THE CRITICAL SPECTRUM OF A STRONGLY CONTINUOUS
SEMIGROUP

RAINER NAGEL AND JAN POLAND

ABSTRACT. For a strongly continuous semigroup (7T'(t)):>o with generator A we intro-
duce its critical spectrum o.,; (T (¢)). This yields in an optimal way the spectral mapping
theorem

o(T(t) = "™ U 0.,:(T(1))

and improves classical stability results.

1. INTRODUCTION

Already in 1892, M.A. Liapunov showed that the asymptotic behavior as t — oo of the
exponential function ¢ — e for a matrix A € M,,(C) can be described by the location of
the eigenvalues of A (see [6], p. 291). Later, E. Hille and R. Phillips ([4], Section 23.16)
discovered that an analogous statement does not hold for strongly continuous semigroups
(T())i>0 with unbounded generator A on Banach spaces. The reason is the failure of the
spectral mapping theorem

(T(T(to)) = etog(A), to > 0.

In fact, such an identity only holds for the point and for the residual spectrum (see [3],
Theorem IV.3.6) or if we make additional assumptions on (7(t));>¢ (such as eventual
norm continuity, see [3], Theorem IV.3.9). In general, only an inclusion holds, and we
must write

o(T(ty)) = €7 U o9(T(ty))

for some set o7(T(tg)).

It follows from the spectral mapping theorem for the point spectrum that we may take as
07(T'(to)) the essential spectrum o.55(7T(to)). This has been done by many authors mainly
for the study of perturbed semigroups (see, e.g., [1]).

However, the essential spectrum is not related to the semigroup structure, and even for
bounded A it is unnecessarily big in order to yield the above identity.

We therefore propose a new spectrum, called the critical spectrum o..;(T(t)), which yields
in an optimal way a spectral mapping theorem of the form

O'(T(t[))) = €tOU(A) U Ucrit(T(t0)> for t() Z 0.

In addition, we obtain stability theorems and characterizations of asymptotically norm
continuous semigroups. These results will be applied to perturbed semigroups in a sub-
sequent paper.

We thank S. Piazzera and F. Ribiger for helpful discussions.
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2. THE CRITICAL SPECTRUM

For a given strongly continous semigroup (7'(¢));>o with generator (A, D(A)) on a Banach
space X we perform a series of abstract, but natural constructions.

2.1. Definition. On the Banach space ¢>°(X) of all bounded sequences in X, endowed
with the sup-norm ||(z,)nen|| := Sup,ey |||, consider the semigroup 7T := (T(¢))>0
given by

T () (zn)nen = (T(t)n)nen for t >0

and the operator (A, D(A) given by

A(:En)neN = (Axn)nEN

with domain

D(A) := {(#n)nen € (X)) : 2, € D(A), (Az,) € £2°(X)}.

Note that the semigroup (7'(t))¢o is strongly continuous only if (7'(£));>¢ is uniformly
continuous, hence if A is bounded. Moreover, one has o(T(t)) = o(T(t)) and o(A) = o(A)
with R(\, A)(2n)nen = (R(X, A )nen for A € p(A). In particular, it follows that A is a
(nondensely defined) Hille-Yosida operator.

We now consider the space of strong continuity

(P(X) = {(zn)nen € L2(X): Png sug |7 (t)xn — za|| = 0} = D(Ay),
—Yne

where A; denotes the part of A in £5°(X). The space £5°(X) is a closed and (T(t))o-
invariant subspace of £*°(X) and therefore allows the following quotient, construction.

2.2. Definition. On the quotient space X := ¢>°(X)/¢3(X) we define the semigroup
(T'(t)) =0 by

T(t)i = (T(t)xn)nen + (5(X) for & := (2, )pen + (5(X) € X

This is a semigroup of bounded operators on X. As we will see in Proposition 2.7, the only
continuous orbit 7 — T(f)f" occurs for £ = 0. Moreover, there is no natural ”generator”
associated to this semigroup. Its growth bound and the spectra of the operators T(t),
however, turn out to be of considerable interest.

2.3. Definition. For a strongly continuous semigroup (7'(t));>o on a Banach space X
we call

Terit(T (1)) == o(T'(1))
the critical spectrum of T(t), t > 0, and denote by
Werit(T) := wo(T) = inf{w € R: 3 M > 0 such that [|T(t)|| < Me®'}
its critical growth bound.

