Zeta functions and thereby di�erent arithmetic properties.Example 2.11 (Klein Quartic). Consider the curves in P2 de�ned over F2 by the equationsC 1 : X30X1 +X31X2 +X32X0 = 0C 2 : X40 +X41 +X42 +X20X21 +X20X22 +X21X22 +X20X1X2 +X0X21X2 +X0X1X22 = 0



20 CHAPTER 2. THE ZETA FUNCTIONBoth curves are smooth of degree 4 and therefore by Proposition 1.29 they both have genusg = 3. The associated Zeta functions may be calculatedC1 : Z(t; C1=F2) = 1 + 5t3 + 8t6(1� t)(1� 2t)C2 : Z(t; C2=F2) = 1� 3t+ 9t2 � 13t3 + 18t4 � 12t5 + 8t6(1� t)(1� 2t)We notice that C1 and C2 are non-isomorphic over F2 . By calculating Nm recursively for C1one �nds, that for m 6� 0 (mod 3), Nm = 1 + 2m.Example 2.12 (Non-isomorphic curves with the same Zeta function). In P2 we havethe elliptic curves de�ned over F11 by the equationsC1 : X21X2 = X30 �X0X22C2 : X21X2 = X30 �X32Both C1 and C2 are smooth curves of genus 1 and a straightforward calculation shows thatthe number of F11 -rational points is 1 + 11 = 12 for both curves. As in Example 2.8 we then�nd the common Zeta functionZ(t; C1=F11) = Z(t; C2=F11) = 1 + 11t2(1� t)(1� 11t) : (2.7)By [Har77, IV.4.1] the isomorphism class of an elliptic curve is determined by its j-invariantj(C) = 1728 4a34a3 + 27b2 (2.8)for a curve C � P2 with equationX21X2 = X30 + aX0X22 + bX32 : (2.9)We �nd that j(C1) = 1 and j(C2) = 0 that is, the curves are not isomorphic over F 11 despitehaving the same Zeta function.Example 2.13 (Two singular curves). Consider the curves in P2 de�ned over F2 by theequations C1 : X0(X1 +X2)2 +X21X2 = 0C2 : X0X1X2 +X31 +X32 = 0The curves are smooth except in the point P0 = (1 : 0 : 0), where they both have a singularity.The curves are both birational to P1, hence of genus 0. By calculating the solutions to the



2.2. BASIC PROPERTIES OF THE ZETA FUNCTION 21equations directly, we get the following table, where we compare the number of solutions tothe number of rational points on P1.r Nr(C1) Nr(C2) Nr(P1)1 3 2 32 5 4 53 5 4 54 17 16 175 33 32 32It seems that C2 'lacks' a rational point compared to C1 and P1. For an explanation of this,we examine the curves in the a�ne part X0 = 1, where they have a�ne equationsC1 : (X1 +X2)2 +X21X2 = 0C2 : X1X2 +X31 +X32 = 0We see that C1 has a cusp in P0, i. e. the tangent cone (with equation (X1 +X2)2 = 0) is adoubled line L1. Conversely, C2 has a node in P0, i. e. the tangent cone of C2 in P0 (given bythe equation X1X2 = 0) consists of two distinct lines L2 og L3.Now the projection from P0 of Ci to P1 gives birational maps�i : Ci ! P1which give rise to bijective maps�1 : C1(F2r ) n fP0g �! P1(F2r ) n fP1g�2 : C2(F2r ) n fP0g �! P1(F2r ) n fP2; P3g (2.10)where P1; P2 and P3 are the points in P1 corresponding to the lines Li. This explains 'themissing point'.2.2 Basic properties of the Zeta functionDe�nition 2.14. A prime divisor on C is a divisor P 2 Divk(C) which may be written asP = P + �:P + : : :+ �n�1:Pwhere n is minimal with the property P 2 Fqn and � is a generator of the cyclic Galois groupGal(Fqn =k): Let ad denote the number of prime divisors on C of degree d.Remark 2.15. If P 2 C is rational over Fqn and if djn there exists a � 2 Gal(Fqd=k) such that� d = id. Then P + �:P + : : :+ � d�1:Pde�nes a unique prime divisor of degree d with d Fqn -rational points in its support.



22 CHAPTER 2. THE ZETA FUNCTIONLemma 2.16. As usual, let Nm denote the number of Fqm -rational points on C. ThenNm =Xdjm d ad: (2.11)Proof. This is a trivial consequence of Remark 2.15.Proposition 2.17. Z(t; C=k) may be written asZ(t; C=k) = YPprime divisor� 11� tdeg(P)�: (2.12)Proof. The right hand side equals 1Ym=1� 11� tm�amwhich has logarithmic derivative1t 1Xm=1�mamtm1� tm � = 1t 1Xm=1�Xdjm d ad�tmwhere the last equality comes from expanding the denominator in a geometric series and�nding the coe�cient to tm. Now, since the sum in the parenthesis equals Nm, we just haveto compare with Remark 2.2.Proposition 2.18. With notation as above, we haveYPprime divisor� 11� tdeg(P)� = XD2Divk(C)D�0 tdeg(D): (2.13)Proof. As any divisor D 2 Divk(C); D � 0 may be written uniquely asD = i1P1 + : : :+ isPswhere the Pj are prime divisors, the coe�cient to tm on the right hand side is given by thenumber of tuples of prime divisors P1;P2; : : : , such that Pi deg(Pi) = m. But as11� tdeg(P) = 1 + tdeg(P) + t2 deg(P) + : : :the coe�cients to tm are the same on both sides in the equation.De�nition 2.19. Let Am denote the number of positive rational divisors on C of degree mAm = jfD 2 Divk(C) : D � 0 and deg(D) = mgj:



2.2. BASIC PROPERTIES OF THE ZETA FUNCTION 23Proposition 2.20. With notation as aboveZ(t; C=k) = 1Xn=1 Amtm: (2.14)Proof. Combine Proposition 2.17 and Proposition 2.18.Notation 2.21.a) Let the subgroup �Z � Z (� > 0) denote the image of the degree mapdeg : Divk(C) �! Zwhich is a homomorphism of groups.b) Fix a divisor D0 2 Divk(C) of degree �.c) Choose � 2 N such that (� � 1)� < g � ��where g is the genus of C.d) Let fD1; : : : ; Dhg be a maximal set of positive non-equivalent divisors in Divk(C) ofdegree ��.e) Choose according to Theorem 1.27 a canonical divisorK 2 Divk(C). As deg(K) = 2g�2we may choose � 2 N such that �� = 2g � 2.Lemma 2.22. Let D 2 Divk(C) be of degree ��. There exists a unique i (1 � i � h) suchthat D is linearly equivalent to Di.Proof. According to Theorem 1.27̀(D) � deg(D) + 1 + g � 1which gives the existence of a non-zero rational function f such thatdiv(f) +D � 0:By Proposition 1.25 we may assume f 2 k(C). Thendiv(f) +D 2 Div k(C)and by maximality of the set fD1; : : : ; Dhg we have D � Di for some 1 � i � h. Theuniqueness follows from the maximality of fD1; : : : ; Dhg and the transitivity of �.



24 CHAPTER 2. THE ZETA FUNCTIONLemma 2.23. Let D 2 Divk(C) be of degree n�. There exists a unique i (1 � i � h) suchthat D is linearly equivalent to (n� �)D0 +Di.Proof. If deg(D) = n� the divisor D� (n��)D0 2 Divk(C) is of degree ��. Now Lemma 2.22gives a unique i such that D � (n� �)D0 � Di or equivalently, D � (n� �)D0 +Di.Proposition 2.24. With the notation above, the Zeta function may be written asZ(t; C=k) = 1Xn=0� hXi=1 q`(Di+(n��)D0) � 1q � 1 � tn�: (2.15)Proof. By de�nition of `(D), the number of positive divisors linearly equivalent to D is q`(D)�1q�1(cf. Remark A.12). So by Lemma 2.23 the sum in parenthesis equals An�, the number ofpositive rational divisors of degree n�. By choice of �, all positive rational divisors has degreein the ideal �Z, so by Proposition 2.20 we are done.2.3 Functional equation and RationalityNotation 3.25. Introduce the notationZ1(t) = hXi=1 �Xn=0 q`(Di+(n��)D0) � 1q � 1 tn�Z2(t) = Z(t; C=k)� Z1(t): (2.16)Lemma 2.26. With this, we haveZ2(t) = hXi=1 1Xn+�+1 q`(Di+(n��)D0) � 1q � 1 tn� � hq � 1 1Xn=0 tn�= hq � 1�q1�g(qt)(�+1)�1� (qt)� � 11� t��: (2.17)Proof. Z2(t) = Z(t; C=k)� Z1(t)= 1Xn=0 hXi=1 q`(Di+(n��)D0) � 1q � 1 tn� � hXi=1 �Xn=0 q`(Di+(n��)D0)q � 1 tn�= hXi=1 1Xn+�+1 q`(Di+(n��)D0)q � 1 tn� � hq � 1 1Xn=0 tn�:



2.3. FUNCTIONAL EQUATION AND RATIONALITY 25Now, notice that for n > � we havedeg(Di + (n� �)D0) = n� > �� = 2g � 2:Hence for n > �,`(Di + (n� �)D0) = deg(Di + (n� �)D0) + 1� g = n� + 1� gby Corollary 1.28 c). ThenZ2(t) = hXi=1 1Xn+�+1 qn�+1�gq � 1 tn� � hq � 1 1Xn=0 tn�= hXi=1 1Xn+�+1 q1�gq � 1 (qt)n� � hq � 1 1Xn=0 tn�= hq1�gq � 1 1Xn+�+1(qt)n� � hq � 1 1Xn=0 tn�= hq � 1�q1�g(qt)(�+1)�1� (qt)� � 11� t��the last equality coming from the geometric series.Proposition 2.27. Z2(t) satis�es the functional equationZ2� 1qt� = q1�gt2�2gZ2(t):Proof. According to Lemma 2.26 we getZ2� 1qt� = hq � 1 q1�g�q 1qt�(�+1)�1� �q 1qt�� � 11� � 1qt��!= hq � 1 q1�gt2�2g�1t ��1� 1t � 11� � 1qt��!= hq � 1 q1�gt2�2g�1t ��t� � 1 � (qt)�(qt)� � 1!= hq � 1 q1�gt2�2gt� � 1 � (qt)���(qt)(�+1)�(qt)� � 1 !
= hq � 1 q1�gt2�2gt� � 1 � q1�gq1�gt2�2g(qt)(�+1)�(qt)� � 1 != q1�gt2�2gZ2(t)since � was chosen such that �� = 2g � 2.



