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Abstract

Systems for processing continuous monitoring queries
over data streams must be adaptive because data streams
are often bursty and data characteristics may vary over
time. In this paper, we focus on one particular type of
adaptivity: the ability to gracefully degrade performance
via “load shedding” (dropping unprocessed tuples to re-
duce system load) when the demands placed on the system
cannot be met in full given available resources. Focusing
on aggregation queries, we present algorithms that deter-
mine at what points in a query plan should load shedding
be performed and what amount of load should be shed at
each point in order to minimize the degree of inaccuracy
introduced into query answers. We report the results of ex-
periments that validate our analytical conclusions.

1 Introduction

As information processing systems grow in complexity,
they become increasingly difficult to administer and con-
trol. Consequently, an emphasis of much recent work (see
Section 6 for examples) has been to create systems that are
to some degree self-regulating, reducing the time, effort,
and expertise required of system administrators. Adaptive,
self-regulating systems are particularly appropriate for en-
vironments where data and query rates are dynamic or un-
predictable, as is frequently the case for data stream pro-
cessing systems. Many sources of streaming data are quite
bursty [10, 19, 20], meaning data rates and system load
are liable to be highly variable over the lifetime of a long-
running continuous query. In this paper, we focus on one
type of adaptivity, the ability to gracefully degrade perfor-
mance when the demands placed on the system cannot be
met given available resources, in the context of continuous
monitoring queries over data streams.

Data streams arise naturally in a number of monitoring
applications in domains such as networking (traffic engi-
neering, intrusion detection, sensor networks) and finan-

cial services (arbitrage, financial monitoring). These data
stream applications share two distinguishing characteristics
that limit the applicability of standard relational database
technology: (1) the volume of data is extremely high, and
(2) on the basis of the data, decisions are arrived at and
acted upon in close to real time. Traditional data process-
ing approaches, where effectively data is loaded into static
databases for offline querying, are impractical due to the
combination of these two factors.

Many data stream sources (for example, web site access
patterns, transactions in financial markets, and communica-
tion network traffic) are prone to dramatic spikes in vol-
ume (e.g., spikes in traffic at a corporate web following
the announcement of a new product or the spikes in traf-
fic experienced by news web sites and telephone networks
on September 11, 2001). Because peak load during a spike
can be orders of magnitude higher than typical loads, fully
provisioning a data stream monitoring system to handle the
peak load is generally impractical. However, in many mon-
itoring scenarios, it is precisely during bursts of high load
that the function performed by the monitoring application is
most critical. Therefore, it is particularly important for sys-
tems processing continuous monitoring queries over data
streams to be able to automatically adapt to unanticipated
spikes in input data rates that exceed the capacity of the
system. An overloaded system will be unable to process
all of its input data and keep up with the rate of data ar-
rival, so load shedding, i.e., discarding some fraction of the
unprocessed data, becomes necessary in order for the sys-
tem to continue to provide up-to-date query responses. The
question we study is which tuples to drop, and where in the
query plan to drop them, so that the degree of inaccuracy in
the query answers introduced as a result of load shedding is
minimized.

The use of load shedding as a technique to achieve grace-
ful degradation in the face of unmanageable system load
has been suggested in earlier work on data stream systems
([5, 21, 22]). While some heuristics for load shedding have
been proposed earlier, a systematic approach to load shed-
ding with the objective of maximizing query accuracy has
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been lacking. The main contributions of this paper are:

1. We formalize the problem setting for load shedding as
an optimization problem where the objective function
is minimizing inaccuracy in query answers, subject to
the constraint that system throughput must match or
exceed the data input rate.

2. We describe a load shedding technique based on the in-
troduction of random sampling operations into query
plans, and we give an algorithm that finds the op-
timum placement of sampling operations for an im-
portant class of monitoring queries, viz., sliding win-
dow aggregate queries over data streams. Our algo-
rithm takes into account the effects of operator sharing
among queries having common sub-expressions.

We also present extensions to our techniques to handle set-
valued queries and queries with differing quality-of-service
requirements.

Overview of Approach We propose a technique involv-
ing the introduction of load shedding operators, or load
shedders, at various points in the query plan. Each load
shedder is parameterized by a sampling rate p. The load
shedder flips a coin for each tuple that passes through it.
With probability p, the tuple is passed on to the next oper-
ator, and with probability 1 − p, the tuple is discarded. To
compensate for the lost tuples caused by the introduction of
load shedders, the aggregate values calculated by the system
are scaled appropriately to produce unbiased approximate
query answers.

The decisions about where to introduce load shedders
and how to set the sampling rate for each load shedder are
based on statistics about the data streams, including ob-
served stream arrival rates and operator selectivities. We
use statistical techniques similar to those used in approxi-
mate query processing systems to make these decisions in
such a way as to achieve the best attainable accuracy given
data input rates.

Road Map The rest of this paper is organized as follows:
We begin in Section 2 by formally stating our model and
assumptions. Section 3 presents our algorithms for optimal
sampling for different scenarios, and some extensions to the
basic algorithm are described in Section 4. Section 5 gives
the results of an experimental evaluation of our techniques.
We describe related work in Section 6, before ending with
our conclusions in Section 7.

