A Full Characterization of Functions that Imply Fair
Coin Tossing and Ramifications to Fairness”

Gilad Asharovt Yehuda Lindell Tal Rabint
February 25, 2013

Abstract

It is well known that it is impossible for two parties to toss a coin fairly (Cleve, STOC
1986). This result implies that it is impossible to securely compute with fairness any function
that can be used to toss a coin fairly. In this paper, we focus on the class of deterministic
Boolean functions with finite domain, and we ask for which functions in this class is it possible
to information-theoretically toss an unbiased coin, given a protocol for securely computing the
function with fairness. We provide a complete characterization of the functions in this class
that imply and do not imply fair coin tossing. This characterization extends our knowledge of
which functions cannot be securely computed with fairness. In addition, it provides a focus as
to which functions may potentially be securely computed with fairness, since a function that
cannot be used to fairly toss a coin is not ruled out by the impossibility result of Cleve (which is
the only known impossibility result for fairness). In addition to the above, we draw corollaries
to the feasibility of achieving fairness in two possible fail-stop models.

Keywords: Fairness, coin tossing, secure computation, malicious and fail-stop adversaries

*An extended abstract of this work appeared at TCC 2013. The first two authors were funded by the Euro-
pean Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement n. 239868, and by the ISRAEL SCIENCE FOUNDATION (grant No. 189/11).

TDept. of Computer Science, Bar-Ilan University, Israel. email: asharog@cs.biu.ac.il, lindell@biu.ac.il.
Much of this work was carried out while at the IBM T.J. Watson Research Center, New York.

IBM T.J. Watson Research Center, New York. email: talr@us.ibm.com

1 Introduction

Background. In the setting of secure multiparty computation, some mutually distrusting parties
wish to compute some joint function of their inputs in the presence of adversarial behaviour. Loosely
speaking, the security requirements from such a computation are that nothing is learned from the
protocol other than the output (privacy), that the output is distributed according to the prescribed
functionality (correctness), and that parties cannot choose their inputs as a function of the others
inputs (independence of inputs). Another important property is that of fairness which, intuitively,
means that either everyone receives the output or no one does.

It is well known that when a majority of the parties are honest, it is possible to securely com-
pute any functionality while guaranteeing all of the security properties mentioned above, including
fairness [7, 1, 3, 10]. Furthermore, when there is no honest majority, including the important case
of two parties where one may be corrupted, it is possible to securely compute any functionality
while guaranteeing all of the security properties mentioned above except for fairness [12, 7, 5].
The fact that fairness is not achieved in this latter case is inherent, as was shown in the seminal
work of Cleve [4] who proved that there exist functions that cannot be computed by two parties
with complete fairness. Specifically, Cleve showed that the very basic and natural functionality of
coin-tossing, where two parties toss an unbiased coin, cannot be computed fairly. The impossibility
result of Cleve implies that fairness cannot be achieved in general. That is, Cleve’s result proves
that it is impossible to securely compute with complete fairness any function that can be used to
toss a fair coin (like the boolean XOR function).

Until recently, the accepted folklore from the time of Cleve’s result was that only trivial functions
can be securely computed with complete fairness without an honest majority. This changed recently
with the surprising work of Gordon et al. [8] who showed that this folklore is incorrect and that there
exist some non-trivial boolean functions that can be computed fairly, in the two party setting. They
showed that any function that does not contain an embedded XOR (i.e., inputs x1, x2,y1, y2 such
that f(x1,y1) = f(z2,y2) # f(x1,y2) = f(x2,y1)) can be computed fairly in the malicious settings.
Examples of functions without an embedded XOR include the boolean OR and AND functions and
Yao’s millionaires’ problem [12] (i.e., the greater-than function). This possibility result completely
changes our understanding regarding fairness, and re-opens the question of which functions can
be computed with complete fairness. Given the possibility result mentioned above, and given the
fact that Cleve’s impossibility result rules out completely fair computation of boolean XOR, a
natural conjecture is that the presence of an embedded XOR serves as a barrier to completely fair
computation of a given function. However, [8] showed that this is also incorrect: they give an
example of a function that does contain an embedded XOR and construct a protocol that securely
computes this function with fairness.

Since [8], there have been no other works that further our understanding regarding which
(boolean) functions can be computed fairly without an honest majority in the two party setting.
Specifically, Cleve’s impossibility result is the only known function that cannot be computed fairly,
and the class of functions for which [8] shows possibility are the only known possible functions.
There is therefore a large class of functions for which we have no idea as to whether or not they
can be securely computed with complete fairness.

Our work. Motivated by the fundamental question of characterizing which functions can be
computed with complete fairness, we analyze which functions cannot be computed fairly since they

are already ruled out by Cleve’s original result. That is, we show which finite-domain boolean
functions “imply” the coin-tossing functionality. We provide a simple property (criterion) on the
truth table of a given boolean function. We then show that for every function that satisfies this
property, it holds that the existence of a protocol that fairly computes the given function implies the
existence of a protocol for fair coin-tossing in the presence of a fail-stop adversary, in contradiction
to Cleve’s impossibility result. This implies that the functions that satisfy the property cannot be
computed fairly. The property is very simple, clean and general.

The more challenging and technically interesting part of our work is a proof that the property
is tight. Namely, we show that a function f that does not satisfy the property cannot be used
to construct a fair coin-tossing protocol (in the information theoretic setting). More precisely, we
show that it is impossible to construct a fair two-party coin-tossing protocol, even if the parties are
given access to a trusted party that computes f fairly for them. We prove this impossibility by
showing the existence of an (inefficient) adversary that can bias the outcome with non-negligible
probability. Thus, we prove that it is not possible to toss a coin with information-theoretic security,
when given access to fair computations of f. We stress that this “impossibility” result is actually
a source of optimism, since it may be possible to securely compute such functions with complete
fairness. Indeed, the fair protocols presented in [8] are for functions for which the property does
not hold.!

It is important to note that our proof that functions that do not satisfy the property do not
imply coin tossing is very different to the proof of impossibility by Cleve. Specifically, the intuition
behind the proof by Cleve is that since the parties exchange messages in turn, there must be a
point where one party has more information than the other about the outcome of the coin-tossing
protocol. If that party aborts at this point, then this results in bias. This argument holds since
the parties cannot exchange information simultaneously. In contrast, in our setting, the parties can
exchange information simultaneously via the computation of f. Thus, our proof is conceptually
very different to that of Cleve, and in particular, is not a reduction to the proof by Cleve.

The criterion. Intuitively, the property that we define over the function’s truth table relates to
the question of whether or not it is possible for one party to singlehandedly change the probability
that the output of the function is 1 (or 0) based on how it chooses its input. In order to explain
the criterion, we give two examples of functions that imply coin-tossing, meaning that a fair secure
protocol for computing the function implies a fair secure protocol for coin tossing. We discuss how
each of the examples can be used to toss a coin fairly, and this in turn will help us to explain the
criterion. The functions are given below:

yi | v2 | ys yi | v | vs
T 0 1 1 T 1 0 0
(a) | 100 (b) | 0110
23] 0101 2510101

Consider function (a), and assume that there exists a fair protocol for this function. We show
how to toss a fair coin using a single invocation of the protocol for f. Before doing so, we observe

1We remark that since our impossibility result is information theoretic, there is the possibility that some of the
functions for which the property does not hold do imply coin tossing computationally. In such a case, the impossibility
result of Cleve still applies to them. See more discussion in “open questions” below.

that the output of a single invocation of the function can be expressed by multiplying the truth-
table matrix of the function by probability vectors. Specifically, assume that party P; chooses
input x; with probability p;, for i = 1,2,3 (thus p; + p2 + p3 = 1 since it must choose some input);
likewise, assume that P, chooses input y; with probability ¢;. Now, let My be the “truth table” of
the function, meaning that My[i, j] = f(x;,y;). Then, the output of the invocation of f upon the
inputs chosen by the parties equals 1 with probability exactly (p1, p2,p3) - My - (q1,q2,93)" .

We are now ready to show how to toss a coin using f. First, note that there are two comple-
mentary rows; these are the rows specified by inputs 1 and x. This means that if P, chooses one
of the inputs in {z1, 22} uniformly at random, then no matter what distribution over the inputs
(corrupted) P, uses, the result is a uniformly chosen coin. In order to see this, observe that when we
multiply the vector (3, 3,0) (the distribution over the input of P;) with the matrix My, the result
is the vector (%, %, %) This means that no matter what input P, will choose, or what distribution
over the inputs it may use, the output is 1 with probability 1/2 (formally, the output is 1 with
probability % “q1+ % g2+ % -q3 = % because q1 + g2+ g3 = 1). This means that if P; is honest, then
a corrupted P, cannot bias the output. Likewise, there are also two complementary columns (y;
and ys3), and thus, if P» chooses one of the inputs in {y1,ys} uniformly at random, then no matter
what distribution over the inputs (a possibly corrupted) P uses, the result is a uniform coin.

In contrast, there are no two complementary rows or columns in the function (b). However, if
Py chooses one of the inputs {z1, z2, 3} uniformly at random (i.e., each input with probability one
third), then no matter what distribution P> will use, the output is 1 with probability 1/3. Similarly,
if P, chooses a uniformly random input, then no matter what P, does, the output is 1 with the
same probability. Therefore, a single invocation of the function f in which the honest party chooses
the uniform distribution over its inputs results in a coin that equals 1 with probability exactly %,
irrespective of what the other party inputs. In order to obtain an unbiased coin that equals 1 with
probability % the method of von-Neumann [11] can be used. This method works by having the
parties use the function f to toss two coins. If the resulting coins are different (i.e, 01 or 10), then
they output the result of the first invocation. Otherwise, they run the protocol again. This yields
a coin that equals 1 with probability % since the probability of obtaining 01 equals the probability
of obtaining 10. Thus, conditioned on the results being different, the probability of outputting 0
equals the probability of outputting 1.

The criterion is a simple generalization of the examples shown above. Let f : {x1,..., 2/} X
{y1,...,y¢} — {0,1} be a function, and let My be the truth table representation as described
above. We look for the existence of two probability vectors?, p = (p1,...,Pm), 4 = (q1...,q) such
that p- My and My - q” are both vectors that equal § everywhere, for some 0 < § < 1. Observe
that if such probability vectors exist, then the function implies the coin-tossing functionality as we
described above. Specifically, P; chooses its input according to distribution p, and P» chooses its
inputs according to the distribution q. The result is then a coin that equals 1 with probability J.
Using the method of von-Neumann, this can be used to obtain a uniformly distributed coin. We
conclude:

Theorem 1.1 (informal) Let f: {x1,...,zm} x{y1,...,y¢} = {0,1} be a function that satisfies
the aforementioned criterion. Then, the existence of a protocol for securely computing f with
complete fairness implies the existence of a fair coin tossing protocol.

p = (p1,...,pm) is a probability vector if p; > 0 for every 1 <i < m, and >.7 p; = 1.

An immediate corollary of this theorem is that any such function cannot be securely computed
with complete fairness, or this contradicts the impossibility result of Cleve [4].

As we have mentioned above, the more interesting and technically challenging part of our work
is a proof that the criterion is tight. That is, we prove the following theorem:

Theorem 1.2 (informal) Let f: {z1,...,zm} ¥ {y1,...,ye} — {0,1} be a function that does not
satisfy the aforementioned criterion. Then, there exists an exponential-time adversary that can bias
the outcome of every coin-tossing protocol that uses ideal and fair invocations of f.

This result has a number of ramifications. Most notably, it provides a focus of our attention
for the question of fairness in two-party secure computation. Specifically, the only functions that
can potentially be securely computed with fairness are those for which the property does not hold.
These functions have the property that one of the parties can partially influence the outcome of
the result singlehandedly, a fact that is used inherently in the protocol of [8] for the function with
an embedded XOR. This does not mean that all functions of this type can be fairly computed.
However, it provides a good starting point. In addition, our results define the set of functions for
which Cleve’s impossibility result suffices for proving that they cannot be securely computed with
fairness. Given that no function other than those implying coin tossing has been ruled out since
Cleve’s initial result, understanding exactly what is included in this impossibility is of importance.

On fail-stop adversaries. Our main results above consider the case of malicious adversaries. In
addition, we explore the fail-stop adversary model where the adversary follows the protocol like an
honest party, but can halt early. This model is of interest since the impossibility result of Cleve [4]
for achieving fair coin tossing holds also for fail-stop adversaries. In order to prove theorems
regarding the fail-stop model, we first provide a definition of security with complete fairness for
fail-stop adversaries that follows the real/ideal simulation paradigm. Surprisingly, this turns out
not to be straightforward and we provide two natural formulations that are very different regarding
feasibility. The formulations differ regarding the ideal-world adversary/simulator. The question
that arises is whether or not the simulator is allowed to use a different input to the prescribed
one. In the semi-honest model (which differs only in the fact that the adversary cannot halt early)
the standard formulation is to not allow the simulator to change the prescribed input, whereas in
the malicious model the simulator is always allowed to change the prescribed input. We therefore
define two fail-stop models. In this first, called “fail-stopl”, the simulator is allowed to either send
the trusted party computing the function the prescribed input of the party or an abort symbol L,
but nothing else. In the second, called “fail-stop2”, the simulator may send any input that it wishes
to the trusted party computing the function. (Note, however, that if there was no early abort then
the prescribed input must be used because such an execution is identical to an execution between
two honest parties.)