26 CHAPTER 2. THE ZETA FUNCTIONLemma 2.28. Let K denote the canonical divisor on C. ThenK � (Di + (n� �)D0) i = 1; : : : ; hrepresent the equivalence classes of divisors of degree (n� �)�.Proof. If D is a divisor of degree n�, K �D is of degree (n� �)�. Now D is equivalent to D0if and only if K �D is equivalent to K �D0 and asDi + (n� �)D0 i = 1; : : : ; hrepresent the equivalence classes of divisors of degree n� (Lemma 2.23),K � (Di + (n� �)D0) i = 1; : : : ; hrepresent the equivalence classes of divisors of degree (n� �)�.Lemma 2.29. Z1(t) = hXi=1 �Xn=0 q`(K�(Di+(n��)D0))q � 1 t(��n)�:Proof. Reverse the summation order in the de�nition of Z1(t).Proposition 2.30. Z1(t) satis�es the functional equationZ1� 1qt� = q1�gt2�2gZ1(t):Proof. By Lemma 2.29 Z1� 1qt� = hXi=1 �Xn=0 q`(K�(Di+(n��)D0))q � 1 � 1qt�(��n)�and by Theorem 1.27 we have`(K � (Di + (n� �)D0)) + 1� g = `(Di � (n� �)D0)� deg(Di � (n� �)D0)= `(Di � (n� �)D0)� n�:Hence Z1� 1qt� = hXi=1 �Xn=0 q`(Di�(n��)D0)�n�+g�1q � 1 � 1qt�(��n)�= hXi=1 �Xn=0 q`(Di�(n��)D0)q � 1 q�n�+g�1q(��n)� tn�t���= hXi=1 �Xn=0 q`(Di�(n��)D0)q � 1 tn� qg�1q2g�2 t2�2g= q1�gt2�2gZ1(t):



2.3. FUNCTIONAL EQUATION AND RATIONALITY 27Remark 2.31. This concludes the proof of the functional equation of Z(t; C=k)Z� 1qt ; C=k� = q1�gt2�2gZ(t; C=k): (2.18)By construction Z1(t) is a polynomial and by Lemma 2.26 Z2(t) is a rational function. So theZeta function is a rational function with poles in the roots of the polynomials 1 � (qt)� and1� t�.Lemma 2.32. We have the following identityZ(td; C=Fqd ) = Y�d=1Z(�t; C=Fq ): (2.19)Proof. By de�nition, the right-hand side equalsexp 1Xm=1Nm tmm X�d=1 �m!which, since X�d=1 �m = ( 0 d - md d j malso may be put as exp 1Xm=1Nmd tmdmd!:But this equals Z(td; C=Fqd ).Theorem 2.33. The Zeta function Z(t; C=k) may be written asZ(t; C=k) = P (t)(1� t)(1� qt)with P (t) 2 Z[t] of degree 2g:Proof. By (2.16) and (2.17) Z(t; C=k) = P (t)(1� t�)(1� (qt)�)for some P (t) 2 Z[t]. By (2.17) Z2(t) has a pole of order one (simple pole) in those � forwhich �� = 1. As Z1(t) is a polynomial Z(t; C=k) then has a simple pole in those � for which



28 CHAPTER 2. THE ZETA FUNCTION�� = 1. In particular Z(t�; C=Fq� ) has a simple pole in t� = 1. Now we use Lemma 2.32 withd = � to get Z(t�; C=Fq� ) = Y��=1 P (�t)(1� (�t)�)(1� (�tq)�) = Q��=1 P (�t)(1� t�)�(1� (tq)�)� :From this it follows that Z(t�; C=Fq� ) has a pole of order � in t� = 1. But we already knewthat Z(t�; C=Fq� ) had a simple pole in t� = 1, hence � = 1.Finally, by (2.16) and (2.17)Z(t; C=k) = Z1(t) + Z2(t) = Z1(t) + hq � 1�q1�g(qt)�+11� qt � 11� t�where Z1(t) is a polynomial of degree � = 2g � 2, hence P (t) is of degree 2g.Proposition 2.34. The polynomial P (t) 2 Z[t] in Theorem 2.33 may be factored asP (t) = 2gYi=1(1� �it):Proof. Z(0; C=k) = e0 = 1 hence P (0) = 1, so 0 is not a root in P (t).Corollary 2.35. The �i may be renumbered such that�i �2g�i = q i = 1; : : : ; g.Proof. From the functional equation (2.18)Qi�1� �i 1qt��1� 1qt��1� q 1qt� = q1�gt2�2g Qi(1� �it)(1� t)(1� qt)hence qgt2Yi (1� �iq ) =Yi �i� 1�i � 1�:By pairing the roots of the two polynomials, we see that after a suitable renumbering, wehave �iq = 1�2g�i :Remark 2.36. Let us recapitulate the analytic properties of the Zeta function. The Zetafunction is holomorphic in the complex plane except in t = 1 and t = 1q where it has simplepoles. The zeroes of the Zeta function Z(t; C=k) are denoted by ��1i ; : : : ; ��12g .



Chapter 3The Riemann hypothesis
3.1 Some historyMost students have during an introductory course in Calculus been introduced to the Riemannhypothesis { usually in the following formulation.The 'classic' Riemann hypothesis: The Riemann Zeta function �(s) de�ned by�(s) = 1Xn=1 1ns Re[s] > 1extends to a meromorphic function on the entire complex plane with a simple pole in 1 andtrivial zeroes in f�2;�4;�6; : : : g satisfying the functional equation�( s2)�� s2 �(s) = �(1�s2 )��1�s2 �(1� s):The Riemann hypothesis then conjectures that the remaining zeroes of �(s) all lie on the lineRe[s] = 12 : This has not yet been proved (April 20, 1995). So far, it has been proved that allzeroes (other than �2;�4;�6; : : : ) lie in the strip 0 < Re[s] < 1 and that �(s) has in�nitelymany zeroes on the line Re[s] = 12 :One may de�ne the Zeta function for arbitrary commutative �elds K with the properties1. K� is a locally compact �eld for any valuation of K.2. For all x 2 K n f0g 1 =Y� �(x)the product being taken over all valuations of K.(� : K� ! Z is a discrete valuation of K if the valuation ring belonging to � has quotient�eld K). It may be shown that only two types of �elds have these properties, namely29



30 CHAPTER 3. THE RIEMANN HYPOTHESIS(A) K is an algebraic number �eld, i. e. a �nite algebraic extension of Q .(B) K is a function �eld of dimension 1 over a �nite �eld Fq (by this we understand, K is oftranscendence degree 1 over Fq and a �nite algebraic extension of Fq (t)).Below we will show the Riemann hypothesis in the function �eld case (B). First we noticethat by making an Euler expansion of �(s), we may rewrite the Riemann zeta function as�(s) = 1Xn=1 1ns = Yprime ideals p�OK(1�N(p))�s)�1OK(= Z) being the ring of algebraic integers in the number �eld K(= Q): This motivates thefollowing de�nition.De�nition 3.1. Let K be a function �eld of dimension 1 over k = Fq . By [Har77, I.6.12],K corresponds to a complete smooth projective curve CK (CK is called a smooth model ofK). Divisors D =PP nP � P on CK then correspond to fractional ideals in the number �eldsituation, and we therefore de�ne the norm of a divisorN(D) = qdeg(D)where deg(D) = PnP � deg(P ) with the notation of Chapter 2. De�ne the Zeta functionassociated to K=k by Z(s;K=k) =YP (1�N(P)�s)�1the product being taken over all prime divisors on CK. By making the change of variablest = q�s, we have Z(t;K=k) = YP prime div.�1� tdeg(P)��1: (3.1)Example 3.2. Let k = Fq as usual and let t be a free variable. We then have the analogyQZprime numbers � p�(s) = 1Xn=1 n�s�(s) = Yp prime number(1� p�s)�1
k(t)k[t]prime divisors PZ(s) =XD (qdeg(D))�sYP prime divisor(1� (qdeg(P))�s)�1



3.1. SOME HISTORY 31Remark 3.3. Taking logarithmic derivatives in (3.1) givesZ 0(t;K=k)Z(t;K=k) = 1Xm=1 XP prime div. deg(P)tm�deg(P)�1= 1Xm=1� Xdeg(P)jm deg(P)�tm�1:Earlier we saw (Lemma 2.16) that the sum in the parenthesis gives the number of Fqm -rationalpoints on CK. Then with the notation from Chapter 2Z(t;K=k) = Z(t; C=k) = exp� 1Xm=1Nmtm�: (3.2)Thus we may identify the function �eld parallel to the Riemann zeta function de�ned abovewith the zeta function de�ned in Chapter 2. We then have the following results:Rationality: Z(t;K=k) = P (t)(1� t)(1� qt) (3.3)where P (t) 2 Z[t], deg(P (t)) = 2g.Functional equation: Z( 1qt ; K=k) = q1�gt2�2gZ(t;K=k): (3.4)and the Riemann hypothesis for K then conjectures that Z(t;K=k) has its zeroes on the lineRe[s] = 12 . Now, as t = q�s, this is equivalent to P (t) having roots ci with norm jcij = q� 12 asq�s = t = jcij = q� 12 ) Re[s] = 12(jqx+iyj = qx). This explains why we call (2.4) the Riemann hypothesis. So we just need toproveThe Riemann hypothesis: The polynomial introduced above factors asP (t) = 2gYi=1(1� �it) (3.5)with j�ij2 = q 12 for i = 1; : : : ; 2g. By Lemma 2.32Z(tm; CK=Fqm ) = Y�m=1Z(�t; CK=Fq ) (3.6)



32 CHAPTER 3. THE RIEMANN HYPOTHESIShence ��1i is a root in Z(t; CK=Fq ) , (���1i )m = (��1i )m is a root in Z(t; CK=Fqm )for some mth root of unity �. Since alsoj�ij2 = q , j(���1i )mj2 = j�mi j2 = qmwe see that it su�ces to show the Riemann hypothesis for CK de�ned over Fqm for just onem � 1.3.2 Bombieri's TheoremProposition 3.4. With the above notation, the following statements are equivalenta) j�ij = q 12 for i = 1; : : : ; 2g.b) j�ij � q 12 for i = 1; : : : ; 2g.c) There exists a constant A such thatjNm � (1 + qm)j � Aqm2for all m � 1.Proof. a) ) b) is trivial, b) ) a) follows from the fact that the �i may be numbered suchthat �i�2g�i = q (cf. Corollary 2.35). a) ) c) follows from the remarks after Theorem 2.4.c) ) b): By taking the logarithmic derivative of the Zeta function we get1Xm=1Nmtm�1 = 2gXi=1 ��i1� �it + 11� t + q1� qt :By expanding the last two terms on the right-hand side2gXi=1 ��i1� �it = 1Xm=1�Nm � (1� qm)�tm�1:We note that the left-hand side is meromorphic with poles in ��1i , i = 1; : : : ; 2g. At the sametime jNm � (1 + qm)j � Aqm2by our assumption. Hence jNm � (1 + qm)j 1m � A 1m q 12 :



3.2. BOMBIERI'S THEOREM 33which makes the series 1Xm=1�Nm � (1� qm)�tm�1convergent for jtj < q 12 . The poles must therefore lie outside this open disc, that is j��1i j � q� 12or equivalently, j�ij � q 12 .Remark 3.5. Combined with the considerations in Section 3.1, Proposition 3.4 implies thatto show the Riemann hypothesis for C over k (= Fq ), it will su�ce to show the existence ofa constant A, such that jN � (1 + q)j � Aq 12for some q � 0, where N is the number of Fq -rational points on C.Now follow three lemmas which constitute the core of the proof of what we below callBombieri's Theorem (Theorem 3.9).Lemma 3.6. Let P 2 C, C curve de�ned over k. Thena) `(mP ) � `((m + 1)P ) � `(mP ) + 1:b) `(mP ) = m+ 1� g if m > 2g � 2.c) f(x) 2 L(mP )) f(xq) 2 L(qmP ):d) L(mP ) has a basis f1; : : : ; fr (over Fq ), such that�P (fi) < �P (fi+1)for i = 1; : : : ; r � 1.Proof. a) follows from a) in Lemma A.13, b) follows from c) in Corollary 1.28, c) is obviouswith the interpretation of the vector spaces L(D) on page 13 in mind. As we have the �ltration(0) � Fq = L(0 � P ) � L(P ) � : : : � L(mP )it follows from a) that L(mP ) ' mMi=0 L(iP )=L((i� 1)P )is a decomposition in spaces of dimension one at the most. Then, by taking fi 2 L(iP ) nL((i� 1)P ) whenever L(iP ) n L((i� 1)P ) 6= 0, we get the wanted basis.