2 Problem Formulation

The class of continuous monitoring queries that we con-
sider are sliding window aggregate queries, possibly in-

cluding filters and foreign-key joins with stored relations,
over continuous data streams. Monitoring queries involving
joins between multiple streams or non-foreign-key joins be-
tween streams and stored relations are comparatively rare in
practice and therefore not considered in this paper.1 A con-
tinuous data stream S is a potentially unbounded sequence
of tuples {s1, s2, s3, . . .} that arrive over time and must be
processed online as they arrive. A sliding window aggregate
is an aggregation function applied over a sliding window of
the most recently-arrived data stream tuples (for example,
a moving average). The aggregation functions that we con-
sider are SUM and COUNT, though our techniques can be
generalized to other functions such as AVG and MEDIAN.
Sliding windows may be either time-based, meaning that
the window consists of all tuples that have arrived within
some time interval w of the present, or tuple-based, mean-
ing that the window consists of the N most recently arrived
tuples. A filter is a local selection condition on tuples from
a data stream.

We believe this class of queries is important and use-
ful for many data stream monitoring applications, including
network traffic engineering, which we will use as an ex-
ample application domain throughout this paper. Network
analysts often monitor sliding window aggregates covering
multiple timescales over packet traces from routers, typi-
cally filtering based on the internet protocol used, source
and destination port numbers, autonomous subnetwork of
packet origin (identified via user-defined functions based on
longest prefix matching of IP addresses), and similar con-
siderations [17]. Foreign-key joins or semijoins with stored
relations may be used in monitoring queries to perform fil-
tering based on some auxiliary information that is not stored
in the data stream itself (e.g., the industry grouping for a
security in a financial monitoring application). For our pur-
poses, such joins have the same structure and effects as an
expensive selection predicate or a user-defined function.

Most data stream monitoring scenarios involve multiple
continuous queries that must be evaluated as data streams
arrive. Sharing of common sub-expressions among queries
is desirable to improve the scalability of the monitoring
system. For this reason, it is important that a load shed-
ding policy take into account the structure of operator shar-
ing among query plans rather than attempting to treat each
query as an isolated unit.

The input to the load shedding problem consists of a set
of queries q1, . . . , qn over data streams S1, . . . , Sm, a set
of query operators O1, . . . , Ok, and some associated statis-
tics that are described below. The operators are arranged
into a data flow diagram (similar to [5]) consisting of a di-
rected acyclic graph with m source nodes representing the

1Furthermore, hardness results [7] for sampling in the presence of joins
apply equally to the load shedding problem, making load shedding for non-
foreign-key joins a difficult problem.
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Figure 1. Data Flow Diagram

data streams, n sink nodes representing the queries, and k
internal nodes representing the query operators. (Please re-
fer to Figure 1.) The edges in the graph represent data flow
between query operators. For each query qi, there is a cor-
responding path in the data flow diagram from some data
stream Sj though a set of query operators Oi1 , Oi2 , . . . , Oip

to node qi. This path represents the processing necessary to
compute the answer to query qi, and it is called the query
path for query qi. Because we do not consider joins be-
tween data streams, the data flow diagram can be thought of
as being composed of a set of trees. The root node of each
tree is a data stream Sj , and the leaf nodes of the tree are
the queries that monitor stream Sj . Let T (Sj) denote the
tree of operators rooted at stream source Sj .

Every operator Oi in the data flow diagram is associated
with two parameters: its selectivity si and its processing
time per tuple ti. The selectivity of an operator is defined
as the ratio between the number of output tuples produced
by the operator and the number of input tuples consumed
by the operator. The processing time per tuple for an op-
erator is defined as the average amount of time required by
the operator to process each input tuple. The last opera-
tor along any query path is a windowed aggregate operator.
The output of this operator is the final answer to the query
and therefore not consumed by any other operator, so the
selectivity of such an operator can be considered to be zero.
Each SUM aggregate operator Oi is associated with two ad-
ditional parameters, the mean µi and standard deviation σi

of the values in the input tuples that are being aggregated.
The final parameters to the load shedding problem are the
rate parameters rj , one for each data stream Sj . Rate pa-

rameter rj represents the average rate of tuple arrival on
stream Sj , measured in tuples per unit time.

Although we have described these input parameters (se-
lectivity, stream rate, etc.) as known, fixed quantities, in re-
ality their exact values will vary over time and cannot be
known precisely in advance. In STREAM [21], our data
stream management system, we have a Statistics Manager
module that estimates the values of these parameters. Our
query operators are instrumented to report statistics on the
number of tuples processed and output by the operator and
the total processor time devoted to the operator. Based on
these statistics, we can estimate the selectivity and process-
ing times of operators as well as the data stream rates. Dur-
ing times when statistics gathering is enabled, our SUM ag-
gregation operator additionally maintains statistics on the
sum and sum-of-squares of the aggregate values of tuples
that it processes, allowing us to estimate the mean and stan-
dard deviation. As stream arrival rate and data character-
istics change, the appropriate amount of load to shed and
the right places to shed it may change as well. Therefore,
in our system, estimates for the load shedding input param-
eters are periodically refreshed by the Statistics Manager,
and load shedding decisions are periodically revisited.