Observe that in the first model, the honest party is guaranteed to receive the output on the
prescribed inputs, unless it receives abort. In addition, observe that any protocol that is secure in
the presence of malicious adversaries is secure also in the fail-stop2 model. However, this is not
true of the fail-stopl model (this is due to the fact that the simulator in the ideal model for the
case of malicious adversaries is more powerful that in the fail-stop2 ideal model since the former
can send any input whereas the latter can only send the prescribed input or).

We remark that Cleve’s impossibility result holds in both models, since the parties do not have
inputs in the coin-tossing functionality, and therefore there is no difference in the ideal-worlds of

the models in this case. In addition, the protocols of [8] that are secure for malicious adversaries
are secure for fail-stop2 (as mentioned above, this is immediate), but are not secure for fail-stopl.

We show that in the fail-stopl model, it is impossible to securely compute with complete fairness
any function containing an embedded XOR. We show this by constructing a coin-tossing protocol
from any such function, that is secure in the fail-stop model. Thus the only functions that can
potentially be securely computed with fairness are those with no embedded XOR but with an
embedded OR (if a function has neither, then it is trivial and can be computed unconditionally and
fairly); we remark that there are very few functions with this property. We conclude that in the
fail-stopl model, fairness cannot be achieved for almost all non-trivial functions. We remark that [8]
presents secure protocols that achieve complete fairness for functions that have no embedded XOR;
however, they are not secure in the fail-stopl model, as mentioned.

Regarding the fail-stop2 model, we prove an analogous result to Theorem 1.2. In the proof of
Theorem 1.2, the adversary that we construct changes its input in one of the invocations of f and
then continues honestly. Thus it is malicious and not fail-stop2. Nevertheless, we show how the
proof can be modified in order to hold for the fail-stop2 model as well. We then show how we can
modify the proof to hold in the fail-stop2 model as well.

These extensions for fail-stop adversaries deepen our understanding regarding the feasibility
of obtaining fairness. Specifically, any protocol that achieves fairness for any non-trivial function
(or at least any function that has an embedded XOR), must have the property that the simulator
can send any input in the ideal model. Stated differently, the input that is effectively used by
a corrupted party cannot be somehow committed, thereby preventing this behaviour. This also
explains why the protocols of [8] have this property.

Open questions. In this work we provide an almost complete characterization regarding what
functions imply and do not imply coin tossing. Our characterisation is not completely tight since
the impossibility result of Theorem 1.2 only holds in the information-theoretic setting; this is due
to the fact that the adversary needs to carry out inefficient computations. Thus, it is conceivable
that coin tossing can be achieved computationally from some such functions. It is important to
note, however, that any function that does not fulfil our criterion implies oblivious transfer (OT).
Thus, any protocol that uses such a function has access to OT and all that is implied by OT (e.g.,
commitments, zero knowledge, and so on). Thus, any such computational construction would have
to be inherently nonblack-box in some sense. Our work also only considers finite functions (where
the size of the domain is not dependent on the security parameter); extensions to other function
classes, including non-Boolean functions, is also of interest.

The main open question left by our work is to characterize which functions for which the
criterion does not hold can be securely computed with complete fairness. Our work is an important
step to answering this question by providing a clearer focus than was previously known. Observe
that in order to show that a function that does not fulfil the criterion cannot be securely computed
with complete fairness, a new impossibility result must be proven. In particular, it will not be
possible to reduce the impossibility to Cleve [4] since such a function does not imply coin tossing.

2 Definitions and Preliminaries

We let n denote the security parameter. A function p(-) is negligible if for every positive poly-
nomial p(-) and all sufficiently large n it holds that u(n) < 1/p(n). A distribution ensemble

X = {X(a,n)}4epnen is an infinite sequence of random variables indexes by a € D and n € N.
In the context of secure computation, n is the security parameter and D denotes the domain of
the parties’ input. Two distribution ensembles X = {X(a,n)}qepneny and Y = {Y(a,n) }oeD nen

are computationally indistinguishable, denoted X éY, if for every non-uniform polynomial-time-
algorithm D there exists a negligible function p(-) such that for every n and every a € D:

[Pr [D(X(a,n)) = 1] - Pr[D(Y(a,n)) = 1]| < (n)

We consider binary deterministic functions over a finite domain; i.e., functions f : X x Y —
{0,1} where X, Y C {0,1}* are finite sets. Throughout, we will denote X = {x1,..., 2y} and
Y ={vy1,...,ys}, for constants m, ¢ € N.

2.1 Secure Two-Party Computation with Fairness — Malicious Adversaries

We now define what it means for a protocol to be secure with complete fairness. Our definition
follows the standard definition of [2, 5], except for the fact that we require complete fairness even
though we are in the two-party setting. We consider active adversaries (malicious), who may deviate
from the protocol in an arbitrary manner, and static corruptions. Let m be a two party protocol
for computing a function f : X x Y — {0,1} over a finite domain. In this work, we restrict our
attention to functions that return the same output to both parties. We briefly describe the real
execution and the ideal execution.

Execution in the ideal model. An ideal execution involves parties P; and P,, an adversary S
who has corrupted one of the parties, and the trusted party. An ideal execution for the computation
of f proceeds as follows:

Inputs: P; and P» hold inputs ¢ € X, and y € Y, respectively; the adversary S receives the
security parameter 1" and an auxiliary input z.

Send inputs to trusted party: The honest party sends its input to the trusted party. The
corrupted party controlled by & may send any value of its choice. Denote the pair of inputs
sent to the trusted party by (2, 1/).

Trusted party sends outputs: If 2/ ¢ X, the trusted party sets z’ to be the default value z1;
likewise if ¢’ ¢ Y the trusted party sets ' = y1. Next, the trusted party computes f(z',y’)
and sends the result to P; and Ps.

Outputs: The honest party outputs whatever it was sent by the trusted party, the corrupted party
outputs nothing and S outputs an arbitrary function of its view.

We denote by IDEALf s(;)(z,y,n) the random variable consisting of the output of the adversary
and the output of the honest party following an execution in the ideal model as described above.

Execution in the real model. In the real execution, the parties P; and P, interact, where one is
corrupted and therefore controlled by the real-world adversary A. In this case, the adversary A gets
the inputs of the corrupted party and sends all messages on behalf of this party, using an arbitrary
strategy. The honest party follows the instructions of m. Let REAL; 4..y(z,y,n) be the random
variable consisting of the view of the adversary and the output of the honest party, following an
execution of m where P; begins with input x, P, with input y, the adversary has auxiliary input z,
and all parties have security parameter 1”.

Security by emulation. Informally, a real protocol 7 is secure if any “attack” carried out by
a real adversary A on 7 can be carried out by the ideal adversary S in the ideal model. This
is formalized by requiring that S can simulate the real-model outputs while running in the ideal
model.

Definition 2.1 Protocol m securely computes f with complete fairness in the presence of malicious
adversaries if for every non-uniform probabilistic polynomial-time adversary A in the real model,
there exists a mon-uniform probabilistic polynomial-time adversary S in the ideal model such that:

C
{IDEALfvS(Z) (z,y,n) }xeX,er,ze{O,l}*,neN = {REALWA(Z) (@, y,1) }a:eX,er,ze{O,l}*,neN :

Protocol m computes f with statistical security if for every A there exists an adversary S such that
the IDEAL and REAL distributions are statistically close.

Function implication. In the paper, we study whether or not a function f “implies” the coin-
tossing functionality. We now formally define what we mean by “function implication”. Our
formulation uses the notion of a hybrid model, which is a combination of the ideal and real models
described above. Specifically, let f be a function. Then, an execution in the f-hybrid model consists
of real interaction between the parties (like in the real model) and ideal invocations of f (like in
the ideal model). The ideal invocations of f take place via a trusted party that receives inputs
and computes the output of f on those inputs, exactly like in the ideal model. Thus, since in our
ideal model both parties receive the output of f simultaneously (i.e., it is fair), it follows that in
the f-hybrid model, both parties receive the output of f simultaneously. We are now ready for the
definition.

Definition 2.2 Let f: X XY — Z and g : X' xY' — Z' be functions. We say that function f im-
plies function g in the presence of malicious adversaries if there exists a protocol that securely computes
g in the f-hybrid model with complete fairness, in the presence of static malicious adversaries. We
say that f information-theoretically implies g if the above holds with statistical security.

Note that if g can be securely computed with fairness (under some assumption), then every
function f computationally implies g. Thus, this is only of interest for functions g that either
cannot be securely computed with fairness, or for which this fact is not known.

2.2 Coin-Tossing Definitions

The coin-tossing functionality. We define the coin-tossing functionality simply by f(\,\) =
(Uy,U;), where X\ denotes the empty input and U; denotes the uniform distribution over {0, 1}.
That is, the functionality receives no input, chooses a uniformly chosen bit and gives the both
parties the same bit. This yields the following definition:

Definition 2.3 (Coin-Tossing by Simulation) A protocol 7 is a secure coin-tossing protocol via
simulation if it securely computes f with complete fairness in the presence of malicious adversaries.

The above definition provides very strong simulation-based guarantees, which is excellent for
our positive results. However, when proving impossibility, it is preferable to rule out even weaker,
non-simulation based definitions. We now present a weaker definition where the guarantee is that

the honest party outputs an unbiased coin, irrespective of the cheating party’s behaviour. However,
we stress that since our impossibility result only holds with respect to an all-powerful adversary
(as discussed in the introduction), our definition is stronger than above since it requires security in
the presence of any adversary, and not just polynomial-time adversaries.

Notations. Denote by (P, P;) a two party protocol where both parties act honestly. Let
out(P, P») denote the output of parties in an honest execution (if the outputs of the parties is
not consistent, this predicate returns L). For ¢ € {1,2}, let out,(P;, Py) denote the output of
party P/ in an execution of P with Py. In some cases, we also specify the random coins that
the parties use in the execution; (Pi(r1), Pa(r2)) denotes an execution where P; acts honestly and
uses random tape r; and P, acts honestly and uses random tape 7. Let 7(n) be a polynomial that
bounds the number of rounds of the protocol m, and let ¢(n) be an upper bound on the length of
the random tape of the parties. Let Uni denote the uniform distribution over {0,1}°(™) x {0, 1}¢(™),
We are now ready to define a coin-tossing protocol:

Definition 2.4 (information-theoretic coin-tossing protocol) A polynomial-time protocol m =
(Py, P») is an unbiased coin-tossing protocol, if the following hold:

1. Agreement: There exists a negligible function u(-) such that for every n it holds that:

Pr [out1<P1(r1),P2(r2)) ” oth(Pl(rl),Pg(rg)] < uln) .

r1,r2<Uni

2. No bias: For every adversary A there exists a negligible function p(-) such that for every
be {0,1} and every n € N:
1
Pr [out1<P1,A> = b} < 3 +p(n) and Pr [out2<A, P) = b] < - +pn) .

Observe that both requirements together guarantee that two honest parties will output the
same uniformly distributed bit, except with negligible probability. That is, for every b € {0, 1}:

Pr[out(Pi(ry), Pa(r)) = b - 11 < u(n) 1)

r1,r24Uni 2

3 The Criterion

In this section we define the criterion, and explore its properties. We start with the definition of
d-balanced functions.

3.1 ¢-Balanced Functions

A vector p = (p1,...,px) is a probability vector if Zlepi = 1, and for every 1 < i < k it
holds that p; > 0. Let 1, be the all one vector of size k. In addition, for a given function
feodz, o zm}t < {y1, ..,y — {0,1}, let My denote the matrix defined by the truth table of f.
That is, for every 1 <i <m, 1 < j </, it holds that M¢[i, j] = f(xs,y;)-

Informally, a function is balanced if there exist probabilities over the inputs for each party that
determine the probability that the output equals 1, irrespective of what input the other party uses.
Assume that P; chooses its input according to the probability vector (pi,...,pm), meaning that it
uses input x; with probability p;, for every ¢ = 1,...,m, and assume that party P» uses the jth
input y;. Then, the probability that the output equals 1 is obtained by multiplying (p1,...,pm)
with the jth column of M;. Thus, a function is balanced on the left, or with respect to P, if when
multiplying (p1,...,pm) with My the result is a vector with values that are all equal. Formally:

Definition 3.1 Let f : {z1,...,zm} x {y1,...,ye} — {0,1} be a function, and let 0 < §;,62 < 1
be constants. We say that f is d1-left-balanced if there exists a probability vector p = (p1,...,Pm)
such that:

(pl,...,pm)'Mf:51'1g:(51,...,51) .

Likewise, we say that the function f is do-right-balanced if there exists a probability vector q =
(q1,---,qe) such that:

Mf-(ql,...,q@T:éQ-lZ; .

If f is 61-left-balanced and 02-right-balanced, we say that f is (61, 02)-balanced. If 61 = o, then we
say that f is d-balanced, where § = 61 = do. We say that f is strictly é-balanced if 61 = Jo and
0<éd<l.

