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1 Introduction

I am happy to have this opportunity to reminisce about the origins and development of string

theory from 1962 (when I entered graduate school) through the first superstring revolution

in 1984. Some of the topics were discussed previously in three papers that were written

for various special events in 2000 [1, 2, 3]. Also, some of this material was reviewed in the

1985 reprint volumes [4], as well as the string theory textbooks [5, 6]. In presenting my

experiences and impressions of this period, it is inevitable that my own contributions are

emphasized.

Some of the other early contributors to string theory have presented their recollections

at the Galileo Galilei Institute meeting on “The Birth of String Theory” in May 2007. Since

I was unable to attend that meeting, my talk was given at the GGI one month later. Taken

together, the papers in this collection should convey a fairly accurate account of the origins

of this remarkable subject.1

The remainder of this paper is divided into the following sections:

• 1960 – 68: The analytic S matrix (Ademollo, Veneziano)

• 1968 – 70: The dual resonance model (Veneziano, Di Vecchia, Fairlie, Neveu)

• 1971 – 73: The RNS model (Ramond, Neveu)

• 1974 – 75: Gravity and unification

• 1975 – 79: Supersymmetry and supergravity (Gliozzi)

• 1979 – 84: Superstrings and anomalies (Green)

For each section, the relevant speakers at the May meeting are listed above. Since their talks

were more focussed than mine, they were able to provide more detail. In one section (gravity

and unification) my presentation provided more detail than the others.

2 1960 – 68: The analytic S matrix

In the early 1960s there existed a successful quantum theory of the electromagnetic force

(QED), which was completed in the late 1940s, but the theories of the weak and strong

nuclear forces were not yet known. In UC Berkeley, where I was a graduate student during

the period 1962 – 66, the emphasis was on developing a theory of the strong nuclear force.

1Since the history of science community has shown little interest in string theory, it is important to get
this material on the record. There have been popular books about string theory and related topics, which
serve a useful purpose, but there remains a need for a more scholarly study of the origins and history of
string theory.
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I felt that UC Berkeley was the center of the Universe for high energy theory at the time.

Geoffrey Chew (my thesis advisor) and Stanley Mandelstam were highly influential leaders.

Also, Steve Weinberg and Shelly Glashow were impressive younger faculty members. David

Gross was a contemporaneous Chew student with whom I shared an office.2

Geoffrey Chew’s approach to understanding the strong interactions was based on several

general principles [8, 9]. He was very persuasive in advocating them, and I was strongly

influenced by him. The first principle was that quantum field theory, which was so successful

in describing QED, was inappropriate for describing a strongly interacting theory, where a

weak-coupling perturbation expansion would not be useful. A compelling reason for holding

this view was that none of the hadrons (particles that have strong interactions) seemed to

be more fundamental than any of the others. Therefore a field theory that singled out some

subset of the hadrons did not seem sensible. Also, it was clearly not possible to formulate

a quantum field theory with a fundamental field for every hadron. One spoke of nuclear

democracy to describe this situation.3

For these reasons, Chew argued that field theory was inappropriate for describing strong

nuclear forces. Instead, he advocated focussing attention on physical quantities, especially

the S Matrix, which describes on-mass-shell scattering amplitudes. The goal was therefore

to develop a theory that would determine the S matrix. Some of the ingredients that went

into this were properties deduced from quantum field theory, such as unitarity and maxi-

mal analyticity of the S matrix. These basically encode the requirements of causality and

nonnegative probabilities.

Another important proposal, due to Chew and Frautschi, whose necessity was less obvi-

ous, was maximal analyticity in angular momentum [10, 11]. The idea is that partial wave

amplitudes al(s), which are defined in the first instance for angular momenta l = 0, 1, . . .,

can be uniquely extended to an analytic function of l, a(l, s), with isolated poles called Regge

poles. The Mandelstam invariant s is the square of the invariant energy of the scattering

reaction. The position of a Regge pole is given by a Regge trajectory l = α(s). The values

of s for which l takes a physical value, correspond to physical hadron states. The necessity

of branch points in the l plane, with associated Regge cuts, was established by Mandelstam.

2It was a particularly nice office, which was being reserved for Murray Gell-Mann, whom Berkeley was
trying to hire. It was felt that students would be easier to dislodge than a faculty member. Gross and I
wrote one joint paper in 1965 [7], which I felt was rather clever.

3The quark concept arose during this period, but the prevailing opinion was that quarks are just math-
ematical constructs. The SLAC deep inelastic scattering experiments in the late 1960s made it clear that
quarks and gluons are physical (confined) particles. It was then natural to try to base a quantum field theory
on them, and QCD was developed a few years later with the discovery of asymptotic freedom.
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Their role in phenomenology was less clear.

The theoretical work in this period was strongly influenced by experimental results.

Many new hadrons were discovered in experiments at the Bevatron in Berkeley, the AGS

in Brookhaven, and the PS at CERN. Plotting masses squared versus angular momentum

(for fixed values of other quantum numbers), it was noticed that the Regge trajectories are

approximately linear with a common slope

α(s) = α(0) + α′s α′ ∼ 1.0 (GeV)−2 .

Using the crossing-symmetry properties of analytically continued scattering amplitudes, one

argued that exchange of Regge poles (in the t channel) controlled the high-energy, fixed

momentum transfer, asymptotic behavior of physical amplitudes:

A(s, t) ∼ β(t)(s/s0)
α(t) s→ ∞, t < 0.