2.1 Accuracy Metric

Let A1, A2, . . . , An be the answers to queries
q1, q2, . . . , qn at some point in time, and let Â1, Â2, . . . , Ân

be the answers produced by the data stream monitoring
system. If the input rates are high enough that load shed-
ding becomes necessary, the data stream monitoring system
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may not be able to produce the correct query answers, i.e.,
Âi 6= Ai for some or all queries qi. The quality of a load
shedding policy can be measured in terms of the deviation
of the estimated answers produced by the system from the
actual answers. Since the relative error in a query answer
is generally more important than the absolute magnitude
of the error, the goal of our load shedding policy will be
to minimize the relative error for each query, defined as
εi = |Ai − Âi|/|Ai|. Moreover, as there are multiple
queries, we aim to minimize the maximum error across all
queries, εmax = max1≤i≤n εi.

2.2 Load Constraint

The purpose of load shedding is to increase the through-
put of the monitoring system so that the rate at which tuples
are processed is at least as high as the rate at which new in-
put tuples are arriving on the data streams. If this relation-
ship does not hold, then the system will be unable to keep up
with the arriving data streams, and input buffers and latency
of responses will grow without bound. We capture this re-
quirement in an equation, which we call the load equation,
that acts as a constraint on load shedding decisions.

Before presenting the load equation, we will first intro-
duce some additional notation. As mentioned earlier, each
operator Oi is part of some tree of operators T (Sj). Let Ui

denote the set of operators “upstream” of Oi—that is, the
operators that fall on the path from Sj to Oi in the data flow
diagram. If some of the operators upstream of Oi are se-
lective, the data input rate seen by operator Oi will be less
than the data stream rate rj at the stream source since some
tuples are filtered out before reaching Oi. Furthermore, if
load shedders are introduced upstream of Oi, they will also
reduce the effective input rate seen by Oi. Let us define pi

as the sampling rate of the load shedder introduced imme-
diately before operator Oi and let pi = 1 when no such load
shedder exists. Thus to measure the time spent in process-
ing operator Oi, we are interested in the effective input rate
for Oi, which we denote r(Oi) = rsrc(i)pi

∏
Ox∈Ui

sxpx.
(Here src(i) denotes the index of the data stream source for
operator Oi, i.e. src(i) = j for Oi ∈ T (Sj).) This leads to
the load equation:

Equation 2.1 (Load Equation) Any load shedding policy
must select sampling rates pi to ensure that:

∑

1≤i≤k

(
tirsrc(i)pi

∏

Ox∈Ui

sxpx

)
≤ 1

The left hand side of Equation 2.1 gives the total amount of
time required for the system to process the tuples that arrive
during one time unit, assuming that the overhead introduced
by load shedding is negligible. Clearly, this processing time

can be at most one time unit, or else the system will be
unable to keep up with the arriving data streams. The as-
sumption that the cost of load shedding is small relative to
the cost of query operators, and can therefore be safely ig-
nored, is borne out by experimental evidence, as discussed
in Section 4.3. (In addition, we have extended our algorithm
for the case when this assumption does not hold; see [4] for
details.)

2.3 Problem Statement

The formal statement of the load shedding problem is
as follows: Given a data flow diagram, the parameters
si, ti, µi, σi for each operator Oi, and the rate parameters
rj for each data stream Sj , select load shedding sampling
rates pi to minimize the maximum relative error εmax =
max1≤i≤n εi, subject to the constraint that the load equa-
tion, Equation 2.1, must be satisfied.

3 Load Shedding Algorithm

In this section, we describe our algorithm for determin-
ing the locations at which load shedding should be per-
formed and setting the sampling rate parameters pi. The
algorithm has two steps:

1. Determine the effective sampling rates for each query
that will distribute error evenly among all queries.

2. Determine where in the data flow diagram load shed-
ding should be performed to achieve the appropriate
rates and satisfy the load equation.

These two steps are described in detail below.

3.1 Allocation of Work Among Queries

Recall that the error metric we use to measure the accu-
racy of a query response is the relative error. It is impossible
to precisely predict the relative error in query answers that
will arise from a particular choice of a load shedding policy,
because the data values in the discarded tuples are unknown.
However, if we assume some knowledge about the distribu-
tion of data values, for example based on previously-seen
tuples from the data streams, then we can use probabilistic
techniques to get good estimates of what the relative error
will be. There is some variability in the relative error, even
if the data distribution is known exactly, because the ap-
proximate answers produced by the system depend on the
outcomes of the random coin flips made by the load shed-
ders. Therefore, the approach that we take to compare alter-
native load shedding policies is as follows: for a fixed small
constant δ (we use 0.01), we say that a load shedding pol-
icy achieves error ε if, for each query qi, the relative error
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resulting from using the policy to estimate the answer to qi

exceeds ε with probability at most δ.

3.1.1 Relating Sampling Rate and Error

Suppose the query path for a SUM query qi consists of
the sequence of operators Oi1, Oi2, . . . , Oiz . Consider a
load shedding policy that introduces load shedders along the
query path with sampling rates pi1, pi2, . . . , piz. Let τ be a
tuple that would pass through all the query operators and
contribute to the query answer in the absence of any load
shedders. When load shedders are present, τ will contribute
to the answer if and only if it passes through all the load
shedders, which occurs with probability Pi = pi1pi2 . . . piz .
We will refer to Pi as the effective sampling rate for query
qi.