Note that a function may be do-right-balanced for some 0 < d2 < 1 but not left balanced. For
example, consider the function defined by the truth table My def [(1) (1) 1
balanced for d9 = % by taking q = (%, %, 0). However, it is not left-balanced for any d; because for
every probability vector (p1,p2) = (p,1 — p) it holds that (p1,p2) - Mf = (p,1 —p,1), which is not
balanced for any p. Likewise, a function may be do-right-balanced, but not left balanced.

We now prove a simple but somewhat surprising proposition, stating that if a function is (91, d2)-
balanced, then ¢; and d2 must actually equal each other. Thus, any (d1,d2)-balanced function is
actually d-balanced.

] . This function is right

Proposition 3.2 Let f : {z1,...,xm} X {y1,...,y¢} — {0,1} be a (01, d2)-balanced function for
some constants 0 < §1,09 < 1. Then, §1 = d2, and so f is d-balanced.

Proof: Under the assumption that f is (1, d2)-balanced, we have that there exist probability
vectors p = (p1,...,pm) and q = (qi,...,q¢) such that p- My = §; -1, and My -ql = 6 - 17 .
Observe that since p and q are probability vectors, it follows that for every constant ¢ we have
p-(c-1L)=c-(p-1L) = ¢; likewise (c-1;) - q© = ¢. Thus,

p-Mf-qT=p-(Mf-qT):p-<52-1ﬁ>=52
and
p-My-q' = (p~Mf)'qT=(51-1e)-qT=51,
implying that §; = ds. |

Note that a function can be both do-right-balanced and d5-right-balanced for some dy # §5. For
example, consider the function M, which was defined above. This function is d2-right-balanced

for every 1/2 < & < 1 (by multiplying with the probability vector (1 — d2,1 — dg,282 — 1)T
from the right). Nevertheless, in cases where a function is do-right-balanced for multiple values,
Proposition 3.2 implies that the function cannot be left-balanced for any d;. Likewise, if a function
is d1-left balanced for more than one value of d1, it cannot be right-balanced.

3.2 The Criterion

The criterion for determining whether or not a function implies coin-tossing is simply the question
of whether the function is strictly §-balanced for some §. Formally:

Property 3.3 A function f : {x1,...,2m} X {y1,...,ye} — {0,1} is strictly balanced if it is J-
balanced for some 0 < § < 1.

Observe that if My has a monochromatic row (i.e., there exists an input « such that for all y;, y;
it holds that f(x,y;) = f(x,y;)), then there exists a probability vector p such that p-M;=0-1,
or p- My = 1-1y; likewise for a monochromatic column. Nevertheless, we stress that the existence
of such a row and column does not imply f is strictly balanced since it is required that § be strictly
between 0 and 1, and not equal to either.

3.3 Exploring the §-Balanced Property

In this section we prove some technical lemmas regarding the property that we will need later in
the proof. First, we show that if a function f is not left-balanced for any 0 < § < 1 (resp. not right
balanced), then it is not close to being balanced. More precisely, it seems possible that a function
f can be not d-balanced, but is only negligibly far from being balanced (i.e., there may exist some
probability vector p = p(n) (that depends on the security parameter n) such that all the values in
the vector p - My are at most negligibly far from 9§, for some 0 < 6 < 1). In the following claim,
we show that this situation is impossible. Specifically, we show that if a function is not § balanced,
then there exists some constant ¢ > 0, such that for any probability vector p, there is a distance of
at least ¢ between two values in the vector p - M. This holds also for probability vectors that are
functions of the security parameter n (as can be the case in our setting of secure protocols).

Lemma 3.4 Let f : {z1,...,2m} x {y1,...,y¢} — {0,1} be a function that is not left balanced
for any 0 < 61 < 1 (including 61 = 0,1). Then, there exists a constant ¢ > 0, such that for any
probability vector p, it holds that:

max(él, Ce ,(54) — mjn(&l, ey 5g) >c
7 7
where (81,...,0¢) =p- My, and My is the matriz representation of the function f.

Proof: Let P™ be the set of all probability vectors of size m. That is, P™ C [0, 1]™ (which itself
is a subset of R™), and each vector sums up to one. P™ is a closed and bounded space. Therefore
using the Heine-Borel theorem, P™ is a compact space.

We start by defining a function ¢ : P™ — [0, 1] as follows:

¢(p) = max(p - My) — min-(p - My)

10

Clearly, the function p - My (where My is fixed and p is the variable) is a continuous function.
Moreover, the maximum (resp. minimum) of a continuous function is itself a continuous function.
Therefore, from composition of continuous functions we have that the function ¢ is continuous.
Using the extreme value theorem (a continuous function from a compact space to a subset of the
real numbers attains its maximum and minimum), there exists some probability vector ppi, for
which for all p € P™, ¢(Pmin) < ¢(p). Since f is not d-balanced, pmin - My # d - 1, for any

0<6<1,and s0 ¢(Pmin) > 0. Let ¢ def ¢(Pmin). This implies that for any probability vector p,
we have that ¢(p) > ¢(Pmin) = ¢. That is:

max(d1,...,0p) —min(dy,...,0p) > ¢ (2)

where (61,...,9¢) = p- M;. We have proven this for all probability vectors of size m. Thus, it
holds also for every probability vector p(n) that is a function of n, and for all n’s (this is true since
for every n, p(n) defines a concrete probability vector for which Eq. (2) holds). [|

A similar claim can be stated and proven for the case where f is not right balanced.

0-balance and 1-balanced functions. In our proof that a function that is not strictly-balanced
does not imply the coin-tossing functionality, we deal separately with functions that are 0-balanced
or 1-balanced (since they are balanced, but not strictly balanced). We now prove a property that
will be needed for this case. Specifically, we show that a function f is 1-left-balanced (resp. 0-
left-balanced) if and only if the matrix M contains the all 1 row (resp., the all 0 row). A similar
argument holds for the case where the function is 1-right-balanced (or O-right-balanced) and the
all 1 column (or all 0 column).

Lemma 3.5 Let f: {x1,...,zm} X {y1,...,y¢} — {0,1} be a function. The function f is left-1-
balanced if and only if the matriz M; contains the all one row.

Proof: We first show that if there exists a probability vector p for which p - My = 1,, then
M/ contains the all-one row. Let p be a probability vector for which p - My = 1,. Since p is a
probability vector (meaning that its sum is 1), we have that: (p,1,,) = 1. Denote by C; the ith
column of the matrix My. Since p - My = 1y, it follows that for every i it holds that (p,C;) = 1.
Combining this with the fact that (p,1,,) = 1, we have that (p,1,, — C;) = 0.

Let p = (p1,...,Pm), and C; = (a1,...,am). We have that: Y ;" py- (1 —ax) = 0. As all
values are positive it must be that if py # 0 then a; = 1 (otherwise the result cannot be 0). Since
this is true for any column Cj;, we conclude that for every k such that px # 0, the kth row is the all
one vector. Since p is a probability vector, there exists at least one k such that pi # 0, implying
that there exists an all-one row.

For the other direction, let k be the index of the all one row in the matrix M. Then, clearly
for the probability vector e; (the kth elementary vector, namely, all the indices are zero except
for the kth index which equals 1), the product e - My = (1,...,1) = 1,,, and so the matrix is
left-1-balanced. [|

Using Proposition 3.2, we conclude that if a function f is 1-left-balanced but not left-balanced
for any other 41, then it is either 1-right-balanced as well, or not right-balanced for any 0 < §, < 1.
This observation will be used in the proof.

11

4 Strictly-Balanced Functions Imply Coin Tossing

In this section, we show that any function f that is strictly J-balanced can be used to fairly toss
a coin. Intuitively, this follows from the well known method of Von Neumann [11] for obtaining
an unbiased coin toss from a biased one. Specifically, given a coin that is heads with probability €
and tails with probability 1 — e, Von Neumann showed that you can toss a coin that is heads with
probability exactly 1/2 by tossing the coin twice in each phase, and stopping the first time that the
pair is either heads-tails or tails-heads. Then, the parties output heads if the pair is heads-tails,
and otherwise they output tails. This gives an unbiased coin because the probability of heads-tails
equals the probability of tails-heads (namely, both probabilities equal € - (1 — €)). Now, since the
function f is strictly d-balanced it holds that if party P; chooses its input via the probability vector
(p1,-..,pm) then the output will equal 1 with probability 0, irrespective of what input is used by
Py; likewise if Py chooses its input via (qi,...,q¢) then the output will be 1 with probability ¢§
irrespective of what P} does. This yields a coin that equals 1 with probability § and thus Von
Neumann’s method can be applied to securely implement the coin-tossing functionality f defined
in Section 2.2. We stress that if one of the parties aborts early and refuses to participate, then the
other party proceeds by itself (essentially, tossing a coin with probability ¢ until it concludes). We
have the following theorem:

Theorem 4.1 Let f:{x1,...,xm} x{y1,...,ye} = {0,1} be a strictly-balanced function for some
constant 0 < § < 1, as in Property 3.3. Then, [information-theoretically and computationally
implies the coin-tossing functionality f< with malicious adversaries.

Proof Sketch: The proof of this theorem follows from the aforementioned intuition, and is quite
straightforward. We therefore just sketch the details here. First, we define a d-biased coin tossing
functionality that outputs a coin to both parties that equals 1 with probability § and equals 0 with
probability 1 —§. As we have described, this functionality can be securely computed using a single
invocation of f, where the parties P; and P, choose their inputs via the probability vectors p and
q, respectively, that are guaranteed to exist by Property 3.3. The simulation of this protocol is
trivial since neither party can do anything to change the probability of the output of the call to f
being 1, and this probability is exactly the probability that the coin tossing functionality outputs 1.
Note that if one of the parties does not participate at all (i.e., sends no input), then by the security
definition of fairness the honest party still receives output and so this is the same as above. That
is, if one of the parties does not participate, then the other essentially continues with the protocol
by itself until either 01 or 10 is obtained.

Next, we obtain a fair unbiased coin toss by having the parties invoke the §-biased coin tossing
functionality twice and repeating until two different coins are obtained. When, this happens they
output the result of the first coin in the two coin tosses. If they do not terminate within ﬁ
repetitions, then they output L and halt. Since the probability that they terminate in any given
attempt is 0(1 —§) + (1 —)6 = 26(1 — 9) (because they halt after receiving either 10 or 01), it
follows that they output L with probability only

(1 —25(1 - 5))WL“” <em

which is negligible. The simulator works as follows. It receives the bit b € {0,1} from the trusted
party computing the unbiased coin tossing functionality, and then runs the J-biased coin tossing

12

functionality like in the protocol playing the trusted party computing f and giving the corrupted
party the expected outputs, until the first pair with different coins is received (or until ==

26(1—3

attempts were made). When this happens, the simulator hands the adversary the outputs o% th()e
d-biased coin tossing that the corrupted party receives to be b and then 1—b (and thus the output is
supposed to be b). Since the probability of receiving b and then 1 — b is the same as the probability
of receiving 1 — b and then b, this view generated by the simulator is identical to that seen by the
adversary in a real execution. The only difference between the real and ideal distributions is if too
many attempts are made, since in the former case the honest party outputs L whereas in the latter
case it always outputs a bit. This completes the proof. [|

Application to fairness. Cleve [4] showed that there does not exist a protocol that securely
computes the fair coin-tossing functionality in the plain model. Since any strictly-balanced function
f implies the coin-tossing functionality, a protocol for f implies the existence of a protocol for coin-
tossing. We therefore conclude:

Corollary 4.2 Let f: {x1,...,zm} X {y1,...,ye} — {0,1} be a strictly-balanced function. Then,
there does not exist a protocol that securely computes f with fairness.

5 Unbalanced Functions Do Not Information-Theoretically Imply
Coin Tossing

We now show that any function f that is not strictly-balanced (for all d) does not information-
theoretically imply the coin-tossing functionality. Stated differently, there does not exist a protocol
for fairly tossing an unbiased coin in the f-hybrid model, with statistical security. Observe that
in the f-hybrid model, it is possible for the parties to simultaneously exchange information, in
some sense, since both parties receive output from calls to f at the same time. Thus, Cleve-type
arguments [4] that are based on the fact that one party must know more than the other party
at some point do not hold. We prove our result by showing that for every protocol there exists
an unbounded malicious adversary that can bias the result. Our unbounded adversary needs to
compute probabilities, which can actually be approximated given an N'P-oracle. Thus, it is possible
to interpret our technical result also as a black-box separation, if desired.

As we have mentioned in the introduction, although we prove an “impossibility result” here,
the implication is the opposite. Specifically, our proof that an unbalanced® f cannot be used to
toss an unbiased coin implies that it may be possible to securely compute such functions with
fairness. Indeed, the functions that were shown to be securely computable with fairness in [8] are
unbalanced.

Recall that a function is not strictly balanced if is not é-balanced for any 0 < § < 1. We treat
the case that the function is not d-balanced at all separately from the case that it is d-balanced
but for § = 0 or 6 = 1. In the proof we show that in both of these cases, such a function cannot be
used to construct a fair coin tossing protocol.

