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Abstract

Systems for inducing concept descriptions from examples are valuable tools for

assisting in the task of knowledge acquisition for expert systems. This paper presents

a description and empirical evaluation of a new induction system, cn2, designed for

the e�cient induction of simple, comprehensible production rules in domains where

problems of poor description language and/or noise may be present. Implementations

of the cn2, id3 and aq algorithms are compared on three medical classi�cation tasks.
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1 Introduction

In the task of constructing expert systems, systems for inducing concept descriptions

from examples have proved useful in easing the bottleneck of knowledge acquisition [1].

Two families of systems, based on the id3 [2] and aq [3] algorithms, have been especially

successful. These basic algorithms assume no noise in the domain, searching for a concept

description that classi�es training data perfectly. However for the application of systems

based on these algorithms to real-world domains, methods for handling noisy data are

required. In particular, mechanisms for avoiding the over�tting of the induced concept

description to the data are needed, requiring relaxation of the constraint that the induced

description must be classify the training data perfectly.

Fortunately the id3 algorithm lends itself to easy modi�cation allowing this constraint

to be relaxed, by the nature of its general-to-speci�c search. Tree pruning techniques (e.g.

[4, 5]), as used for example in the systems c4 [6] and assistant [7], have proved to be

e�ective methods of avoiding over�tting. The aq algorithm, however, is less easy to

modify due to its dependence on speci�c training examples during its search. Existing

implementations (e.g. aq11 [8] and aq15 [9]) deal with noisy data by using pre- and

post-processing techniques while leaving the basic aq algorithm intact. Our objective in

designing cn2 is to modify the aq algorithm itself in such a way that this dependence

on speci�c examples is removed and the space of rules searched is increased. As a result

statistical techniques analogous to those used for tree pruning can then be applied in the

generation of if-then rules, and a simpler algorithm is achieved.

We can identify several requirements that learning systems should meet if they are to

prove useful in a variety of real-world situations:

Accurate classi�cation. The induced rules should be able to classify new examples

accurately, even in the presence of noise.

Simple rules. For the sake of comprehensibility, the induced rules should be as short

as possible. However, when noise is present, rules that are over�tted tend to be

long. Thus, to induce short rules, one must usually relax the requirement that the

induced rules be consistent with all the training data. The choice of how much to

relax this requirement involves a trade-o� between accuracy and simplicity [10].

E�cient rule generation. If one expects to use large example sets, it is important that

the algorithm scales up to complex situations. In practice, it is desirable that the

time taken for rule generation be linear in the size of the example set.
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With these requirements in mind, this paper presents a description and empirical

evaluation of cn2, a new induction algorithm. It combines the e�ciency and ability to

cope with noisy data of id3 with the if-then rule form and 
exible search strategy of the

aq family. The representation for rules output by cn2 is an ordered set of if-then rules,

also known as a `decision list' [11]. cn2 uses a heuristic function to terminate search

during rule construction, based on an estimate of the noise present in the data. This

results in rules that do not necessarily classify all the training examples correctly, but

that perform well on new data.

In the following section we describe cn2 and three other systems used for our com-

parative study. These include: aqr, the authors' reconstruction of Michalski et al's aq

algorithm; Kononenko, Bratko and Roskar's (1984) assistant, a variant of id3; and a

simple Bayesian classi�er which is used to provide a reference for the performance of the

other algorithms. In each case we consider the time complexity of the various algorithms.

In section 4, we compare the performance of the algorithms on three medical tasks; we

also compare the performance of assistant and cn2 on two synthetic tasks. In section 5

we discuss the signi�cance of these results, and we follow this with some suggestions for

future work in section 6.

2 CN2 and Algorithms for Comparative Study

cn2 and the other algorithms used in experiments are now presented. Because cn2

has been developed from study of both the id3 and aq algorithms, we �rst present the

id3-based system assistant and the aq-based system aqr before presenting cn2 and

discussing its relationship to these algorithms.

We characterize the systems along three dimensions. These are:

� The representation language for the induced knowledge;

� The performance engine for executing the rules; and

� The learning algorithm and its associated search heuristics.

In all of our experiments, the example description language consisted of attributes, at-

tribute values and user-speci�ed classes. This language was the same for each algorithm.

2.1 Assistant

The assistant algorithm [7] is a descendant of Quinlan's id3 (1983), and incorporates

a tree pruning mechanism for handling noisy data.
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Let: E be a set of examples

A be a set of attributes for describing examples

TE(E) be a termination criterion

IDM(a

i

; E) be an evaluation function where a

i

2 A

Procedure assistant(E) returning TREE:

If: E satis�es the termination criterion TE(E) then return a leaf node

for TREE, labelled with the most common class of examples in E.

Else: determine the attribute a

best

2 A with the largest value of the

function IDM(a

best

; E). Then, for each value v

j

of attribute a

best

,

generate subtrees using assistant(E

j

) where E

j

are those examples

in E with value v

j

for attribute a

best

. Return a node labelled as a

test on attribute a

best

with these subtrees attached.

Table 1: The core of the assistant algorithm

2.1.1 Concept Description Language and Interpretation

assistant represents acquired knowledge in the form of decision trees. An internal node

of a tree speci�es a test of an attribute, with each outgoing branch corresponding to a

possible result of this test. Leaf nodes represent the classi�cation to be assigned to an

example.

To classify a new example, a path from the root of the decision tree to a leaf node

is traced. At each internal node reached, the branch corresponding to the value of the

attribute tested at that node is followed. The class at the leaf node represents the class

prediction for that example.

2.1.2 Learning Algorithm

assistant induces a decision tree by repeatedly specializing leaf nodes of an initially

single-noded tree. The specialization operation involves replacing a leaf node with an

attribute test, and adding new leaves to that node corresponding to the possible results of

that test. Heuristics determine which attribute to test on and when to stop specialization.