In this way one deduced from data that the intercept of the ρ trajectory, for example, was

αρ(0) ∼ .5. This is consistent with the measured mass mρ = .76 GeV and the Regge slope

α′ ∼ 1.0 (GeV)−2.

The ingredients discussed above are not sufficient to determine the S matrix, so one

needed more. Therefore, Chew advocated another principle called the bootstrap. The idea

was that the exchange of hadrons in crossed channels provide forces that are responsible for

causing hadrons to form bound states. Thus, one has a self-consistent structure in which

the entire collection of hadrons provides the forces that makes their own existence possible.

It was unclear for some time how to formulate this intriguing property in a mathematically

precise way. As an outgrowth of studies of finite-energy sum rules in 1967 [12, 13, 14, 15, 16]

this was achieved in a certain limit in 1968 [17, 18, 19]. The limit, called the narrow resonance

approximation was one in which resonance lifetimes are negligible compared to their masses.

The observed linearity of Regge trajectories suggested this approximation, since otherwise

pole positions would have significant imaginary parts. In this approximation branch cuts

in scattering amplitudes, whose branch points correspond to multiparticle thresholds, are

approximated by a sequence of resonance poles.

The bootstrap idea had a precise formulation in the narrow resonance approximation,

which was called duality. This is the statement that a scattering amplitude can be expanded

in an an infinite series of s-channel poles, and this gives the same result as its expansion

in an infinite series of t-channel poles.4 To include both sets of poles, as usual Feynman

diagram techniques might suggest, would amount to double counting.

4One defines divergent series by analytic continuation.
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3 1968 – 70: The dual resonance model

I began my first postdoctoral position (entitled instructor) at Princeton University in 1966.

For my first two and a half years there, I continued to do work along the lines described in the

previous section (Regge pole theory, duality, etc.). Then Veneziano dropped a bombshell – an

exact analytic formula that exhibited duality with linear Regge trajectories [20]. Veneziano’s

formula was designed to give a good phenomenological description of the reaction π + π →
π+ω or the decay ω → π++π0+π−. Its structure was the sum of three Euler beta functions:

T = A(s, t) + A(s, u) + A(t, u)

A(s, t) =
Γ(−α(s))Γ(−α(t))

Γ(−α(s) − α(t))
,

where α is a linear Regge trajectory

α(s) = α(0) + α′s.

An analogous formula appropriate to the reaction π + π → π + π was quickly proposed by

Lovelace and Shapiro [21, 22]. A rule for building in adjoint SU(N) quantum numbers was

formulated by Chan and Paton [23]. This symmetry was initially envisaged to be a global

(flavor) symmetry, but it later turned out to be a local gauge symmetry.

The Veneziano formula gives an explicit realization of duality and Regge behavior in

the narrow resonance approximation. The function A(s, t) can be expanded in terms of

the s-channel poles or the t-channel poles. The motivation for writing down this formula

was mostly phenomenological, but it turned out that formulas of this type describe tree

amplitudes in a perturbatively consistent quantum theory!

Very soon after the appearance of the Veneziano amplitude, Virasoro proposed an alter-

native formula [24]

T =
Γ(−1

2
α(s))Γ(−1

2
α(t))Γ(−1

2
α(u))

Γ(−1
2
α(t) − 1

2
α(u))Γ(−1

2
α(s) − 1

2
α(u))Γ(−1

2
α(s) − 1

2
α(t))

,

which has similar virtues. Since this formula has total stu symmetry, it is only applicable

to particles that are singlets of the Chan–Paton group.

Over the course of the next year or so, string theory (or dual models, as the subject

was then called) underwent a sudden surge of popularity, marked by several remarkable

discoveries. One was the discovery of an N -particle generalization of the Veneziano formula
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[25, 26, 27, 28, 29]:

AN(k) = gN−2
open

∫

dµN(y)
∏

i<j

(yi − yj)
α′ki·kj ,

where y1, y2, . . . , yN are real coordinates, any three of which are yA, yB, yC, and

dµN(y) = |(yA − yB)(yB − yC)(yC − yA)|
N−1
∏

i=1

θ(yi+1 − yi)

×δ(yA − y0
A)δ(yB − y0

B)δ(yC − y0
C)

N
∏

i=1

dyi.

The formula is independent of y0
A, y

0
B, y

0
C due to its SL(2,R) symmetry, which allows them

to be mapped to arbitrary real values. This formula has cyclic symmetry in the N external

lines.

Soon thereafter Shapiro formulated an N -particle generalization of the Virasoro formula

[30]:

AN(k1, k2, . . . , kN) = gN−2
closed

∫

dµN(z)
∏

i<j

|zi − zj |α
′ki·kj ,

where z1, z2, . . . , zN are complex coordinates, any three of which are zA, zB, zC , and

dµN(z) = |(zA − zB)(zB − zC)(zC − zA)|2

×δ2(zA − z0
A)δ2(zB − z0

B)δ2(zC − z0
C)

N
∏

i=1

d2zi.

The formula is independent of z0
A, z

0
B, z

0
C due to its SL(2,C) symmetry, which allows them

to be mapped to arbitrary complex values. This amplitude has total symmetry in the N

external lines.

