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Abstract

Pseudorandom sequences with good correlation properties are widely used in communications
and cryptography. The search of new sequences with two-level autocorrelation has been a very
interesting problem for decades. In 2002, Gong and Golomb proposed the iterative decimation-
Hadamard transform (DHT) which is an useful tool to study two-level autocorrelation sequences.
They showed that for all odd n ≤ 17, using the second-order decimation-Hadamard transform, and
starting with a single binary m-sequence, all known two-level autocorrelation sequences of period
2n − 1 which have no subfield factorization can be obtained. In this paper, we find many new
ternary or quaternary sequences with two-level autocorrelation using the second-order decimation-
Hadamard transform. The period of such sequences is 2n − 1.

Index Terms. Pseudorandom sequence, ternary sequence, quaternary sequence, two-level autocor-
relation, iterative decimation-Hadamard transform (DHT), Dobbertin’s polynomial.

1 Introduction

Pseudorandom sequences with good correlation properties have been widely used in modern commu-

nication systems and cryptography, such as radar, global positioning systems, CDMA communication

systems, and stream cipher cryptosystems [6, 7, 20]. The search for new sequences with two-level auto-

correlation has been an interesting research topic in application areas for some decades [7, 13, 14, 19].

In recent some years, significant progress has been made in finding new sequences with two-level

autocorrelation. Several new classes of sequences with two-level autocorrelation have been discovered

1



which are summarized in [7] or in the literature [2, 3, 10, 11, 14, 17, 18, 19]. In 2002, motivated by the

idea of Dillon and Dobbertin in [2, 3], Gong and Golomb proposed the iterative decimation-Hadamard

transform (DHT) [9]. For search of new sequences with two-level autocorrelation, they showed that for

all odd n ≤ 17, using the second-order DHT (which will be defined later), and starting with a single

binary m-sequence, all the known binary two-level autocorrelation sequences of period 2n−1 which have

no subfield factorization can be obtained. They also conjectured that all families of cyclic Hadamard

difference sets of period 2n − 1 having no subfield factorization are now known, at least for odd n.

Yu and Gong generalized the second-order DHT to two-level autocorrelation sequences with subfield

factorization (i.e., generalized GMW sequences) [21], and to the case of n even which is referred to as

the multiplexing DHT. They showed that experimentally satrting with a single m-sequence with period

2n − 1, n even and n ≤ 16, all known binary two-level autocorrelation sequences can be realized by

the second-order multiplexing DHT. Thus, using the second-order DHT, any known binary two-level

autocorrelation sequence can be realized by either the DHT or the multiplexing DHT. However, there

is no binary two-level autocorrelation sequence which has been foung by this method. In [16], applying

the second-order DHT to ternary sequences over F3 with period 3n − 1, some new classes of ternary

sequences of period 3n − 1 with two-level autocorrelation have been found experimentally. However,

their proof has not been appeared in the literature yet.

In this paper, we revisit the second-order DHT of m-sequences. We observe that if we allow the

sequence element could be taken from an enlarged alphabetic set, then under certain conditions, the

second-order DHT of m-sequences of period 2n−1 produces new sequences with two-level autocorrelation

whose elements are from the rational field. In some cases, we prove that these sequences are ternary or

quaternary using Dobbertin’s method. Based on such sequences, new Hadamard matrixes with entries

in {−1, 0, 2} or {−1, 0, 1, 2d} can be constructed, where d will be defined later.

This paper is organized as follows. In Section 2, we provide some notation and background which

will be used. In Section 3, the new construction is given. In Section 4, we present new ternary and

quaternary sequences with two-level autocorrelation of period 2n − 1. Finally, Section 5 concludes this

paper.

2 Preliminaries

2.1 Two-Level Sequence

Let s = {si} be a complex-valued sequences with period N . Then the autocorrelation Cs(τ) of s at

shift τ is defined by

Cs(τ) =
N−1∑

i=0

si+τsi, 0 ≤ τ < N,
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where si is the complex conjugate of si.

Definition 1 ([7]) A sequence s = {si} with period N is called a two-level sequence if Cs(τ) = −1 for

any 0 < τ < N .

2.2 The Decimation-Hadamard Transform

Let Fq denote the finite field of order q, where q is the power of a prime number p, and Tr(·) denote

the trace map from Fq to Fp. Let ω = e2πi/p, a complex primitive pth root of unity. The canonical

additive character χ of Fp is defined by [15]

χ(x) = ωx, x ∈ Fp.