Let Qi denote the set of tuples from the current sliding
window that would pass all selection conditions and con-
tribute to the query answer in the absence of load shedders.
Let Ni be the number of tuples in the set Qi. From the
above discussion, it is clear that in the presence of load
shedders, this aggregate query will be answered based on
a sample of Qi where each element gets included indepen-
dently with probability Pi. For the tuples in the set Qi,
let v1, v2, . . . , vNi

denote the values of the attribute being
summed, and let Ai be their sum. The approximate answer
Âi produced by the system will be the sum of vi’s for the
tuples that get included in the sample, scaled by the inverse
of the effective sampling rate (1/Pi). The following propo-
sition, which follows directly from a result due to Hoeffding
(Theorem 2 in [15]), gives an upper bound on the probabil-
ity that the relative error exceeds a certain threshold εi.

Proposition 3.1 Let X1, X2, . . . , XN be N random vari-
ables, such that each random variable Xj takes the value
vj/P with probability P and the value zero otherwise. Let
Âi be the sum of these random variables and let Ai =∑N

j=1 vj . If we denote by SSi the sum
∑N

j=1 v2
j , then

Pr{|Âi − Ai| ≥ ε|Ai|} ≤ 2 exp
(
−2P 2ε2A2

i /SSi

)

Thus, for a query qi, to ensure that the probability that
the relative error exceeds εi is at most δ, we must guaran-
tee that 2 exp

(
−2P 2

i ε2i A
2
i /SSi

)
≤ δ, which occurs when

Piεi ≥ Ci, where we define Ci =
√

SSi

2A2

i

log 2
δ

. Letting

the mean and variance of the tuples in Qi be denoted by
µi =

∑Ni

j=1 vj/Ni and σ2
i =

∑Ni

j=1(vj − µi)
2/Ni, respec-

tively, the ratio SSi/A
2
i is equal to (σ2

i +µ2
i )/(Niµ

2
i ). Thus

the right-hand side of the preceding inequality reduces to

Ci =
√

σ2

i +µ2

i

2Niµ
2

i

log 2
δ

.
If we want a load shedding policy to achieve relative er-

ror εi, we must guarantee that Pi ≥ Ci/εi. Thus, in order

to set Pi correctly, we need to estimate Ci. Recall that we
are given estimates for µi and σi (provided by the Statistics
Manager) as inputs to the load shedding problem. The value
of Ni can be calculated from the size of the sliding window,
the estimated selectivities of the operators in the query path
for qi, and (in the case of time-based sliding windows) the
estimated data stream rate rj .

The larger the value of Ci, the larger the effective sam-
pling rate Pi needs to be to achieve a fixed error εi with a
fixed confidence bound δ. Clearly, Ci is larger for queries
that are more selective, for queries over smaller sliding win-
dows, and for queries where the distribution of values for
the attribute being summed is more skewed. For a COUNT
aggregate, µi = 1 and σi = 0, so only the window size and
predicate selectivity affect the effective sampling rate.

Since the values of the parameters that affect the effec-
tive sampling rate are known only approximately, and they
are subject to change over time, using the estimated pa-
rameter values directly to calculate effective sampling rates
may result in under-sampling for a particular query, causing
higher relative error. For example, if the data characteristics
change so that an attribute that has exhibited little skew sud-
denly becomes highly skewed, the relative error for a query
which aggregates the attribute is likely to be higher than
predicted. The impact of a mistake in estimating parame-
ters will be more pronounced for a query whose Pi is low
than for a query with higher Pi. Therefore, for applications
where rapid changes in data characteristics are of concern, a
more conservative policy for setting effective sampling rates
could be implemented by adding a constant “fudge factor”
to the estimates for Ci for each query. Such a modifica-
tion would misallocate resources somewhat if the estimated
parameters turn out to be correct, but it would be more for-
giving in the case of significant errors in the estimates.

3.1.2 Choosing Target Errors for Queries

The objective that we seek to minimize is the maximum
relative error εi across all queries qi. It is easy to see that
the optimal solution will achieve the same relative error ε
for all queries.

Observation 3.2 In the optimal solution, the relative error
(εi) is equal for all queries.

Proof: The proof is by contradiction. Suppose that εi < εj

for two queries qi, qj . Since εi = Ci/Pi < εj , we could
reduce Pi to P ′

i by introducing a load shedder before the fi-
nal aggregation operator for qi with effective sampling rate
P ′

i /Pi so that ε′i = Ci/P ′
i = εj . By doing so, we keep

the maximum relative error unchanged but reduce the pro-
cessing time, gaining some slack in the load equation. This
slack can be distributed evenly across all queries by increas-
ing all load shedder sampling rates slightly, reducing the
relative error for all queries.
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For an optimal solution, since the relative errors for all
queries are the same, the effective sampling rate Pi for each
query qi will be proportional to the Ci value for that query,
since Pi = Ci/εi = Ci/εmax. Therefore, the problem of
selecting the best load shedding policy reduces to determin-
ing the best achievable εmax and inserting load shedders
such that, for each query qi, the effective sampling rate Pi,
is equal to Ci/εmax. In doing so we must guarantee that the
modified query plan, after inserting load shedders, should
satisfy the load equation (Equation 2.1).