Both of these formulas were shown to have a consistent factorization on a spectrum of

single-particle states described by an infinite number of harmonic oscillators [31, 32, 33, 34,

35]

{aµ
m} µ = 0, 1, . . . , d− 1 m = 1, 2, . . .

with one set of such oscillators in the Veneziano case and two sets in the Virasoro case.

These results were interpreted as describing the scattering of modes of a relativistic string

[35, 36, 37, 38, 39, 40]: open strings in the first case and closed strings in the second case.

Amazingly, the formulas preceded the interpretation. Although, we did not propose a string

interpretation, Gross, Neveu, Scherk, and I did realize that the relevant diagrams of the
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loop expansion were classified by the possible topologies of two-dimensional manifolds with

boundaries [41].

Having found the factorization, it became possible to compute radiative corrections (loop

amplitudes). This was initiated by Kikkawa, Sakita, and Virasoro [42] and followed up by

many others. Let me describe my role in this. I was at Princeton, where I collaborated with

Gross, Neveu, and Scherk in computing one-loop amplitudes. In particular, we discovered

unanticipated singularities in the “nonplanar” open-string loop diagram [43]. The world

sheet is a cylinder with two external particles attached to each boundary. Our computa-

tions showed that this diagram gives branch points that violate unitarity. This was a very

disturbing conclusion, since it seemed to imply that the classical theory does not have a

consistent quantum extension. This was also discovered by Frye and Susskind [44]. (The

issue of quantum consistency turned out to be a recurring theme, which reappeared many

years later, as discussed in Section 7.)

Soon thereafter Claude Lovelace pointed out [45] that these branch points become poles

provided that

α(0) = 1 and d = 26.

Until Lovelace’s work, everyone assumed that the spacetime dimension was d = 4.5 As we

were not yet talking about gravity, there was no reason to consider anything else. Later,

these poles were interpreted as closed-string modes in a one-loop open-string amplitude.

Nowadays this is referred to as open string–closed string duality.

Lovelace’s analysis also required there to be an infinite number of decoupling conditions.

These turned out to be precisely the Virasoro constraints, which were discovered at about

the same time [46, 47]. A couple of years later Brink and Olive constructed a physical-state

projection operator [48], which they used to verify Lovelace’s conjecture that the nonplanar

loop amplitude actually contains closed-string poles when the decoupling conditions in the

critical dimension are imposed [49].

Thus, quantum consistency was restored, but the price was high: a spectrum with a

tachyon and 22 extra dimensions of space. In 1973, the origin of the critical dimension and

the intercept condition were explained in terms of the light-cone gauge quantization of a

fundamental string by Goddard, Goldstone, Rebbi, and Thorn [50]. Prior to this paper the

string interpretation of dual models was only a curiosity. The GGRT approach was extended

to interacting strings by Mandelstam [51].

5The idea of considering a higher dimension was suggested to Lovelace by David Olive.
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4 1971 – 73: The RNS model

In January 1971 Pierre Ramond constructed a dual-resonance model generalization of the

Dirac equation [52]. He reasoned as follows: just as the total momentum of a string, pµ, is

the zero mode of a momentum density P µ(σ), so should the Dirac matrices γµ be the zero

modes of densities Γµ(σ). Then he defined the modes of Γ · P :

Fn =

∫ 2π

0

e−inσΓ · Pdσ n ∈ Z.
In particular,

F0 = γ · p+ oscillator terms .

He proposed the wave equation

(F0 +m)|ψ〉 = 0,

which is now known as the Dirac–Ramond Equation. Its solutions give the spectrum of a

noninteracting fermionic string.

Ramond also observed that the Virasoro algebra generalizes to6

{Fm, Fn} = 2Lm+n +
c

3
m2δm,−n

[Lm, Fn] = (
m

2
− n)Fm+n

[Lm, Ln] = (m− n)Lm+n +
c

12
m3δm,−n .

The free fermion spectrum should be restricted by the super-Virasoro constraints Fn|ψ〉 =

Ln|ψ〉 = 0 for n > 0.

André Neveu and I proposed a new bosonic dual model, which we called the dual pion

model, in March 1971 [53].7 It has a similar structure to Ramond’s free fermion theory, with

the periodic density Γµ(σ) replaced by an antiperiodic one Hµ(σ). Then the modes

Gr =

∫ 2π

0

e−irσH · Pdσ r ∈ Z+ 1/2

satisfy a similar super-Virasoro algebra. The free particle spectrum is given by the wave

equation (L0 − 1/2)|ψ〉 = 0 supplemented by the constraints Gr|ψ〉 = 0 for r > 0. (These

6His paper does not include the central terms.
7We submitted another publication [54] one month earlier that contained some, but not all, of the right

ingredients.
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formulas are appropriate in the F2 picture discussed below.) We also constructed N -particle

amplitudes analogous to those of the Veneziano model.

The π + π → π + π amplitude computed in the dual pion model turned out to have

exactly the form that had been proposed earlier by Lovelace and Shapiro. However, the

intercepts of the π and ρ Regge trajectories were απ(0) = 1/2 and αρ(0) = 1. These were

half a unit higher than was desired in each case. This implied that the pion was tachyonic

and the rho was massless.