We point out that the critical spectrum o4 (T (to)) at ¢y > 0 is not determined by the
operator T'(ty) alone but by the entire semigroup (7());>0. The proposed notation should,
however, not lead to any confusion.

The following lemma will be of great help to compute the critical spectrum.
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2.4. Lemma. Let Y C X be a closed, (T(t));>o-invariant subspace such that the restric-
tion (T'(t)]y)i>0 is norm continuous and denote the quotient semigroup on Z = X/Y by

(S(t))tzo. Then
Oerit(T(t)) = 0crit(S(1))
holds for all t > 0.

Proof. The space Y := (®(Y) is a closed, (T(t))so-invariant subspace of £°(X), and
we have

(°(Z) = 1*°(X))Y.

;From the assumption follows Y C £5°(X), hence we can identify the spaces X and Z
associating to

T = ((xn)nen +L7(X)) € X with (20)nen € £2°(X)
the element
((#n)nen + V) +UX(2)) =2 2 € Z.
Under this identification the semigroups (T( t))i>0 and (5‘
Oerit(T(t)) = 00t (S(t)) for all ¢

t))i>0 become equal, hence
> 0.
O

2.5. Theorem. For the critical and the essential spectrum of a strongly continuous
semigroup (T'(t));>0 one has the inclusions

Oerit(T(t)) C 0ess(T(t)) C o(T(t)) for allt > 0.

Proof. If A\ € p(T(t)), then the resolvent operator R(\,T(t)) induces an operator R(\)
on X by

RO ((@n)nen + (X)) := (RO, T()xa)nen + £(X),
which is the resolvent of T(¢) in A. This proves that A\ € p(T'(t)), hence oo (T(t)) C

o(T(t)).

Taking into account the definitions of the critical and the essential spectrum, it suffices
to show that A € o(T(t)) \ 0ess(T'(t)) implies A & o4(T(t)). By definition, A is a pole
of the resolvent map with finite algebraic multiplicity. Hence, by [5], Theorem I111.6.17,
there exists a spectral decomposition

X:X]Gan,

such that o(T(t)|x,) = {\} and o(T'(t)|x,) = o(T(t))\{\}. Since X} is finite dimensional,
the restricted semigroup (7'(¢)|x, )i>o is uniformly continuous. Thus we can apply Lemma
2.4 and obtain

Oerit(T(t)) = oerin(T(t)|x,) C a(T(1)]x,),
hence A & 04,4(T(1)). 0

Since the space X was defined by taking the quotient along the space of strong continuity
of (T'(t));0, it can be expected that the only continuous orbit of (T'(t))so occurs for
i = 0. However, the proof is not quite so simple, and we need to introduce another norm
on X.
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2.6. Lemma. The norm | - |, defined by

~

|Z]| :=lim sup |T(h)x, — 2, for @ = (Tn)nen +£5(X) € X,
hl0 peN

is equivalent to the quotient norm || - || on X.
Proof. First of all, it is not difficult to verify, that || - || in fact defines a norm on X.
Now take

M = sup ||T(t)]]
0<t<2

and assume || (z,)nen + £F(X)| < 1. We then find 0 < § < 1 such that

sup ||T(8)xn — xn|| <2 forall 0 < s < 4.
neN

Defining

we obtain that (y,)nen € £7°(X), since

1 st 0
=l = 3| [ Tt~ [ 1000
Js 0
1 st 2M
= _‘/ (t)z,dt — / T(t xndtH < s —||zn||
51/ ; 5

for all 0 < s < 4. Moreover, we have

1 )
Iy = all = 5 H / (T(t)2 — 2, )
0

1 /9
< _/ 2t =2
0 Jo
for all n € N, hence ||(z,)neny + £ (X)]| < 2.

Assume now ||(xp)nen + € (X)|] < 1. Then there is (y,)nen € €7°(X) satistying ||z, —
ynl| < 1 for all n € N. For this (y,)nen we find 0 < ¢ < 1, such that ||T(s)y, — ya|| < 1
for all n € N and 0 < s < 4. This implies

IT(5)n — wall < IT(8)20 — T(S)gall + 1759 — yull + llgm — all < M +2,

hence ||(zn)nen +£2(X)|| < M + 2. O
We can now state the following result due to S. Brendle.
2.7. Proposition. The map Ry >t +— T(t):f: € X is continuous if and only if & = 0.