34 CHAPTER 3. THE RIEMANN HYPOTHESISLemma 3.7. Let P 2 C, C curve de�ned over k. Let n; b 2 N0 , npb < q, let s1; : : : ; sr 2L(nP ). Pick a basis f1; : : : ; fr for L(mP ) such that �P (fi) < �P (fi+1) for i = 1; : : : ; r � 1.Let � 2 Aut(C) be such that �(P ) = �(P ), where � : C ! C is the qth power Frobenius mapcf. Remark 1.22. Consider the functionG(x) = spb1 (x)f�1 (xq) + : : :+ spbr (x)f�r (xq)where f�i = fi � ��1. We then haveG(x) � 0 , si(x) � 0 for i = 1; : : : ; r:Proof. One way is trivial, so assume G(x) � 0 and let h be the minimal index such thatsh(x) 6� 0. By assumptionspbh (x)f�h (xq) = �spbh+1(x)f�h+1(xq)� : : :� spbr (x)f�r (xq):By taking the valuation �P on both sides we getpb�P (sh) + q�P (fh) � mini>h fpb�P (si) + q�P (fi)g� �pbn + q�P (fh+1)and therefore pb�P (sh) � �pbn + q(�P (fh+1)� �P (fh)) � �pbn + q > 0:Hence the function sh 2 L(nP ) has both a pole and a zero in P so sh � 0, which is acontradiction.Lemma 3.8. Let m;n 2 N be such that m;n > 2g�2 and (n+1�g)(m+1�g) > pb+m+1�g,with b as above. Pick a basis f1; : : : ; fr for L(mP ). There exist s1; : : : ; sr 2 L(nP )nf0g suchthat the function spb1 (x)f1(x) + : : :+ spbr (x)fr(x)is identically zero.Proof. Let s1; : : : ; sr 2 L(nP )nf0g. The function spb1 (x)f1(x)+ : : :+spbr (x)fr(x) has no otherpoles than P and �P �spb1 (x)f1(x) + : : :+ spbr (x)fr(x)� � �(pbn+m): (3.7)By Lemma 3.6 `((pb + n)P ) = pb +m + 1� g:Now consider the map (well-de�ned by (3.7))' : r factorsz }| {L(nP )� : : :� L(nP ) �! L((pbn +m)P )(s1; : : : ; sr) 7! spb1 (x)f1(x) + : : :+ spbr (x)fr(x)



3.2. BOMBIERI'S THEOREM 35where r = m+ 1� g by Lemma 3.6. Becausedim(LHS) = r(n+ 1� g) = (m+ 1� g)(n+ 1� g)> pbn+m + 1� g = dim(RHS)by Lemma 3.6, ker(') is non-trivial and the assertion follows.Theorem 3.9 (Bombieri [Bom76]). Let C be a curve of genus g de�ned over k(= Fq ).Assume q > (1 + g)4 and q = pa where a is even and let � 2 Aut(C). ThenN�(C) � 1 + q + (2g + 1)q 12where N�(C) is the number of points P 2 C such that �(P ) = �(P ); see the Dictionaryp. 36).Proof. If N�(C) = 0 there is nothing to show, so we may assume that C has a point P suchthat �(P ) = �(P ).Put b = a2 ; n = q 12 �1; m = q 12 +2g. By assumption, b; n;m 2 N . Choose a basis f1; : : : ; frfor L(mP ) as in Lemma 3.6. Now one checks that m;n > 2g�2 and (n+1�g)(m+1�g) >pbn+m+1�g for q > (1+g)4, in order to apply Lemma 3.8 to give us s1; : : : ; sr 2 L(nP )nf0gsuch that spb1 (x)f1(x) + : : :+ spbr (x)fr(x) � 0: (3.8)Then consider the functionG(x) = spb1 (x)f�1 (xq) + : : :+ spbr (x)f�r (xq)which, since pbn < q, is not identically zero by Lemma 3.7.Suppose Q 6= P is another point such that �(Q) = �(Q). If Q has coordinates y, we thenhave f�i (yq) = fi(y). But then y is a zero for G(x) by (3.8). So G(x) has at least N�(C)� 1zeroes. As G(x) is a pb power, every zero has multiplicity at least pb so G(x) has at leastpb(N�(C)� 1) zeroes counted with multiplicity. On the other hand G(x) 2 L((pbn +mq)P )by Lemma 3.6 hence pb(N�(C)� 1) � pbn+mq (3.9)as the degree of a rational function is zero (Lemma A.13). By substituting the values ofb;m; n we get from (3.9) thatN�(C)� 1 � q 12 � 1 + (q 12 + 2g)q 12 :Hence N�(C) � 1 + q + (2g + 1)q 12 as claimed.Corollary 3.10. Let C be a curve of genus g de�ned over k(= Fq ). Suppose q > (1 + g)4and q = qa where a is even. ThenN(C) � 1 + q + (2g + 1)q 12 :Proof. Let � = idC in Theorem 3.9.



36 CHAPTER 3. THE RIEMANN HYPOTHESIS3.3 Galois coveringsThe rest of this chapter will rely on the 1 � 1 correspondence between curves and function�elds cf. [Har77, I.6.12]. Thereby we may freely choose in what setup we will prove a givenresult. The function �eld theory we use is treated in the �rst three chapters of [FJ86]. Thatexposition is rather compressed though, so references are for the reader's convenience givento the more elementary [Lan93].Let us �x the notation: given a discrete valuation � : K� ! Z we putR� = fx 2 K� : �(x) � 0g ; the valuation ring associated to �m� = fx 2 K� : �(x) > 0g ; the maximal ideal in the local ring R�k� = R�=m�:Dictionary 3.11. We list some properties of the 1 � 1 correspondence between smoothprojective curves and function �elds of dimension 1 over K.Function �eld terminologyk(t)Function �elds of dimension 1 over kDiscrete valuations � of K=k, R�(also called prime divisors of K=k)Valuations � such that deg(�) := [k� : k] = mThe qth power Frobenius morphism� : �(x) 7! �(xq)Valuations � such that �(�) = �the number of these we write N(K),also equal to jf� : deg(�) = 1gjGalois extensions K � K 0such that k is algebraically closed in KValuations � such thatgiven � 2 Gal(K 0=K): �(�) = � � �N�(K) = X�(�)=��� deg(�)

Geometric terminologyP1kCurves CK with function �eld KClosed points P 2 CK , k[CK ]mP(a closed point de�nes an irr. divisor on CK)Prime divisors P such that deg(P) = mThe qth power Frobenius morphism� : P = (x) 7! (xq)k-rational points P 2 CKthe number of these we write N(CK),also equal to jfP 2 DivkCK : deg(P) = 1gjGalois coverings CK0 ! CK(cf. Lemma 3.14)Points P 2 CK such thatgiven � 2 Gal(K 0=K): �(P ) = �:PN�(CK) = XF (P )=�:P deg(P )



3.3. GALOIS COVERINGS 37Remark 3.12. Let L � K be a �nite Galois extension of function �elds of dimension 1 overan arbitrary (not necessarily �nite) �eld k0 of characteristic p > 0. Let CL and CK be theassociated curves cf. [Har77, I.6.12].We will now examine the action of G = Gal(K=L) on CK and CL and the behavior of thek0-rational points under this action.As CK (resp. CL) is the set of discrete valuations of K=k0 (resp. L=k0), the inclusion�# : L ,! K induces a morphism � : CK ! CL;where a valuation � : K� ! Z such that �jk0� = 0 is mapped to �jL. As any valuation � ofL=k0 extends to a valuation of K=k0 [Lan93, Corollary 4.4 p. 483], � is surjective. We notethat ��1(�) = �valuations � : K� ! Z : �jL = �	 (3.10)so j��1(�)j <1 by [Lan93, Corollary 4.9 p. 485]. G acts on CL and CK in the natural way:for any � 2 CL, �(�) = � � � for � 2 G. We note that, as �jL = idL for all � 2 G, CL is �xedunder the action of G. If � 2 CK is such that �jL 2 CL, we see that�(�)jL = � � �jL = �jL:Hence, as G consists of all automorphisms of K �xing L, the valuationsf� 2 CK : �jL = � 2 CLgare all conjugated under G's action. Thereforej��1(�)j = jf� 2 CK : �jL = �gj � jGj = [K : L]: (3.11)What about the k0-rational points { what do they look like in this interpretation. ByAppendix A X(k0) = �x 2 X : x k0-rational	$ �x 2 X : k[X]mx=mx ,! k0	:If C is a curve over k0 we have (cf. Dictionary above)�� 2 C : � k0-rational	$ �� : K� ! Z : deg(�) = [k� : k0] = 1	:So if k0 is algebraically closed in K all points are k0-rational (see Lemma 3.14 below), and Gacts on CK(k0) over CL(k0) (i.e. G acts on CK(k0) �xing the points of CL(k0)). This is notthe case if k0 fails to be algebraically closed in K.De�nition 3.13. Let � : Y ! X be a morphism of curves de�ned over k. � is said to be aGalois covering over k if the induced map of function �elds�# : K(X)! K(Y )is a �nite Galois extension and the associated Galois group acts on Y (k) over X(k).