Soon after our paper appeared, Neveu traveled to Berkeley, where there was considerable

interest in our results. This led to Charles Thorn (a student of Stanley Mandelstam at the

time) joining us in a follow-up project in which we proved that the super-Virasoro constraints

were fully implemented [55]. This required recasting the original description of the string

spectrum (called the F1 picture) in a new form, which we called the F2 picture. The three of

us then assembled these bosons together with Ramond’s fermions into a unified interacting

theory of bosons and fermions [56, 57], thereby obtaining an early version of what later came

to be known as superstring theory.

The string world-sheet theory that gives this spectrum of bosons and fermions is

S =

∫

dσdτ
(

∂αX
µ∂αXµ − iψ̄µρα∂αψµ

)

,

where ψµ are two-dimensional Majorana spinors and ρα are two-dimensional Dirac matrices.

Later in that same year (1971), Gervais and Sakita observed [58] that this action has two-

dimensional global supersymmetry described by the infinitesimal fermionic transformations

δXµ = ε̄ψµ

δψµ = −iραε∂αX
µ.

There are two possible choices of boundary conditions for the fermi fields ψµ, one of which

gives the boson spectrum (Neveu–Schwarz sector) and the other of which gives the fermion

spectrum (Ramond sector). In fact, the boundary conditions are only compatible with global

supersymmetry in the Ramond sector. Five years later, a more fundamental world-sheet

action with local supersymmetry was discovered [60, 61]. It has the additional virtue of also

accounting for the super-Virasoro constraints. The significance of this algebra is that the

world-sheet theory, when properly gauge fixed and quantized, has superconformal symmetry.

Also in 1971, the four-dimensional super-Poincaré group was formulated by Golfand and

Likhtman [62], who proposed constructing four-dimensional field theories with this symme-

try. However, the celebrated Wess–Zumino work [63] on four-dimensional supersymmetric

8



theories, a couple of years later, was motivated by the search for 4d interacting analogs of

the 2d Gervais–Sakita world-sheet action. (They were unaware of the Golfand–Likhtman

work at that time.)

The dual pion model has a manifest Z2 symmetry. Since the pion is odd and the rho is

even, this symmetry was identified with G parity.8 It was obvious that one could make a

consistent truncation (at least at tree level) to the even G-parity sector and that then the

model would be tachyon free. Because of the desired identification with physical hadrons,

there was no motivation (at the time) to do that, however. Rather, considerable effort was

expended in the following year attempting to modify the model so as to lower the intercepts

by half a unit. An example is [64]. None of these constructions was entirely satisfactory,

however.

One of the important questions in this period was whether all the physical string ex-

citations have a positive norm. States of negative norm (called ghosts) would represent a

breakdown of unitarity and causality, so it was essential that they not be present in the string

spectrum. The first proof of the no-ghost theorem for the original bosonic string theory was

achieved by Brower [65], building on earlier work by Del Giudice, Di Vecchia, and Fubini

[66]. This work showed that a necessary condition for the absence of ghosts is d ≤ 26, and

that the critical value d = 26 has especially attractive features, as we already suspected

based on the earlier observations of Lovelace.

I generalized Brower’s proof of the no-ghost theorem to the RNS string theory and showed

that d = 10 is the critical dimension and that the ground state fermion should be massless

[67]. This was also done by Brower and Friedman a bit later [68]. An alternative, somewhat

simpler, proof of the no-ghost theorem for both of the string theories was given by Goddard

and Thorn at about the same time [69]. Other related work included [70, 71, 72].

Later in 1972, thanks to the fact that Murray Gell-Mann had become intrigued by my

work with Neveu, I was offered a senior research appointment at Caltech. I think that

the reason Gell-Mann became aware of our work was because he spent the academic year

1971-72 on a sabbatical at CERN, where there was an active dual models group. I felt very

fortunate to receive such an offer, especially in view of the fact that the job market for

theoretical physicists was extremely bad at the time. Throughout the subsequent years at

Caltech, when my work was far from the mainstream, and therefore not widely appreciated,

Gell-Mann was always very supportive. For example, he put funds at my disposal to invite

8G parity is a hadronic symmetry that is a consequence of charge conjugation invariance and isotopic
spin symmetry.
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visitors. This facilitated various collaborations with Lars Brink, Joël Scherk, and Michael

Green among others.

One of the first things I did at Caltech was to study the fermion-fermion scattering

amplitude. Using the physical-state projection operator [48], Olive and Scherk had derived

a formula that involved the determinant of an infinite matrix [73]. C.C. Wu and I [74]

discovered that this determinant is a simple function. We derived the result analytically

in a certain limit and then verified numerically that it is exact everywhere. (The result

was subsequently verified analytically [75].) To our surprise, the fermion-fermion scattering

amplitude ended up looking very similar to the bosonic amplitudes. This might have been

interpreted as a hint of spacetime supersymmetry, but this was before the Wess–Zumino

paper, and that was not yet on my mind.

String theory is formulated as an on-shell S-matrix theory in keeping with its origins

discussed earlier. However, the SLAC deep inelastic scattering experiments in the late 1960s

made it clear that the hadronic component of the electromagnetic current is a physical off-

shell quantity, and that its asymptotic properties imply that hadrons have hard pointlike

constituents. With this motivation, I tried for the next year or so to construct off-shell

amplitudes. Although some intriguing results were obtained [76, 77, 78], this was ultimately

unsuccessful. Moreover, all indications were that strings were too soft to describe hadrons

with their pointlike constituents.