Table 1 summarizes this algorithm.
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2.1.3 Heuristic Functions

assistant uses an entropy measure to guide the growth of the decision tree, as described

by Quinlan (1983) . This corresponds to the function IDM in Table 1. In addition, the

algorithm can apply a tree cuto� method based on an estimate of maximal classi�cation

precision. This technique estimates whether additional branching would reduce classi�ca-

tional accuracy and if so, terminates search (there are no user-changeable parameters in

this calculation). This cuto� criterion corresponds to the function TE in the Table 1. If

assistant is to generate an `unpruned' tree, the termination criterion TE(E) is satis�ed

if all the examples E have the same class value.

2.2 AQR

aqr is an induction system that uses the basic aq algorithm [3] to generate a set of

classi�cation rules. Many systems use this algorithm in a more sophisticated manner

than aqr to improve predictive accuracy and rule simplicity (e.g., aq11 [8] uses a more

complex method of rule interpretation that involves degrees of con�rmation). aqr is a

reconstruction of a straightforward aq-based system.

2.2.1 Concept Description Language and Interpretation

aqr induces a set of decision rules, one for each class. Each rule is of the form `if <cover>

then predict <class>', where <cover> is a boolean combination of attribute tests as we

now describe.

The basic test on an attribute is called a selector. The following are examples of

selectors:

hCloudy = yesi

hWeather = wet ^ stormyi

hTemp > 60i

aqr allows tests in the set f=;�; >; 6=g. A conjunct of selectors is called a complex,

and a disjunct of complexes is called a cover. We say that an expression (a selector,

complex, or cover) covers an example if the expression is true of the example. Thus,

the empty complex (conjunct of zero attribute tests) covers all examples and the empty

cover (disjunct of zero complexes) covers no examples. A cover is stored along with an

associated class value, representing the most common class of those training examples

which it covers.
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In aqr, a new example is classi�ed by �nding which of the induced rules have their

conditions satis�ed by the example. If the example satis�es only one rule, then the class

predicted by that rule is assigned to the example. If the example satis�es more than one

rule, the most common class of training examples that were covered by those rules is

predicted. If the example is not covered by any rule, then it is assigned by default to the

class that occurred most frequently in the training examples.

2.2.2 The Learning Algorithm

The aq rule-generation algorithm has been described elsewhere (e.g. [8, 12, 13]), and

the aqr system is an instance of this general algorithm. aqr generates a decision rule

for each class in turn. Having chosen a class on which to focus, it forms a disjunct of

complexes (the cover) to serve as the condition of the rule for that class. This process

occurs in stages; each stage generates a single complex, and then removes the examples

it covers from the training set. This step is repeated until enough complexes are found to

cover all the examples of the chosen class. This whole process is repeated for each class

in turn. Table 2 summarizes the aqr algorithm.

2.2.3 Heuristic Functions

The particular heuristic functions used by the aq algorithm are implementation depen-

dent. The heuristic used by aqr to choose the best complex is \maximize the number of

positive examples covered". The heuristic used to trim the partial star during generation

of a complex is \maximize the sum of positive examples covered and negative examples

excluded". In the case of a tie for either heuristic, the system prefers complexes with

fewer selectors. Seeds are chosen at random and negative examples are chosen according

to their distance from the seed (nearest ones are picked �rst, where distance is the num-

ber of attributes with di�erent values in the seed and negative example). In the case of

contradictions (i.e. if the seed and negative example have identical attribute values) the

negative example is ignored and a di�erent one is chosen, since the complex cannot be

specialized to exclude it but still include the seed.

2.3 A Bayesian Classi�er

To establish a reference point, we also implemented a simple Bayesian classi�er and

compared its behavior to that of the other algorithms.
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Table 2: The aqr covering algorithm: Generating a cover for class C

Procedure AQR(POS; NEG) returning COVER:

let COVER be the empty cover;

while COVER does not cover all positive examples in POS

select a SEED, i.e. a positive example not covered by COVER;

call procedure STAR(SEED;NEG) to generate the STAR (a set) of

complexes that cover SEED but no examples in NEG;

select the best complex BEST from the star according to user-de�ned criteria;

add BEST as an extra disjunct to COVER;

return COVER.

Procedure STAR(SEED;NEG) returning STAR:

let STAR be the set containing the empty complex;

while one or more complexes in STAR covers some negative examples in NEG,

select a negative example E

neg

covered by a complex in STAR;

Specialize complexes in STAR to exclude E

neg

by:

let EXTENSION be all selectors that cover SEED but not E

neg

;

let STAR be the set fx ^ yjx 2 STAR; y 2 EXTENSIONg;

remove all complexes in STAR subsumed by other complexes in STAR;

Remove the worst complexes from STAR

until size of STAR is less than or equal to user-de�ned maximum (maxstar).

return STAR.
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2.3.1 Concept Description Language and Interpretation

This classi�er represents its `decision rule' as a matrix of probabilities p(v

j

jC

k

) specifying

the probability of occurrence of each attribute value given each class. To classify a new

example, one applies Bayes' theorem

p(C

i

j

^

v

j

) =

p(

V

v

j

jC

i

)p(C

i

)

P

k

p(

V

v

j

jC

k

)p(C

k

)

where the summation is over the n classes and p(C

i

j

V

v

j

) denotes the probability that

the example is of class C

i

given v

j

(

V

is the symbol for conjunction,

V

v

j

denoting a

conjunct of attribute values all occurring in an example). One calculates this probability

for every class, and then selects the class with the highest probability. The term p(C

k

) is

estimated from the distribution of the training examples among classes. If one assumes

independence of attributes, p(

V

v

j

jC

k

) can be calculated using

p(

^

v

j

jC

k

) =

Y

j

p(v

j

jC

k

)

and the values p(v

j

jC

k

) from the probability matrix. Note that, unlike the other algo-

rithms we have discussed, our implementation of the Bayesian classi�er requires one to

examine the values of all attributes when making a prediction.