Definition 2 Let h(x) be a function from Fq to Fp with h(0) = 0. h(x) is called orthogonal if and only

if
∑

x∈Fq

χ(h(λx))χ(h(x)) = 0,∀λ ∈ Fq, λ 6= 1.

Let f(x) be a polynomial from Fq to Fp. Then the Hadamard transform of f(x) is defined by

f̂(λ) =
∑

x∈Fq

χ(Tr(λx))χ(f(x)), λ ∈ Fq,

and the inverse transform is given by

χ(f(λ)) =
1
q

∑

x∈Fq

χ(Tr(λx))f̂(x), λ ∈ Fq.

Definition 3 ([9]) Let h(x) be orthogonal over Fq, and f(x) be a polynomial from Fq to Fp. For any

integer 0 < v < q − 1, we define

f̂h(v)(λ) =
∑

x∈Fq

χ(h(λx))χ(f(xv)), λ ∈ Fq.

f̂h(v)(λ) is called the first-order decimation-Hadamard transform (DHT) of f(x) with respect to h(x),

and we call it the first-order DHT for short.

Remark 1 If h(x) = Tr(x), and v = 1, then f̂h(v)(λ) is just the Hadamard transform of f(x). If

h(x) = Tr(xs) with gcd(s, q − 1) = 1, then f̂h(v)(λ) is the extended Hadamard transform introduced in

[8] for the analysis of the Data Encryption Standard (DES).
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Definition 4 ([9]) With the notation as above, for any integer 0 < t < q − 1, we define

f̂h(v, t)(λ) =
∑

y∈Fq

χ(h(λy))f̂h(v)(yt), λ ∈ Fq.

f̂h(v, t)(λ) is called the second-order decimation-Hadamard transform (DHT) of f(x) with respect to

h(x), and we call it the second-order DHT for short.

Remark 2 If h(x) = Tr(x), and t = 1, then f̂h(v, t)(λ)/q is just the inverse Hadamard transform of

f(xv).

Henceforth we take h(x) = Tr(x). For simplicity, we denote f̂h(v)(λ) and f̂h(v, t)(λ) by f̂(v)(λ) and

f̂(v, t)(λ) respectively.

2.3 Dobbertin’s Polynomial

Let n be an integer, and 1 ≤ k < n with gcd(k, n) = 1. Let 1 ≤ k
′
< n be the multiplicative inverse of

k modulo n, i.e., k
′
k ≡ 1 mod n. We introduce the following sequences of polynomials over F2n :

A1(x) = x,

A2(x) = x2k+1,

Ai+2(x) = x2(i+1)k

Ai+1(x) + x2(i+1)k−2ik

Ai(x), i ≥ 1,

B1(x) = 0,

B2(x) = x2k−1,

Bi+2(x) = x2(i+1)k

Bi+1(x) + x2(i+1)k−2ik

Bi(x), i ≥ 1.

They are used to define the polynomial

Rk,k′ (x) =
k
′∑

i=1

Ai(x) + Bk′ (x). (1)

Note that the exponents occurring in Aj (resp. in Bj) are precisely those of the form

e =
j−1∑

i=0

(−1)εi2ik,

where εi ∈ {0, 1} satisfy εj−1 = 0, ε0 = 0 (resp. ε0 = 1), (εi, εi−1) 6= (1, 1).
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In [5], Dobbertin proved that the polynomial

Sk,k′ (x) =
∑k

′

i=1 x2ik

+ k
′
+ 1

x2k+1

is a permutation polynomial over F∗2n . (Strictly speaking, we obtain a polynomial Sk,k′ (x) if 1/x2k+1

is replaced by x2n−1−(2k+1).) Moreover, for any x ∈ F∗2n , he proved that

Rk,k′ ((Sk,k′ (x))−1) = x.

3 New Constructions

For any polynomial f(x) from Fq to Fp, and any integers 0 < v, t < q − 1, we define the sequence

s = {si} by

si = f̂(v, t)(αi)/q, i = 0, 1, 2, ... (2)

For the convenience of notation, we denote this sequence by s(v, t).

Theorem 1 With the notation as above, let s(v, t) be defined by (2) with gcd(vt, q − 1) = 1. If the se-

quence {ωf(αi)} given by f(x) has two-level autocorrelation, then the autocorrelation function Cs(v,t)(τ)

of s(v, t) satisfies

Cs(v,t)(τ) =

{
q − 1, if τ ≡ 0 mod (q − 1);

−1, otherwise.