At this point there were many good reasons to stop working on string theory: a successful

and convincing theory of hadrons (QCD) was discovered, and string theory had many severe

problems as a hadron theory. These included an unrealistic spacetime dimension, an unre-

alistic spectrum, and the absence of pointlike constituents. Also, convincing theoretical and

experimental evidence for the standard model was rapidly falling into place. Understand-

ably, given these successes and string theory’s shortcomings, string theory rapidly fell out

of favor. What had been a booming enterprise involving several hundred theorists rapidly

came to a grinding halt.

Given that the world-sheet descriptions of the two known string theories have confor-

mal invariance and superconformal invariance, it was a natural question whether one could

obtain new string theories described by world-sheet theories with extended superconformal

symmetry. The N = 2 case was worked out in [79]. The critical dimension is four, but the

signature has to be (2, 2). For a long time it was believed that the critical dimension of

the N = 4 string is negative, but in 1992 Siegel argued that (due to the reducibility of the

constraints) the N = 4 string is the same as the N = 2 string [80].

10



5 1974 – 75: Gravity and unification

Among the problems of the known string theories, as a theory of hadrons, was the fact that

the spectrum of open strings contains massless spin 1 particles, and the spectrum of closed

strings contains a massless spin 2 particle (as well as other massless particles). These particles

lie on the leading Regge trajectories, and so the leading open-string Regge trajectory has

intercept α(0) = 1, and the leading closed-string Regge trajectory has intercept α(0) = 2.

In the attempts to reduce the open-string intercept to α(0) = 1/2, mentioned earlier, it was

expected that the closed-string intercept would be shifted to α(0) = 1 at the same time. If

this were to happen, then this trajectory could be identified with the Pomeron trajectory,

which is responsible for the near constancy (up to logarithmic corrections) of hadronic total

cross sections at high energy.

The alternative to modifying string theory to get what we wanted was to understand

what the theory was giving without modification. String theories in the critical dimension

clearly were beautiful theories, and they ought to be good for something. The fact that they

were developed in an attempt to understand hadron physics did not guarantee that this was

necessarily their appropriate physical application. Furthermore, the success of QCD made

the effort to formulate a string theory of hadrons less pressing.

The first indication that such an agnostic attitude could prove worthwhile was a pio-

neering work by Neveu and Scherk [81], which studied the interactions of the massless spin

1 open-string particles at low energies (or, equivalently, in the zero-slope limit) and proved

that their interactions agreed with those of Yang–Mills gauge particles in the adjoint rep-

resentation of the Chan–Paton group. In other words, open-string theory was Yang–Mills

gauge theory modified by higher dimension interactions at the string scale. This implies that

the Chan–Paton group is actually a Yang–Mills gauge group.9

I arranged for Joël Scherk, with whom I had collaborated in Princeton, to visit Caltech in

the winter and spring of 1974. Our interests and attitudes in physics were very similar, and

so we were anxious to start a new collaboration. Each of us felt that string theory was too

beautiful to be just a mathematical curiosity. It ought to have some physical relevance. We

had frequently been struck by the fact that string theories exhibit unanticipated miraculous

properties. What this means is that they have a very deep mathematical structure that is

not fully understood. By digging deeper one could reasonably expect to find more surprises

9This work relating string theory and Yang–Mills theory followed an earlier study by Scherk describing
how to obtain φ3 field theory in the zero-slope limit [82].
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and then learn new lessons. Therefore, despite the fact that the rest of the theoretical high

energy physics community was drawn to the important project of exploring the standard

model, we wanted to explore string theory.

Since my training was as an elementary particle physicist, gravity was far from my mind

in early 1974. Traditionally, elementary particle physicists had ignored the gravitational

force, which is entirely negligible under ordinary circumstances. For these reasons, we were

not predisposed to interpret string theory as a physical theory of gravity. General relativists,

the people who did study gravity, formed a completely different community. They attended

different meetings, read different journals, and had no need for serious communication with

particle physicists, just as particle physicists felt they had no need for relativists who studied

topics such as black holes or the early universe.

Despite all this, we decided to do what could have been done two years earlier: we

explored whether it is possible to interpret the massless spin 2 state in the closed-string

spectrum as a graviton. This required carrying out an analysis analogous to the earlier

one of Neveu and Scherk. This time one needed to decide whether the interactions of the

massless spin 2 particle in string theory agree at low energy with those of the graviton in

general relativity (GR). Success was inevitable, because GR is the only consistent possibility

at low energies (i.e., neglecting corrections due to higher-dimension operators), and string

theory certainly is consistent. Therefore, the harder part of this work was forcing oneself

to ask the right question rather than finding the right answer. In fact, by invoking certain

general theorems, we were able to argue that string theory agrees with general relativity

at low energies [83]. Although we were not aware of it at the time, Tamiaki Yoneya had

obtained the same result somewhat earlier [84, 85].

In our paper, Scherk and I proposed to use string theory as a quantum theory of gravity,

unified with the other forces. (Yoneya did not take this step.) This proposal had several

advantages: 1) Gravity was required by the known string theories; 2) These string theories

are free from the UV divergences that typically appear in point-particle theories of gravity.

3) Extra dimensions could be a good thing, since in a gravity theory their geometry would

be determined by the dynamics. 4) Unification of gravity with other forces described by

Yang–Mills theories was automatic when open strings are included.