Proof. Suppose that the map t — T'(t)& is continuous for some & = (2, )nen + 55 (X).
For each £ > 0 we have seen above that

G ./OtT(s)xnds> e,
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Therefore, using Lemma 2.6 (with the appropriate constant M), we get

1]l

|G fror-wa) e

IN

1 rt
n /0 (T'(h) — 1d)(T'(s) — Id)x, ds

2. lim sup
hi0 nen

2 Tim = [ sup |(T(h) — 1d)(T(s) — Id)z, | ds

hio 1 JO neN

<o / T sup [|(T(h) — 1d)(T(s) — 1d)z, || ds

hl0 neN

IN

< oM +2) /|| ) 1d)i|ds.

Here, the penultimate inequality follows from Fatou’s Lemma for the limit superior. By
letting ¢ — 0, we conclude z = 0. O

Before applying this new spectrum to the study of the asymptotic behavior of semigroups,
we show how to compute it.

2.8.

(1)

Examples.

If the semigroup (7'(¢));>o is eventually norm continuous, then one has
oerit(T(t)) = {0} for all ¢ > 0.

This follows since, by definition, (T(t))tzg becomes a nilpotent semigroup, hence
o(T(t)) = {0}, except in the trivial case X = {0}.

On X := Cy(Q) for some locally compact space 2 take a multiplication semigroup
(T(t))1>0 with generator (A, D(A)) given by

Af=q-f, [ € D(A),

where ¢ :  — C is a continuous function satistying sup,. Re ¢(s) < oo. It is well
known that the spectrum is given by

o(A) = q(Q) and o(T(t)) = eta(?)
(see [3], I1.2.9). For the critical spectrum one has

Terit(T(8)) \ {0} = {A € C\{0} = 3 (pn)nen C q(9),
Im p,| — oo such that A = lim e }.

n—o0

To show the inclusion ”D”, one constructs an approximate eigenvector (f,),en cor-
responding to A using the (p,)nen, such that (f,)nen € £5°(X). For the inclusion
"C” we assume that ) is not contained in the set on the right hand side and consider
io € C, such that

\ = el (mo+ 5" )forallk'EN

Then there exists € > 0, such that

S 2mik
q(2) N B.(po +

5
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for all but finitely many k € N. (Here, B.(z) :={y € C: |y — x| < €}.) We denote
these finitely many indices by ki, ko, ... , k; und set

U 2mk )

Then G := Q\ ¢ '(B) is a closed subset of 2 and
Vi={feCy(Q) : f

is a closed subspace of Cy(€2). The restriction (7'(t)|y):;>o ist uniformly contin-
uous, since B is bounded. Therefore we can apply Lemma 2.4, and we obtain
Oerit(T(t)) = 00rit(S(2)), where (S(t));>0 denotes the semigroup induced by (7'(¢)):>0
on the quotient space Z = X/Y. Since (S(t));>o is isomorphic to the multipli-
cation semigroup on Cy(G) ;, we have A ¢ o(S(t)) and therefore

AN ouu(T(t)).

(iii) Replacing ¢(€2) by the essential range of a measurable function ¢, one shows the
analogous statement for multiplication semigroups on X = LP(€, u) for 1 < p < oc.

(iv) As a typical example for translation semigroups, we mention that
oerit(T(t)) = o(T(t)) ={r € C: |u[ <1}, £ >0,
for the left translation semigroup
T()(s) = f(s+1)

on X := Cy(Ry). This can be seen by defining, for t > 0 and A € C with Re A <0,
functions f, € Co(R,) by

2
fu(s) =€ - sin ( ths> :

Then (7'(t));>o is not uniformly continuous on (f,)nen, i-e. (fu)nen & £3°(X). On
the other hand, we have

2mn(t + ¢
T(t) fuls) =€ A9 sin (M) =M. f,(s) forall s >0, neN

and each fixed ¢ > 0. This shows that (f,,)nen + ¢7°(X) becomes an eigenvector of

T'(t) belonging to the eigenvalue e. Since this holds for each Re A < 0 and o(7'(t))
is a closed subset of o(T'(t)), we obtain the assertion.

3. THE SPECTRAL MAPPING THEOREM

We recall from [3], Theorem IV.3.6, that the spectral mapping theorem for a strongly
continuous semigroup (7'(¢));>o with generator A holds for the point and the residual
spectrum. So the only part of the spectrum, for which the spectral mapping theorem
can fail, is the approximate point spectrum Ao (7T(t)). More precisely, if A € o(T(t)),
but A Q e!?(4) then A\ must be an approximate eigenvector of T(t), i.e., there exists
(Tp)nen € £ ( ), ||xn|| = 1, such that

T (t)x, — Axy,|| — 0 as n — oc.