38 CHAPTER 3. THE RIEMANN HYPOTHESISLemma 3.14. Let L � K be a �nite Galois extension of function �elds of dimension 1 overk. Let k0 be the algebraic closure of k in K. Thena) [k0 : k] <1, i.e. k0 is a �nite �eld Fqm :b) L � k0 � K � k0 is a �nite Galois extension of function �elds of dimension 1 over k0 and� : CK�k0 ! CL�k0is a Galois covering of curves de�ned over k0.Proof. a) We have inclusionsk � L| {z } � K�nitely generated ) k � K �nitely generated as [K : L] <1hence k � k0 � K| {z }�nitely generated ) k � k0 �nitely generated :By construction k � k0 is an algebraic extension and we conclude [k0 : k] <1.b) The extension L � k0 � K � k0 is a �nite Galois extension as the extensions k � k0 andL � K are. We are left to showing that, for any valuation � of K=k0 such that [k� : k0] = 1we have [k�(�) : k0] = 1 for all � 2 G = Gal(K=L):Let � be the restriction of �(�) to k0(t). Either t or t�1 is in R� so assume WLOG t 2 R� .As m� � R� � k0(t), m� \ k0[t] = p, a prime ideal di�erent from (0). Then R�=m� ' k0[t]=p:As k0[t] is a PID, p is generated by a polynomial p 2 k0[t] and therefore k� is a �nite algebraicextension of degree � deg(f):We also have [k�(�) : k� ] � [K : k0(t)] by [Lan93, Proposition 4.6p. 483]. So as [K : k0(t)] <1, k�(�) is a �nite, hence algebraic extension of k� in K. But ask0 was algebraically closed in K we must then have [k�(�) : k0] = 1:Construction 3.14. Let C be a (smooth) curve de�ned over k with function �eld K. As kis perfect and as 1 = dim(C) = tr degkK, there exists t 2 K such that t is transcendent overk and K is a �nite separable extension of k(t). Now let K 0 be the minimal normal extensionof k(t) containing K. Denoting the di�erent embeddings of K into an algebraic closure of Kover k(t) by �1; : : : ; �n, we necessarily haveK 0 = �1(K) � : : : � �n(K):(cf. [Lan93, p. 242 bottom]). As successive separable extensions give a separable extension([Lan93, Theorem 4.5 p. 241]), k(t) � K 0 is a separable extension. From [Lan93, Thm. 3.4



3.3. GALOIS COVERINGS 39p. 238] follows that the extension K � K 0 is normal as the extension k(t) � K 0 is. Altogetherthis gives Galois extensions k(t) � K 0 and K � K 0 with Galois groups G = Gal(K 0=k(t)) andH = Gal(K 0=K).Letting C 0 denote the curve associated to K 0, we have coveringsC 0 ! C ! P1kover k. At this point it may not be the case that G acts on C 0(k) over k, but by Lemma 3.14we may extend k �nitely k = Fp � Fq2 � : : : � Fqmuntil G acts on C 0(Fqm ). Then C 0(Fqm )! C(Fqm )! P1Fqmare Galois coverings over Fqm . That is, given a curve de�ned over k we have (possibly afterreplacing k by a �nite extension) constructed Galois coveringsC 0 ! P1k og C 0 ! Cwith Galois groups G and H.Lemma 3.16. Let L be a function �eld of dimension 1 over k. Let K be a �nite Galoisextension of L with Galois group G. Assume k is algebraically closed in L and K. ThenN(L) = 1jGjX2GN(K):Proof. We have the injection �# : L ,! K. Let � 0 be a valuation of K=k and let � = � 0jL.Suppose �(�) = �, then �(� 0)jL = �(� 0jL) = �(�) = �as the Frobenius morphism commutes with restriction. AsG acts transitively on the valuationsover � we have �(�) = � , 9 2 G : � 0 �  = �(� 0): (3.12)Introduce the notation e(� 0j�) = jf 2 G : � 0 �  = �(� 0)gjf(� 0j�) = [k�0 : k�]g(�) = j��1(�)j:



40 CHAPTER 3. THE RIEMANN HYPOTHESISfor � 0 2 ��1(�). Then X2GN(K) =X2G X�(�)=�� deg(� 0)= X�(�)=� X�02��1(�) e(� 0j�) deg(� 0)by (3.12). Given � 0i and � 0j 2 ��1(�) there exists � 2 G such that � 0i = � 0j � � as G actstransitively on ��1(�). Thereforee(� 0ij�) = jf 2 G : � 0i �  = �(� 0i)gj = jf 2 G : � 0j � � = �(� 0j � �)gj= jf 2 G : � 0j � ���1 = �(� 0j)gj = e(� 0jj�):In the same way we get f(� 0ij�) = f(� 0jj�) for all � 0i; � 0j 2 ��1(�). Write e(�) (resp. f(�)) forthe common values. ThenX2GN(K) = X�(�)=� X�02��1(�) e(� 0j�)[k�0 : k]= X�(�)=� X�02��1(�) e(� 0j�)[k�0 : k�][k� : k]= X�(�)=� X�02��1(�) e(� 0j�)f(� 0j�) deg(�)= X�(�)=� e(�)f(�)g(�) deg(�):Now as f(�) = [k�0 : k�] = jf� 2 G : �(R�) = R�gj, counting will give e(�)f(�)g(�) = jGj([Lan93, Corollary 6.3 p. 490]). HenceX2GN(K) = X�(�)=� jGj � deg(�) = jGj �N(L)and the lemma follows.Corollary 3.17. Let � : CK ! CL be a Galois covering of curves de�ned over k. ThenN(CL) = 1jGjX2GN(CK): (3.13)In particular, if X = P1k 1 + q = 1jGjX2GN(CK): (3.14)(G is the Galois group for the extension L � K).



3.3. GALOIS COVERINGS 41Proof. As � : CK ! CL is a Galois covering, k is necessarily algebraically closed in K andalso in L as k � L � K. Now combine Lemma 3.16 with the Dictionary on page 36.Proposition 3.18. Let C be a curve of genus g de�ned Fq (q � 0). There exists a constantA such that N(C) � 1 + q � Aq 12 :Proof. By the above, we may construct Galois coveringsC 0 ! P1Fq and C 0 ! Cwith Galois groups G and H respectively (eventually after making a �nite extension of Fq ).By Theorem 3.9 there exists a constant A0 such thatN(C 0) � 1 + q + A0q 12for all  2 G. ThenX2GN(C 0) =X�2HN �(C 0) + X2GnHN(C 0)�X�2HN �(C 0) + X2GnH 1 + q + A0q 12=X�2HN �(C 0) + �jGj � jHj��1 + q + A0q 12 �:Corollary 3.17 applied to the covering C 0 ! P1Fq givesX�2HN �(C 0) � jGj(q + 1)� �jGj � jHj��1 + q + A0q 12 �= jHj(q + 1)� (jGj � jHj)A0q 12and Corollary 3.17 applied to the covering C 0 ! C givesN(C) = 1jHjX�2HN �(C 0) � q + 1� jGj�jHjjHj A0q 12 :Now put A = jGj�jHjjHj A0.Remark 3.19. As the constant A, found above in Proposition 3.18, is larger than or equal tothe constant obtained in Corollary 3.10 we havejN(C)� (1 + q)j � Aq 12for some q � 0. By Remark 3.5 we then have shown the Riemann hypothesis for C (or thefunction �eld associated to C if one prefers this point of view).
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Appendix AScheme- and sheaf theoreticformulationIn this appendix we reformulate most of the de�nitions and results from Chapter 1 in termsof sheaves and schemes. We use the notation and terminology from [Har77] and the readeris assumed to be familiar with this book's �rst three chapters. The term points will allwaysdenote closed points unless otherwise stated.A.1 A�ne schemesDe�nition A.1. Put R = �k[X1; : : : ; Xn]. ThenA n = Spec(R)is the a�ne �k-scheme of dimension n. More generally, if X ! Spec(K) is a scheme over K(K a �eld), then the k-rational points are the elements in MorX(Spec(k); X). That isfk-rational points in Xg $ fpoints x 2 X with k(x) ,! kg:So in our case, the k-rational points in A n are given by a prime ideal p 2 Spec(R) togetherwith an injection k(p) ,! k. As R is Noetherian we may writep = (f1; : : : ; fk) fi 2 R irreducible.Then k(p) = Rp=pp = (R=p)0 so if k(p) shall be embedded in k, all the fi must have roots ink, as we adjoin the roots of the fi by dividing out with p. In case p is a closed point, i. e. amaximal ideal m 2 m Spec(R), we havem = (X1 � a1; : : : ; Xn � an)with ai 2 k, whereby the closed k-rational points of A n bijects with the setf(a1; : : : ; an) : ai 2 kg:43



44 APPENDIX A. SCHEME- AND SHEAF THEORETIC FORMULATIONRemark A.2. G = Gal(�k=k) acts on A n�:p = (�:f1; : : : ; �:fk) for p = (f1; : : : ; fk)by acting on the coe�cients of the fi. PutA n(k) = fp 2 A n : �:p for all � 2 Gg:Then the closed points of A n(k) are given byA n(k)cl = fm 2 m Spec(R) : �:m for all � 2 Gg:But as the maximal ideals are on the form m = (X1 � a1; : : : ; Xn � an), we have �:m =(X1 � �(a1); : : : ; Xn � �(an)) and therefore�:m = m , �(ai) = ai i = 1; : : : ; n:So we may make the identi�cationA n(k)cl = f(a1; : : : ; an) : �(ai) = ai ; i = 1; : : : ; n, for all � 2 Gg:De�nition A.3. The closed subscheme de�ned by the ideal I � R isVI = fp 2 A n : p � Ig ' SpecR=I:Then VI;cl = fm 2 A n : m � Ig= f(X1 � a1; : : : ; Xn � an) : f(a1; : : : ; an) = 0 for all f 2 Igas m � I , f(m) = 0 for all f 2 I wheref(m) = the image of f in k(m) = R=m � �k= f(a1; : : : ; an) for m on the form m = (X1 � a1; : : : ; Xn � an):The k-rational points on the a�ne scheme V = SpecR=I are Mor(Spec(k); V ). V is de�nedover k if there exists a morphism of schemes V ! Spec(k):Remark A.4. In Remark A.2 we saw how G = Gal(�k=k) acts on A n = SpecR. In the sameway, G acts on any closed subscheme V = SpecR=I of A n .De�nition A.5. An a�ne scheme V = SpecR=I is called a variety if I is a prime ideal inR. �(V;OV ) = R=I is the global sections of the sheaf of regular functions OV on V . SupposeV is de�ned over k, that is V = Spec�k[X1; : : : ; Xn]=I(V=k)�where I(V=k) = I(V ) \ k[X1; : : : ; Xn]: The quotient �eld k(V ) of the domaink[X1; : : : ; Xn]=I(V=k) is called the function �eld of V over k. In a similar way one de�nes�k(V ).



A.2. PROJECTIVE SCHEMES 45A.2 Projective schemesDe�nition A.6. Put S = �k[X0; : : : ; Xn]. ThenPn = ProjSis the projective �k-scheme of dimension n. One then shows the same identi�cations as in thea�ne case above. The function �eld of a projective variety V = ProjS=I (I � S homogeneousprime ideal) is given by �k(U) where U � V is an open a�ne subset of Pn such that V \U 6= ;.A.3 CurvesDe�nition A.7. A curve over k is a Noetherian, separated, irreducible, reduced scheme of�nite type and of dimension 1, X ! Spec(k) where k is algebraically closed.De�nition A.8. A scheme X is smooth in P 2 X if OX;P is a regular local ring. So ifdimX = 1 we have X is smooth in P 2 X , OX;P is a DVRby [AM69, Proposition 9.3]. A scheme is smooth if all of its points are.Remark A.9. If V � Pn is a curve de�ned by the prime ideal I = (f1; : : : ; fm), fi 2 S, thencodim(p) = n� 1 for all p 2 Proj(S). So the Jacobian criterion [Eis95, Theorem 16.19] givesthat rank(J(p)) = n� 1, (S=I)�p (= OV;p) is regular, V is smooth at pwhere J(p) is the Jacobian of the fi calculated in the point p 2 Proj(S).A.4 Divisors and the Riemann-Roch theoremLet (X;OX) be a scheme with sheaf of total quotient rings K.Remark A.10. Let D be a Cartier divisor on X represented by fUi; fig where X = Si Ui andfi 2 �(Ui;K�) is such that fi=fj 2 �(Ui \ Uj;O�X): We have the associated linebundle (rankone invertible sheaf) L(D) given byL(D)jUi = 1fi � OX jUi: (A.1)This is well-de�ned as fi=fj is invertible, hence de�nes an isomorphism, on Ui\Uj. Hereafter,assume that X is irreducible, reduced, separated, Noetherian and locally factorial, wherelocally factorial means that the local rings OX;x are all UFD's. This is for example the casewhen X is smooth (a regular local ring is a UFD). With these assumptions, K is a constant