We assumed that the size of the extra dimensions is comparable to the string scale. It

then followed that the observed strength of gravity requires α′ ∼ 10−38 GeV−2 instead of

α′ ∼ 1 GeV−2, which is the hadronic value. Thus the change in interpretation meant that

the tension of the strings suddenly increased by 38 orders of magnitude. This was a big
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conceptual leap, but the mathematics was unchanged.

Scherk and I were very excited by the possibility that string theory could be the Holy

Grail of unified field theory, overcoming the problems that had stymied other approaches.

In addition to publishing our work in scholarly journals we gave numerous lectures at con-

ferences and physics departments all over the world. We even submitted a paper to the 1975

essay competition of the Gravity Research Foundation [86]. For the most part our work

was received politely — as far as I know, no one accused us of being crackpots. Yet, for a

decade, very few of the experts took the proposal seriously. Unfortunately, Scherk passed

away midway through this 10-year period, though not before making some other important

contributions that are discussed in the following sections.

6 1975 – 79: Supersymmetry and supergravity

Following the pioneering work of Wess and Zumino, discussed earlier, the study of supersym-

metric quantum field theories became a major endeavor. One major step forward was the

realization that supersymmetry can be realized as a local symmetry. This requires including

a gauge field, called the gravitino field, which is vector-spinor. In four dimensions it describes

a massless particle with spin 3/2, which is the supersymmetry partner of the graviton. Thus,

local supersymmetry only appears in gravitational theories, which are called supergravity

theories.

The first example of a supergravity theory was N = 1, d = 4 supergravity. It was formu-

lated in a second-order formalism by Ferrara, Freedman, and Van Nieuwenhuizen [87] and

subsequently in a first-order formalism by Deser and Zumino [88]. The first-order formalism

simplifies the analysis of terms that are quartic in fermi fields.

The two-dimensional locally supersymmetric and reparametrization invariant formulation

of the RNS world-sheet action was constructed very soon thereafter [60, 61].10 This construc-

tion was generalized to the N = 2 string of [79] by Brink and me [89]. Reparametrization-

invariant world-sheet actions of this type are frequently associated with the name Polyakov,

because he used them very skillfully five years later in constructing the path-integral formu-

lation of string theory [90, 91]. Since neither Polyakov nor the authors of [60, 61] are happy

with this usage, the new textbook [6] refers to this type of world-sheet action as a string

sigma-model action.

The RNS closed-string spectrum contains a massless gravitino (in ten dimensions) in

10This generalized the one-dimensional result obtained a bit earlier for a spinning point particle [59].
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addition to the graviton discussed in the previous section.11 Since this is a gauge field, the

only way the theory could be consistent is if the theory has local supersymmetry. This

requires, in particular, that the spectrum should contain an equal number of bosonic and

fermionic degrees of freedom at each mass level. However, as it stood, this was not the case.

In particular, the bosonic sector contained a tachyon (the “pion”), which had no fermionic

partner.

In 1976 Gliozzi, Scherk, Olive [92, 93] proposed a projection of the RNS spectrum – the

GSO Projection – that removes roughly half of the states (including the tachyon). Specifi-

cally, in the bosonic (NS) sector they projected away the odd G-parity states, a possibility

that was discussed earlier, and in the fermionic (R) sector they projected away half the

states, keeping only certain definite chiralities. Then they counted the remaining physical

degrees of freedom at each mass level. After the GSO projection the masses of open-string

states, for both bosons and fermions, are given by α′M2 = n, where n = 0, 1, . . . Denoting

the open-string degeneracies of states in the GSO-projected theory by dNS(n) and dR(n),

they showed that these are encoded in the generating functions

fNS(w) =
∞

∑

n=0

dNS(n)wn

=
1

2
√
w

[

∞
∏

m=1

(

1 + wm−1/2

1 − wm

)8

−
∞
∏

m=1

(

1 − wm−1/2

1 − wm

)8
]

.

and

fR(w) =

∞
∑

n=0

dR(n)wn = 8

∞
∏

m=1

(

1 + wm

1 − wm

)8

.

In 1829, Jacobi proved the remarkable identity [94]

fNS(w) = fR(w),

though he used a different notation.12 Thus, there are an equal number of bosons and

fermions at every mass level, as required. This was compelling evidence (though not a

proof) for ten-dimensional spacetime supersymmetry of the GSO-projected theory. Prior to

this work, one knew that the RNS theory has world-sheet supersymmetry, but the realization

that the theory should have spacetime supersymmetry was a major advance.

11More precisely, as was understood later, there are one or two gravitinos depending on whether one is
describing a type I or type II superstring.

12Jacobi’s paper acknowledges an assistant named Scherk!
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Since a Majorana–Weyl spinor in ten dimensions has 16 real components, the minimal

number of supercharges is 16. In particular, the massless modes of open superstrings at

low energies are approximated by an N = 1, d = 10 super Yang–Mills theory with 16

supersymmetries. This theory was constructed in [93, 95]. When this work was done, Brink

and I were at Caltech and Scherk was in Paris. Brink and I wrote to Scherk informing him of

our results and inviting him to join our collaboration, which he gladly accepted. Brink and I

were unaware of the GSO collaboration, which was underway at that time, until their work

appeared. Both papers pointed out that maximally supersymmetric Yang–Mills theories

in less than ten dimensions could be deduced by dimensional reduction, and both of them

constructed the N = 4, d = 4 super Yang–Mills theory explicitly.