3.2 Placement of Load Shedders

For now, assume that we have guessed the right value
of εmax, so that we know the exact effective sampling rate
Pi for each query. (In fact, this assumption is unnecessary,
as we will explain in Section 3.2.1.) Then our task is re-
duced to solving the following problem: Given a data flow
diagram along with a set of target effective sampling rates
Pi for each query qi, modify the diagram by inserting load
shedding operators and set their sampling rates so that the
effective sampling rate for each query qi is equal to Pi and
the total processing time is minimized.

If there is no sharing of operators among queries, it is
straightforward to see that the optimal solution is to intro-
duce a load shedder with sampling rate pi = Pi before the
first operator in the query path for each query qi. Introduc-
ing a load shedder as early in the query path as possible re-
duces the effective input rate for all “downstream” operators
and conforms to the general query optimization principle of
pushing selection conditions down.

Introducing load shedders and setting their sampling
rates is more complicated when there is sharing among
query plans. Suppose that two queries q1 and q2 share the
first portion of their query paths but have different effec-
tive sampling rate targets P1 and P2. Since a load shedder
placed at the shared beginning of the query path will affect
the effective sampling rates for both queries, it is not imme-
diately clear how to simultaneously achieve both effective
sampling rate targets in the most efficient manner, though
clearly any solution will necessarily involve the introduc-
tion of load shedding at intermediate points in the query
paths.

We will define a shared segment in the data flow dia-
gram as follows: Suppose we label each operator with the
set of all queries that contain the operator in their query
paths. Then the set of all operators having the same label is
a shared segment.

Observation 3.3 In the optimal solution, load shedding is
only performed at the start of shared segments.

This observation (also made in [22]) is true for the same
reason that load shedding should always be performed at
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Figure 2. Illustration of Example 3.1

the beginning of the query plan when no sharing is present.
The effective sampling rates for all queries will be the same
regardless of the position of the load shedder on the shared
segment, but the total execution time will be smallest when
the load shedding is performed as early as possible.

The preceding observation rules out some types of load
shedding configurations, but it is not enough to determine
exactly where load shedding should be performed. The fol-
lowing simple example will lead us to a further observation
about the structure of the optimal solution:

Example 3.1 Consider a simple data flow diagram with 3
operators as shown in Figure 2. Suppose the query nodes
q1 and q2 must have effective sampling rates equal to 0.5
and 0.8 respectively. Each operator (A, B, and C) is in
its own shared segment, so load shedding could potentially
be performed before any operator. Imagine a solution that
places load shedders before all three operators A, B, and
C with sampling rates p1, p2, and p3 respectively. Since
p1p2 = 0.5 and p1p3 = 0.8, we know that the ratio
p2/p3 = 0.5/0.8 = 0.625 in any solution. Consider the
following modification to the solution: eliminate the load
shedder before operator C and change the sampling rates
for the other two load shedders to be p′

1 = p1p3 = 0.8
and p′2 = p2/p3 = 0.625. This change does not affect the
effective sampling rates, because p′

1p
′
2 = p1p2 = 0.5 and

p′1 = p1p3 = 0.8, but the resulting plan has lower process-
ing time per tuple. Effectively, we have pushed down the
savings from load shedder p3 to before operator A, thereby
reducing the effective input rate to operator A while leaving
all other effective input rates unchanged.

Let us define a branch point in a data flow diagram as a
point where one shared segment ends by splitting into k > 1
new shared segments. We will call the shared segment ter-
minating at a branch point the parent segment and the k
shared segments originating at the branch point child seg-
ments. We can generalize the preceding example as follows:
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Figure 3. Illustration of Observation 3.4

Observation 3.4 Let qmax be the query that has the high-
est effective sampling rate among all queries sharing the
parent segment of a branch point B. In the optimal solu-
tion, the child segment of B that lies on the query path for
qmax will not contain a load shedder. All other child seg-
ments of B will contain a load shedder with sampling rate
Pchild/Pmax, where qchild is defined for each child segment
as the query with the highest effective sampling rate among
the queries sharing that child segment.

Observation 3.4 is illustrated in Figure 3. The intuition
underlying this observation is that, since all queries sharing
the parent segment must shed at least a (1−Pmax)-fraction
of tuples, that portion of the load shedding should be per-
formed as early as possible, no later than the beginning of
the shared segment. The same intuition leads us to a final
observation that completes our characterization of the opti-
mal load shedding solution. Let us refer to a shared segment
that originates at a data stream as an initial segment.

Observation 3.5 Let qmax be the query that has the highest
effective sampling rate among all queries sharing an initial
segment S. In the optimal solution, S will contain a load
shedder with sampling rate Pmax.

The combination of Observations 3.3, 3.4, and 3.5 com-
pletely specifies the optimal load shedding policy. This pol-
icy can be implemented using a simple top-down algorithm.
If we collapse shared segments in the data flow diagram
into single edges, the result is a set of trees where the root
node for each tree is a data stream Sj , the internal nodes
are branch points, and the leaf nodes are queries. For any
internal node x, let Px denote the maximum over all the
effective sampling rates Pi corresponding to the leaves of

the subtree rooted at this node. The pseudocode in Algo-
rithm 1 operates over the trees thus defined to introduce
load shedders and assign sampling rates starting with the
call SetSamplingRate(Sj , 1) for each data stream Sj .