In the f-hybrid model, the parties may invoke the function f in two different “directions”.
Specifically, in some of the invocations P; selects the first input of f (i.e., x) and P, selects the

3Note, that the name unbalanced is a bit misleading as the complement of not being strictly balanced also includes
being 1 or 0-balanced.

13

second input of f (i.e., y), while in other invocation the roles may be reversed (with P; selecting the
y input and Ps selecting the x input). The question of which party plays which role is determined
by the protocol. For convenience, we assume that P; always selects the first input, and P» always
selects the second input, but the parties have access to two ideal functions f and f7. Thus, calls
to f in the protocol where P selects the second input and P; selects the first input are modeled
by a call to f7 where P; selects the first input and Py selects the second input.

Theorem 5.1 Let f:{x1,...,xm}x{y1,...,y¢} — {0,1} be a function that is not left-balanced,
for any 0 < 6, < 1. Then, f does not information-theoretically imply the coin-tossing functionality
with security in the presence of malicious adversaries.

Before proceeding to the proof, we provide high level intuition. We begin by observing that if
f does not contain an embedded OR (i.e., inputs xg,x1,yo,y1 such that f(xo,y0) = f(x1,90) =
f(xo,y1) # f(x1,y1)) or an embedded XOR (i.e., inputs xg, 1, Yo, y1 such that f(zo,v0) = f(x1,y1)
f(xo,y1) = f(x1,90)), then it is trivial and can be computed by simply having one party send
the output to the other. This is because such a function depends only on the input of one party.
Thus, by [4], it is impossible to fairly toss an unbiased coin in the f-hybrid model, since this is the
same as fairly tossing an unbiased coin in the plain model. Thus, we consider only functions f that
have an embedded OR. or an embedded XOR.

In addition, we can consider coin-tossing protocols that consist of calls to f and f only, and
no other messages. This is due to the fact that we can assume that any protocol consists of rounds,
where each round is either an invocation of f (or f7) or a message consisting of a single bit being
sent from one party to the other. Since f has an embedded OR or an embedded XOR, messages of
a single bit can be sent by invoking f. This is because in both cases there exist inputs xg, 1, Yo, y1
such that f(z1,y0) # f(z1,y1) and f(zo,y1) # f(x1,y1). Thus, in order for P, to send P; a bit,
the protocol can instruct the parties to invoke f where P; always inputs x1, and P» inputs yg or
y1 depending on the bit that it wishes to send; likewise for P;. Thus, any non-trivial function f
enables “bit transmission” in the above sense. Observe that if one of the parties is malicious and
uses an incorrect input, then this simply corresponds to sending an incorrect bit in the original
protocol. Therefore, we can assume that a protocol consists of rounds, where in each round there
is an invocation of f (where P; selects the x input and Py selects the y input) followed by an
invocation of fT (where here Pj selects the y input and P, selects the x input).

Intuition. The fact that f is not balanced implies that in any single invocation of f, one party
is able to have some effect on the output by choosing its input appropriately. That is, if the
function is non-balanced on the left then the party on the right can use an input not according to
the prescribed distribution in the protocol, and this will change the probability of the output of
the invocation being 1 (for example). However, it may be possible that the ability to somewhat
influence the output in individual invocations is not sufficient to bias the overall computation, due
to the way that the function calls are composed. Thus, in the proof we need to show that an
adversary is in fact capable of biasing the overall protocol. We demonstrate this by showing that
there exist crucial invocations where the ability to bias the outcome in these invocation suffice
for biasing the overall outcome. Then, we show that such invocations are always reached in any
execution of the protocol, and that the adversary can (inefficiently) detect when such an invocation
has been reached and can (inefficiently) compute which input it needs to use in that invocation in
order to bias the output.

14

We prove the above by considering the execution tree of the protocol, which is comprised of calls
to f and the flow of the computation based on the output of f in each invocation (i.e., the parties
proceed left in the tree if the output of f in this invocation is 0; and right otherwise). Observe that
a path from the root of the tree to a leaf-node represents a protocol execution. We show that in
every path from the root to a leaf, there exists at least one node with the property that influencing
the output of the single invocation of that node yields a bias in the final outcome. In addition, we
describe the strategy of the adversary to detect such a node and choose its input for that node in
order to obtain a bias.

In more detail, for every node v in the execution tree of the protocol, the adversary calculates
(in an inefficient manner) the probability that the output of the computation equals 1, assuming
that v is reached in the execution. Observe that the probability of obtaining 1 at the root node is
at most negligibly far from 1/2 (since it is a secure coin-tossing protocol), and that the probability
of obtaining 1 at a leaf node is either 1 or 0, depending on whether the output at the given leaf
is 1 or 0 (the way that we define the tree is such that the output is fully determined by the leaf).
Using a pigeon-hole like argument, we show that on every path from the root to a leaf there must
be at least one node where the probability of outputting a 1 given that this node is reached is
significantly different than the probability of outputting 1 given that the node’s child on the path
is reached. We further show that this difference implies that the two children of the given node
yield significantly different probabilities of outputting 1 (since the probability of outputting 1 at a
node v is the weighted-average of outputting 1 at the children, based on the probability of reaching
each child according to the protocol). This implies that in every protocol execution, there exists an
invocation of f where the probability of outputting 1 in the entire protocol is significantly different
if the output of this invocation of f is 0 or 1. Since f is not balanced, it follows that for any
distribution used by the honest party to choose its input for this invocation, there exist two inputs
that the corrupted party can use that result in significantly different probabilities of obtaining 1.
In particular, at least one of these probabilities is significantly different from the probability of
obtaining 1 in this call when both parties are honest and follow the protocol.* Thus, the adversary
can cause the output of the entire execution to equal 1 with probability significantly different to
1/2, which is the probability when both parties play honestly.

The above description does not deal with question of whether the output will be biased towards
0 or 1. In fact we design two adversaries, one that tries to bias the output towards 0 and the other
towards 1. Then we show that at least one of these adversaries will be successful (see Footnote 4
for an explanation as to why only one of the adversaries may be successful). The two adversaries
are similar and very simple. They search for the node on the path of the execution where the bias
can be created and there make their move. In all nodes until and after that node they behave
honestly (i.e., choose inputs for the invocations of f according to the input distribution specified
by the protocol). We analyze the success of the adversaries and show that at least one of them
biases the output with noticeable probability.

Proof of Theorem 5.1: Assume that 7 is a coin tossing protocol that implements the coin-
tossing functionality in the f-hybrid model. That is, when both parties are honest, they output the

4Observe that one of these probabilities may be the same as the probability of obtaining 1 in an honest execution,
in which case choosing that input will not result in any bias. Thus, the adversary may be able to bias the output of
the entire protocol towards 1 or may be able to bias the output of the entire protocol towards 0, but not necessarily
both.

15

same uniformly distributed bit, except with negligible probability. We construct an exponential-
time malicious adversary who biases the outcome, in contradiction to the assumption that 7 is a
fair coin-tossing protocol.

As described above we assume that 7 consists only of invocations of f and f7. Let r(n) be the
number of rounds in 7 and let ¢(n) be an upper bound on the number of random coins used by each
party in the protocol. We assume that the function is not left-balanced and therefore construct the
adversary A that controls Ps.

Simplifying assumptions. We first prove the theorem under three simplifying assumptions
regarding the protocol m; we show how to remove these assumptions later. The first assumption is
that the protocol m only makes calls to f and not to f7 (i.e., in all calls to f, party P sends 2 and
party P, sends y and the output is f(z,y)). The second assumption is that honest parties always
agree on the same output bit (i.e., the probability of them outputting different coins or aborting
is zero). The third assumption is that the output of the parties is a deterministic function of the
public transcript of the protocol alone.

The transcript tree and execution probabilities. We define a binary tree 7 of depth r(n)
that represents the transcript of the execution. Each node in the tree indicates an invocation of f,
and the left and right edges from a node indicate invocations of f where the output was 0 and 1,
respectively.

We define the information that is saved in the internal nodes and leaves. Given a pair of random
tapes (71, 72) used by Py and Ps, respectively, it is possible to generate a full transcript of an honest
execution of the protocol that contains the inputs that are sent to f in each round by both parties,
the output of f in that round and the output of the parties at the end of the execution. Thus, we
write on each (internal) node v € 7T all the pairs of random tapes that reach this node, and the
inputs that are sent to the trusted party for the associated call to f for those given tapes.

The leaves of the tree contain the output of the execution. Note that by the second and third
simplifying assumption on protocol 7 described above, each leaf determines a single output (for
both parties and for all random tapes reaching the leaf).

Given the distribution of the transcripts on the nodes of the tree we define two values for each
node v € 7. The first value which we denote by p, is the probability that the parties output 1 at the
end of the computation conditioned on the execution reaching the node v. This is simply computed
as the ratio between the number of random tapes that reach the node v and result in an output
1 and all random tapes that reach v. The second value, denoted by ~?, is the probability that the
output of the invocation of f in this node is 1 (when both parties play honestly). This is calculated
by computing the probabilities over the inputs of the parties in the invocation, as specified by the
protocol and based on the random tapes in the node v. Denote the distributions over the inputs
of P and P, in the leaf by (of,...,a;,) and (87,...,3)), respectively (i.e., in leaf v, P; chooses x;
with probability o, and P, chooses y; with probability ﬁ;) It holds that the probability that the
parties receive 1 as output in the invocation of f at node v is v* = (a%,...,a%,)-Ms- (6}, ..., 80)T.
The adversaries. Let e =¢€(n) = %, where p(-) is from Eq. (1); i.e., the probability that

Py and P output 1 (or 0) is 1/2 + p(n) (this means that p, where v is the root node of the tree
T equals 1/2 £ p(n)). Denote the two children of v € T by left(v) and right(v) and they are
reached by output 0 and 1 in the call to f resp. We construct two adversaries controlling P»: one

16

which attempts to bias the outcome towards 1 and the other which attempts to bias the outcome
towards 0. The adversaries search for a node v € T for which the difference in the probability
of outputting 1 at v and the probability of outputting 1 at one of its children is at least e. The
adversaries behave honestly until they reach such a node, at which point they have the opportunity
to bias the outcome by deviating from the protocol in the invocation at this node. In the remaining
nodes they again act honestly.

Adversary A' controlling P, (biasing towards 1):

Let v be the current node in the tree 7 (starting at the root) and o’ = (af,...,)
be the input distribution for P; (as explained above, this can be computed). Compute
(61,...,07) = @” - My. Let i and k be indices such that J; = maxi<j<,{d7} and
d; = miny<j<,{d7}. In the first node v in the execution for which |p,ign¢(s) — pv| > € or
|Piefe(v) — Pu| 2 €, act according to the following:

L. I pright(v) = Pv + € O Piefi(v) < Py — € then send input y; in this invocation of f
(this increases the probability of reaching node right(v) because the probability of
obtaining 1 in this invocation is 6} which is maximal).

2. If prefi(v) = Pv + € O Prighi(v) < Py — € then send input yj in this invocation of f
(this increases the probability of reaching node left(v) because the probability of
obtaining 1 in this invocation is ¢} which is minimal).

In all other nodes act honestly.

The adversary A° controlling P, (biasing towards 0): The adversary is the same
as Al with the following differences:

o Step 1: If prighi(v) = Pvt+€OT Pefi(v) < py—€: then send input yy in this invocation
of f (where 0} is minimal).

o Step 2: If pieyi(v) = Pv+E€OT Prigni(v) < pv—€: then send input y; in this invocation
of f (where 6} is maximal).

First, we show that in any honest execution there exists a node v for which |p, — prigns(v)l > €
or |p, — pleft(v)\ > ¢e. Then, we show that once the execution reaches such a node v, one of the
adversaries succeeds in biasing the outcome.

The set V. LetV be the set of all nodes v in 7 that have two children, for which [py —p,ighe(v)| > €
or |p, — pleft(v)\ > ¢, and v is the first node in the path between the root and v that satisfies the
condition. In order to see that in any execution, the adversaries reachs such a node, we show
that for every pair of random coins (r1,72) € Uni there exists a node v € V such that an honest
execution with (ry,rs) reaches v. Fix (r1,r2). Note that any pair of random coins define a unique

path ui, ..., u,(,) from the root u; to a leaf u, ().
We start with the case where u,.(,,) defines output 1. From Eq. (1), we have that p,, < 1/2+pu(n).
In addition, Pu,(,, = 1 since the output is 1. Therefore, we have that:

Z:g;)_l (pui+1 _pui) _ Duyiny — Pus > 1- % - M('fl) % — M(TL)
r(n) rin) — rn) r(n)

17

Thus, the average of differences is greater than or equal to €, which means that there exists an ¢ such
that py,,, — pu; > €. Moreover, this u; must have two children since otherwise p,, = pu,,,. Since
uir1 € {right(u;),left(u;)}, we conclude that there exists a node u; such that either p;gns(u,) >
Pu; + € Or Pleft(u;) 2 Pu; T €.