46 APPENDIX A. SCHEME- AND SHEAF THEORETIC FORMULATIONsheaf equal to the function �eld K of X and by [Har77, II.6.11], Weil and Cartier divisors arethen two and the same objects under the correspondence�Cartier divisors	 $ �Weil divisors	 (A.2)fUi; fig ! Xi;Y �Y (fi) � Y (A.3)fUi; fxig  D (A.4)where fxi is chosen such that (fxi) = Dxi, the divisor on Spec(OX;xi) induced by D. So wesee, that for f 2 �(X;K�) (f) +D � 0, �Y (f) + �Y (fi) � 0for all irreducible Y � X of codimension 1 with Y \Ui 6= ;. In other words, �Y (f � fi) � 0 forall Y; i (Y as above) with Y \ Ui 6= ;. Then fUi; f � fig de�nes a global section in OX , henceby (A.1), f 2 �(X;L(D)). Actually, this argument goes both ways, that isf 2 �(X;L(D)), (f) +D � 0:Now let L be an arbitrary linebundle on X given by local isomorphisms'i : LjUi '�! OX jUi X = Si UiAbove we saw, that if s 2 �(X;L) then fUi; 'i(s)g is an e�ective Cartier divisor on X. Write(s)0 for this Cartier divisor.Proposition A.11 ([Har77, II.7.7]). Let X be a smooth projective variety over the alge-braically closed �eld k. Let D0 be a Cartier divisor on X and let L = L(D) be the associatedlinebundle.a) For all s 2 �(X;L)nf0g, (s)0 is an e�ective divisor linearly equivalent to D0; (s)0 � D0.b) If D � D0 there exists s 2 �(X;L) n f0g such that (s)0 � D.c) For s; s0 2 �(X;L) we have(s)0 = (s0)0 , 9 � 2 k� : �s = s0:Proof. a) As �(X;L) is naturally embedded in �(X;K) = K, we may think of s as arational function f 2 K. Now as D0 = fUi; fig where fi 2 �(Ui;K�) = K� and asL(D0)jUi = 1fi � OX jUi we have local isomorphisms'i : L(D0)jUi ! OX jUiby multiplying with fi. Then(s)0 = fUi; 'i(s)g = fUi; fifgand therefore (s)0 = (f) +D0, that is D0 � (s)0.



A.4. DIVISORS AND THE RIEMANN-ROCH THEOREM 47b) If D > 0 and D � D0 that is, there exists f 2 K such that D = D0 + (f), then(f) � D0 > 0. But as we noted above, this implies that f 2 �(X;L(D0)) = �(X;L)and then (f)0 � D0 � D by a).c) As in a), s; s0 2 �(X;L) may be viewed as rational functions f; f 0 2 K such that(f=f 0) = (f)� (f 0) = (s)0 � (s0)0 = 0:But then f=f 0 2 �(X;O�X) and as X is projective �(X;O�X) = k�.Remark A.12. Letting jD0j denote the set of e�ective divisors linearly equivalent to D0, wemay make the identi�cationjD0j = fD 2 Div(X) : D � 0 ^ D � D0g = (�(X;L(D0)) n f0g)=�k�: (A.5)As �(X;L(D0)) = H0(X;L(D0)) := L(D0) is of �nite dimension over �k ([Har77, III.5.2]) weput `(D0) = dim�k �(X;L(D0)) = dim�k L(D0): (A.6)By (A.5), jD0j may be identi�ed with projective �k-space of dimension `(D0)� 1.Now let X be a smooth curve in P2(= P2�Fq ) with function �eld K and let D0 be a divisoron X. Write D0 as D0 = XP2X nP � P �nitely many nP 6= 0cf. (A.2). Then L(D0) = ff 2 K� : (f) � �D0g= ff 2 K� : �P (f) � �nP for all P 2 Xg:If D0 =Pi nPi �Pi � Pj mPj �Pj (nPi; mPj > 0) we may thus identify L(D0) with the vectorspace of rational functions on X with poles only in the points Pi and there of order no morethan nPi and with zeros in Pj with multiplicity at least mPj .We gather some simple observations inLemma A.13. Let X � P2 be a smooth projective de�ned over k. Thena) D � D0 ) L(D) � L(D0) and dimk L(D)=L(D0) � deg(D �D0).b) D � D0 ) `(D) = `(D0).c) L(0) = k.



48 APPENDIX A. SCHEME- AND SHEAF THEORETIC FORMULATIONd) deg((f)) = 0 for f 2 K�.e) deg(D) < 0) L(D) = f0g.Proof. a) Let D = PP nP � P . Note that L(D) � L(D + P ) as f 2 L(D) ) �P (f) ��nP � �(nP + 1) so f 2 L(D + P ). Now asD0 = D + P1 + : : :+ Psfor some Pi 2 X it su�ces to show that dimk L(D+P )=L(D) � 1 for all P 2 X. De�ne' : L(D + P )! k by '(f) = (tnP+1 � f)'s image in OX;P=mP ' kwhere t 2 OX;P is a generator of mP � OX;P . ' is linear andker(') = ff 2 L(D + P ) : �P (f) � �nP for all P 2 Xg = L(D):So ' induces an injection L(D + P )=L(D) ,! k and the claim follows.b) This is clear from (A.5) as � is an equivalence relation.c) L(0) = ff 2 K� : �P (f) � 0 for all P 2 Xg = k.d) Any f 2 K� may be written as f = g=h, where g; h are homogeneous forms of the samedegree m. But thendeg((f)) = deg((g=h)) = deg((g))� deg((h)) = 0:e) L(D) = ff 2 K� : (f) +D � 0g = ff 2 K� : (f) � �Dg: But if deg(D) < 0 we haveff 2 K� : (f) � �Dg � ff 2 K� : deg((f)) � � deg(D) > 0g = f0gwhere we get the last equality from d).Remark A.14. Let X � P2 be a smooth projective curve de�ned over k and let!X = ^dim(X)
X=�k = ^1
X=�k = 
X=�kbe the canonical linebundle on X. The geometric genus of X is thenpg(X) = dim�k �(X;!X):



A.4. DIVISORS AND THE RIEMANN-ROCH THEOREM 49Let us calculate !X . Assume X is de�ned by the irreducible homogeneous polynomial f 2S = �k[X0; X1; X2] of degree d. Then we have the short exact sequence of graded S-modules0 // S(�d) //�f S // S=(d) // 0which gives rise to a short exact sequence of OX-modules0 // OP2(�d) // OP2 // OX // 0where OP2(�d) ' IX . Thinking of X as a divisor on P2, the adjunction formula ([Har77,II.8.18]) gives us !X ' !P2 
OP2 L(X)
OP2 OX :From [Har77, II.8.20.1] we have !P2 ' OP2(�3) and by [Har77, II.6.13, II.6.18], L(X) 'L(�X)�1 ' I�1X . This adds up to!X ' OP2(�3)
OP2 OP2(�d)�1 
OP2 OX = OX(d� 3)(where we consider OX as an OP2-module). Then, if X is a curve of degree 3, !X ' OX andpg(X) = dim�k �(X;!X) = dim�k �(X;OX) = 1:Proposition A.15 ([Har77, Exercise III.5.3]). Let X be a projective scheme of dimen-sion r over the �eld k. De�ne the arithmetic genus pa of X bypa(X) = (�1)r(�(OX)� 1)where � is the Euler characteristic�(F) =Xi (�1)i dimk Hi(X;F)of a coherent sheaf F on X. We notice that the de�nition of pa(X) is independent of theembedding of X into projective space.a) If X is irreducible and reduced and k is algebraically closed then H0(X;OX) ' k andpa(X) = r�1Xi=0 (�1)i dimk Hr�i(X;OX):In particular, if X is a curve, we have pa(X) = dimk H1(X;OX).b) If furthermore X is a closed subvariety of Prk we havepa(X) = (�1)r(PX(0)� 1)where PX is the Hilbert polynomial associated to X.



50 APPENDIX A. SCHEME- AND SHEAF THEORETIC FORMULATIONProof. a) As X is projective we have a closed immersion i : X ! Pnk : Then �(X;OX) =�(Pnk ; i�OX) = �(Pnk ;OPnk) = k by [Har77, III.2.10, I.3.4]. Sopa(X) = (�1)r�Xi (�1)i dimk Hi(X;OX)� 1� = r�1Xi=0 (�1)i dimk Hr�i(X;OX):If X is a curve, r = 1 and we get pa(X) = dimk H1(X;OX).b) By [Har77, Exercise III.5.2] the Hilbert polynomial PX associated toX satis�es PX(n) =�(OX(n)). But then pa(X) = (�1)r(�(OX)� 1) = (�1)r(PX(0)� 1).Proposition A.16 ([Har77, IV.1.1]). Let X be a smooth projective curve over the alge-braically closed �eld k. Thenpa(X) = pg(X) = dimk H1(X;OX):The common value g we call the genus of the curve X.Proof. We have in Proposition A.15 seen that pa(X) = dimk H1(X;OX): From Serre-duality[Har77, III.7.6] we getH1(X;OX)_ ' Ext0(OX ; !X) = Hom(OX ; !X) = H0(OX ; !X):But then dimk H1(X;OX) = dimk H0(OX ; !X) = pg(X):Theorem A.17 (Riemann-Roch). Let X be a smooth projective curve of genus g over thealgebraically closed �eld k and let D be a divisor on X. Then`(D)� `(K �D) = deg(D) + 1� gwhere K 2 Div(X) represents the divisor class associated to !X 2 Pic(X) cf. the isomorphismDiv(X) ' Pic(X) ([Har77, II.6.15]).Proof. See [Har77, IV.1.3].Corollary A.18. With the above assumptions we havea) `(K) = gb) deg(K) = 2g � 2.c) If deg(D) > 2g � 2 then deg(K �D) < 0 and `(D) = deg(D) + 1� g:Proof. a) `(K) = dimk �(X;L(K)) = dimk �(X;!X) = pg(X) = g.



A.4. DIVISORS AND THE RIEMANN-ROCH THEOREM 51b) Riemann-Roch applied to D = K gives`(K)� `(0) = deg(K) + 1� g:So as `(0) = dimk �(X;OX) = 1, we have deg(K) = 2g � 2 by a).c) deg(K �D) = deg(K)� deg(D) = 2g � 2� deg(D) < 0, hence Riemann-Roch gives`(D)� `(K �D) = deg(D) + 1� gand as deg(K �D) < 0, Lemma A.13 implies `(K �D) = 0.Proposition A.19 ([Har77, Exercise III.4.7]). Let X be a curve in P2 = ProjS, de�nedby the homogeneous polynomial f 2 S of degree d. Thena) dimk H0(X;OX) = 1:b) dimk H1(X;OX) = 12(d� 1)(d� 2):Proof. As X is a closed subscheme of P2 de�ned by the homogeneous polynomial f of degreed we have the short exact sequence of graded S-modules0 // S(�d) //�f S // S=(d) // 0which gives rise to a short exact sequence of OX-modules0 // OP2(�d) // OP2 // OX // 0where OP2(�d) ' IX . By [Har77, III.1.1A] we now get a long exact sequence of cohomologygroups0! H0(P2;OP2(�d))! H0(P2;OP2)! H0(X;OX)! H1(P2;OP2(�d))!H1(P2;OP2)! H1(X;OX)! H2(P2;OP2(�d))! H2(P2;OP2)! ::: (A.7)By [Har77, III.5.1] this reduces to0! 0! H0(P2;OP2) '�! H0(X;OX)! 0!0! H1(X;OX) '�! H2(P2;OP2(�d))! 0! 0: (A.8)Hence dimk H0(X;OX) = dimk H0(P2;OP2) = dimk k = 1dimk H1(X;OX) = dimk H2(P2;OP2(�d))



52 APPENDIX A. SCHEME- AND SHEAF THEORETIC FORMULATIONand as H2(P2;OP2(�d)) may identi�ed with the k-vector space spanned byfXn00 Xn11 Xn22 : ni < 0 ^ n0 + n1 + n2 = �dgcf. [Har77, p. 226], we see thatdimk H2(P2;OP2(�d)) = jfXn00 Xn11 Xn22 : ni � 0 ^ n0 + n1 + n2 = d� 3gj= 12(d� 1)(d� 2):Corollary A.20. Let C be a projective curve in P2 de�ned by the homogeneous polynomialf of degree d. Then C has genus g = 12(d� 1)(d� 2): (A.9)Proof. Combine Proposition A.19 and Proposition A.16.