Algorithm 1 Procedure SetSamplingRate(x, Rx)

if x is a leaf node then
return

end if
Let x1, x2, . . . xk be the children of x
for i = 1 to k do

if Pxi
< Rx then

Shed load with p = Pxi
/Rx on edge (x, xi)

end if
SetSamplingRate(xi, Pxi

)
end for

Theorem 3.6 Among all possible choices for the placement
of load shedders and their sampling rates which result in a
given set of effective sampling rates for the queries, the so-
lution generated by procedure SetSamplingRate has the
lowest processing time per tuple.

Proof: For any node x in the tree, we will refer to the
product of the sampling rates of all the load shedders on
the path from the root to node x as the prefix path prob-
ability of x. (The prefix path probability of x is defined
to be 1 if there are no load shedders between the root and
node x.) Note that in every recursive invocation of the
SetSamplingRate(x, Rx) procedure, the second parame-
ter Rx is equal to the prefix path probability of node x. To
prove the theorem, we first prove the claim that for each
node x other than the root, the prefix path probability of x
is equal to Px.

The proof of the claim is by induction on the height
of the tree. It is trivially true for the root node. Con-
sider any node b in the tree which is the child of some
other node a. Assume that the claim holds for node a.
When SetSamplingRate is called with a as an argument,
it places a load shedder with sampling rate Pb/Pa at the be-
ginning of edge (a, b). Thus, by the inductive hypothesis,
the product of sampling rates of load shedders from the root
to node b equals Pa × Pb

Pa
= Pb. This proves the claim.

Thus we guarantee that the prefix path probability of any
node is equal to the highest effective sampling rate of any
query which includes that node in its query path. No solu-
tion could set a prefix path probability less than this value
since it would otherwise violate the effective sampling rates
for that query. Thus the effective input rate of each operator
is the minimum that can be achieved subject to the con-
straint that prefix path probabilities at the leaf nodes should
equal the specified effective sampling rates. This proves the
optimality of the algorithm.
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3.2.1 Determining the Value of εmax

An important point to note about the algorithm is that ex-
cept for the first load shedder that is introduced just after
the root node, the sampling rates for all others depend only
on the ratios between effective sampling rates (each sam-
pling rate is equal to Pi/Pj = Ci/Cj for some i, j) and not
on the actual Pi values themselves. As a consequence, it is
not actually necessary for us to know the value of εmax in
advance. Instead, we can express each effective sampling
rate Pi as Ciλ, where λ = 1/εmax is an unknown multi-
plier. On each query path, there is at most one load shedder
whose sampling rate depends on λ, and therefore the load
equation becomes a linear function of λ. After running Al-
gorithm 1, we can easily solve Equation 2.1 for the resulting
configuration to obtain the correct value of λ that makes the
inequality in Equation 2.1 tight.

Another consequence of the fact that only load shedders
on initial segments depend on the actual Pi values is that the
load shedding structure remains stable as the data stream
arrival rates rj change. The effective sampling rate Pi for
each query qi over a given data stream Sj depends on the
rate rj in the same way. Therefore, changing rj does not
affect the ratio between the Pi values for these queries. The
only impact that a small change to rj will have is to mod-
ify the sampling rates for the load shedders on the initial
segments.

When determining εmax in situations when the system
load is only slightly above system capacity, an additional
consideration sometimes needs to be taken into account:
when no load shedding is performed along the query path
for a given query, the error on that query drops to zero. By
contrast, for each query, there is a minimum error thresh-
old (Ci) below which no error guarantees based on Propo-
sition 3.1 can be given as long as any load shedding is per-
formed along the query path. As the effective sampling rate
Pi increases, the relative error εi decreases continuously
while Pi < 1 then makes a discontinuous jump at Pi = 1.
Our algorithm can be easily modified to incorporate this dis-
continuity; the details are omitted here but can be found in
the full version of this paper [4].

4 Extensions

We briefly discuss how to extend our techniques to in-
corporate quality of services guarantees and a more general
class of queries.

4.1 Quality of Service

By taking as our objective the minimization of the maxi-
mum relative error across all queries, we have made the im-
plicit assumption that all queries are equally important. In

reality, in many monitoring applications some queries can
be identified as being more critical than others. When the
system is heavily loaded and load shedding becomes neces-
sary, it would be preferable to shed load from the less im-
portant queries before affecting the more important queries.
Our techniques can easily be adapted to incorporate varying
quality of service requirements for different queries, either
through the introduction of query weights, or query priori-
ties, or both.

One modification to our technique would be to allow
users to associate a weight or importance wi with each
query qi. With weighted queries, the goal of the system
becomes to minimize the maximum weighted relative error.
This is easily accomplished by a straightforward change:
when computing the effective sampling rate target for the
queries, instead of ensuring that Ci/εmax is equal for all
queries qi, we ensure that Ci/(wiεmax) is equal. In other
words, instead of Pi ∝ Ci we have Pi ∝ Ciwi. Thus, the
weights can easily be assimilated into the Ci’s.

An alternative way of specifying query importance is to
assign a discrete priority level (e.g., high, medium, or low)
to each query. When query priorities are specified, the goal
of the system becomes to minimize the maximum relative
error across all queries of the highest priority level. If all
highest-priority queries can be answered exactly, then the
system attempts to minimize the maximum relative error
across queries with the second-highest priority level, and
so on. Queries with lower priorities are ignored. Again, the
modifications to our techniques to handle prioritized queries
are straightforward.