The following lemma characterizes the approximate eigenvalues A\ of T'(¢) already con-
tained in ef(4).
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3.1. Lemma. For A € C\ {0} and s > 0 the following assertions are equivalent.

(1) There ezists p € Ao(A) such that e’ = X € Ao(T(s)).
(i) There exists an approzimate eigenvector (x,)nen of T(t) for the approzimate eigen-
value A such that (zy)nen € €7°(X).
(iii) There exists (Tn)nen, ||Tn|| =1, and p € C with e** = X, such that

|T(t) 2, — eyl = 0 as n — oo for all t > 0.

Proof. (i) = (iii) follows from the spectral inclusion theorem for the approximate point
spectrum (see [3], Theorem IV.3.5).

(i13) = (4i). Assume that (7°(t));>o is not uniformly continuous on (x,),en. This means
that

0 7£ T = (xn)neN +é$9(X) € X
The condition in (4i7) now implies
T(t)i = e for all t > 0.

By Proposition 2.7, the semigroup (7'(#));>o has no nontrivial continuous orbits, hence we
must have £ = 0, contradicting the assumption.

(17) = (i) After a rescaling (cf. [3], 11.2.2), may assume s = 1 and A = 1. Take now
the approximate eigenvector (x,)nen as in (i). The uniform continuity of (7());>¢ on
(Tn)neN implies that the maps [0,1] 3 t — T(t)z,, n € N, are equicontinuous. Choose
now z;, € X', ||lz,|| <1, satisfying (2, 2},) > § for all n € N. Then the functions

0,1] 2t = &, (t) := (T'(t)zn, x,)

are uniformly bounded and equicontinuous. Hence there exists, by the Arzela Ascoli
theorem, a convergent subsequence, still denoted by (&,), such that lim, ,, &, =: £ €
C[0,1]. From &(0) = lim, 00 &,(0) > 1, we obtain that & # 0. Therefore, this function
has a non-zero Fourier coefficient, i.e., there exists pi,, := 2mim, m € Z, such that

1
/0 e Fmle(t)dt # 0.

If we put

1
Zp 1= / e P (), dt,
0
we have z, € D(A) by [3], Lemma II.1.3. In addition, the elements z, satisfy
(m — A)zp = (1 —e " T (1))
=(1-T(1))z, =0
and

liminf ||z,]| > liminf|(z,, 2] ) |

> lim inf

1
/ g Hmt (T(t)xy, x) dt
n—oo 0

1
/ e Mmie(t)dt
0

7
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This shows that < Zn ) is an approximate eigenvector of A with approximate eigen-
neN

value p,, = 2mim. 0

Using the spectral mapping theorem for the point and the residual spectrum and the
above equivalence (i) < (i), we can characterize the spectrum of T'(¢) as

a(T()\ {0} = "™ U {\ e Ao(T(t)) : Tim 4_yg sup ||7(s) @y — n|| > 0 for all

neN
approximative eigenvectors (z,)nen corresponding to A} \ {0}.

This clumsy extra set can now be replaced by the critical spectrum.

3.2. Theorem. For a strongly continuous semigroup (T (t));>o with generator (A, D(A))
one has

o(T#)\ {0} = e U ou0(T(1) \ {0} for all t > 0.

Proof. By the spectral mapping theorem for the point and the residual spectrum and by
Lemma 3.1, it suffices to show that each approximate eigenvalue 0 # A € Ao (T(t)) with
approximate eigenvector (z,),en € 3 (X) belongs to o4 (T (t)). However, this follows

since 7 := (Tp)nen + £5°(X) € X \ {0} and
(T(t)2p — ATp)nen € €2(X), hence T(t)i = \i.
O

As an immediate consequence of this theorem and of Example 2.8(i) we obtain the spectral
mapping theorem for eventually norm continuous semigroups.

3.3. Corollary. For an eventually norm continuous semigroup (T (t));>o0 with generator
A one has

a(T(t)\ {0} = e for all t > 0.