We should note that there also exist more sophisticated applications of the Bayes

rule in which the attribute tests are ordered [14]. Such a sequential technique adds the

contribution of each test to a total; when this score exceeds a threshold, the algorithm

exits with a class prediction. Such an interpretationmay be more comprehensible to a user

than the approach we have used, as well as limiting the tests required for classi�cation.

2.3.2 The Learning Algorithm

The Bayesian learning method constructs the matrix p(v

j

jC

k

) from the training examples

by examining the frequency of values in each class. One can compute this matrix either

incrementally, incorporating one instance at a time, or non incrementally, using all data

at the outset.

2.3.3 Heuristics

Sometimes a value of zero is calculated from the training data for some elements of

the p(v

j

jC

k

) matrix. Like all elements of the matrix, this number is subject to error

due to the �nite training data available. However as as classi�cation of new examples

involves multiplying elements together, a zero element can have drastic e�ect, nullifying
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the e�ect of all other probabilities in the multiplication. To avoid this, we assume that

zero elements in the matrix would, given more data, converge on a small, non-zero value

and hence replace the zeros with some appropriate estimate. In our implementation a

value of p(C

i

)� (1=N) was used, where N is the number of training examples. The factor

1=N represents the increasing certainty that this element must have an almost-zero value

with increasing size of training data.

2.4 The Default Rule

Finally, an `algorithm' which simply assigns the most commonly occurring class to all

new examples, with no reference to their attributes at all, was used for comparison with

the other algorithms. Interestingly, this simple procedure was of comparable performance

to the other algorithms in one domain tested (described later), and thus proved a useful

extra algorithm to consider.

2.5 The CN2 Algorithm

Having presented assistant, aqr, and the other algorithms used in the experiments,

we now present cn2, �rst describing how the general algorithm arises naturally from

consideration of the id3 and aq algorithms and then describing its details.

id3 is easily adaptable to handle noisy data by virtue of its top-down tree generation

approach. During induction, all possible attribute tests are considered when `growing' a

leaf node in the tree, and entropy is used to select the best one to place at that node.

Over�tting of decision trees can thus be avoided by halting tree growth when no more

signi�cant information can be gained by further growth. We wish to apply a similar

method to the production of if-then rules rather than decision trees.

The aq algorithm, when generating a complex, also performs a general-to-speci�c

search for the best complex. However, only specializations which exclude some particular

covered negative example from the complex while ensuring some particular `seed' pos-

itive example remains covered are considered, iterating until all negative examples are

excluded. As a result, aq searches only the space of complexes completely consistent

with the training data. The aq algorithm employs a beam search, which can be viewed

as several hill-climbing searches in parallel.

For the cn2 algorithm, we have retained the beam search method of the aq algorithm

but �rstly removed its dependence on speci�c examples during search and secondly ex-

tended its search space to include rules which do not perform perfectly on the training
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data. This is simply achieved by broadening the specialization process to examine all

specializations of a complex, similar to the way id3 considers all attribute tests when

growing a node in the tree. Indeed, with a beam width of one the cn2 algorithm behaves

equivalently to id3 growing a single tree branch. Thus by performing a top-down search

for complexes, it is now possible to apply a cuto� method similar to decision tree pruning

to halt specialization when no further statistically signi�cant specializations are possible.

Finally, we note that the rules cn2 produces are an ordered list of if-then rules,

rather than an unordered set of if-then rules as produced by aq-based systems. Both

representations have their respective advantages and disadvantages for comprehensibility

{ order independent rules require some additional mechanism to be provided to resolve any

rule con
icts which may occur (thus detracting from a strict logical interpretation of the

rules), while ordered rules also sacri�ce a degree in comprehensibility as the interpretation

of a single rule is dependent on which other rules preceded it in the list. It is possible

to make cn2 produce unordered if-then rules by appropriately changing the evaluation

function

1

.

2.5.1 Concept Description Language and Interpretation

Rules in the ordered list which cn2 induces are each of the form `if <complex> then

predict<class>', where <complex> has the same de�nition as for aqr, namely a conjunct

of attribute tests. This ordered rule representation is a version of what Rivest (1987) has

termed decision lists. The last rule in cn2's list is a `default rule' which simply predicts

the most commonly occurring class in the training data for all new examples.

To use the induced rules to classify new examples, cn2 applies an interpretation in

which each rule is tried in order until one is found whose conditions are satis�ed by the

example being classi�ed. The resulting class prediction of this rule is then assigned as the

class of that example. Thus, the ordering of the rules is important. If no induced rules

are satis�ed, the �nal default rule assigns the most common class to the new example.

2.5.2 Learning Algorithm

Table 3 presents a summary of the cn2 algorithm. This works in an iterative fashion,

each iteration searching for a complex covering a large number of examples of a single

class C and few of other classes. The complex must be both predictive and reliable, as

1

E.g. replace entropy with E=(+ve exs. covered minus -ve exs. covered), then generate rules for each

class in turn.
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determined by cn2's evaluation functions. Having found a good complex, those examples

it covers are removed from the training set and the rule `if <complex> then predict C'

is added to the end of the rule list. This process iterates until no more satisfactory

complexes can be found.

The system searches for complexes by carrying out a pruned general-to-speci�c search.

At each stage in the search, cn2 retains a size-limited set or star S of `best complexes

found so far'. The system examines only specializations of this set, carrying out a beam

search of the space of complexes. A complex is specialized by either adding a new con-

junctive term or removing a disjunctive element in one of its selector. Each complex can

be specialized in several ways, and cn2 generates and evaluates all such specializations.

The star is trimmed after completion of this step by removing its lowest ranking elements

as measured by an evaluation function that we will describe shortly.

Our implementation of the specialization step is to repeatedly intersect

2

the set of all

possible selectors with the current star, eliminating all the null and unchanged elements in

the resulting set of complexes. (A null complex is one that contains a pair of incompatible

selectors, e.g. big = y ^ big = n). cn2 deals with continuous attributes in a manner

similar to assistant - by dividing the range of values of each attribute into discrete

sub-ranges. Tests on such attributes examine whether a value is greater or less (or equal)

than the values at sub-range boundaries. The complete range of values and size of each

sub-range is provided by the user.