Appendix BWeil's explicit formulas
B.1 The formulasThe Weil bound (Corollary 2.6) on the number of rational points on a given curve of genusg, may in most cases be improved. We use the notation from Chapter 2. All curves are stillassumed smooth and projective.Remark B.1. Let C curve of g. From Corollary 2.5 we have for all m � 1Nm = 1 + qm � 2gXn=1 �mi : (B.1)Determine �j 2 R such that �j = pqei�j : By Corollary 2.35 we may assume that �j = �2g�j,hence Nm = 1 + qm � gXj=1 �mj + �mj = 1 + qm � qm2 gXj=1 e(im�j ) + e(�im�j )= 1 + qm � 2qm2 gXj=1 cos(m�j) (B.2)
Now let fcngn�1 be real numbers, almost all equal to zero. Multiply by cm in (B.2) and dividewith q 12 , therebyN1cmq�m2 = cmqm2 + cmq�m2 � 2 gXj=1 cm cos(m�j)� (Nm �N1)cmq�m2 : (B.3)53



54 APPENDIX B. WEIL'S EXPLICIT FORMULASIntroduce the notationf(�) = 1 + 2 1Xn=1 cn cos(n�) = 1 + 1Xn=1 cn�ein� + e�in�� � 2 R	d(t) = 1Xn=1 cndtnd d 2 N; t 2 RBy summing (B.3) over m we getN1	1�q� 12 � = N1 1Xm=1 cmq�m2= 	1�q 12 �+	1�q� 12 �� gXj=1(f(�j)� 1)� 1Xm=1(Nm �N1)cmq�m2 :Notice that1Xm=1Nmcmq�m2 = 1Xm=1Xdjm dadcmq�m2 1Xd=1 dad 1Xm=1 cmdq�md2 = 1Xd=1 dad	d�q� 12 � (B.4)so we may write (B.3) asN1 �	1�q� 12 � = 	1�q 12 �+	1�q� 12 �+ g � gXj=1 f(�j)� 1Xd=2 dad	d�q� 12 �: (B.5)This equation is usually called Weil's explicit formula.Proposition B.2. With the above notation, assume the fcng have the following propertiesa) cn � 0, not all cn = 0.b) f(�) � 0 for all � 2 R:Then N � g	1�q� 12 � + 	1�q 12 �	1�q� 12 � + 1 (B.6)with equality if and only ifgXj=1 f(�j) = 0 and 1Xd=2 dad	d�q� 12 � = 0:



B.1. THE FORMULAS 55Proof. As Nm � N = N1 for all m � 1 and as all cn � 0 by assumptions, we get0 � 1Xm=1(Nm �N1)cmq�m2 = 1Xd=2 dad	d�q� 12 �: (B.7)Also by assumption, 0 �Pgj=1 f(�j), so (B.5) impliesN � g	1�q� 12 � + 	1�q 12 �	1�q� 12 � + 1as 	1�q� 12 � > 0. The last assertion is obvious from (B.5).Remark B.3. 1. With the above notation, c1 = 12 , ci = 0 for i � 2, give the Weil bound(Corollary 2.6), N � 1 + q + 2gpq.2. In the Theory of Error-correcting Codes on Curves, one is interested in curves where,given the genus g of the curve the number N of k-rational points on the curve is as largeas possible. By �nding fcng which have the properties required above, we get a boundon the ratio Ng � 1	1�q� 12 � + 1g 	1�q 12 �	1�q� 12 � + 1!with equality in some cases. When equality is obtained, we say that the curve ismaximal(with respect to the explicit formulas). With this in mind, we now see that the curvesin Example 2.9 and Example 2.11 are maximal (with respect to the Weil bound). Othermaximal curves are found and described in [HS90, Han92, Pet92]. In [Lac87] a wholefamily of maximal curves is described. See also [GvdG95].Example B.4. Assume q = 22r+1 for some r � 1. Put q0 = 2r. Consider the curve C � P2de�ned over k = Fq and given by the equationC : xq0(zq + zxq�1) = yq0(yq + yxq�1): (B.8)In [HS90] it is shown that the curve has genus g = q0(q � 1). The Weil bound then givesN � 1 + q + 2q0(q � 1)pq = 1 +p2q2 + (1�p2)q:N is found to be N = 1 + q2 as C(k) consists of P2(k) n V ((x)) = A 2(k) plus the point atin�nity. By taking c1 = p22 , c2 = 14 , ci = 0 for i � 3, (B.6) givesN � q0(q � 1)12q0 + 14q + 1 + q0 + q412q0 + 14q = 1 + q2: (B.9)Hence, C is maximal with respect to the explicit formulas.



56 APPENDIX B. WEIL'S EXPLICIT FORMULASB.2 OptimizationWe will now, given N; q (q � 3), �nd the best choice of the fcng, i.e. the best possible lowerbound on g. Oesterl�e found an explicit recipe for �nding the fcng giving a bound on g. Forq � 3 (and in some cases also for q = 2) he constructed a measure � on S1 such thatZS1 12d� = (N � 1) 1Xn=1 cnq�n2 � 1Xn=1 cnq n2and showed that this happens exactly when the fcng optimize the bound on g. Following[Ser85] we will briey explain Oesterl�e's constructions. Let N and q be given (and �xed).Above we saw (B.6) that for fcng chosen as in Proposition B.2 we haveg � (N � 1) 1Xn=1 cnq�n2 � 1Xn=1 cnq n2 (B.10)and we want to maximize the right hand side. Let �1; : : : ; �n be as above. Let � denote theDirac measure and introduce the measure � on S1 = fz 2 C : jzj = 1g:� = gXj=1 �ei�j + �e�i�j :We then have � � 0 and �(S1) = 2g. We may rewrite (B.2) as(1 + qn)�Nnq 12 = gXj=1 2 cos(n�j) = gXj=1 ein�j + e�in�j = ZS1 tnd� = ZS1 12(tn + t�n)d�and we will see that, looking for cn maximizing the RHS of (B.10), is the same as looking formeasures � on S1 such that ZS1 tnd� � q n2 � (N � 1)q�n2 := n (B.11)for all n � 1.De�nition B.5. When varying � and the fcng, let g0(N; q) be the lower bound of 12 RS1 d�and let g(N; q) denote the maximum of the RHS in (B.10)Lemma B.6. If � satisfy (B.11) and the fcng satis�es (B.10) we have� 1Xn=1 cnn � ZS1 12d�: (B.12)In particular, g(N; q) � g0(N; q).



B.2. OPTIMIZATION 57Proof. As f is positive and given by f = 1 +Pn cn(tn + t�n) on S1 and as�(tn) = ZS1 tnd� � nwe have 0 � �(f) = �(1) + 2 1Xn=1 cn�(tn):Hence ZS1 12d� = �(12) � � 1Xn=1 cn�(tn) � � 1Xn=1 cnn:Lemma B.7. We have equality in (B.12) if and only ifa) �'s support on S1 is contained in the zeroes of the function f = 1+Pn cn(tn + t�n) onS1.b) There is equality in (B.11) for all n for which cn 6= 0.Proof. With the proof of Lemma B.6 in mind, we want �(f) = 0, so a) is straightforward.Since we also want �(tn) = n unless cn = 0, b) is also obvious.Theorem B.8. Let � be as described in Lemma B.7. Theng(N; q) = ZS1 12d� = � 1Xn=1 cnn:Proof. From Lemma B.6 we have g(N; q) � g0(N; q) and by (B.12), g0(N; q) � �Pn cnn.By assumption g0(N; q) � ZS1 12d� = � 1Xn=1 cnnhence g(N; q) � g0(N; q) � g(N; q)and we have equality.Proposition B.9. For q + 1 � N � q 32 + 1 the Weil bound is optimal.Proof. Earlier we saw that the Weil bound corresponds to the choice c1 = 12 , cn = 0 (n � 2).We must show that this choice is optimal. By the above, it will su�ce to construct a measure� on S1 such that equality is obtained in (B.12). In that situation we haveg(N; q) = �121 = �12�q 12 � (N � 1)q� 12 � = 12�(N � 1)q� 12 � q 12 � � 0:So let � be the Dirac measure in t = �1 (angle � = �) with weight 2(�121). We must check



58 APPENDIX B. WEIL'S EXPLICIT FORMULAS� 1 + cos(�) � 0 and cn � 0: OK.� Supp(�) � ker(1 + cos(�)): OK.� �(t) = 1: �(t) = 2(�121)(�1) = 1 by construction.� �(tn) � n for n � 2:�(t2) = 2(�121)(�1)2 = �1 � 2 ,�q�12 + (N � 1)q�12 � q � (N � 1)q�1 ,(N � 1)�q�12 + q�1� � q + q 12 ,(N � 1)�1� q 12 � � q 32 �1� q 12 � ,N � 1 � q 32and the last inequality is true by the condition on N . �(t3) = �2(�121) = 1 and as�2(�121) � 0 and 3 � 0 we have �(t3) � 3. �(t4) = 2(�121) = �1 � 2 � 4 as ngrows for large n. This generalizes for larger n.By Lemma B.7 we now have equality in (B.12).De�nition B.10. De�ne the following notation � = N � 1, � = q 12 and de�ne m 2 N by�m < � � �m+1, i.e. m = � log �log��. We may assume m � 2 as m = 1 gives q 12 < N � 1 � qwhich may be obtained by taking g=0. Putu = �m+1 � ���� �m :By construction 0 � u < 1. De�ne furthermore '0 2 � �m+1 ; �m� by taking '0 to be a solutionof cos�m+ 12 '� + u cos�m� 12 '� = 0: (B.13)Later we will see that the condition '0 2 � �m+1 ; �m� determines '0 uniquely.Remark B.11. With the notation introduced, we may rewrite (B.11) asZS1 tnd� � �n � ���n n � 1Now we will construct a measure � on S1 satisfying this equation and such thata) � is concentrated in a symmetric set T � S1 with jT j = m� 1.