Proof. For any λ ∈ F2n ,

f̂(v, t)(λ) =
∑

x∈Fq

χ(Tr(λx))f̂(v)(xt) =
∑

x,y∈Fq

ωTr(λx)−Tr(xty)+f(yv).

Thus, for any τ , we have

Cs(v,t)(τ) =
q−2∑

i=0

si+τs∗i

=
q−2∑

i=0

∑

x1,y1∈Fq

ωTr(αi+τ x1)−Tr(xt
1y1)+f(yv

1 )
∑

x2,y2∈Fq

ω−Tr(αix2)+Tr(xt
2y2)−f(yv

2 )/q2.
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Thus, we compute

q2 · Cs(v,t)(τ) = (q − 1)
∑

ατ x1=x2,y1,y2∈Fq

ω−Tr(xt
1y1)+f(yv

1 )+Tr(xt
2y2)−f(yv

2 )

−
∑

ατ x1 6=x2,y1,y2∈Fq

ω−Tr(xt
1y1)+f(yv

1 )+Tr(xt
2y2)−f(yv

2 )

= q
∑

x1,y1,y2∈Fq

ω−Tr(xt
1y1)+Tr(αtτ xt

1y2)+f(yv
1 )−f(yv

2 )

−
∑

x1,x2,y1,y2∈Fq

ω−Tr(xt
1y1)+f(yv

1 )+Tr(xt
2y2)−f(yv

2 )

= q2
∑

y1∈Fq

ωf(yv
1 )−f(α−tvτ yv

1 ) − q2.

If τ 6≡ 0 mod (q − 1), then
∑

y1∈Fq
ωf(yv

1 )−f(α−tvτ yv
1 ) = 0 since the sequence {ωf(αi)} has two-level

autocorrelation and gcd(vt, q − 1) = 1. Otherwise,
∑

y1∈Fq
ωf(yv

1 )−f(α−tvτ yv
1 ) = q. So the result follows.

¤

Remark 3 If p = 2, then the elements of s(v, t) are from the rational field Q. In some cases, they are

from the integer ring Z.

4 The Case of New Ternary and Quaternary Sequences

In this section we consider the case of p = 2, f(x) = Tr(x), v = 2n−1− 1, and t = 2k +1. The following

theorem is the main result.

Theorem 2 Let n be an integer, and 1 ≤ k < n with gcd(k, n) = d and n/d is odd. Let f(x) = Tr(x),

and s(v, t) = {si} be defined by (2) with v = 2n−1 − 1 and t = 2k + 1. Then s(v, t) has two-level

autocorrelation, and the si’s take at most four distinct values −1, 0, 1, or 2d. Let Nη denote the number

of η within one period of s(v, t), where η = −1, 0, 1, or 2d. Then we have

N−1 =
2(m+1)d + 2d

2(2d + 1)
, N0 = 2(m−1)d − 1, N1 =

(2d − 2)(2md − 1)
2(2d − 1)

, N2d =
2(m−1)d − 1

22d − 1
.

Corollary 1 With the same notation as in Theorem 2, if n is odd, and gcd(k, n) = 1, then

N−1 =
2n + 1

3
, N0 = 2n−1 − 1, N1 = 0, N2 =

2n−1 − 1
3

.

Thus, in this case, we obtain two-level ternary sequences with elements taken from {−1, 0, 2}.
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Corollary 2 With the same notation as in Theorem 2, if n = 2m with m odd, and gcd(k, n) = 2, then

N−1 =
2n+1 + 2

5
, N0 = 2n−2 − 1, N1 =

2n − 1
3

, N4 =
2n−2 − 1

15
.

Thus, in this case, we obtain two-level quaternary sequences with elements taken from {−1, 0, 1, 4}.

For the case of n = 5 or 6, we list the data below.