4.2 More General Query Classes

We have discussed the load shedding problem in the con-
text of a particular class of data stream monitoring queries,
aggregation queries over sliding windows. However, the
same techniques that we have developed can be applied to
other classes of queries as well. One example is monitor-
ing queries that have the same structure as the ones we have
studied, except that they have set-valued answers instead of
ending with an aggregation operator. This type of monitor-
ing query could be useful when the goal of monitoring is to
identify individual tuples that are unusual in some way, e.g.,
tuples with unusually large values for some attribute. In the
case of set-valued queries, an approximate answer consists
of a random sample of the tuples in the output set. The met-
ric of relative error is not applicable to set-valued queries.
Instead, we can measure error as the percentage of tuples
from the query answer that are missing in the approximate
answer. The goal of the system then becomes to minimize
the maximum value of this quantity across all queries, op-
tionally with query weights or priorities. Our algorithm can
be made to optimize for this objective by simply setting Ci
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for each query equal to 1 (or alternatively, equal to the query
weight).

Another class of queries that might arise in data stream
monitoring applications is aggregation queries with “group-
bys”. One way to adapt our techniques to incorporate
group-by queries is to consider a group-by query to be mul-
tiple queries, one query for each group. However, all these
groups (queries) share the entire query path and as a re-
sult the effective sampling rate will be the same for all of
them. Consequently, the group that will have the maxi-
mum relative error will be the one with the maximum Ci

value. Since our error metric is the maximum relative er-
ror among all groups across queries, within each group-by
query, the group with maximum Ci value will be the only
group that will count in the design of our solution. Thus,
we can treat the group with maximum Ci value as the rep-
resentative group for that query.

4.3 Incorporating Load Shedding Overhead

The results in Section 3 are based on the assumption that
the cost (in terms of processing time) to perform load shed-
ding is small relative to the the cost of query operators. In an
actual system implementation, even simple query operators
like basic selections generally have considerable overhead
associated with them. A load shedder, on the other hand,
involves little more than a single call to a random number
generator and thus can be very efficiently implemented. In
empirical tests using our STREAM system, we found that
the processing time per tuple for a load shedding operator
was only a small fraction of the total processing time per
tuple even for a very simple query.

In some applications, however, the relative cost of load
shedding may be larger, to the point where ignoring the
overhead of load shedding when deciding on the placement
of load shedders leads to inefficiencies. This could occur,
for example, if the techniques described in this paper were
to be applied in a specialized, high-performance stream pro-
cessing application where the processing time per tuple was
extremely low. Our same basic approach could be applied
in such a context by associating a processing cost per tu-
ple with load shedding operators and including their cost in
the load equation. We have developed a modified algorithm
based on dynamic programming to find the best placement
of load shedders given a load equation modified in this fash-
ion. The details are presented in [4].

5 Experiments

We have implemented the load shedding algorithm de-
scribed in this paper in our data stream management sys-
tem called STREAM, for STanford stREam dataA Manager.
STREAM is a general-purpose stream processing system,

suitable for a variety of data stream monitoring applications,
though one of our focuses has been the network monitoring
domain. The queries and data we used for our experiments
are drawn from network monitoring. The STREAM system
architecture is described in [21].

Using the STREAM system, we sought to answer two
empirical questions about our algorithm:

1. Do the load shedding decisions made by our algorithm,
which are based on the probability bounds from Propo-
sition 3.1, produce good approximate answers on real-
world data streams?

2. Does our algorithm provide an appreciable benefit over
a basic load shedding scheme that simply discards a
fraction of arriving tuples when stream rates exceed
system capacity?

Experiments measuring the actual accuracy achieved by
our algorithm on real data (the first question) are useful to
help understand the impact of two factors that are difficult to
gauge without empirical evidence. First, our load shedding
algorithm is based on parameters that are estimated from
past data in order to make predictions about future data. To
the degree that the future does not resemble the past, this
could be a cause of inaccuracy. Second, our algorithm is
based on inequalities that place upper bounds on the proba-
bility of an error of a given size. Because these bounds are
not tight—a tight bound is not mathematically tractable—
the actual probability of error may be less than predicted.
This factor might introduce inefficiency in our allocation of
resources between queries. However, as evidenced by the
results presented in Section 5.2, in practice the effects of
these two factors are not too large.

Although our load shedding algorithm is fairly simple, it
does require the presence of some monitoring infrastructure
that tracks stream rates, operator selectivities, etc, in order
to function effectively. A comparison of the degree of accu-
racy obtained by our algorithm with what can be achieved
using a simpler policy is useful in evaluating whether the
increased system complexity necessary for our technique is
justified by improvements in query accuracy. The exper-
imental results show that the relative error achieved by a
baseline load-shedding scheme, which sheds load by drop-
ping a fraction of newly-arriving tuples as they arrive, is
about two to four times as high on average than the error
achieved by our algorithm. The gap between the worst-case
performance of the two techniques is even wider.