For dealing with unknown attribute values, cn2 use the simple method of replacing

unknown values with the most commonly occurring value (or midvalue of the most com-

monly occurring sub-range, in the case of numeric attributes) for that attribute in the

training data.

2.5.3 Heuristics

The cn2 algorithm must make two heuristic decisions during the learning process, and it

employs two evaluation functions to aid in these decisions. First it must assess the quality

of complexes, determining if a new complex should replace the `best complex' found so

far and also which complexes in the star S to discard if the maximum size is exceeded.

Computing this involves �rst �nding the set E

0

of examples which a complex covers

(i.e., which satisfy all of its selectors) and the probability distribution P = (p

1

; : : : p

n

) of

2

The intersection of set A with set B is the set fx ^ yjx 2 A;y 2 Bg. For example, using `:' to abbreviate

`^', fa:b; a:c; b:dg intersected with fa; b; c; dg is fa:b; a:b:c; a:b:d; a:c; a:c:d; b:d; b:c:dg. If we now remove

unchanged elements in this set we obtain fa:b:c; a:b:d; a:c:d; b:c:dg.
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Table 3: The CN2 Algorithm

Let: E be a set of training examples;

Procedure CN2(E) returning RULE LIST:

let RULE LIST be the empty list;

repeat

let BEST CPX be Find Best Complex(E);

if BEST CPX is not nil then

Let E

0

be the examples covered by BEST CPX;

Remove from E the examples E

0

covered by BEST CPX;

Let C be the most common class of examples in E

0

;

Add the rule `if BEST CPX then class=C' to the end of RULE LIST,

until BEST CPX is nil or E is empty.

return RULE LIST.

Procedure Find Best Complex(E) returning BEST CPX:

let the set STAR contain only the empty complex;

let BEST CPX be nil;

let SELECTORS be the set of all possible selectors;

while STAR is not empty,

specialize all complexes in STAR as follows:

let NEWSTAR be the set fx ^ yjx 2 STAR; y 2 SELECTORSg;

Remove all complexes in NEWSTAR that are either in STAR (i.e., the

unspecialized ones) or are null (e.g. big = y ^ big = n)

for every complex C

i

in NEWSTAR:

if C

i

is statistically signi�cant when tested on E and better than

BEST CPX according to user-de�ned criteria when tested on E,

then replace the current value of BEST CPX by C

i

;

repeat remove worst complexes from NEWSTAR

until size of NEWSTAR is � user-de�ned maximum;

let STAR be NEWSTAR;

return BEST CPX.
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examples in E

0

among classes (where n = number of classes represented in the training

data). cn2 then uses the information-theoretic entropy measure

Entropy = �

X

i

p

i

log

2

(p

i

)

to evaluate complex quality (the lower the entropy the better the complex). This func-

tion thus prefers complexes covering a large number of examples of a single class and

few examples of other classes, and hence such complexes score well on the training data

when used to predict the majority class covered. It should be noted that this func-

tion was used in preference to a simple `percentage correct' measure (e.g. by taking

max(P)), most importantly because entropy will distinguish probability distributions

such as P = (0:7; 0:1; 0:1; 0:1) and P = (0:7; 0:3; 0; 0) in favor of the latter where as

max(P) will not. This is desirable, since there exist more ways of specializing the latter

to a complex identifying only one class; if the examples of the majority class are excluded

by specialization, the distributions become P = (0; 0:33; 0:33; 0:33) and P = (0; 1; 0; 0)

respectively. In addition, the entropy measure tends to direct the search in the direc-

tion of more signi�cant rules; empirically, rules of high entropy also tend to have high

signi�cance.

The second evaluation function tests whether a complex is signi�cant. By this we

refer to a complex that locates a regularity unlikely to have occurred by chance, and

thus re
ects a genuine correlation between attribute values and classes. To assess signif-

icance, cn2 compares the observed distribution among classes of examples satisfying the

complex with the expected distribution that would result if the complex selected exam-

ples randomly. Some di�erences in these distributions will result from random variation.

The issue is whether the observed di�erences are too great to be accounted for purely

by chance. If so, cn2 assumes that the complex re
ects a genuine correlation between

attributes and classes.

To test signi�cance, the system uses the likelihood ratio statistic [15]. This is given

by

2

n

X

i=1

f

i

log(f

i

=e

i

);

where the distribution F = (f

1

; : : : ; f

n

) is the observed frequency distribution of examples

among classes satisfying a given complex and E = (e

1

; :::; e

n

) is the expected frequency

distribution of the same number of examples under the assumption that the complex

selects examples randomly. This is taken as the N =

P

f

i

covered examples distributed

among classes with the same probability as that of examples in the entire training set.
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This statistic provides an information-theoretic measure of the (non-commutative) dis-

tance between the two distributions

3

. Under suitable assumptions, one can show that

this statistic is distributed approximately as �

2

with n � 1 degrees of freedom. This

provides a measure of indicates signi�cance | the lower the score, the more likely that

the apparent regularity is due to chance.

Thus these two functions - entropy and signi�cance - serve to determine whether

complexes found during search are both `good' (i.e. high accuracy when predicting the

majority class covered) and `reliable' (high accuracy on training data is not just due to

chance) respectively. cn2 uses these functions to repeatedly search for the `best' complex

which also passes some minimum threshold of reliability until no more reliable complexes

can be found.

3 Time Complexity of the Algorithms

The assistant, aqr and cn2 algorithms are all searching a very large space of concept

descriptions, and all use heuristics to guide this search. Furthermore, the cn2, assistant

and aqr algorithms attempt to produce structures that are both consistent with the

training examples and as compact as possible. In the design of such algorithms, there is a

tradeo� between execution speed and the size of the induced structures. In each case, the

exhaustive search for a smallest set of structures, although desirable, is computationally

infeasible.