The second case is where u,(,) defines output 0, and p,, > 1/2 — p(n). Similarly to the above,
we have that:

Zfﬁ)_l (pui“ _pU¢) _ Puyy — Pu < 0— % +p(n) B
r(n) r(n) - r(n) -C

which implies that there exists an 4 such that py,,, — py, < —e. Moreover, this u; must have two
children, otherwise we must have that p,, = py,.,. Since u;y1 € {right(u;),left(u;)}, we conclude
that there exists a node u; such that either p.;gni(u;) < Pu; — € O Prefi(u;) < Pu; — €

We conclude that in every execution of the protocol, the parties reach a node v € V.

We know that in every node v € V, the difference between pjcry(,) O Prighi(v) and py is large. We
now show that this implies that the difference between p,.;gps(v) and piepi(y) themselves is large. This
is the basis for the ability of the adversary to bias the output. Let v € V be a fixed node, let ¥ be
the distribution over the input of the honest P; to f at node v, and let 8% be the distribution over
the input of the honest P, to f at node v (as described above, these distributions over the inputs
are fully defined and inefficiently computable). Let v = a” - My - 3 be the probability that the
honest parties obtain output 1 in this node (when sending inputs according to the distributions).
By the definition of p, and ", we have that:

Po = ’71) " Pright(v) + (1 - ’Yv) " Pleft(v)-

This is because with probability ¥ the honest parties proceed to right(v) and with probability
1 — 4" they proceed to left(v). Thus, the probability of outputting 1 at v is as above. We now
prove:

Claim 5.2 For every node v € V:
e 0 <y <1.

e Only one of the following holds: |py — Pright(v)| = € OT [Py — Prefe(v)| = € but not both.

prm'ght(v) > pv + €, then Pright(v) > Pleft(v) +e.

prleft(v) > pv + €, then Pleft(v) > Pright(v) Tt €.
i prright(v) < pv — €, then Pright(v) < Pleft(v) — €
i prleft(v) < py — €, then Pleft(v) < Pright(v) — €.

Proof: Recall that the probability vV can be computed as the number of random tapes that reach
the right child of v over the number of random tapes that are consistent with v. Therefore, if
~¥ = 0, it means that no execution reaches the right child of v. Similarly, in case v¥ = 1, we have
that there is no left child of v. In any case, both cases are in contradiction the the fact that v € V,
which means above the other properties, that the node v has two children.

18

For the second item, assume that both |py, — prign(v)| > € and |py — Prefi(v)l = € hold simulta-
neously. This means that:

- (pv - pright(v))
- (pv - pleft(v))

€< py — Pright(v)

<
< e<py — Dleft(v)

When we multiply the first equation by v” and the second by 1 —~" (both are not zero, according
to the first item), we obtain that:

v

_7v : (pv - pright(v)) < V€ < 7v : (pv - pright(v))
_(1 - ’YU) ’ (pv _pleft(v)) < (1 - 71}) e < (- ,yv) ’ (pv _pleft(v)>
Summing the above two equations together, and recalling that p, = 7" - pright(v) + (1 =) - Piefe(v),
we have that:
O0=-py+py<e<py—py=0

and so € = 0, in contradiction to the fact that: ¢ = % > 0.

For the third item, assume that p,;gns () > py + €. We have:

Pright(v) > Dy te

Pright(v) > ’Yv " Pright(v) + (1 - /YU) " Dleft(v) te
(1 - 7’0) * Pright(v) > (1 - ’Yv) * Pleft(v) +e

Pright(v) > Pleft(v) + 1— v > Pleft(v) +e

where the last inequality holds since 0 < 1 —~% < 1.
The other items are derived through similar computations. [|

Analyzing the adversary’s success. We are now ready to show that at least one of the adver-
saries A' or A° succeeds in biasing the output.

We start with some notation. For a given node v and a bit b € {0, 1}, denote by outf’v(Pl7 Py)
the probability that an honest party P outputs the bit b in an execution with P3, conditioned on
the event that the execution reached node v. Note that in an execution between two honest parties

it holds that :

OUt\ly(Pla PZ) = Pr OUt<P1 (Tl)v P2(T2)> = 1| v isreached| =p, = 7U'pright(v)+(1_7v)'pleft(v)'

(r1,r2)«Uni

Similarly, out?v(Pl,PQ) =1 — p,. Note also that when v is the root node, out‘lv(Pl,Pg) =1+ pun).

Let v € V. We consider two executions: in both executions P; is honest, while in the first
execution Py is controlled by A!, and in the second execution P is controlled by .A°. We compute
the probabilities out‘lv(Pl, Al) and out?y(Pl, A®) and compare these to the output when both parties
are honest. Specifically, we show that for every v € V there is a difference between the output
probability at v when honest parties run, and when an honest P; runs with a dishonest P, (we
actually consider the sum of the differences, and will later use this to show that at least one of A%
and A! must succeed in biasing).

19

Claim 5.3 There exists a constant ¢ > 0 such that for every node v € V it holds that:
<out0 (P, A%) — out? (P, P)) + <out1 (P, AY) — out! (P, P)) >cee
AGES) o\ £ 1,42 AR S) o\ £ 1,42 =

Proof: Let v € V and denote dy,,, = maxi<;<¢{d;} and dp;, = minj<;j<¢{d;}, where 67,...,57
are as computed by the adversaries. Since v € V, either prigni) = Pv + € Diefi(v) = Do + €
Pright(V) < py — € or Dieft(v) < Pv — €. We consider two cases:

Case 1 — Pright(v) = Pv + € OF Plefi(v) < Pv — € In these cases, the adversary Al sends
y; for which §; = 69, while the adversary A° sends yj, for which &, = 6V .
We now compute the difference between the probabilities that P; outputs 1 when it interacts
with and honest P, and with the adversary .A', where in both executions we assume that v is

reached.?
out‘lv(Pl, A — outllv(Pl, Py)
T [out(Pl(rl),Al(rg»zl‘v]— Pr [out(Pl(rl),Pg(m»:l‘v]

(r1,r2)«Uni (r1,r2)«Uni

Onax * Pright(w) + (1= 00a) Prefew)y — (V" Prightw) + (1 =) * Diesr(v))
= (Omax = V") " Pright(v) T (V' = Omax) * Plefi(v)
(Othax —
(6n

-) (pm'ght(v) _pleft(v))
> max) t€.
where the last inequality follows from Claim 5.2 which states that p,igni(v) — Piefi(v) = € in this case.
Observe that when %, = 7", then there is no bias (i.e., the probability of obtaining output 1 may
be the same as when P» is honest).

In a similar way, we compute the difference between the probabilities that P; outputs 0 when it
interacts with and honest P», and with the adversary .A°, conditioned on the event that the node

v € V is reached. We have

out?v (Pl, AO) — out?v (Pl, PQ)

- (rl,rf)f—uni[OUt<P1(T1)’AO(TQ» =0) U} B (7’1,7“B£—Uni[OUt<P1(T1)’P2(T2)> =0 ‘ v}
- (o Bl Ao < []) = (1= p oo pie <1 |2)
el P =1 [< e fowtri 4% =1

= (’7 " Pright(v) (1 - 7’0) *Pleft(v) - (6fnin " Pright(v) + (1 - 5;1)1in) ' pleft(v))

(7 - mm) (pmght() pleft(v))
> (,Yv m1n>'6

where the last equality it true from Claim 5.2. Once again, when §°. = ~" then there is no bias.

min

®Note that when we write out(P;(r1), A" (r2)) we mean the output of P; when interacting with A" with respective
random tapes 71 and rp. Since A' behaves according to the honest strategy except in the node v € V, we have that
A! uses the coins 7o just like an honest P, except in node v. Moreover, when conditioning on the event that the node
v is reached, we just write “v” for short, instead of “v is reached”.

20

The crucial observation is now that since f is not ¢ balanced, it holds that 07, # d5.« &

thus either oy, # v or ;. # 7¥ or both. We can compute the overall bias of the adversarles as:

(out?v(Pl, A%) — out], (P, PQ)) + (out|1v(P1, AY) — out], (P, p2))
> (511;1ax -) €+ (5fn1n) €= (5§1ax - 611;11n)

Now, by the fact that f is not left-balanced, Claim 3.4 states that there exists a constant ¢ > 0
such that for all probability vectors p: max;(p - My) — min;(p - M¢) > c. In particular, this means

that 0}, — 01;, = ¢. Therefore, we can conclude that:

(out?v(Pl, A%) — out), (P, Pg)) + (outllv(Pl, AY) — out, (P, Pg)) (60— Ve>c-e

Case 2 — piest(v) = Pv + € OF Pright(v) < Pv — € In this case, A sends y;, for which
Sk = 6%, and A” sends y; for which §; = §2,.. Using a similar calculation to the previous case,
and using Claim 5.2 which states that pei(v) — Pright(v) = € in this case, we have:

OUt|1U(P1, .Al) — out‘lv(Pl, PQ)

e _[out<P1(r1),A1(r2)> ~1 (v] — Pr Jout(Pi(ry), Py(ra)) = 1 ‘ v]
(r1,m2)<=Uni (r1,r2)«Uni

= 6mm pmght('u) + (1 - (ﬁ)nin) *Pleft(v) — er " Pright(v) — (1 - '71)) * Pleft(v)

= (7"~ 6min) (ple ft(v) — Pright(v))

Z (mln) €

and
outp, (P1, A%) — out, (P1, P2)
= Pr [out(Pl(n),AO) =1 ’ v} - Pr out(Py(r1), Pa(re)) =1 ’ v]

(r1,r2)«Uni (r1,r2)«Uni
= 7" Pright(v) + (L =) Dief(v) = Omax * Pright(v) — (1 = Omax) * Plest(v)
= (Ohax — ") - (Preft(w) — Pright(v))
> (0pax — ") €.

max

Therefore, the overall bias is:
(outfv(Pl, A%) — out), (P, P2)) + (outﬂv(Pl, AY) — outh, (P, PQ))
> (5111)1ax - ’YU) e+ (6gnn) €= (511;1.&)(5311n) :

Again, by the fact that f is not left-balanced, Claim 3.4 implies that for the same constant
¢ > 0 as above it holds:

(out?v(Pl, .AO) — out|0v(P1, Pg)) + (out|1v(P1, .Al) — out|1v(P1, Pg)) (51; — 0V

max min

)-e>c-e

This completes the proof of Claim 5.3. [|

21

Computing the overall bias. Since in any execution exactly one node v € V is reached, and
since in any execution a node in V is reached, we have that for any party Py (in particular, an
honest P», the adversary A" or the adversary A!), and for every bit b € {0,1}:

Pr [out(Pi(r1), Py(re)) =0b] = ZPr [v is reached in (Pi(r1), P (r2))] -outfv(Pl(rl), P (rq))

(r1,r2)«Uni =y,

We denote the probability above by out®(Py, Py).
Note that since both adversaries act honestly until they reach a node v € V, the executions
(Py, Py) (where Py € {Py, A', A"}) are the same up to the point when they reach the node v, and

thus:

Pr [vis reached in (Pi(r1), P2(12))] = Pr [vis reached in (Pi(r1), Al (r2))]
(r1,r2)<=Uni (r1,r2)«Uni
= Pr [v is reached in (P;(ry), AO(T2)>]
(r1,r2)«Uni

we therefore denote this equal value as reach,. Moreover, since any execution reaches exactly one
node v € V, we have:) reach, = 1.

Combining the above, we conclude that:
(out' (Pr, AY) — out! (P, P»)) + (out®(Py, A') — out?(Py, %))

z;reachv . [(outﬂv(Pl, Al) — out|1v(P1, PQ)) + (out?v(Pl,AO) — out?v(Pl, P2)):|

> Zreachv‘(c-e):c-e

veY

where the last inequality is true by Claim 5.3. Since 7 is a coin-tossing protocol, by Eq. (1) we

have that:))
out’(Py, Py) — 2‘ out! (P, Py) — 2) < u(n) .

Thus, we have that:

<out1(P1,A1) - ;) + (outO(Pl,AO) - ;) > c-e—2u(n).

Since c is a constant, and € = €(n) = %, we have that the sum of the biases is non-negligible,

and therefore at least one of A" and A' succeeds in biasing the output of the coin-tossing protocol
when running with an honest P;.

The general case — removing the simplifying assumptions. In our proof above, we relied
on three simplifying assumptions regarding the coin-tossing protocol:

e The hybrid model allows invocations of the function f only, and not invocations of f7.
e Honest parties agree on the same output with probability 1.

e The leaves of the tree fully define the output. Namely, the output of the parties are a
deterministic function of the transcript of the protocol.

22

The first item is solved as follows. Instead of considering protocols where the only invocations
are to the function f, we consider protocols where each round consists of an invocation of f, followed
by an invocation of f7. In the execution tree, each node at an even level indicates an invocation
of f, whereas nodes at an odd level indicate executions of f7. The variables 7", left(v), right(v)
are defined similarly as before.

As the analysis shows, at any execution there is a “jump” and there exists a node v for which
‘pright(y) — po| or ’pleft(v) — py| is greater than e. This holds also for our case as well, where the
tree consists nodes of f7 and f. It is easy to see that in the case that all the nodes v are in fact
invocations of f, the same adversaries as before and the same analysis hold, and the adversaries
can bias the result. However, in general, the “jump” may occur on executions of f7. However, in
such a case, the adversaries that we have presented control the “z-inputs” and therefore cannot
cheat (since it may be that the function is not left-balanced but is right-balanced). Indeed, if all
the “jumps” in the protocol are in nodes which are executions of f7, the adversaries that we have
proposed may not be able to bias the result at all.