Table 1: n = 5

(v, t) T̂ r(v, t)(λ)/2n

(3, 11) {−1, 0, 2}
(15, 3) {−1, 0, 2}
(3, 7) {−1, 0, 1, 4}
(3, 15) {−2,−1/2, 0, 1/2, 1, 3/2}
(5, 15) {−7/2,−1,−1/2, 0, 1/2, 3/2}
(15, 15) {−1,−3/4,−1/4, 1/2, 3/2, 11/4}

Table 2: n = 6

(v, t) T̂ r(v, t)(λ)/2n

(5, 13) {−1, 0, 1, 4}
(5, 23) {−1, 0, 1, 3}
(5, 5) {−2,−1, 0, 1, 2}
(5, 31) {−3/2,−1,−1/2, 0, 1/2, 1, 3}
(11, 23) {−2,−1,−1/2, 0, 1/2, 1, 2}
(31, 31) {−1,−7/8,−5/8,−1/4, 1/4, 7/8, 13/8, 5/2}
(11, 31) {−7/2,−5/4,−1,−3/4,−1/2,−1/4, 1/4, 1/2, 1, 5/4, 3/2, 2}

In order to prove Theorem 2, we need some lemmas.

Lemma 1 ([1]) Let n be an integer, and k be an integer with gcd(k, n) = d. For any a ∈ F∗2n , the

equation x2k+1 + x + a = 0 has 0, 1, 2, or 2d + 1 roots in F2n . For i ∈ {0, 1, 2, 2d + 1}, let Ni denote the

number of a ∈ F∗2n such that x2k+1 + x + a = 0 has exactly i roots in F2n . Set m = n/d. If m is odd,

then

N0 =
2(m+1)d + 2d

2(2d + 1)
, N1 = 2(m−1)d − 1, N2 =

(2d − 2)(2md − 1)
2(2d − 1)

, N2d+1 =
2(m−1)d − 1

22d − 1
.
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If m is even, then

N0 =
2(m+1)d − 2d

2(2d + 1)
, N1 = 2(m−1)d, N2 =

(2d − 2)(2md − 1)
2(2d − 1)

, N2d+1 =
2(m−1)d − 2d

22d − 1
.

Lemma 2 ([12]) Let n be an integer, and 1 ≤ k < n with gcd(k, n) = 1. Let 1 ≤ k
′

< n be the

multiplicative inverse of k modulo n, i.e., k
′
k ≡ 1 mod n. Then for any a ∈ F∗2n , x2k+1 + x + a = 0 has

only one solution in F2n if and only if Tr(Rk,k′ (1/a)) = Tr(1) + 1, where Rk,k′ (·) is defined by (1).

Lemma 3 ([4, 5]) With the notation as in Lemma 2, for any a ∈ F∗2n , Rk,k′ (1/a) is a zero of

ax2k+1 +
k
′∑

i=1

x2ik

+ k
′
+ 1 = 0 (3)

and

a2k

x22k

+ x2k

+ ax + 1 = 0

in F∗2n .

Lemma 4 Let n be an integer, and 1 ≤ k < n with gcd(k, n) = d. For any a ∈ F∗2n , if x2k+1 +x+a = 0

has only one solution β, then ax2k

+ β2x + β = 0 has no solution in F2n .

Proof. Because x2k+1 + x + a = 0 has only one solution β, (β + x)2
k+1 + β + x + a = 0 has no

solution. Hence βx2k

+ β2x2k−1 + a = 0 has no solution. It follows that ax2k

+ β2x + β = 0 has no

solution. ¤

Lemma 5 Let n be an integer, and 1 ≤ k < n with gcd(k, n) = d. For any a ∈ F∗2n , if x2k+1 +x+a = 0

has two solutions, and β is one of the solutions, then ax2k

+ β2x + β = 0 has one solution in F2n .

Moreover, x2k−1 + β2k−1 + 1/β = 0 has no solution.

Proof. By the same proof as in Lemma 4, we have ax2k

+ β2x + β = 0 has one solution. If

x2k−1 + β2k−1 + 1/β = 0 has one solution, then this solution is nonzero. Hence ax2k

+ β2x = 0

has one nonzero solution, and ax2k

+ β2x + β = 0 has two solutions. It is a contradiction. Hence

x2k−1 + β2k−1 + 1/β = 0 has no solution. ¤

Lemma 6 Let n be an integer, and 1 ≤ k < n with gcd(k, n) = d. For any a ∈ F∗2n , if x2k+1 +x+a = 0

has 2d + 1 solutions, and β is one of the solutions, then ax2k

+ β2x + β = 0 has 2d solutions in F2n .