4. THE CRITICAL GROWTH BOUND

We now use the critical spectrum and Theorem 3.2 to describe the asymptotic behavior
of the semigroup 7 = (T'());>0. To that purpose we recall the definition of the growth
bound (see [3], Definition IV.2.1), of the essential growth bound (see [5]), and of the
critical growth bound (see Definition 2.3). Each of these bounds can be characterized
in terms of the spectral radius r(7(¢)), the essential spectral radius r..(7'(¢)), and the
critical spectral radius 1o (T (1)) := r(T(t)), respectively. We state the result only for the
critical growth bound.

4.1. Lemma. For a strongly continuous semigroup T = (T(t));>0 one has

1 . 1 . 1 .

Werit(T) = inf =log ||T'|| = lim = log||T|| = — logr(T(t)) for each ty > 0.
t>0 ¢ t—oo ¢ to

The proof is similar to the proof of Proposition IV.2.2 in [3]. This lemma (and the analo-

gous version for wess(7)) and Theorem 2.5 immediately imply the following inequalities.

4.2. Proposition. For the growth bounds of a strongly continuous semigroup T =
(T(t))i>0 one has

Werit(T) < wess(T) < wo(T).
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In addition, we obtain from Theorem 3.2 that
r(T(ty) = max{etO'S(A), rerit (T (tg)) } for each ¢y > 0.
Here, s(A) denotes the spectral bound of the generator A, i.e.
s(A) =sup{Re p:p€o(A)}.

Taking the logarithm and dividing by ¢y, we obtain a characterization of the growth bound

wo(T).

4.3. Proposition. For a strongly continuous semigroup T = (T(t))i>0 with generator A
one has

wo(T) = max{s(A),wei(T)}
Moreover, the following partial spectral mapping theorem holds:
o(T(1) N INEC: Al > raaT(B)} = €™ 1 (A€ T A > ra(T(1)}
for each t > 0.

This result is useful only if we4(7T) < wo(7T). Therefore, we introduce a special name for
these semigroups.

4.4. Definition. A strongly continuous semigroup 7 = (7(t));>¢ satisfying wei(7T) <
wo(T) is called asymptotically norm continuous.

For asymptotically norm continuous semigroups we obtain the spectral mapping theorem
for the boundary spectrum as an immediate consequence of Theorem 3.2, i.e.

o(T(t) N {ANeC:|A\=r(T)} = et?) N {AeC: A =r(T(t)}
for each ¢ > 0. In particular, one has
wo(T) = s(A)

for these semigroups. Clearly, each eventually norm continuous semigroup is asymptoti-
cally norm continuous.

In the final part of this paper we show that the asymptotically norm continuous semigroups
defined above coincide with the semigroups introduced by Martinez-Mazdén [7] (called
norm continuous at infinity) and studied later by Thieme [10] and Blake [2]. To that
purpose we recall a definition from [2].

4.5. Definition.  For a strongly continuous semigroup 7 = (7'());>0, we define a
growth bound of non-norm-continuity by

O(T) :=inf{v € R: 3M > 0 such that % |T(t+h)—T(t)] < Me"}.
For this new growth bound, one can show that

R R —
d(T) = inf - log lﬂgl T (t+h) —T(t)] = fILI?O i logl’}gl T (t+ h) —T(t)].

t>0 1
Using the norm | - || on X introduced in Lemma 2.6, we can show the following result.

4.6. Proposition. For a strongly continuous semigroup T = (T'(t))i>0, one has

NT) = werit(T).
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Proof. From the equivalence of the norm || - | and the quotient norm || - || on X (see
Lemma 2.6), we obtain

.1 —
8(T) = lim ¢ log(Tm | T(¢ +h) — T(1)])

1 ~
= lim - log ||T(7L)|| - wcrit(T)a
t—oc t
([

Now it is easy to prove that Definition 4.4 of asymptotically norm continuous semigroups
is equivalent to the definitions in [7] and [2].

4.7. Corollary. For a strongly continuous semigroup T = (T(t))i>0 the following asser-
tions are equivalent.

(1) (T'(t))i>0 is asymptotically norm continuous, i.e. wei(T) < wo(T).

(i) E&% e TN (t+h) —T(t)|| = 0.

Proof. Using Proposition 4.6 the implication (i) = (i7) is obvious. To show (ii) = (i)
we observe that the map

t s Tim e || T(t+ h) — T(t)]

h10

is submultiplicative (see [2], Proposition 3.5). Since by assumption (i7) it tends to 0, it

decays exponentially fast, and again by Proposition 4.6 we conclude (7). O
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