We solve this problem by “splitting” the adversary A! into two adversaries: A} which controls
Py and adversary A} which controls P (similarly, we “split” A° into A%, .43 who control P; and
Py, respectively.). The adversary A3 “attacks” the protocol exactly as A, with the only restriction
that it checks that the node v (for which there is a “jump”) is an invocation of f. In case where v is
an invocation of f7, the adversary Al controls the inputs of x and therefore cannot attack at this
point. However, the adversary Al controls the inputs of y at that node, and can perform the same
attack as A!. Overall, the adversary AL only attacks the protocol on nodes v which are invocations
of f, whereas Al attacks the protocol on nodes v which are invocations of f7. The overall bias of
the two adversaries (A1,.43) in a protocol where the invocations are of f, f7 is exactly the same as
the overall bias of the adversary .A' in a protocol where all the invocations are of the function f.
Similarly, we split A° into (AY,.43), and the overall bias of A" is essentially the same as the overall
bias of (AY,.49). Since the sum of the biases of (A%, A!) is non-negligible, the sum of the biases of
(A9, AL, A9, AL) is non-negligible as well.

The second item can be dealt with in a straightforward manner. By the requirement on a
secure coin-tossing function, the probability that two honest parties output different bits is at most
negligible. In executions that reach leaves for which this event occurs, we can just assume that the
adversary fails. Since such executions happen with negligible probability, this reduces the success
probability of the adversary by at most a negligible amount.

We now turn to the third item. First we explain in what situations the general case might
occur. Consider the case where there are two sets of random tapes that reach the same final node,
where on one set the parties output 0 and on the other they output 1. This can happen if the
final output is based on parties’ full views, including their random tapes, rather than on the public
transcript of the computation alone.

We now show that any protocol can be converted into a protocol where the transcript fully
determines the output of both parties. Given a coin-tossing protocol m we build a protocol 7’ as
follows: The parties invoke the protocol m and at the end of the computation, each party sends its
random tape to the other party. In the protocol 7/, clearly each leaf fully determines the outputs of
the parties, since each parties’ entire view is in the public transcript. Furthermore, the requirement
that two honest parties output the same bit except with negligible probability clearly holds also
for 7/. Finally, we claim that if there exists an adversary A’ who succeeds in biasing the output
of an honest party with non-negligible probability in 7/, then we can construct an adversary A

23

who succeeds in biasing the output of an honest party with non-negligible probability in 7. The
adversary A simply invokes A’, and aborts at the point where it is supposed to send its random
tape. Since the output of the honest party is determined after the invocation of the protocol 7 and
before the random tapes are sent as part of 7/, the output of the honest party when interacting
with A is identical to its output when interacting with A’. Thus, A also succeeds to bias the output
of the honest party in 7.

Given the above, we can transform a general 7 into 7’ for which the third simplifying assumption
holds. Then, we can build the adversaries as proven for 7/, under this assumption. By what we
have just shown, this implies the existence of an adversary who can bias the output of the honest
party in 7, as required. This concludes the proof. [|

Impossibility for 0 or 1-balanced functions. The above theorem proves impossibility for the
case that the function is not balanced. As we have mentioned, we must separately deal with the case
that the function is balanced, but not strictly balanced; i.e., the function is either 0-balanced or
1-balanced. The main difference in this case is that not all nodes which have significantly different
probabilities in their two children can be used by the adversary to bias the outcome. This is due
to the fact that the protocol may specify an input distribution distribution for the honest party at
such a node that forces the output to be either 0 or 1 (except with negligible probability), and so
the “different child” is only reached with negligible probability. This can happen since the function
is balanced with 6 = 0 or 6 = 1. Thus, there may be probability vectors for which dmax — dmin is 0
or some negligible function. The proof therefore shows that this cannot happen too often, and the
adversary can succeed enough to bias the output.

Theorem 5.4 Let f:{x1,...,xm}>x{y1,...,ye} = {0,1} be a 0 or 1-balanced function. Then, f
does not information-theoretically imply the coin-tossing protocol.

Proof: By Claim 3.5, since f is 0 or 1-balanced, it contains the all-zero row and all-zero column,
or the all-one row and the all-one column. Thus, if f is 0-balanced, an adversary can “force” the
output of any given invocation of f to be 0, and so 7. (as defined in the proof of Claim 5.3)
equals 0. Likewise, if f is 1-balanced, an adversary can force the output to be 1 and thus 67, = 1.
We use the same ideas as the proof of Theorem 5.1. We consider the transcript tree with the same
simplifications as above (in particular, we consider protocols with invocations of f only, and no
invocations of f7'). The transformation to the general case is the same, and we omit this part. In
this proof, we set € = ¢(n) = %. We start by rewriting the adversaries, and we write the

differences in bold.

Adversary A' controlling P, (biasing towards 1):
Let v be the current node in the tree 7 (starting at the root) and o’ = (af,...,ap)
be the input distribution for P; (as explained above, this can be computed). Compute
(61,...,0¢) = @” - My. Let i and k be indices such that J; = max;<;j<¢{d;} and
= mini<j<,{07} (denote oy, = &} and dy;, = J7). In the first node v in the
execution with two children such that |pighi(v) — Pu|l = € Or |prefyv) — Po| > € and
€ < 4¥ < 1 — € (checking also that ¢ < ¥ < 1 — € is the only difference from
previously), act according to the following:
If Pright(v) = Pv + € OF Prefi(v) < Py — € then send input y; in this invocation of f
(this increases the probability of reaching node right(v) because the probability

24

of obtaining 1 in this invocation is §; which is mazimal). If piepy) = pv + € or
Pright(v) < DPv — € then send input y in this invocation of f (this increases the
probability of reaching node le ft(v) because the probability of obtaining 0 in this
invocation is d; which is minimal).

In all other nodes act honestly.

The adversary A° controlling P, (biasing towards 0): The adversary is the same
as Al as defined above with the same differences as in the previous proof.

We now turn to the analysis. Let V denote the set of all nodes for which the adversaries do
not act honestly and attempt to bias the result (i.e., the nodes that fulfill the conditions above).
Observe that V is a subset of the set V defined in the proof of Theorem 5.1. We compute the
sum of differences between the output probability at v € V when honest parties run, and when an
honest party P; runs with dishonest P,. Like the proof of Theorem 5.1, we show that whenever
the adversaries reach a node v € V, they succeed in biasing the result (the proof of this is almost
the same as above). Then, we compute the probability that the execution reaches a node in V.
However, here, unlike the proof of Theorem 5.1, the probability of reaching a node v € V is not 1.

The adversary’s effect conditioned on reaching V. We first obtain a bound on the sum of
difference between the output probability at v € V when honest parties run, and when an honest
party P, runs with adversaries, A', A° respectively, where in both cases we are conditioning on
the event that the execution reaches a node v € V. Since the attack is exactly the same as in the
previous proof (Claim 5.3), we conclude that for any node v € V:

(out?v(Pl, A%) — out), (P, pQ)) + (out‘lv(Pl, AY) —outl, (P, pQ)) S G I
We now compute a lower bound on the term 47, — 67, . In the above proof for an unbalanced

function this was bounded by a constant c. In this case, where f is 0 or 1-balanced, Lemma 3.4
does not hold, and thus the proof is more involved.

First, consider the case that f is 1-balanced. As we have stated above, this implies that ¢, =1
for every node v. We now show that 67, <1 —e. In order to see this, we note that 67, <~Y, for
every node v (since 7" is the “correct probability” of getting 1 and this is at least the minimum
probability). Now, for every v € V, by the definition of V for this adversary we have that vV < 1—¢,
and therefore we can conclude that 6, < 1—e¢, and so 0, —07. > €. Next, consider the case that

f is 0-balanced. In this case, 62, = 0, but since 03, > 7" (for the same reason that 67, < ")
and since ¥ > e by the definition of the adversary, we have that 4, .. > € and so once again
5121ax - 5fnin > €.

Combining the above, we have that for every v € V the overall sum of the probability changes

of the adversaries is:

(out?v(Pl,AO) — out|0v(l’317 Pg)) + (outﬂv(Pl,Al) — out|1v(l’317 Pg))
> (o 0in) €>(1—(1—¢)-e=¢

max ~ “min

We remark that for the case where My is 0-balanced and not 1-balanced, d;;, = 0, but it follows
that 07, > 7" > €, and s0 0y, — 0p;, = €, as well.

max max mi

25

Computing the probability to reach V. We have shown that when the parties reach nodes
from V, the adversaries succeed in biasing the result. Now, whenever the adversaries do not reach
nodes from V), they play honestly and therefore both parties are expected to output a fair coin.
Therefore, if the execution reaches a node in V with non-negligible probability, this will imply non-
negligible bias, as required. We now show that the probability that an execution reaches a node in
V is at least 1/2 (this is the key difference to the unbalanced case where every execution reached
a node in V).

Every pair of random coins (r1,r2) for the parties fully determine a path from the root to one
of the leaves, and each leaf defines the output for both parties. For each node v in the tree 7, we
consider its type according to the following;:

(
(

a) |Pright(v) — Po| < € and |pjefi(v) — Pu| < € or v has only one child

b ‘pmght pU\Zeandegfy”gl—e

)
)

(©) |Pright(v) — Po| > € and 4V < €

(d) |Prefe(w) —Pol > €eand e <" <1 —€
)

(€) |Preft() —Pol > €and 4¥ > 1 — ¢

We first prove that these cases cover all possibilities. Specifically, we claim that it cannot hold that
|Pright(v) — Pv| > € and 7 > 1 — e. Moreover, it cannot hold that [pi.f¢(,) — po| > € and 7¥ < e. In
order to see this, first note that since py, = 7" - prigne(v) + (1 —7°) * Diesi(v), We can write:

‘pm’ght(v) - pv‘ = |pright(v) - 71) * Pright(v) — (1 - 7v> ’ pleft(fu)‘ = (1 - 71}) ’ ‘pright(v) - pleft(v)|)

and,

‘pleft(v) - pv’ = }pleft(v) - 'Yv " Pright(v) — (1 - ,Y’U) ’ pleft(v)| = ,yv ’ ’pleft(v) - pright(v)' . (4)

Now, |Pright(v) —Pieft(v)| < 1 because they are both probabilities, and thus [pygns(v) —pu| < 1-7".
If |pright(v) — Pv| > € then this implies that 1 —~" > € and thus v¥ < 1 —¢. Thus, it cannot be that
|Pright(v) — Pv| = € and 7¥ > 1 — ¢, as required. Similarly, if [pjess(v) — po| > € then 4” > € and thus
it cannot be that |piefy(m) — po| > € and ¥ <ee.

Next, recall that the nodes in V are all of type (d) or (b). We now show that for any node of
type (e), it must hold that [p, — prigni(v)| < €. Similarly, for any node of type (c), it must hold that
|Pv — Piefi(v)| < €. We explain how we use this, immediately after the proof of the claim.

Claim 5.5 Let v be a node in the tree T with two children. Then:
L If v > 1 —¢, then |pright(v) — Pu| < €.
2. If v <, then ‘pleft(v) _pv‘ < €.

Proof: For the first item, by Eq. (3) we have that |p,ign(s) —po| < 1—7". In addition, if 4* > 1—¢
then 1 — Y < e. We conclude that |pmght(v) pv‘ < 1—1°" < ¢, as required. The second item is
proven analogously using Eq. (4). [|

The claim above shows that for any node v of type (e) the right child has output probability
that is close to the probability of the parent, and for any node of type (c) the left child has output

26

probability that is close to the probability of the parent. This means that little progress towards
the output is made in this invocation. Intuitively, it cannot be the case that little progress is made
in all invocations. We will now show this formally.

Let u1,...,up(,) be a path in the tree 7 from the root u; to some leaf u,(,). Recall that any
execution defines a unique path from the root and one of the leaves. The next claim shows that
there does not exist a path in the tree (associated with a pair of random tapes (ry,72)) such that
all the nodes in the path are of types (a), (e) and (c), and in all the nodes of type (e) the path
proceeds to the right son and in all the nodes of type (c) the path proceeds to the left son.

Claim 5.6 There does not exist a path ui, ..., Uy for which for everyi=1,...,7(n) —1 one of
the following conditions hold:

L |pright(uy) — Pu;| < € and prefi(u;) — Pu;| < €, o1 u; has only one child (i.e., u; is type (a)).

2. |Pieft(u;) — Pu;| = €, 7" > 1 — € and u;1 = right(u;) (that is, u; is type (e), and the path
proceeds to the right son).

3. |pm-ght(ui) — pu;| > €, Y < € and uiy1 = left(u;). (that is, u; is type (c), and the path
proceeds to the left son).