Moreover, x2k−1 + β2k−1 + 1/β = 0 has 2d − 1 solutions.
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Proof. By the same proof as in Lemma 4, we have ax2k

+ β2x + β = 0 has 2d solutions. Hence

ax2k

+ β2x = 0 has 2d solutions. It follows that x2k−1 + β2k−1 + 1/β = 0 has 2d − 1 solutions. ¤

Lemma 7 Let n be an integer, and 1 ≤ k < n with gcd(k, n) = d and n/d is odd. For any λ ∈ F∗2n , set

Lλ(ω) = ω22k

+ λ2k

ω2k

+ ω + λ2k−1
,

and

Pλ(ω) = ω2k+1 + ω +
1

λ2k−1+ 1
2
.

Then we have the following 4 cases:

• if Pλ(ω) = 0 has no solution in F2n , then Lλ(ω) = 0 has at most one solution in F2n . In particular,

if n is odd, and gcd(n, k) = 1, then Lλ(ω) = 0 has precisely one solution ω0 = Rk,k′ (λ
2k−1+ 1

2 )/
√

λ,

and Tr(ω2k+1
0 ) = 1.

• if Pλ(ω) = 0 has one solution in F2n , then Lλ(ω) = 0 has 0 or 2d solutions in F2n , and
∑

ω:Lλ(ω)=0(−1)Tr(ω2k+1) = 0. In particular, if n is odd, and gcd(n, k) = 1, then Lλ(ω) = 0

has precisely two solutions.

• if Pλ(ω) = 0 has two solutions in F2n , then Lλ(ω) = 0 has one solution ω0 in F2n , and

Tr(ω2k+1
0 ) = 0.

• if Pλ(ω) = 0 has 2d + 1 solutions in F2n , then Lλ(ω) = 0 has 22d solutions in F2n , and
∑

ω:Lλ(ω)=0(−1)Tr(ω2k+1) = 2d.

Proof. Let x = ω
√

λ, and a = 1

λ2k−1+1/2
. Then Lλ(ω) = 0 if and only if

Ha(x) = a2k

x22k

+ x2k

+ ax + 1 = 0. (4)

Let f(x) = (ax2k−1)2
n−1

. Then we have

Ha(x) + 1 =
(f(x)2

k+1 + f(x) + a)2x
a

. (5)

By Lemma 1, there are 4 cases for the solutions of Pλ(ω) = 0 in F2n .

Case 1: Pλ(ω) = 0 has no solution in F2n . Then a 6= β2k+1+β for any β ∈ F2n . By (5), Ha(x)+1 = 0

has one solution. Hence (4) has 0 or 1 solution. In particular, if n is odd, and gcd(n, k) = 1, by Lemma

3, (4) has precisely one solution x0 = Rk,k′ (1/a). It follows that Lλ(ω) = 0 has precisely one solution
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ω0 = Rk,k′ (1/a)/
√

λ. By Lemma 2, Tr(Rk,k′ (1/a)) = 1 because x2k+1 + x + a = 0 has no solution in

F2n . Hence, we have

ω2k+1
0 = (x0/

√
λ)2

k+1 = ax2k+1
0 =

k
′∑

i=1

x2ik

0 + k
′
+ 1.

It follows that

Tr(ω2k+1
0 ) = Tr




k
′∑

i=1

x2ik

0


 + k

′
+ 1 = k

′ · Tr(x0) + k
′
+ 1 = 1.

Case 2: Pλ(ω) = 0 has one solution in F2n . Then there is one β ∈ F2n such that a = β2k+1 +β. Set

Q(x) = ax2k

+ β2x + β, Γ = β2k−1 + 1/β. Then we have

Ha(x) = Q(x)2
k

+ ΓQ(x) = Q(x)(Q(x)2
k−1 + Γ).

By Lemma 4, Q(x) = 0 has no solution. If x2k−1 + β2k−1 + 1/β = 0 has no solution, then Ha(x) = 0

has no solution. If x2k−1 + β2k−1 + 1/β = 0 has 2d − 1 solutions, then (ax2k−1)2
n−1

= β has 2d − 1

solutions. By (5), Ha(x) + 1 = 0 has 2d solutions. Thus, Ha(x) = 0 has 0 or 2d solutions. If Ha(x) = 0

has 2d solutions, then there is one and only one ∆ satisfying ∆2k−1 = 1/Γ such that Q(x) + 1/∆ = 0

has 2d solutions. Multiplying the equation Q(x) + 1/∆ = 0 with µ = (β2∆)−1 gives

µ(ax2k

+ β2x + β + 1/∆) = (x/∆)2
k

+ x/∆ + βµ + (βµ)2 = 0.