A major application of these algorithms is to extract useful information from very large

databases, perhaps with millions of examples. With this in mind, it is worth examining

the complexity of each algorithm. To be practical for very large problems, their behavior

should be linear, or near-linear, in the number of examples and attributes.

Since the overall complexity of each algorithm is domain-dependent, we instead pro-

vide upper bounds for the critical components of the algorithms. We do not consider the

complexity of the cuto� procedure used by assistant.

In our treatment we use the following variables to denote parameters:

e: The size of the example set

a: The number of attributes

s: The maximum star size (for cn2 and aqr)

3

We assume that F is continuous with respect to E, i.e. that the f

i

are zero when the e

i

are zero.
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We also assume that each attribute is binary valued and that there are two classes

4

.

3.1 Time Complexity of Assistant

The critical component in assistant is the process of selecting a test attribute on which

to branch. Each such choice involves the following operations:

1. For each attribute, example counts are put in an array, indexed by class and at-

tribute. This takes Time: o(e�a);

2. The entropy function is calculated for each attribute taking Time: o(a);

3. Once the best attribute is found, the examples are divided into two sets; this takes

time Time: o(e)

5

.

Therefore, the overall time for a single attribute choice is o(a�e). The time taken to

construct the complete tree depends very much on the structure of the tree. It seems

reasonable to use the �rst �gure only for comparative purposes, as argued above. Thus

the amount of time taken by assistant for the basic attribute selection operation is a

linear function of the number of examples, when the number of classes and attributes are

held constant.

We should note that extensions to this algorithm that use real-valued attributes (such

as acls [16]) must sort the examples by attribute value at the �rst stage. This increases

the overall time bound to o(a � e log e).

3.2 Time Complexity of CN2

The basic operation in cn2 is the specialization of the complexes in the current star. The

number of single selector complexes without disjuncts is 2a. The number of intermediate

complexes generated is at most a�s, and the time taken to evaluate an example against a

complex is bounded by o(a). Three steps are required for this specialization operation:

� Multiplying each complex in the star by the set of single selector rules; this takes

Time: o(a�s);

4

One might also consider the complexity as a function of the number of distinct attribute values and

classes. We have not done this in our analysis.

5

With appropriate data structures, it may be possible to much of this work in the �rst stage, but this

does not a�ect the complexity class. Similarly, one can include any termination test that is linear in the

number of examples.
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� Evaluation of each complex, taking Time: o(s�e�a);

� Sorting the complexes by value and then trim the star, which takesTime: o(a�s log(a�s)).

Therefore, the overall time for a single specialization step is bounded by o(a�s(e +

log(a�s))). As with assistant, the time required is a linear function of the number

of examples. If we restrict the the size of the star to one, the time required has the same

order as for assistant. In general, experience indicates that the time constants involved

are somewhat less for assistant and other variants on id3 than for cn2.

3.3 Time Complexity of AQR

In aqr, the basic operation is the specialization of complexes in a star. This operation

is similar to that of cn2, except that only specializations causing a negative example to

be uncovered by complexes in aqr's star are generated. We show the complexity of this

operation is the same as that of cn2.

For each negative example, the following steps are performed:

� A negative example is found by iterating through the negative set. We assume that

the number of negative examples is not less than some �xed fraction of the entire

example set. This takes Time o(e�s);

� The set of selectors that distinguish the negative example from the seed are found;

This takes Time o(a);

� Each complex in the star is specialized by intersection with this set of selectors,

taking Time o(a�s);

� The resulting complexes are evaluated, which takes Time o(a�s�e);

� The complexes are sorted and the star trimmed, taking Time o(a�s log(a�s)).

Thus, for each negative example the time is bounded by o(a�s(e + log(a�s))). This is

the same �gure as obtained for cn2. Observe that the number of iterations of this

process (making the star disjoint from a negative example) is bounded by the number of

attributes, not by the number of examples.

In practice, although the order of time taken by the algorithms for this particular

operation of producing a new star is the same, cn2 is faster overall than aqr. This is

because the number of iterations of this operation is lower in cn2 than in aqr, since

cn2 may halt specialization of a complex before it performs perfectly on the training
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examples. Also, cn2 may halt the entire search for rules before all the training examples

are covered if no further statistically signi�cant rules can be found.

3.4 Time Complexity of the Bayesian Classi�er

The time complexity of the Bayes' classi�er for generating a probability matrix is o(a�e),

where a is the number of attributes and e the number of examples. This learning algorithm

was substantially faster than the other algorithms because the run time is independent

of the decision `rule' generated. In addition this basic operation is performed only once,

unlike the above algorithms where the basic operation is repeatedly applied.

3.5 Summary and Actual Run Times

We have shown that the time complexity of the basic learning step for all the algorithms

tested is linear in the number of examples (o(a:e) for assistant, o(a:e:s) for aqr and

cn2). This is an essential requirement for any algorithm that must work with very large

data sets.

We brie
y consider the time complexity of the entire induction process, requiring

iteration of the basic learning steps analysed above. With ideal noise-tolerant algorithms,

given a certain minimum number of examples, concept descriptions representing only the

genuine regularities in the data should be induced; additional examples should not cause

the concept description to grow further and become over�tted, hence in this ideal case the

above �gures also represent the time complexity of the overall learning task. When this

ideal is not met (e.g. when a concept description classifying the training data perfectly

is sought for), cn2 would at worst induce e rules of length a giving an overall time

complexity of o(a

2

:e

2

:s) [17]. assistant sorts a total of e examples among a attributes

for each level of the tree, giving an overall time complexity of o(a

2

:e) as the tree depth is

bounded by a. A similar worst-case time complexity to cn2 holds for aqr.

We provide the actual run times for interest, while noting that it is di�cult to make

fair comparisons of speed due to di�erences in implementation language and method.