B.2. OPTIMIZATION 59b) We have ZS1 tnd� = �n � ���n n = 1; : : : ; m� 1.c) � may be written as � =Xt2T �t�t �t > 0where �t = ��t.On the other hand, we want fcng such thatf(t) = 1 + m�1Xn=1 cn(tn + t�n) cn � 0is zero on T and non-negative on S1. If this is possible Theorem B.8 impliesg(N; q) = ZS1 12d� = �m�1Xn=1 cn(�n � ���n)with the notation introduced.Lemma B.12. Suppose we have found T � S1 as above. Then T is contained in the set ofsolutions to sm+1 + 1 + u(sm + s) = 0: (B.14)Proof. Let T be given. T has m� 1 elements in S1. By assumptionZS1 tnd� =Xt2T �ttn = �n � ���n n = 1; : : : ; m� 1We see that this equation is equivalent to: for any polynomial �, deg(�) � m � 1 withconstant term equal to zero we haveXt2T �t�(t) = �(�)� ��(��1): (B.15)Let P (X) =Qt2T (X � t): As T is symmetric, P (X�1) = P (X) �X1�m, so� 1X2P 0(X�1) = P 0(X)X1�m + (1�m)P (X)X�m:



60 APPENDIX B. WEIL'S EXPLICIT FORMULASSo for t 2 T we have ��t2P 0(�t) = P 0(t)t1�m as �t = 1t . Now choose t 2 T and de�neQt(X) = X Yt02Tnftg(X � t0) = X P (X)X � t :Thereby deg(Qt) � m� 1 and Qt(t0) = (0 t0 6= tt P 0(t) t0 = tand by applying (B.15) to � = Qt we get�tQt(t) = Qt(�)� �Qt(��1)so that �t = Qt(�)� �Qt(��1)t P 0(t) :We may reformulate this ast P 0(t)�t = �P (�)�� t � ���1P (��1)��1 � t= P (�)� ��� t � � ��m��1 � t�= 1� �t� ��1�m + t���m1� �t� ��1t + t2the last equality coming from P (��1) = P (�)�1�m. Now as �t = ��t we have1tP 0(t)�1� �t� ��1�m + t���m1� �t� ��1t+ t2 � = 1�tP 0(�t)�1� ��t� ��1�m + �t���m1� ��t� ��1�t+ �t2 �:Since �P 0(�t) = P 0(t) � t3�m we get�t1�m�1� �t� ��1�m + t���m1� �t� ��1t+ t2 � = 1� ��t� ��1�m + �t���m1� ��t� ��1�t+ �t2and as t2(1� ��t� ��1�t + �t2) = t2 � �t� ��1t+ 1 we have�tm+1(1� ��t� ��m�t) = 1� �t� ��1�m + t���mtm+1(1� ��1�m) + tm(���m � �)� t(�� ���m) + (1� ��1�m) = 0:Hence tm+1 + 1 + ���m � �1� ��1�m (tm + t) = 0and as u = �m+1������m = ���m��1���1�m the assertion follows.



B.2. OPTIMIZATION 61
1 2 3
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Figure B.1: The graph of F for m = 5.Lemma B.13. The equation (B.14) has m + 1 solutions in S1 and exactly one of the formt = e�i'0 with '0 2 � �m+1 ; �m�.Proof. First notice, that if m is even �1 is a solution and if m is odd this is not the case.Now put F (') = cos�m+12 '�cos�m�12 '� :We see that F ('0) = �u by de�nition of '0. If s = ei' with F (') = �u we have�u = F (') = cos�m+12 '�cos�m�12 '� )�u = F (') = sm+12 ' + s�m+12 'sm�12 ' + s�m�12 ' )�u = sm+1 + 1sm + sthat is, s solves (B.14). This is also the case if s = e�i'. Now a given m corresponds to au 2 [0; 1[ and we must show that F (') = �u has m2 solutions if m is even and m+12 solutionsif m is odd. Consider the example m = 5 where we have the graph of F (') above. We seethat F (') = �u has 3 solutions with the �rst in the interval ��6 ; �5 �, as wanted. The samebehaviour is seen in the general case.De�nition B.14. a) Let T be the complement of e�i'0 in the set of solutions on S1 to(B.15).



62 APPENDIX B. WEIL'S EXPLICIT FORMULASb) De�ne �t 2 C by solving the m� 1 equations in m� 1 unknowns.Xt2T �ttn = �n � ���n n = 1; : : : ; m� 1.Lemma B.15. We havea) �t > 0 for all t 2 T .b) �t = ��t for all t 2 T .c) For n � m we have Xt2T �ttn � �n � ���nwhenever � � p3.Proof. Long technical calculations { omitted.De�nition B.16. a) De�ne the polynomial P (X) =Qt2T (X � t) and writeP (X)P (X�1) = m�1Xn=�(m�1) anXnAs the �t are real, P (z)P (z�1) = P (z)P (�z) = P (z)P (z) � 0 and as 0 62 T we havea0 > 0. Therefore me may de�nef(t) = 1a0P (t)P (t�1) t 2 S1= 1 + m�1Xn=1 cn(tn + t�n)where cn = ana0 for n = 1; : : : ; m� 1.b) De�ne the measure on S1 � =Xt2T �t�t:Theorem B.17. � and f de�ned above satis�es the conditions of Remark B.11 andg(N; q) = ZS1 12d� = �m�1Xn=1 cn(�n � ���n)for q � 3.



B.3. EXAMPLES 63Proof. By construction f(t) = 0 except on T and is non-negative on S1. Also by constructionthe conditions on � are satis�ed. Now by Lemma B.15 we may apply Theorem B.8.Corollary B.18.g � g(N; q) = m�1Xn=1 cn(���n � �n) = (�� 1)� cos('0) + �2 � ��2 � 2� cos('0) + 1for q � 3.Proof. For n = 0; : : : ; m� 1 one �nds thatan = (m� n) cos(n'0) sin('0) + sin((m� n)'0) (B.16)and by substitution in Theorem B.17 we get the wanted expression.Remark B.19. For � = p2, i.e. q = 2 this method does not necessarily give the optimalbound because, for some � the inequalityXt2T �ttn � �n � ���nis not satis�ed for all n � m. For � � 130 this is the case for the following values of N :51; 52; 53; 70; 71; : : : ; 77; 98; 99; : : : ; 110:Remark B.20. In [LT95] the content of this appendix is written in more detail and the explicitformulas are generalized to higher-dimensional varieties by means of the Betti numbers. But,as also pointed out in [LT95], it is only in the case of curves where it is possible to determinethe optimal bound.The explicit formulas were seen for the �rst time in Weil's paper [Wei52] and have sincebeen used occasionally, especially by Serre [Ser83, Ser85]. See also [LW54, Sch91, Tsf94,vdGvdV93].B.3 ExamplesExample B.21. Let q = 3 and N = 20. We here give the input/output from the mathemat-ics program Maple (read � = '0).> q:= 3; q := 3



64 APPENDIX B. WEIL'S EXPLICIT FORMULAS> N:=20; N := 20> lambda:=N-1; � := 19> alpha:=sqrt(q); � := p3> M:=max(trunc(simplify(log(lambda)/log(alpha))),2);M := 5> u:= (alpha^(M+1) - lambda)/(lambda*alpha - alpha^M);u := 415 p3> phi:=fsolve(cos((M+1)*X/2) + u * cos((M-1)*X/2)=0,X,Pi/(M+1)..Pi/M);� := :5842209818> a:= array(0..(M-1)); a := array0::4; [ ] )> for i to M do a[i-1]:= (M-(i-1))*cos((i-1)*PHI)*sin(PHI)> + sin((M-(i-1))*PHI) od; a0 := 2:837296694a1 := 2:414213562a2 := 1:735673683a3 := 1:000000000a4 := :3826834323



B.3. EXAMPLES 65> c:= array(0..(M-1)); c := array0::4; [ ] )> for i to M do c[i-1]:= a[i-1]/a[0] od;c0 := 1:000000000c1 := :8508851285c2 := :6117349964c3 := :3524481603c4 := :1348760717> g(N,q):= ((lambda-1)*alpha*cos(phi)+alpha^2-lambda)/ (alpha^2 - 2*alpha*> cos(phi) +1); g(20; 3 ) := 15:01455611p3� 164� 1:668284012p3> gBOUND(N,q) := ceil(evalf(g(N,q)));gBOUND(20; 3 ) := 10> clear; clear> q:= 2; q := 2> alpha:=sqrt(q); � := p2> gBOUNDS:=array(3..100);gBOUNDS := array(3::100; [ ] )



66 APPENDIX B. WEIL'S EXPLICIT FORMULAS> for N from 3 to 100 do lambda:=N-1: M:=max(trunc(simplify(log(lambda)/log> (alpha))),2) : u:= (alpha^(M+1) - lambda)/(lambda*alpha - alpha^M) :> phi:=fsolve(cos((M+1)*X/2) + u * cos((M-1)*X/2)=0,X,Pi/(M+1)..Pi/M):> g(N,q):= ((lambda-1)*alpha*cos(phi)+alpha^2-lambda)/> (alpha^2 - 2*alpha*cos(phi) +1):> gBOUND(N,q) := ceil(g(N,q)): gBOUNDS[N]:=evalf(gBOUND(N,q)) od:> NMAXS:= array(3..100);NMAXS := array(3::100; [ ] )> print(gBOUNDS);N 3 4 5 6 7 8 9 10 11g � 0 1 1 2 3 4 5 6 7N 12 13 14 15 16 17 18 19 20g � 9 10 11 12 14 15 16 18 19N 21 22 23 24 25 26 27 28 29g � 20 22 23 25 26 28 29 31 32N 30 31 32 33 34 35 36 37 38g � 34 35 37 38 40 41 43 44 46N 39 40 41 42 43 44 45 46 47g � 48 49 51 52 54 56 57 59 60N 48 49 50 51 52 53 54 55 56g � 62 64 65 67 69 70 72 74 75N 57 58 59 60 61 62 63 64 65g � 77 79 80 82 84 85 87 89 90N 66 67 68 69 70 71 72 73 74g � 92 94 95 97 99 101 102 104 106N 75 76 77 78 79 80 81 82 83g � 107 109 111 113 114 116 118 119 121N 84 85 86 87 88 89 90 91 92g � 123 125 126 128 130 132 133 135 137N 93 94 95 96 97 98 99 100g � 139 140 142 144 146 148 149 151> NBOUNDS:= array(3..100);NBOUNDS := array(3::100; [ ] )



B.3. EXAMPLES 67> for i from 3 to 100 do : for j from 3 to 100 do : if gBOUNDS[j] <=i then> NBOUNDS[i]:=j fi : od: od ;> for i from 3 to 100 do : WeilBOUNDS[i]:=floor(1+2+2*i*sqrt(2)) : od :> print(NBOUNDS,(WeilBOUNDS));g 3 4 5 6 7 8 9N � 7 (11) 8 (14) 9 (17) 10 (19) 11 (22) 11 (25) 12 (28)g 10 11 12 13 14 15 16N � 13 (31) 14 (34) 15 (36) 15 (39) 16 (42) 17 (45) 18 (48)g 17 18 19 20 21 22 23N � 18 (51) 19 (53) 20 (56) 21 (59) 21 (62) 22 (65) 23 (68)g 24 25 26 27 28 29 30N � 23 (70) 24 (73) 25 (76) 25 (79) 26 (82) 27 (85) 27 (87)g 31 32 33 34 35 36 37N � 28 (90) 29 (93) 29 (96) 30 (99) 31 (101) 31 (104) 32 (107)g 38 39 40 41 42 43 44N � 33 (110) 33 (113) 34 (116) 35 (118) 35 (121) 36 (124) 37 (127)g 45 46 47 48 49 50 51N � 37 (130) 38 (133) 38 (135) 39 (138) 40 (141) 40 (144) 41 (147)g 52 53 54 55 56 57 58N � 42 (150) 42 (152) 43 (155) 43 (158) 44 (161) 45 (164) 45 (167)g 59 60 61 62 63 64 65N � 46 (169) 47 (172) 47 (175) 48 (178) 48 (181) 49 (184) 50 (186)g 66 67 68 69 70 71 72N � 50 (189) 51 (192) 51 (195) 52 (198) 53 (200) 53 (203) 54 (206)g 73 74 75 76 77 78 79N � 54 (209) 55 (212) 56 (215) 56 (217) 57 (220) 57 (223) 58 (226)g 80 81 82 83 84 85 86N � 59 (229) 59 (232) 60 (234) 60 (237) 61 (240) 62 (243) 62 (246)g 87 88 89 90 91 92 93N � 63 (249) 63 (251) 64 (254) 65 (257) 65 (260) 66 (263) 66 (266)g 94 95 96 97 98 99 100N � 67 (268) 68 (271) 68 (274) 69 (277) 69 (280) 70 (283) 70 (285)The �rst part of the calculations explains itself: for q = 3 and N = 20 we �nd that g � 10.