Let x0 be one solution of Q(x) + 1/∆ = 0. Then any solution of Q(x) + 1/∆ = 0 can be written as

x0 + ∆θ, where θ ∈ F2d . We denote x0 + ∆θ by xθ, and the solution of Lλ(ω) = 0 associated with xθ

by ωθ. It follows that

Tr(ω2k+1
0 + ω2k+1

θ ) = Tr(ax2k+1
0 + ax2k+1

θ ) = Tr(β2x2
0 + βx0 + x0/∆ + β2x2

θ + βxθ + xθ/∆)

= Tr(θ) =
n

d
· Trd

1(θ) = Trd
1(θ).

Hence we have
∑

xθ:Q(xθ)+1/∆=0

(−1)Tr(ω2k+1
θ ) = 0

which means that
∑

xθ:Ha(xθ)=0

(−1)Tr(ω2k+1
θ ) = 0.
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In particular, if n is odd, and gcd(n, k) = 1, by Lemma 3, Rk,k′ (1/a) is a zero of (4). Hence, two

solutions of Q(x)+1/∆ = 0 are precisely Rk,k′ (1/a) and Rk,k′ (1/a)+∆. It follows that Rk,k′ (1/a)/
√

λ

and (Rk,k′ (1/a) + ∆)/
√

λ are precisely two solutions of Lλ(ω) = 0.

Case 3: Pλ(ω) = 0 has two solutions in F2n . Let β be one of the solutions. Set Q(x) = ax2k

+β2x+β,

Γ = β2k−1 + 1/β. Then we have

Ha(x) = Q(x)2
k

+ ΓQ(x) = Q(x)(Q(x)2
k−1 + Γ).

By Lemma 5, Q(x) = 0 has one solution, and Q(x)2
k−1 + Γ = 0 has no solution. Let x0 be the only

solution of Ha(x) = 0. Then ω0 = x0/
√

λ is the only solution of Lλ(ω) = 0. We have

Tr(ω2k+1
0 ) = Tr(ax2k+1

0 ) = Tr(β2x2
0 + βx0) = 0.

Hence
∑

x0:Ha(x0)=0

(−1)Tr(ω2k+1
0 ) = 1.

Case 4: Pλ(ω) = 0 has 2d +1 solutions in F2n . By Lemma 6, for any β satisfying β2k+1 +β +a = 0,

x2k−1 + β2k−1 + 1/β = 0 has 2d − 1 solutions. Hence, (ax2k−1)2
n−1

= β has 2d − 1 solutions. By

(5), Ha(x) + 1 = 0 has 22d solutions. Thus, (4) has 0 or 22d solutions. Set Q(x) = ax2k

+ β2x + β,

Γ = β2k−1 + 1/β. Similarly, we have

Ha(x) = Q(x)2
k

+ ΓQ(x) = Q(x)(Q(x)2
k−1 + Γ).

By Lemma 6, Q(x) = 0 has 2d solutions. So (4) has 22d solutions, and for any ∆ satisfying ∆2k−1 = 1/Γ,

Q(x) + 1/∆ = 0 has 2d solutions. Let x0 be one solution of Q(x) = 0, and ω0 be the corresponding

solution of Lλ(ω) = 0. We have

Tr(ω2k+1
0 ) = Tr(ax2k+1

0 ) = Tr(β2x2
0 + βx0) = 0.

By the same method as in Case 2, for any ∆, we have

∑

x0:Q(x0)+1/∆=0

(−1)Tr(ω2k+1
0 ) = 0.

11



Hence

∑

ω:Lλ(ω)=0

(−1)Tr(ω2k+1) =
∑

x0:Ha(x0)=0

(−1)Tr(ω2k+1
0 )

=
∑

x0:Q(x0)=0

(−1)Tr(ω2k+1
0 ) +

∑

∆:∆2k−1=1/Γ

∑

x0:Q(x0)+1/∆=0

(−1)Tr(ω2k+1
0 )

= 2d.

¤

Lemma 8 Let f(x) = Tr(x), and two integers 0 < v, t < 2n − 1 satisfy gcd(vt, q − 1) = 1. Then we

have ∑

λ∈F2n

f̂(v, t)(λ) = 0 and
∑

λ∈F2n

f̂(v, t)(λ)2 = 23n.