Having found the maximally supersymmetric Yang–Mills theories, it was an obvious prob-

lem to construct the maximally supersymmetric supergravity theories. Nahm showed [96]

that the highest possible spacetime dimension for such a theory is d = 11. Soon thereafter,

in a very impressive work, the Lagrangian for N = 1, d = 11 supergravity was constructed

by Cremmer, Julia, and Scherk [97]. The relevance of this beautiful theory to string theory

remained mysterious for many years. This was finally understood a decade after the period

covered by this article.

In 1978–79, I spent the academic year at the Ecole Normale Supérieure in Paris. There,

I collaborated with Joël Scherk. Motivated by string theory considerations, we developed a

scheme to break supersymmetry in the compactification of extra dimensions [98, 99, 100].

We only discussed our approach in a field theory context, because we were unable to decouple

the supersymmetry breaking scale from the scale of the extra dimensions, which we believed

to be necessary for at least one of the four-dimensional supersymmetries. In recent times

others have applied these techniques to string theory compactifications, mostly in the context

of large extra dimensions.

7 1979 – 84: Superstrings and Anomalies

Following Paris, I spent a month (July 1979) at CERN. There, Michael Green and I unex-

pectedly crossed paths. We had become acquainted in Princeton around 1970, when Green

was at the IAS and I was at the University, but we had not collaborated before. In any case,

following some discussions in the CERN cafeteria, we began a long and exciting collabora-

tion. Our first goal was to understand better why the GSO-projected RNS string theory has

spacetime supersymmetry.
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Green, who worked at Queen Mary College London at the time, had several extended

visits to Caltech in the 1980–85 period, and I had one to London in the fall of 1983. We

also worked together several summers in Aspen. On several of these occasions we also

collaborated with Lars Brink, who had visited Caltech and collaborated with me a few times

previously.

After a year or so of unsuccessful efforts, Green and I discovered a new light-cone gauge

formalism for the GSO-projected theory in which spacetime supersymmetry of the spectrum

and interactions was easily proved. This was presented in three papers [101, 102, 103]. The

first developed the formalism, while the next two used this light-cone gauge formalism to

compute various tree and one-loop amplitudes and elucidate their properties. At this stage

only open-string amplitudes were under consideration.

Our next project was to identify more precisely the possibilities for superstring theories.

The GSO work had identified the proper projection for open strings, but it left unclear what

one should do with the closed strings. Green and I realized that there are three distinct

types of supersymmetry possible in ten dimensions and that all three of them could be

realized by superstring theories. In [104] we formulated the type I, type IIA, and type IIB

superstring theories. (We introduced these names a little later.) The type I theory is a

theory of unoriented open and closed strings, whereas the the type II theories are theories

of oriented closed strings only.

Brink, Green, and I formulated d-dimensional maximally supersymmetric Yang–Mills

theories and supergravity theories as limits of superstring theory with 10 − d of the ten

dimensions forming a torus. By computing one-loop string-theory amplitudes for massless

gauge particles in the type I theory and gravitons in the type II theory and taking the appro-

priate limits, we showed that both the Yang–Mills and supergravity theories are ultraviolet

finite at one loop for d < 8 [105]. The toroidally compactified string-loop formulas exhibited

T-duality symmetry, though this was not pointed out explicitly in the article.

We also spent considerable effort formulating superstring field theory in the light-cone

gauge [106, 107, 108]. This work became relevant about 20 years later, when the construction

was generalized to the case of type IIB superstrings in a plane-wave background spacetime

geometry.

The fact that our spacetime supersymmetric formalism was only defined in the light-cone

gauge was a source of frustration. Brink and I had found a covariant world-line action for a

massless superparticle earlier [109], so it was just a matter of finding the suitable superstring

generalization. After a number of attempts, Green and I eventually found a covariant world-
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sheet action with manifest spacetime supersymmetry (and non-manifest kappa symmetry)

[110, 111]. This covariant action reduces to our previous one in the light cone gauge, of course.

It was natural to try to use it to define covariant quantization. However, due to a subtle

combination of first-class and second-class constraints, it was immediately apparent that this

action is extremely difficult to quantize covariantly. Numerous unsuccessful attempts over

the years bear testimony to the truth of this assertion. More recently, Berkovits seems to

have found a successful scheme. However, as far as I can tell, its logical foundations are not

yet entirely clear.

Another problem of concern during this period was the formulation of ten-dimensional

type IIB supergravity,13 which is the leading low-energy approximation to type IIB super-

string theory. Some partial results were obtained in separate collaborations with Green [112]

and with Peter West [113]. A challenging aspect of the problem is the presence of a self-

dual five-form field strength, which obstructs a straightforward construction of a manifestly

covariant action. Therefore, I decided to focus on the equations of motion, instead, which I

presented in [114]. Equivalent results were obtained in a superfield formalism by Howe and

West [115].

Let me now turn to the issue of anomalies. Type I superstring theory is a well-defined

ten-dimensional theory at tree level for any SO(n) or Sp(n) gauge group [116, 117]. However,

in every case it is chiral (i.e., parity violating) and the d = 10 super Yang–Mills sector is

anomalous. Evaluation of a one-loop hexagon diagram exhibits explicit nonconservation of

gauge currents of the schematic form

∂µJ
µ ∼ εµ1···µ10Fµ1µ2

· · ·Fµ9µ10
,

which is a fatal inconsistency.