68 APPENDIX B. WEIL'S EXPLICIT FORMULASAfterwards we consider the case q = 2 where we calculate bounds on g for N from 3 to 100.Finally we �nd the lower bound on N given g. For comparison the Weil bound is also given inparenthesis. We see that the bounds are considerably improved. The calculations reproducethe table in [Ser85] page SeTh38c.Remark B.22. One should still have in mind that the bounds are not always attained. Forexample, it is shown in [Ser85] that there exists no curve of genus 7 with more than 10 rationalpoints. See also [GvdG95].



Appendix CWeil's original proof of the Weil boundWhen Weil originally proved the Weil bound (Corollary 2.6) on the number of Fq -rationalpoints on a curve C, he used intersection theory on the surface C�kC, k = Fq . At that time,intersection theory was only developed for smooth curves and surfaces. Later on intersectiontheory has been developed in full generality, see [Ful83]. We use the notation introducedthere. Below we give Weil's elegant proof.C.1 NotationLet C be a (smooth projective) curve of genus g de�ned over k. By abuse of notation wedenote the k-linear Frobenius homomorphism [Har77, IV.2.4.1] by F : C 0 ! C. F raisescoordinates of closed points to qth powers, hence the points �xed under F are exactly theFq -rational points. On functions, F corresponds to the map f 7! f q, f 2 �(C 0;OC0). SinceF maps the generic point of C onto itself, F is at by [Har77, III.9.7]. One may also arguefor this by observing that F locally makes OC0 a free OC -module. Finally note that as k isperfect, C 0 ' C [Har77, IV.2.4.1] so we may write F : C ! C. Fix the notationX = C �k C N = jC(Fq )j� � X graph of F � � X diagonall = C � fP2g m = fP1g � Cwhere P1 and P2 are closed points on C. Suppose D 2 Div(X) = Z1(X) is such thatdeg(D � l) = a and deg(D �m) = b:We will then say that D is of type (a; b). If deg(D � E) = 0 for all E 2 Div(X) we say thatD is numerically equivalent to 0, D � 0, cf. [Ful83, p. 374].69



70 APPENDIX C. WEIL'S ORIGINAL PROOF OF THE WEIL BOUNDWe have commutative diagramsC //g
��

F �
�

��
i C //g �

�

��
i C //� �

�

��
jC Xoo p2 X`` p1@ @ @ @ @ @

@ X`` p2@

@

@

@

@

@

@

`` p1@ @ @ @ @ @
@where g = (id; F ). A priori C is assumed smooth and projective (hence complete), so pi areproper morphisms [Har77, III.10.2, III.9.2]. As F is �nite of degree q [Har77, IV.2.4.3], F isproper [Ful83, B.2.4]. Furthermore we note that i; j are proper morphisms and that � is anisomorphism.C.2 The proofWe start by stating the following two theorems from [Har77]. Notice that [Har77] use theformer notation C:D for deg(C �D), C;D divisors. Proofs are omitted.Theorem C.1 (Hodge Index Theorem). Let H be an ample divisor on X andD 2 Div(X). Assume D 6� 0 and deg(D �H) = 0. Then deg(D2) < 0.Proof. See [Har77, V.1.9]Theorem C.2 (Nakai-Moishezon Criterion). A divisor D on X is ample if and only ifdeg(D2) > 0 and deg(D � F ) > 0 for all irreducible curves F in X.Proof. See [Har77, V.1.10]Lemma C.3. With notation as abovea) deg(�2) = 2� 2g.b) deg(�2) = q(2g � 2).c) deg(� ��) = N .d) � is of type (q; 1).e) � is of type (1; 1).f) deg(l2) = deg(m2) = 0.g) deg(l �m) = 1.



C.2. THE PROOF 71Proof. First observe that� = i�g�C l = p�2fP2g: m = p�1fP1g � = j���Ca): As dim(C) = 1, we have !C = 
C=k = ��(I=I2)where I � OX is the ideal sheaf de�ning � = �(C) (closed as C is separated). Now as� �� = [I�1j�] = [I�1 
OX O�] = [I�1 
OX OX=I] = [(I=I2)]�1deg(� ��) = deg([I=I2]�1) = � deg([��!C ]) = deg(KC) = 2� 2g where we write KC for thecanonical divisor on C.b): � � � = (p�2F�C) � (p�2F�C) = p�2(F�C � F�C)= p�2F�(C � F �F�C)hence deg(�2) = deg(F ) deg(C �C) = q(2� 2g) cf. [Ful83, De�nition 1.4, p. 13].c): � �� = (i�g�C) � (j���C) = i�(g�C � (� \ �))= i�([� \ �]) = i�� XF (Pi)=PifPig � fPig�and therefore deg(� ��) = # Pi's = N .d): � �m = � � (fP1g � C) = (i�g�C) � (p�1fP1g) = i�g�(C � (gip1)�C)= i�g�(C � id�fP1g) = i�(fP1g � fF (P1)g)hence deg(� �m) = deg(fP1g � fF (P1)g) = 1. Furthermore� � l = � � (C � fP2g) = (i�g�C) � (p�2fP2g) = i�g�(C � (gip2)�C)= i�g�(C � F �fP2g) = i�(F�F �fP2g � fP2g)so deg(� �m) = deg(F�F �fP2g � fP2g) = deg(F ) = q as F is bijective.e): By symmetry it su�ces to examine C � l. We have� � l = � � (C � fP2g) = (j���C) � (p�2fP2g)= j���((i�p2)�fP2g � C) = j���(fP2g) = j�(fP2g � fP2g)hence deg(� � l) = 1.f): deg(l � l) = deg(OX(l)jl) = deg(OC) = 0; similarly for m.g): deg(l �m) = deg(OX(l)jm) = deg(fP1g � fP2g) = 1:In b), c), d) and e) we used the projection formula [Ful83, Proposition 2.3].



72 APPENDIX C. WEIL'S ORIGINAL PROOF OF THE WEIL BOUNDProposition C.4 ([Har77, Exercise V.1.9 b)]). Let D 2 Div(X) be of type (a; b). Thendeg(D2) � 2ab (C.1)with equality if and only if D � (bl + am) � 0.Proof. Put H = l+m og E = l�m. Then deg(D �H) = deg(D � l) + deg(D �m) = a+ b anddeg(D �E) = (a� b). From Lemma C.3 we furthermore getdeg(E2) = �2 deg(H2) = 2 deg(E �H) = 0: (C.2)Now by Theorem C.2 H is ample (the only irreducible curves in X being rationally equivalentto l orm and deg(H2) = 2 > 0). Put D0 = �4D+2(a+b)H�2(a�b)E. Then deg(D0 �H) = 0.We calculate deg(D0 �D0):deg(D0 �D0) = 16 deg(D2)� 16(a+ b)2 + 16(a� b)2 � 8(a� b)2 + 8(a+ b)2= 16(deg(D2)� 2ab):For D0 6� 0 Theorem C.1 implies that deg(D0 �D0) < 0, hence deg(D2) < 2ab. For D0 � 00 � �4D + 2(a+ b)H � (a� b)E = �4(D � (bl + am)):and in this case deg(D2) = deg((bl + am)2) = 2ab by Lemma C.3Remark C.5. The above proposition generalizes to the case where X is the product of twodi�erent curves. The proof needs only few modi�cations.Theorem C.6 (Weil). With notation as above,jN � (q + 1)j � 2gpq: (C.3)Proof. For r; s 2 Z let D = r� + s�. Then by Lemma C.3deg(D2) = r2 deg(�2) + 2rs deg(� ��) + s2 deg(�2)= r2q(2� 2g) + s2(2� 2g) + 2rsNand D is of type (r + s; rq + s). So for all r; sr2q(2� 2g) + s2(2� 2g) + 2rs � (r + s)(rq + s) (C.4)by Proposition C.4. This may be written asN � 1rs((r + s)(rq + s)� (1� g)(r2q + s2)) = 1 + q + rsgq + srg for rs > 0N � 1rs((r + s)(rq + s)� (1� g)(r2q + s2)) = 1 + q + rsgq + srg for rs < 0



C.2. THE PROOF 73Now put x = rs and h(x) = xgq + 1xg. Thinking of h as a real function, we �nd that h(x) hasextrema in x = � 1pq where it assumes the values �2gpq respectively. As h is positive forx > 0 and negative for x < 0 we haveN � (1 + q) � infx>0 h(x) = 2gpqN � (q + 1) � supx<0 h(x) = �2gpqhence jN�(q+1)j � 2gpq. The proof also demonstrates that the bound only may be attainedif q is a square.



74 APPENDIX C. WEIL'S ORIGINAL PROOF OF THE WEIL BOUND



Appendix DFurther ReadingWe here give a short commented list of textbooks treating many of the subjects mentionedin the notes. For more specialized literature we refer to the full bibliography.D.1 Algebraic Geometry[Har77] Provides an excellent introduction to the more advanced Algebraic Geometry, suchas sheaves, schemes and cohomology.[Mum88] Is somewhat more geometric oriented than [Har77] but not as comprehensive. Agood supplement for [Har77] though.D.2 Algebra[Eis95] Is speci�cally written to provide the necessary commutative algebra needed in [Har77].Very comprehensive.[Lan93] Introductory textbook on Algebra. Preparation for [Eis95].D.3 Curves[Sil85] An extensive treatise of the theory of elliptic curves. Weil conjectures for ellipticcurves are shown by methods di�erent from those of these notes. In these notes wehave adapted much of the terminology used in [Sil85] so reading the book should notbe di�cult, at least not in the beginning.[Mor91] The �rst one-third of this book is essentially Chapters 1-3 of these notes formulatedin terms of function �elds. Contains a good introduction to Algebraic-Geometric codeson curves. 75



76 APPENDIX D. FURTHER READINGD.4 Error-Correcting Codes[vL82] An introduction to the general theory of Error-Correcting Codes.[vLvdG88] A short but good introduction to Coding Theory and Algebraic-Geometric codeson curves.[TVat91] Today's standard textbook on the subject of Algebraic-Geometric codes on curves.[Sti93] A self-contained purely algebraic exposition of the theory of algebraic functions andits applications to Coding Theory. Weil conjectures for function �elds are introducedand proved.
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