Proof. We compute

∑

λ∈F2n

f̂(v, t)(λ) =
∑

λ∈F2n

∑

x,y∈F2n

(−1)Tr(λy+ytx+xv) =
∑

x,y∈F2n

(−1)Tr(ytx+xv)
∑

λ∈F2n

(−1)Tr(λy)

= 2n
∑

x∈F2n

(−1)Tr(xv) = 0

and

∑

λ∈F2n

f̂(v, t)(λ)2 =
∑

λ∈F2n

∑

x1,y1∈F2n

(−1)Tr(λy1+yt
1x1+xv

1)
∑

x1,y2∈F2n

(−1)Tr(λy2+yt
2x2+xv

2)

=
∑

x1,x2,y1,y2∈F2n

(−1)Tr(yt
1x1+xv

1+yt
2x2+xv

2)
∑

λ∈F2n

(−1)Tr(λy1+λy2)

= 2n
∑

x1,x2,y1∈F2n

(−1)Tr(yt
1x1+yt

1x2+xv
1+xv

2) = 23n.

¤

Lemma 9 Let n be an integer, and 1 ≤ k < n with gcd(k, n) = d. Then

gcd(2n − 1, 2k + 1) =

{
1, if n/d is odd,

2d + 1, otherwise.

Proof. One can check the result easily. So we omit the detail here. ¤
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Lemma 10 Let n be an integer, and 1 ≤ k < n with gcd(k, n) = d and n/d is odd. Let v = 2n−1 − 1,

and t = 2k + 1. Then for any λ ∈ F∗2n , we have

∑

x,y∈F2n

(−1)Tr(λy+ytx+xv) = −2n, 0, 2n, or 2n+d.

Proof. By Lemma 9, gcd(2n − 1, 2k + 1) = 1. Hence we have

∑

x,y∈F2n

(−1)Tr(λy+ytx+xv) =
∑

x∈F∗2n ,y∈F2n

(−1)Tr(λy+ytx+xv)

=
∑

x∈F∗2n ,y∈F2n

(−1)Tr(λy+ytx+1/x)

=
∑

x∈F∗2n ,y∈F2n

(−1)Tr(λy+yt/x+x)

=
∑

x1∈F∗2n ,y∈F2n

(−1)Tr(λy+(y/x1)
t+xt

1)

=
∑

x1∈F∗2n ,z∈F2n

(−1)Tr(λzx1+zt+xt
1)

=
∑

x1,z∈F2n

(−1)Tr(zt+xt
1+λzx1).

Set y = x + ω. Then we have

∑

x,y∈F2n

(−1)Tr(x2k+1+y2k+1+λxy) =
∑

x,ω∈F2n

(−1)Tr(x2k+1+(x+ω)2
k+1+λx(x+ω))

=
∑

x,ω∈F2n

(−1)Tr(ω2k+1+ω2k
x+ωx2k

+λx2+λωx)

=
∑

x,ω∈F2n

(−1)Tr(ω2k+1+(ω22k
+λ2k

ω2k
+ω+λ2k−1

)x2k
).

Set Lλ(ω) = ω22k

+ λ2k

ω2k

+ ω + λ2k−1
. It follows that

∑

x,y∈F2n

(−1)Tr(x2k+1+y2k+1+λxy) = 2n
∑

ω:Lλ(ω)=0

(−1)Tr(ω2k+1).

By Lemma 7, the result follows. ¤

Lemma 11 Let n be an integer, and 1 ≤ k < n with gcd(k, n) = d and n/d is odd. Let f(x) = Tr(x),

v = 2n−1 − 1, and t = 2k + 1. For any η ∈ {−1, 0, 1, 2d}, let Nη denote the number of η taken by

13



f̂(v, t)(λ)/2n with λ ∈ F∗2n . Set m = n/d. Then we have

N−1 =
2(m+1)d + 2d

2(2d + 1)
, N0 = 2(m−1)d − 1, N1 =

(2d − 2)(2md − 1)
2(2d − 1)

, N2d =
2(m−1)d − 1

22d − 1
.

Proof. If d = 1, then the result follows from Lemmas 1, 7 and 10 directly. So we only need to prove

the case of d > 1.

Let Pλ(ω) and Lλ(ω) be defined as in Lemma 7. By Lemmas 1, 7 and 10, N2d = 2(m−1)d−1
22d−1

. Let M0,0

denote the number of λ ∈ F∗2n such that Pλ(ω) = 0 has no solution, and Lλ(ω) = 0 has no solution.