Proof: Assume by contradiction that there exists a path ui,...,u,q,) for which for every i =
1,...,7(n) — 1, one of the above conditions holds. Let u; be a node. If the first item holds for w;,
then |py,,, —pu,| < € (observe that if u; has just one child then py,., = py, and so [py, , —pu,| < €).
If the second item holds for w;, then this is a node of type (e) and the path proceeds to the right
son. By Claim 5.5, this implies that [p,,,, — pu;| < € (observe that the claim can be applied since
the node wu; has two children by the fact that it is not of type (a)). Likewise, if the third item holds
for u;, then this is a node of type (¢) and the party proceeds to the left son, and so by Claim 5.5 it
holds that |py,,, — pu,| < €. We conclude that for every i = 1,...,7(n) — 1, [py,,, — Pu;| < €, and
S0:

/A=)

) =1/4 — p(n).

r(n) r(n)
|pur(n> — Puy| < Z |pui+1 — pu;| < ZE =r(n)-e=r(n)
i=1 =1

Now, recall that |p,, —1/2| < pu(n) for some negligible function y(n). This implies that py,, is
non-negligibly far from the range [i, %], in contradiction to the fact that it equals to 0 or 1. This
completes the proof. [|

Recall that nodes in V are of type (b) and (d) only, and so if they are reached in an execution
then the adversary succeeds in biasing the result. In addition, we have shown that it cannot be
the case that an entire execution is made up of nodes of type (a) and nodes of type (e) where the
execution when to the right and nodes of type (c¢) in which the execution went to the left. Thus, if
no node in V is reached, it must be the case that a node of type (e) was reached and the execution
went to the left, meaning that the output of the invocation of f was 0, or the execution reached a
node of type (c¢) and the execution went to the right, meaning that the output of f was 1. We now
show that the probability of this occurring is small. That is, we bound the following probability:

Pr |35 for which type(u;) = e : ujy1 = right(u;) Vv 3j for which type(u;) = ¢ : ujy = left(uj)] .

By the union bound, it is enough to compute the probability of each one of the terms. Observe
that:

Prlujiy = left(u;) | type(u;) = (e)] <€

27

because by the definition of type (e), v* > 1 — e. We therefore have:

Pr[3j for which type(u;) = ¢ : ujy1 = left(u;)]

< > Priujp = left(uy) | type(u;) = (|
J s.t. type(u;)=c
< r(n)-e

r(n)
= 1/4— u(n).
In a similar way, we conclude that the probability to reach a node of type (c) and to move to the
right child is bounded by 1/4 — p(n). Therefore, the probability of not reaching a node in V is
bounded by 1/2 — 2u(n).
Thus the probability of reaching a node in V is greater than 1/2. That is, we have that:

1
Z reach, > 3

where for every v € V, reach, denotes the probability to reach the node v (which, as discussed in the
proof of the unbalanced case, is the same in all executions of (P, Py), where Py € {P,, A, A'}).

Concluding the proof. We have seen that the probability of reaching a node in V is greater
than 1/2. Moreover, whenever the adversaries reach such a node, the sum of the differences between
honest execution and execution with the adversaries is €2. Combining the above, we conclude that:

(out!(Pr, AY) — out*(Py, P»)) + (out’(Py, A') — out®(P1, P))

= ;Vreachv . [(outllv(Ph Al) — out|1v(P1, PQ)) + (out?v(Pl,AO) — out?v(Pl, PQ))i|

> Z reach,, - (62) >

veEY

.62

DN |

Similarly to the proof of Theorem 5.1, this implies that:

1

<out0(P1,.A0) - ;) + (outl(Pl,Al) - 2) > % € = 2u(n).

and so one of the adversaries succeeds in biasing the result with non-negligible probability. This
concludes the proof. [|

Conclusion: Combining Theorems 4.1, 5.1 and 5.4, we obtain the following corollary:
Corollary 5.7 Let f:{z1,...,2m}x{y1,...,y¢} — {0,1} be a function.

o If f is strictly-balanced, then f implies the coin-tossing functionality (computationally and
information-theoretically).

o If f is not strictly-balanced, then f does not information-theoretically imply the coin-tossing
functionality in the presence of malicious adversaries.

28

Impossibility in the OT-hybrid model. Our proof of impossibility holds in the information-
theoretic setting only since the adversary must carry out computations that do not seem to be
computable in polynomial-time. It is natural to ask whether or not the impossibility result still
holds in the computational setting. We do not have an answer to this question. However, as a step
in this direction, we show that the impossibility still holds if the parties are given access to an ideal
oblivious transfer (OT) primitive as well as to the function f. That is, we prove the following:

Theorem 5.8 Let f : {x1,...,zm} x{y1,...,ye} — {0,1} be a function. If f is not strictly-
balanced, then the pair of functions (f,OT) do not information-theoretically imply the coin tossing
functionality in the presence of malicious adversaries.

Proof Sketch: In order to see that this is the case, first observe that if f has an embedded-OR
then it implies oblivious transfer [9]. Thus, f can be used to obtain OT, and so the question
of whether f implies coin tossing or (f,OT') imply coin tossing is the same. It thus remains to
consider the case that f does not have an embedded OR but does have an embedded XOR (if it
has neither then it is trivial and so clearly cannot imply coin tossing, as we have mentioned). We
now show that in such a case f must be strictly balanced, and so this case is not relevant. Let
x1,T2,Y1,y2 be an embedded XOR in f; ie., f(x1,y1) = f(x2,y2) # f(x1,y2) = f(x2,y1). Now,
if there exists a y3 such that f(z1,y3) = f(x2,y3) then f has an embedded OR. Thus, z; and x9
must be complementary rows (as in example function (a) in the Introduction). Likewise, if there
exists an xg such that f(zs3,y1) = f(x3,y2) then f has an embedded OR. Thus, y; and y2 must be
complementary columns. We conclude that f has two complementary rows and columns, and as
we have shown in the Introduction, this implies that f is strictly balanced with ¢ = % [|

6 Fairness in the Presence of Fail-Stop Adversaries

In order to study the feasibility of achieving fair secure computation in the fail-stop model, we
must first present a definition of security for this model. To the best of our knowledge, there is no
simulation-based security definition for the fail-stop model in the literature. As we have mentioned
in the introduction, there are two natural ways of defining security in this model, and it is not
a priori clear which is the “correct one”. We therefore define two models and study feasibility
for both. In the first model, the ideal-model adversary/simulator must either send the party’s
prescribed input to the trusted party computing the function, or a special abort symbol L, but
nothing else. This is similar to the semi-honest model, except that | can be sent as well. We note
that if L is sent, then both parties obtain L for output and thus fairness is preserved.® This is
actually a very strong requirement from the protocol since both parties either learn the prescribed
output, or they both output L. In the second model, the ideal adversary can send any input that
it wishes to the trusted party, just like a malicious adversary. We remark that if the real adversary
does not abort a real protocol execution, then the result is the same as an execution of two honest
parties and thus the output is computed from the prescribed inputs. This implies that the ideal
adversary can really only send a different input in the case that the real adversary halts before
the protocol is completed. As we have mentioned in the Introduction, the impossibility result of

5Tt is necessary to allow an explicit abort in this model since if the corrupted party does not participate at all
then output cannot be computed. The typical solution to this problem, which is to take some default input, is not
appropriate here because this means that the simulator can change the input of the corrupted party. Thus, such an
early abort must result in output L.

29

Cleve [4] for coin-tossing holds in the both models, since the parties have no input, and so for this
functionality the models are identical.

6.1 Fail-Stop 1

In this section we define and explore the first fail-stop model. We proceed directly to define the
ideal model:

Execution in the ideal world. An ideal execution involves parties P; and P», an adversary S
who has corrupted one of the parties, and the trusted party. An ideal execution for the computation
of f proceeds as follows:

Inputs: P; and P hold inputs ¢ € X, and y € Y, respectively; the adversary S receives the
security parameter 1" and an auxiliary input z.

Send inputs to trusted party: The honest party sends its input to the trusted party. The
corrupted party controlled by & may send its prescribed input or L.

Trusted party sends outputs: If an input 1 was received, then the trusted party sends L to
both parties. Otherwise, it computes f(x,y) and sends the result to both parties.

Outputs: The honest party outputs whatever it was sent by the trusted party, the corrupted party
outputs nothing and S outputs an arbitrary function of its view.

We denote by IDEAL}’%‘ZESl(m, y,n) the random variable consisting of the output of the adversary

and the output of the honest party following an execution in the ideal model as described above.

Security. The real model is the same as is defined in Section 2, except that we consider adversaries
that are fail-stop only. This means that the adversary must behave exactly like an honest party,
except that it can halt whenever it wishes during the protocol. We stress that its decision to halt or
not halt, and where, may depend on its view. We are now ready to present the security definition.

Definition 6.1 (Security — fail-stopl) Protocol 7 securely computes f with complete fairness in
the fail-stopl model if for every non-uniform probabilistic polynomial-time fail-stop adversary A in
the real model, there exists a non-uniform probabilistic polynomial-time adversary S in the ideal
model such that:

{IDEALf‘Smp‘1 (21, 22, n)}

c
f£,S(2) = {REAL“»A(Z) (.’L‘, Ys n) }xeX,yEY,ze{O,l}*,nEN '

z€X,yeY,z€{0,1}*,neN

Exploring fairness in the fail-stop-1 model. We first observe that if a function contains an
embedded XOR, then it cannot be computed fairly in this model.

Theorem 6.2 Let f: {z1,...,zm} X {y1,...,ye} — {0,1} be a function that contains an embedded
XOR. Then, f implies the coin-tossing functionality and thus cannot be computed fairly.

Proof: Assume that f contains an embedded XOR; i.e., there exist inputs x1, 2, y1, y2 such that
flx1,y1) = f(xo,y2) # f(x1,y2) = f(z2,y1). We can easily construct a protocol for coin-tossing
using f that is secure in the fail-stop model. Party P; chooses input = € {z1,x2} uniformly at

30

random, P, chooses y € {y1,y2} uniformly at random, and the parties invoke the function f where
Py inputs « and P, inputs y. In case the result of the invocation is |, the other party chooses its
output uniformly at random.

Since the adversary is fail-stopl, it must follow the protocol specification or abort prematurely.
In both cases, it is easy to see that the honest party outputs an unbiased coin. Formally, for
any given fail-stop adversary A we can construct a simulator S: S receives from the coin tossing
functionality f* the bit b, and invokes the adversary A. If A sends the trusted party computing f
the symbol L, then S responds with L. Otherwise, (if A sends some real value - either z1, z5 if it
controls Py, or y1,ye if it controls P), then S responds with the bit b that it received from f as
if it is the output of the ideal call to f. It is easy to see that the ideal and real distributions are
identical. [|

As we have mentioned, if a function does not contain an embedded XOR or an embedded OR
then it is trivial and can be computed fairly (because the output depends on only one of the party’s
inputs). It therefore remains to consider the feasibility of fairly computing functions that have an
embedded OR but no embedded XOR. Gordon et. al [8] present a protocol for securely computing
any function of this type with complete fairness, in the presence of a malicious adversary. However,
the security of their protocol relies inherently on the ability of the simulator to send the trusted
party an input that is not the corrupted party’s prescribed input. Thus, their protocol seems not
to be secure in this model.

The problem of securely computing functions that have an embedded OR but no embedded
XOR therefore remains open. We remark that there are very few functions of this type, and any
such function has a very specific structure, as discussed in [8].

6.2 Fail-Stop 2

In this section we define and explore the second fail-stop model. In this case, the ideal adversary
can send any value it wishes to the trusted party (and the output of the honest party is determined
accordingly). It is easy to see that in executions where the real adversary does not abort the
output is the same as between two honest parties. Thus, the ideal adversary is forced to send the
prescribed input of the party in this case. Observe that the ideal model here is identical to the
ideal model for the case of malicious adversaries. Thus, the only difference between this definition
and the definition of security for malicious adversaries is the quantification over the real adversary;
here we quantify only over fail-stop real adversaries. Otherwise, all is the same.

Definition 6.3 (Security — fail-stop2) Protocol 7 securely computes f with complete fairness in
the fail-stop2 model if for every non-uniform probabilistic polynomial-time fail-stop adversary A in
the real world, there exists a non-uniform probabilistic polynomial-time adversary S in the ideal
model such that:

c
{IDEALf,S(z) (.%‘, Y, TL) }rGX,yEY,ZG{O,l}*,nGN = {REALW,A(Z) (.73, Y, ’)’L) }IEX,yGY,zE{O,l}*,nGN .

In the g-hybrid-model for fail-stop2 adversaries, where the parties have access to a trusted party
computing function g for them, a corrupted party may provide an incorrect input to an invocation
of g as long as it halts at that point. This may seem arbitrary. However, it follows naturally from
the definition since a secure fail-stop2 protocol is used to replace the invocations of ¢ in the real
model. Thus, if a fail-stop adversary can change its input as long as it aborts in the real model,
then this capability is necessary also for invocations of g in the g-hybrid model.