Alvarez-Gaumé and Witten derived general formulas for gauge, gravitational, and mixed

anomalies in an arbitrary spacetime dimension [118], and they discovered that the gravita-

tional anomalies (nonconservation of the stress tensor) cancel in type IIB supergravity. This

result was not really a surprise, since the one-loop type IIB superstring amplitudes are ul-

traviolet finite. It appeared likely that type I superstring theory is anomalous for any choice

of the gauge group, but an explicit computation was required to decide for sure. In this case

there are divergences that need to be regulated, so anomalies are definitely possible.

Green and I explored the anomaly problem for type I superstring theory off and on for

almost two years until the crucial breakthroughs were made in August 1984 at the Aspen

13Type IIA supergravity can be obtained by dimensional reduction of 11-dimensional supergravity, but
type IIB supergravity cannot be obtained in this way.
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Center for Physics. That summer I was the organizer of a workshop entitled “Physics in

Higher Dimensions” at the Aspen Center for Physics. This attracted many participants, even

though string theory was not yet fashionable, because by that time there was considerable

interest in supergravity theories in higher dimensions and Kaluza–Klein compactification.

We benefitted from the presence of many leading experts including Bruno Zumino, Bill

Bardeen, Dan Friedan, Steve Shenker, and others.

Green and I had tried unsuccessfully to compute the one-loop hexagon diagram in type I

superstring theory using our supersymmetric light-cone gauge formalism, but this led to an

impenetrable morass. In discussions with Friedan and Shenker the idea arose to carry out

the computation using the covariant RNS formalism instead. At that point, Friedan and

Shenker left Aspen, so Green and I continued on our own.

It soon became clear that both the cylinder and Möbius-strip diagrams contributed to

the anomaly. Before a workshop seminar by one of the other workshop participants (I don’t

remember which one), I remarked to Green that there might be a gauge group for which

the two contributions cancel. At the end of the seminar Green said to me “SO(32),” which

was the correct result. Since this computation only showed the cancellation of the pure

gauge part of the anomaly, we decided to explore the low-energy effective field theory to see

whether the gravitational and mixed anomalies could also cancel. Before long, with the help

of the results of Alvarez-Gaumé and Witten and useful comments by Bardeen and others,

we were able to explain how this works. The effective field theory analysis was written up

first [119], and the string loop analysis was written up somewhat later [120]. We also showed

that the UV divergences of the cylinder and Möbius-strip diagrams cancel for SO(32) [121].

Nowadays such cancellations are usually understood in terms of tadpole cancellations in a

dual closed-string channel.

The effective field theory analysis showed that E8 ×E8 is a second gauge group for which

the anomalies could cancel for a theory with N = 1 supersymmetry in ten dimensions. In

both cases, it is crucial for the result that the coupling to supergravity is included. The

SO(32) case could be accommodated by type I superstring theory, but we didn’t know a

superstring theory with gauge group E8 ×E8. We were aware of the article by Goddard and

Olive that pointed out (among other things) that there are just two even-self-dual Euclidean

lattices in 16 dimensions, and these are associated with precisely these two gauge groups

[122]. However, we did not figure out how to exploit this fact before the problem was solved

by others.

Before the end of 1984 there were two other major developments. The first one was
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the construction of the heterotic string by Gross, Harvey, Martinec, and Rohm [123, 124,

125]. Their construction actually accommodated both of the gauge groups. The second

one was the demonstration by Candelas, Horowitz, Strominger, and Witten that Calabi–

Yau compactifications of the E8 ×E8 heterotic string give supersymmetric four-dimensional

effective theories with many realistic features [126].

By the beginning of 1985, superstring theory – with the goal of unification – had become

a mainstream activity. In fact, there was a very sudden transition from benign neglect to

unbounded euphoria, both of which seemed to me to be unwarranted. After a while, most

string theorists developed a more realistic assessment of the problems and challenges that

remained.

8 Postscript

The construction of a dual string theory description of QCD is still an actively pursued goal.

It now appears likely that every well-defined (finite or asymptotically free) four-dimensional

gauge theory has a string theory dual in a curved background geometry with five noncompact

dimensions. The extra dimension corresponds to the energy scale of the gauge theory. The

cleanest and best understood example of such a duality is the correspondence between N = 4

supersymmetric Yang-Mills theory with an SU(N) gauge group and type IIB superstring

theory in an AdS5 × S5 spacetime with N units of five-form flux threading the sphere [127].

In particular, the (off-shell) energy–momentum tensor of the four-dimensional gauge theory

corresponds to the (on-shell) graviton in five dimensions.

Such possibilities were not contemplated in the early years, so it understandable that

success was not achieved. Moreover, the dual description of QCD is likely to be considerably

more complicated than the example described above. For one thing, for realistic numbers of

colors and flavors, the five-dimensional geometry is expected to have string-scale curvature,

so that a supergravity approximation will not be helpful. However, it might still be possible

to treat the inverse of the number of colors as small, so that a semiclassical string theory

approximation (corresponding to the planar approximation to the gauge theory) can be used.

If one is willing to sacrifice quantitative precision, one can already give constructions that

have the correct qualitative features of QCD. One of their typical unrealistic features is that

the Kaluza–Klein scale is comparable to the QCD scale. I remain optimistic that a correct

construction of a string theory configuration that is dual to QCD exists. However, finding

it and analyzing it might take a long time.
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