For any σ ∈ {−1, 1}, let M0,σ denote the number of λ ∈ F∗2n such that Pλ(ω) = 0 has no solution, and

Lλ(ω) = 0 has one solution ω0 satisfying (−1)Tr(ω2k+1
0 ) = σ. By Lemmas 1, 7 and 10, we have

M0,−1 + M0,0 + M0,1 =
2(m+1)d + 2d

2(2d + 1)
,

M0,−1 = N−1,

M0,0 + 2(m−1)d − 1 = N0,

M0,1 +
(2d − 2)(2md − 1)

2(2d − 1)
= N1.

Because f̂(v, t)(0) = 2n, by Lemma 8, we have

−M0,−1 + M0,1 +
(2d − 2)(2md − 1)

2(2d − 1)
+ 2d · 2(m−1)d − 1

22d − 1
= −1.

Hence

M0,−1 −M0,1 =
2(m+1)d + 2d

2(2d + 1)

which means that M0,0 + 2M0,1 = 0. Thus, M0,0 = 0, and M0,1 = 0. It follows that

N−1 =
2(m+1)d + 2d

2(2d + 1)
, N0 = 2(m−1)d − 1, N1 =

(2d − 2)(2md − 1)
2(2d − 1)

.

¤

Remark 4 With the same notation as in Lemma 7, we obtain better result in Lemma 11 implicitly

compared with that in Lemma 7, namely,

• if Pλ(ω) = 0 has no solution in F2n , then Lλ(ω) = 0 has precisely one solution ω0 in F2n , and

Tr(ω2k+1
0 ) = 1.

14



Proof of Theorem 2. By Theorem 1 and Lemma 11, the result follows. ¤
Compared with the binary case proved by Dillon and Dobbertin in 2004, we have Table 3 below.

Note that 2n−1 − 1 and −1 are in the same coset modulo 2n − 1.

Table 3: Similarities to the Binary Case

(v, t) T̂ r(v, t)(λ)/2n Conditions Comments

(3, 2k + 1) {−1, 1} gcd(k, n) = 1 Dillon and Dobbertin [3]

(−1, 2k + 1) {−1, 0, 2} gcd(k, n) = 1, n odd Theorem 2

(−1, 2k + 1) {−1, 0, 1, 2d} gcd(k, n) = d, n/d odd Theorem 2

The new ternary or quaternary sequences yield new Hadamard matrixes with entries in {−1, 0, 2}
or {−1, 0, 1, 2d}. For any binary sequence {si} with two-level autocorrelation of period 2n − 1, using

the standard construction from binary two-level autocorrelation sequences to Hadamard matrices, let

A =




1 1 1 · · · 1 1

1 s0 s1 · · · s2n−3 s2n−2

1 s1 s2 · · · s2n−2 s0

...

1 s2n−2 s0 · · · s2n−4 s2n−3




.

Then

AAT = 2n · I2n ,

where AT is the transpose of A and I2n is the identity matrix of 2n×2n. Similarly, we have new 2n×2n

Hadamard matrixes with entries in {−1, 0, 2} or {−1, 0, 1, 2d}.
Example. Let n = 5, v = 15, and t = 3. Then one sequence s of period 31 defined by (2) with

f(x) = Tr(x) is

−1, 0, 0, 2, 0, 0, 2,−1, 0, 0, 0, 0, 2, 0,−1,−1, 0, 2, 0,−1, 0, 0, 0,−1, 2,−1, 0,−1,−1,−1,−1, · · · .

Let L be the left cyclic shift operator, and

A =




1 1 · · · 1
1 s

1 Ls
...

...

1 L30s




.

Then we have

AAT = 32 · I32.
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5 Conclusion

Pseudorandom sequences with two-level autocorrelation are very useful in communications and cryp-

tography. The search of new sequences with two-level autocorrelation is a very interesting problem.

The transform techniques are very important for sequence study. Using the Hadamard transform,

Dillon and Dobbertin proved five conjectured classes of binary sequences with two-level autocorrela-

tion. In this paper, some new ternary or quaternary sequences with two-level autocorrelation are found

using the decimation-Hadamard transform and Dobbertin’s method. Based on such sequences, new

Hadamard matrixes with entries in {−1, 0, 2} or {−1, 0, 1, 2d} can be constructed. More nice results via

the transform technique are desirable.
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