31

Exploring fairness in the fail-stop-2 model. In the following we show that the malicious
adversaries that we constructed in the proofs of Theorem 5.1 and Theorem 5.4 can be modified to
be fail-stop2. We remark that the adversaries that we constructed did not abort during the protocol
execution, but rather continued after providing a “different” input in one of the f invocations. Thus,
they are not fail-stop2 adversaries. In order to prove the impossibility for this case, we need to
modify the adversaries so that they halt at the node v for which they can bias the outcome of the
invocation (i.e., a node v for which v’s children in the execution tree have significantly different
probabilities for the output of the entire execution equalling 1). Recall that in this fail-stop model,
the adversary is allowed to send a different input than prescribed in the invocation at which it
halts; thus, this is a valid attack strategy.

We prove impossibility in this case by considering two possible cases, relating to the potential
difference between the honest party outputting 1 at a node when the other party aborts at that
node but until then was fully honest, or when the other party continues honestly from that node
(to be more exact, we consider the average over all nodes).

1. First, assume that there is a noticeable difference between an abort after fully honest behavior
and a fully honest execution. In this case, we construct a fail-stop adversary who plays fully
honestly until an appropriate node where such a difference occurs and then halts. (In fact,
such an adversary is even of the fail-stopl type).

2. Next, assume that there is no noticeable difference between an abort after fully honest behav-
ior and a fully honest execution. Intuitively, this means that continuing honestly or halting
makes no difference. Thus, if we take the malicious adversaries from Section 7?7 and mod-
ify them so that they halt immediately after providing malicious input (as required in the
fail-stop2 model), then we obtain that there is no noticeable difference between the original
malicious adversary and the fail-stop2 modified adversary. We remark that this is not im-
mediate since the difference in this case is between aborting and not aborting without giving
any malicious input. However, as we show, if there is no difference when honest inputs are
used throughout, then this is also no difference when a malicious input is used.

We conclude that one of the two types of fail-stop2 adversaries described above can bias any
protocol.

Theorem 6.4 Let f:{x1,...,xm}>x{y1,...,y¢} — {0,1} be a function that is not d-balanced, for
any 0 < § < 1. Then, [does not information-theoretically imply the coin-tossing protocol in the
fail-stop2 model.

Proof: We follow the proofs of Theorem 5.4 and use the same ideas. Recall that the adversaries
play honestly until they reach a node in V. Then, the adversaries send an input value to the
invocation of f not according to the protocol, but continue to play honestly afterward. In our case,
we define similar adversaries: the adversaries play honestly until they reach a node in V. Then,
they send an input value not according to the protocol and abort. This is allowed in our model:
the adversaries play honestly and according to the protocol until they reach a node for which they
quit. In the single invocation of f for which they abort they send a different value to that specified
by the protocol. This is allowed since in the fail-stop2 model the ideal simulator is allowed to send
any input it desires in the case of an early abort.

We recall that the adversaries reach a node in the set V with probability greater than 1/2. We
now analyze whether they succeed to bias the result when the execution reaches a node in V.

32

Aborting vs. continuing honestly. At each node v of the transcript tree 7, we write in addition
to the probability of outputting 1 when both parties act honestly (i.e., p,), the probability that
the output of the honest party is 1 if the execution is terminated in the node v (i.e., the “default
output” upon abort). We denote this probability by ¢,. Now, recall the definition of the set V: the
set of nodes for which the adversary does not act honestly and changes the input. As mentioned
above, the adversary act honestly until it reaches a node in V. Then, in this node it aborts and
so may send an incorrect value to the invocation of f, and the honest party receives 0 or 1 from
the invocation according the the inputs that were sent. In all the following invocations of f, the
honest party receives | and thus it chooses its output according to the probability g.igns(v) (if the
execution proceeded to the right child of v in the last invocation of f) or gy (if the execution
proceeded to the left child). Recall that v¥ denotes the probability of receiving output 1 from the
invocation of f at the node v in an honest execution, and thus this is the probability that the
execution proceeds to the right child of v. Moreover, recall that in both proofs, each node v € V
has two children. We have the following claim:

Claim 6.5 Let V be as above. Then, there exists a negligible function p'(-) such that:

Z (’pleft(v) - QZeft(v)‘ + ‘pright(v) - QTight(v)‘) -reach, < ,U'/(n)
veY

Proof: Assume in contradiction that the claim does not hold. Then, there exists a non-negligible
function w(n) such that:

Z (|pleft(v) - QIeft(v)| + |pright(v) - qright(U)D -reach, > W(n)
veEVY

We construct an adversary that succeed to bias the coin with some non-negligible probability.

Let V' = {left(v),right(v) | v € V}, i.e., all the children of nodes in V, and define the sets
Vo, ={v €V | py > qu}and V, = {v € V' | py < q}. Note that V, and V; constitute a
partitioning of the set V'. We now consider two adversaries B and B! that work as follows: the
adversary B° aborts at each node v’ € V,, and B! aborts at each node for which v’ € V, (that is,
both adversaries send L to the invocation of f in the node v’), but play completely honestly until
that point (these adversaries never send “incorrect” input in an invocation of f).

Let v' € V,. The difference in the probability that an honest party outputs 0 in an honest
execution and when interacting with the adversary B°, conditioned on the event that the node v’
is reached, is:

out?v,(Pl,BO) - out?v,(Pl, P) = Pr {out(Pl (r1),B%(r9)) = 0 ’ v s reached}

(r1,r2)«Uni

- Pr {out(Pl (r1), Pa(r2)) =0 ’ v’ s reached]

(r1,r2)«Uni
= (1 - Q'u’) - (1 _pv’) =Dv — Qv -
Recall that the adversary B! plays honestly when it reaches a node v’ € Vl’,, and so for such nodes
v eV,
outp, (P1, BY) — out),, (P1, P2) = 0.

33

Next, consider a node v’ € V(’I. The difference in the probability that an honest party outputs 1 in
an honest execution and when interacting with adversary B', conditioned on the event that v’ is
reached, is:

out‘lv,(Pl,Bl) — out‘lv,(Pl, P) = Pr {out(Pl (r1), Bl(T2)> =1 ’ v is reached}

(r1,r2)«Uni

- Pr {out(Pl (r1), Pa(re)) =1 ’ v’ s reached]

(r1,r2)«Uni
= Qv — Dv
On the other hand, when v" € V;, the adversary B° plays honestly, and so for such v’ € Vi
OU'E|1U/(P17 Bl) — out‘lv,(Pl, P2) =0.

Now, recall that V' = {left(v), right(v) | v € V}. At anode v € V, since both adversaries behave
honestly, we move to the right child with probability v¥ and to the left child with probability 1 —~".
Therefore, for every v € V, for every Py € { Py, BY, B!} and for every b € {0, 1} it holds that:

OUt?v(PbPQ*) = Pyv ’ OUtf)right(v)(PhPQ*) + (1 - fyv) ’ Ou‘t?left(v)(Pl‘iP;)?
and so, for each one of the adversaries B € {B°, B'}:
outfv(Pl, B) — outh(Pl, P)
= '}/U . (Outfright(v) (Pl,B) — OUt?right(v) (P17P2)> + (1 — ,71)) . (outfleft(v) (PI,B) — Outfleft(v)(Pl, P2))

Recall that for every v € V, by the definition of V it holds that e <Y <1 —¢, and thus vV > ¢
and 1 —~«Y > e. Combining the above, for every v € V it holds that:

(out‘lv(Pl,Bl) - out‘lv(Pl,Pg)) n (out?U(Pl,BO) - out?,u(Pl,Pg))
= ’Yv) ’pright(v) - QM'ght(v)| + (1 - 71)) ’ ‘pleft(v) - qleft(v)‘
> € (’pm'ght(v) - QTight(v)‘ + ‘pleft(v) - QIeft(v)D
and therefore we conclude:
(out' (P, BY) — out' (P, P»)) + (out’(Py, B°) — out?(Py, %))

- ; [(outl,(P1, BY) — outl,(P1, Py)) + (out),(P1, B°) — out), (1, P))] - reach,

> € Z (‘pright(v) - QTight(v){ + ‘pleft(v) — Gleft(v) ‘) -reach, > € w(n)
veEVY

which is non-negligible, in contradiction to out assumption that the coin-tossing protocol is secure.
We therefore conclude that there exists a negligible function y/(+) such that:

Z (‘pright(v) - QTight(v)’ + |pleft(v) — Gieft(v) |) - Pr [U is reaChed] < :u/(n)
veY [|

We now consider the bias of the modified fail-stop adversaries A%, A! as in the proof of The-
orem 5.1, conditioned on the event that the adversaries have reached a node v € V. We have 2
cases:

34

Case 1: pright(v) = Pv + € OF Piefi(v) < Pv — € Observe that in the fail-stop case, since
the adversary aborts in some node v € V, the honest party outputs 1 with probability gcf4(,) or
Qright(v) a0d NOb Preri(p) OF Prighi(v)- We have that:

OUt|1v(P17 Al) - OUt|1v(P17 Py) = (6pax — ") (QTight(v) - Qleft(v))
(5giax - ’YU) ’ (QM'ght(v) — Pright(v) + Pright(v) — dleft(v) + Pleft(v) — pleft('u))

= (5g1ax - ’Yv) ’ ((pright(v) - pleft(v)) + (QTight(v) — Pright(v)) (pleft(v) - QIeft(v)))
> (5lzrjnax - P}Iv) : ((pright(v) - pleft(v)) - ’%”ight(v) Pright(v ’ ‘pleft(v dieft(v ‘)

In a similar way:

OUt (P, A”) — OUt|v(P1?P2) (7" = 0tin) * (@right(v) — Giefi(w))
= (511;1111) ’ ((pTight(v) - pleft(v)) - |QTight(v) - pm’ght(v)‘ - ‘pleft(v) - QZeft(v)D .

Summing up the differences in probabilities we derive:

(outll,u(PhAl) - out‘lv(Pl, Pg)) + (out?U(PhAO) - out?U(Pl, P2)>
> (51213‘)(éﬁun) (pright(v) _pleft(v)) - (5max 511;1111) (|QTight() — Pright(v | + ‘pleft(v — Gleft(v)’)

Now, recall that in the proof of Theorem 5.1, we showed that (pmght(v) — Die ft(v)) > €. In addition,

in the case that f is not balanced, there exists a constant ¢ > 0 such that d;, . —9d;. > ¢, and in the

case that f is 1 or O-balanced it holds that 67, — 02, > € (as shown in the proof of Theorem 5.4).

max min
In all cases, there exists a non-negligible value A such that §%. — é*. > A. Moreover, since

max min

0 x> Ou:are both probabilities it trivially holds that d7,, — v, < 1. Combining all the above,

max’ mm rnm
we have:

<out‘1U(P1,.A1) - out‘lv(Pl,Pg)) v <out? (P, A%) — out?U(Pl,P2)>

> A-e— (’C_Imght (v) — Pright(v | + |pleft - QIeft(v)‘)
Case 2: piefi(v) = Pv + € OF Dright(v) < Py — € With similar calculations we derive:

<out‘1U(P1,Al) - out‘lv(Pl,Pg)> + <out?v(P1,A0) - out?v(Pl,P2)>
> A-e— (‘pleft(— Gleft(v | + |p7"zght v) qmght(v)D
where, A is the same as above.
Overall bias. We have computed the differences in the probability that an honest party outputs 1

when interacting with an honest P, or with one of the adversaries, conditioned on the event that
a node v € V is reached. We are now ready to compute the overall bias.

(out*(Pr, A") — out'(P1, P»)) + (out’(Py, A%) — out’(P, P»))
= Z reach,, - [(outﬂv(Pl, A — out|1v(P1, PQ)) + (out?v(Pl,Al) - out?v(Pl, P2)):|

veY
> Z reach,, - [A € (’pleft(v) - QZeft(v)‘ + ‘pright(v) - QTight(v)‘)]
veVY

35

Y

Z reach, - A - e — Z (|pleft(v) - Qleft(v)‘ + ‘pright(v) - QTight(v)’) -reach,
vey veY

1
> §~A-e—,u,/(n)

where the last inequality is true from Claim 6.5. We therefore conclude that the sum of the biases:
1 1
(outl(P1,A1) — 2) + (outO(Pl, A%) — 2)

is non-negligible, as required. [|

Acknowledgement

We thank Gene Kopp and John Wiltshire-Gordon for helpful discussions.

References

[1] M. Ben-Or, S. Goldwasser, and A. Wigderson. = Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In the 20th STOC, pages 1-10, 1988.

[2] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 13(1):143-202, 2000.

[3] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure protocols. In
the 20th STOC, pages 1-10, 1988.

[4] R. Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract). In the 18th STOC, pages 364-369, 1986.

[5] O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge
University Press, 2004.

[6] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or
all languages in NP have zero-knowledge proof systems. JACM, 38(1):691-729, 1991.

[7] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In the 19th STOC, pages 218-229, 1987.

[8] S.D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party
computation. JACM, 58(6):24, 2011.

[9] J. Kilian. A general completeness theorem for two-party games. In 23rd STOC, pages 553—
560, 1991.

[10] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In the 21st STOC, pages 73-85, 1989.

[11] J. von Neumann. Various Techniques Used in Connection with Random Digits. Journal of
Research of the National Bureau of Standards, 12:36-38, 1951.

[12] A. Yao. How to generate and exchange secrets (extended abstract). In the27th FOCS, pages
162-167, 1986.

36