All run times are for inducing a classi�cation procedure in the lymphography domain

(section 4.2.1) using a four-megabyte Sun 3/75. assistant, implemented in about 5000

lines of Pascal, took one minute run-time. cn2 and aqr, each implemented in about

400 lines of Prolog and with a value of �fteen for maxstar, took 15 and 170 minutes

run-time respectively. The Bayesian classi�er, implemented in 150 lines of Prolog, took

a few seconds to calculate its probability matrix. While it is di�cult to draw conclusions
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from the absolute run times, it is our opinion that the ordering of these run-times (Bayes

fastest, followed by assistant, cn2 and aqr) is a fair re
ection of the relative computa-

tion involved in using the algorithms. More detailed empirical comparisons of time and

memory requirements of id3 and the aq-based system aq11p have been conducted by

O'Rorke (1982) and Jackson (1985) in the domain of chess end-games.

4 Experiments with the Algorithms

4.1 Dependent Measures

In addition to computational complexity, we evaluate the behavior of these systems by two

other criteria, classi�cational accuracy and syntactic complexity of the acquired structure.

This twofold evaluation is motivated by considering these systems as tools for knowledge

acquisition for expert systems. A useful system should induce rules that are accurate -

so that they perform well - as well as comprehensible - so that they can be validated by

an expert and used for explanation.

We measure each algorithm's classi�cation accuracy by splitting the data into a train-

ing set and a test set, presenting the algorithm with the training set to induce a concept

description and then measuring the percentage of correct predictions made by that con-

cept description on the test set. Quinlan (1983,1987) and others have taken a similar

approach to measuring accuracy.

Cross-algorithm comparisons of the complexity of concept descriptions are di�cult

due to the di�erences in representation and the degree of subjectivity involved in judging

complexity. Thus, we will only compare the gross features of the knowledge structures

induced by the di�erent algorithms. For assistant's decision trees, we measure complex-

ity by the number of nodes (including leaves) in the tree. For cn2 and aqr, we measure

complexity by the number of selectors in the �nal rule list and rule set respectively. These

measures reveal the gross features of the induced decision rules. More detailed measures

of rule complexity have been made by O'Rorke (1982) but are not used here. We assign

a complexity of one to the default rule based on its equivalence to a decision tree with a

single node.

Assessing the complexity of a Bayesian rule is more di�cult. One could count the

number of elements in the p(V

j

jC

k

) matrix. Thus, for a domain with n classes and a

attributes, each with an average of v possible values, the complexity would be a� v � n.

However, such a measure is independent of the training examples, and it ignores features
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of the matrix that may make it more comprehensible (e.g., a few elements may be very

large and the rest small). Still, lacking any better measure, we provide the size of the

matrix as a rough guide.

4.2 Experiments on Natural Domains

The above algorithms were tested on three sets of medical data, which we will describe

shortly. These data were obtained from the Institute of Oncology at the University

Medical Center in Ljubljana, Yugoslavia [7]. In each test, 70% of the training examples

were selected at random from the entire data set, and the remaining 30% of the data were

used for testing. The algorithms were all run on the same training data and their induced

knowledge structures tested using the same test data. Five such tests were performed for

each of the three domains, and the results were averaged. These data are thus identical

to those used to test aq15 in [9], though the particular random 70% and 30% samples

are di�erent.

Both cn2 and aqr were given a value of 15 for maxstar in all runs.

4.2.1 Three Medical Domains

Table 4 summarizes the characteristics of the three medical domains used in the experi-

ments. The �rst of these involved lymphography. For patients with suspected cancer, it is

important for physicians to distinguish between diagnoses such as metastases, malignant

lymphoma or simply normal �ndings; patient data relating to this task were collected

from Ljubljana's Oncology Institute. These data were consistent, i.e. examples of any

two classes were always di�erent. All the tested algorithms produced fairly simple and

accurate rules. Unlike the other two domains, this data set was not submitted to a de-

tailed checking after its original compilation by the Medical Center, and thus may contain

errors in attribute values.

The second domain involved predicting whether patients who have undergone breast

cancer operations will experience recurrence of the illness within �ve years of the op-

eration. The recurrence rate is about 30%, and hence such prognosis is important for

determining post-operational treatment. These data were veri�ed after collection, and

thus are likely to be relatively free of errors.

The �nal medical domain focussed on predicting the location of primary tumor. Physi-

cians distinguish between 22 possible locations, predicted from data such as age, hysto-

logic type of carcinoma, and possible locations of detected metastases, and is again im-
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Table 4: Description of the three medical domains

Domain Domain

Property Lymphography Breast Cancer Primary Tumor

No. of attributes 18 9 17

Min-max no. of vals/att 2-8 2-5 2-3

Average 3.3 2.8 2.2

values per attribute

Number of classes 4 2 22

Total no. of examples 148 286 339

Distribution of examples 2, 81, 61, 4 85, 201 84, 20, 9, 14, 39, 1, 14,

among classes 6, 0, 2, 28, 16, 7, 24,

2, 1, 10, 29, 6, 2, 1, 24

portant in determining treatment of patients. These data were inconsistent, i.e. examples

of di�erent classes existed with identical attribute values. These data was veri�ed after

collecting, and thus are likely to be relatively error-free. The set of attributes is relatively

incomplete, i.e. not su�cient to induce high quality rules.

4.2.2 Results with Natural Domains

Table 5 presents the results for each algorithm on each domain, averaged over �ve runs.

In each case, we present the average accuracy on the test data and the average complexity

of the resulting knowledge structures. cn2 was tested using three values of signi�cance

threshold and assistant was run with and without pruning. Only one version of the

other systems were run.

The table contains some interesting regularities. Most important is that the algo-

rithms designed to reduce problems caused by noisy data achieve a lower complexity

without damaging their predictive accuracy. For example in the lymphography domain,

the version of cn2 with the highest threshold achieved the same classi�cation accuracy

as the other algorithms by inducing (on average) only eight rules each containing 1.6

selectors. The tree pruning version of assistant produced similar results.

Both systems apply a similar technique to reducing complexity, namely sometimes

halting specialization of concept descriptions before they classify the training examples

perfectly. As a result, assistant and cn2 avoid over�tting their decision trees and rules

20



Table 5: Accuracy and complexity of knowledge structures acquired by the algorithms in

three natural domains. (Complexity for the Bayes classi�er is the size of the probability

matrix).

Lymphography Breast Cancer Primary Tumor

Algorithm Domain Domain Domain

Accuracy Complexity Accuracy Complexity Accuracy Complexity

Default rule 56% 1 71% 1 26% 1

assistant :

(no pruning) 79% 41 62% 112 40% 178

(pruning) 78% 36 68% 44 42% 52

Bayes 83% (240)y 65% (540)y 39% (465)y

aqr 76% 76 72% 208 35% 562

cn2 :

(90% threshold) 78% 24 70% 28 37% 33

(95% threshold) 81% 22 70% 20 36% 42

(99% threshold) 82% 12 71% 4 36% 19

ySee discussion in section 4.1 about di�culties in measuring the complexity of Bayesian classi�er

Table 6: Accuracy of the di�erent algorithms on training and test data. The reported

version of assistant incorporated pruning and the version of cn2 used a 99% threshold.

Accuracy of decision procedures on training and test data:

Algorithm Lymphography Breast Cancer Primary Tumor

Train Test Train Test Train Test

Default rule 54% 56% 70% 71% 23% 26%

assistant 98% 78% 85% 68% 53% 42%

Bayes 89% 83% 70% 65% 48% 39%

aqr 100% 76% 100% 72% 75% 35%

cn2 91% 82% 72% 71% 37% 36%
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to the training data. This contrasts with the aqr algorithm, which specializes its rule

set until it achieves as nearly complete consistency with the training data as possible,

resulting in an over�tted rule set. Table 6 illustrates this e�ect by comparing accuracy

on the training and test data.

The results also show that the Bayesian classi�er does well, performing comparably to

the more sophisticated algorithms in all three domains and giving the highest accuracy

in the lymphography domain. Table 6 shows that this method regularly over�ts the

training data, but that its performance in the test set is still good. Even more surprising

is the behavior of the frequency-based default rule, which outperforms assistant and

the Bayes method on the breast cancer domain. This suggests that in the breast cancer

domain there are virtually no signi�cant correlations between attributes and classes in

the data. This is re
ected by cn2's inability to �nd signi�cant rules in this domain at

99% threshold, suggesting that, in this domain at least, the signi�cance test has been

e�ective in �ltering out rules representing chance regularities.

In general, the di�erences in performance seem to be due less to the learning algo-

rithms than to the nature of the domains; for example the best classi�cation accuracy

for lymphography was barely half as high as that for primary tumor. This suggests the

need for additional studies to examine the role of domain regularity on learning.

4.3 Experiments on Arti�cial Domains

To better understand the e�ects of over�tting, we experimented with cn2 and assistant

on two arti�cial domains that let us control the amount of noise in the data. Both domains

contained twelve attributes and 200 examples which were evenly distributed between two

classes. They di�ered only in the number of values each attribute could take (two in the

�rst domain and eight in the second).

In both cases, the target concept for one class could be stated as a simple conjunctive

rule of the form `if (a = v

1

)^ � � �^ (d = v

1

) then class X'. Both algorithms can represent

such a regularity compactly. The second class was simply the negation of the �rst. 50%

of the data was used for training, 50% for testing, and results averaged over �ve trials.

For each domain, we varied the amount of noise in the training data and measured

the e�ect on complexity and accuracy on the test data. Table 7 reports the results for

the �rst arti�cial domain with two values per attribute, and Table 8 for the second with

eight values per attribute.

The percentage of noise added indicates the proportion of attribute and class values
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Table 7: Results in arti�cial domain A1 (12 atts, 2 vals/att)

% of CN2 RULE (99% threshold) ASSISTANT RULE

Noise Non-defaulty unpruned pruned

Added Accuracy Accuracy Size Accuracy Size Accuracy Size

0% 95% 100% 3 99% 8 99% 8

2% 88% 99% 5 96% 16 98% 11

5% 88% 95% 10 91% 32 95% 16

10% 82% 95% 15 86% 45 91% 24

20% 73% 86% 20 76% 60 84% 27

40% 67% 76% 25 65% 74 76% 23

60% 56% 64% 26 62% 75 67% 23

100% 45% 49% 28 46% 85 43% 12

ythis refers to the accuracy of those cn2 rules found by search, i.e. excluding the extra default

rule (`everything is class X') at the end of the rule list. See discussion in Section 4.3.1.

in the training examples that have been randomized, where attributes and classes chosen

for randomization have equal chance of taking any of the possible values for that attribute

or class. Note that no noise was introduced to the test data.

4.3.1 Results with Arti�cial Domains

In experimenting with arti�cial domains, we are able to examine several features of the

algorithms relating to their ability to handle noise. Firstly we are interested in the degra-

dation of accuracy and simplicity of concept descriptions as noise levels are increased.

Secondly, for cn2, it is also interesting to examine how the accuracy and simplicity of

individual rules (as well as that of the rule set as a whole) is a�ected by noise in the data.

The results reveal some surprising features about both cn2 and assistant. Com-

paring classi�cational accuracy alone, assistant performed better than cn2 in these

particular domains. However, comparing complexity of concept description, cn2 pro-

duced simpler concept descriptions than assistant except at high levels of noise in the

�rst domain.

Ideally, as the level of noise approaches 100%, both algorithms should fail to �nd

any signi�cant regularities in the data and thus converge on a concept description of

complexity one (for cn2's default rule alone or a single node decision tree). However for
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Table 8: Results in arti�cial domain A2 (12 atts, 8 vals/att)

% of CN2 RULE (99% threshold) ASSISTANT RULE

Noise Non-defaulty unpruned pruned

Added Accuracy Accuracy Size Accuracy Size Accuracy Size

0% 93% 98% 8 99% 6 99% 6

2% 83% 99% 10 97% 12 97% 12

5% 86% 94% 13 96% 15 96% 15

10% 80% 98% 10 93% 22 93% 22

20% 73% 88% 15 85% 27 85% 27

40% 68% 82% 5 75% 33 75% 33

60% 63% 90% 4 66% 40 66% 40

100% 50% 58% 1 55% 43 55% 43

ythis refers to the accuracy of those cn2 rules found by search, i.e. excluding the extra default

rule (`everything is class X') at the end of the rule list. See discussion in Section 4.3.1.

cn2, this occurred only in the second of the two domains tested and did not occur in

either domain for assistant. Indeed, in the second domain assistant's tree pruning

mechanism did not prune the tree at all. cn2's �nding of rules in the �rst domain, even

at 100% noise level, can be understood as due to a combination of the large number of

rules searched (e.g. there are 12� 11� 10 = 1320 rules of length three in the space) and

the high coverage of these rules (each length three rule covers on average 100=2

3

= 12

examples). Enough rules are searched so that, even with 99% signi�cance test, some

chance coverage of the 12 (average) examples will appear signi�cant. This did not occur

in the second domain as the coverage of rules was considerably less; each length three

rule covers on average 100=8

3

� 0:5 examples, too few for the signi�cance test to succeed.

These comparative results and behavior as noise level approaches 100% suggests that

the thresholding methods used in both cn2 and assistant need to be more sensitive to

the properties of the application domain. Research on improvements to cn2's signi�cance

test [17] and assistant's pruning mechanism [19] is currently being conducted.

Finally, we consider the accuracy of cn2's individual rules as well as that of the whole

rule set. The �gures presented in Tables 7 and 8 for `non-default accuracy', referring

to the accuracy of cn2's rules excluding cases where the default rule �res, indicate that

the rule list consists of high accuracy rules plus a low accuracy (50% in this domain)
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default rule at the end. This is a desirable property of the rule list if it is to be used for

helping an expert articulate his or her knowledge, as each individual rule found (apart

from the default rule) represents a strong regularity in the training data. The decision

tree equivalent would be to examine the individual branches generated, and their use in

assisting an expert. Quinlan (1987) has recently conducted work in this area.

5 Discussion

The results on the natural domains indicate that di�erent methods of halting the rule

specialization process, besides having the e�ect of reducing rule complexity, do not greatly

a�ect predictive accuracy. This e�ect has been reported in a number of papers ([7, 9, 21])

Indeed it perhaps may be the case that any technique will have this e�ect, providing a

certain maximum level of pruning is not exceeded. If this is the case then an algorithm

should be preferred if it most closely estimates this maximum level.

The results in Table 6 suggest that the 99% threshold for the cn2 algorithm is ap-

propriate for the three natural domains; the accuracy on training data is close to that on

test data indicating that, in these domains at least, the algorithm is not over�tting the

data. Additionally, high accuracy is maintained, indicating that the concept description

is not under�t either.

The results of the tests on the arti�cial domains, in particular the tests with 100%

noise, indicate that the current measure of signi�cance used by cn2 could be improved.

As the noise level reaches 100%, the algorithm should ideally almost always �nd no rules.

The fact that this only occurred in one of the two arti�cial domains suggests that the

signi�cance measure should be more sensitive to properties of the domain in question.

In many ways the comparisons with the aqr system are unfair, as the aq algorithm

was never intended to deal alone with noisy data. It was included in these experiments

to examine the basic aq algorithm's sensitivity to noise. In practice it is rarely used on

its own, and instead enhanced by a number of pre- and post-rule-generation techniques.

Experiments with the aq15 system [9] show that with post-pruning of the rules and a

probability-based or `
exible matching' rule application method, one can achieve results

similar to those of cn2 and assistant in terms of accuracy and complexity.

The principal advantage of cn2 over aqr is that the algorithm supports a cuto�

mechanism | it does not restrict its search to only those rules that are consistent with

the training data. cn2 demonstrates that one can successfully control the search through

the larger space of inconsistent rules with the use of judiciously chosen search heuristics.
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Secondly, by including a mechanism for handling noise in the algorithm itself, we have

achieved a simple method for generating noise tolerant if-then rules, allowing easy re-

producibility and analysis of the algorithm. In addition, we feel that the requirements

of interactive induction, where the user interacts with system during and after rule gen-

eration, in particular the requirement for good explanation facilities, indicate that the

logical rule interpretation used by cn2 will have practical advantages over the more com-

plex probabilistic rule interpretation necessary for applying order-independent rules such

as generated by aqr where rule con
icts may occur.

Another result of interest is the high performance of the Bayesian classi�er. Al-

though the independence assumption of the classi�er may be unjusti�ed in the domains

tested, it did not perform signi�cantly worse in terms of accuracy than other algorithms

and it remains an open question as to how sensitive Bayesian methods are to violated

independence assumptions. Although the probability matrices produced by the tested

classi�er are di�cult to comprehend, the experiments suggest that variants of the Bayes

classi�er producing more comprehensible decision procedures would be worthy of further

investigation.

6 Conclusion

In this paper we have demonstrated an induction algorithm that combines the best fea-

tures of the id3 and aq algorithms, allowing the application of statistical methods similar

to tree pruning in the generation of if-then rules. It is similar to assistant in its e�ciency

and ability to handle noisy data, whereas it partially shares the representation language

and 
exible search strategy of aqr. By including a mechanism for handling noise into

the algorithm itself, a simple method for generating noise tolerant if-then rules has been

achieved allowing easy reproducibility and analysis of the system.

The experiments we have conducted show that the algorithm has, in noisy domains,

comparable performance to assistant. By inducing concept descriptions based on if-then

rules, it provides a tool for assisting in the construction of knowledge-based systems where

classi�cation procedures based on rules rather than decision trees are desired. The most

obvious improvement to the algorithm, suggested by the results on arti�cial domains, is

an improvement to the signi�cance measure used.
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