5.1 Experimental Setup

We ran our experiments on a single-processor Linux
server with 512 MB of main memory. The dataset we used
for our experiments contains one hour of wide-area network
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Figure 4. Accuracy at various levels of load

traffic between Digital Equipment Corporation and the rest
of the world. DEC has made the dataset freely available
for download from the Internet Traffic Archive [16]. We re-
duced the data set, which was collected in ASCII tcpdump
format, to a binary format suitable for efficient processing
by our system. The reduced format that we used has 24-byte
records, one record per IP packet, consisting of six 4-byte
columns. There is one timestamp column and five integer-
valued columns, srcHost, destHost, srcPort, destPort, and
size, representing the source and destination hosts and ports
for the packet and the packet size. Packet size was only
known for TCP packets, so the size field is set to -1 to iden-
tify UDP packets.

We constructed a 7-query workload consisting of typical
monitoring queries that might be posed by a network ana-
lyst. The queries applied various filters based on transport
protocol (TCP vs. UDP), port of origin (e.g. packets origi-
nating from ports 80 and 20 generally represent HTTP and
FTP traffic, respectively), packet size, and host of origin or
destination. The queries computed either counts of packets
or sums of the total bytes in packet payloads, measured over
sliding windows of various durations. There were several
shared selection conditions among the queries. All seven
monitoring queries were executed simultaneously, with op-
erator sharing where applicable.

The sliding windows in the queries were based on the
timestamps present in the data (as opposed to the clock
times when tuples arrived in the system during a particu-
lar test run). In this way, we ensured that the correct query
answers were the same regardless of the rate at which the
dataset was streamed to the system.

We compared the performance of two different load
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Figure 5. Accuracy of load shedding

shedding strategies: (1) the algorithm described in this pa-
per and (2) a baseline strategy that drops tuples as they enter
the system, but not at any intermediate points in the query
plan. The only difference between the strategies was in
the algorithm used to place load shedding operators. Both
strategies used statistics about operator execution times, op-
erator selectivities, and stream rates that were monitored
by the system during query execution and updated at one-
second intervals to determine the degree of load shedding
that was necessary. We measured the performance of each
strategy using a wide range of different input stream rates.

5.2 Experimental Results

Figure 4 shows the average and worst case approxima-
tion error of the two load shedding strategies at various lev-
els of system load. System load is expressed as a multiple
of system capacity. (For example, a system load of 2 cor-
responds to an input stream rate that is twice as high as the
system throughput when no load shedding is present.)

When conducting the experiments, we first constructed a
trace containing the correct query answers by disabling load
shedding, streaming the dataset to the system, and record-
ing the query responses, tagged with timestamps from the
dataset. To measure the error between an approximate an-
swer trace produced by load shedding and the exact an-
swers, we discretized time into one-second intervals and
computed the average relative error for each query in each
interval. Then, for each one-second interval, we used the
maximum of the seven error values computed for the seven
queries as the overall measure of performance for that inter-
val. The average approximation error depicted in Figure 4
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Figure 6. Adjusting to variable stream rates

is computed by calculating the approximation error for each
one-second time interval and then averaging across all time
intervals. The maximum approximation error is similarly
computed by taking the maximum across all time intervals.
We observe that the error of the baseline strategy is, on an
average, more than twice as high as compared to our strat-
egy. The difference is amplified if we consider the worst-
case error. In general we observe that, even when the sys-
tem load is five times the system capacity, our strategy gives
low average relative error (less than 5%) on real data sets for
the network traffic monitoring application.

Figure 5 provides a more detailed view of how answer
quality varies over time. The data for the figure was gener-
ated using a system load factor of 3, i.e., the input stream
rate was three times greater than the system capacity. As
can be seen from the figure, the relative error from our algo-
rithm was generally in the 2%-5% range, while the relative
error for the simple strategy was around 5%-20%. Both
methods exhibited some fluctuation in relative error over
time, with the magnitude of the fluctuations being some-
what greater for the simple strategy than for our load shed-
ding algorithm.

To test the ability of our system to adapt to changes in
system load over time, we conducted an experiment where
the input stream rate was varied over time. We initially sent
data to the system at a rate just below the system capac-
ity. After some time, we suddenly increased the rate to
three times the system capacity. Finally, after some more
time had passed, we restored the input rate to its original
level. The system responded as expected, as shown in Fig-
ure 6. Initially, no load shedding was performed and ex-
act answers were returned by the system. After the stream

rate increased, load shedding became necessary, and query
answers became approximate. However, the quality of the
approximation was better when the placement of load shed-
ding operators was determined using our algorithm as com-
pared to the simple strategy. When the system rate returned
to a lower level, the system detected that fact and reverted
to a configuration where no shedding was performed.

6 Related Work

There has been a great deal of recent research on data
stream query processing, both from the algorithms and
systems perspectives. The survey paper [3] contains a
good overview of work in the field. Some recent systems
that incorporate stream processing include Aurora [5], Nia-
gara [8], STREAM [21], and Telegraph [12], among many
others.

There has been prior work in the general area of adaptiv-
ity in data stream systems, notably [14], which uses adap-
tive tuple routing algorithms to dynamically modify query
plan structure in response to changing data characteristics.
The most closely related work of which we are aware is the
load shedding performed by the Aurora system [22]. The
approach taken in [22] is different than ours in that it relies
on quality of service functions that specify the utility of pro-
cessing each tuple from a data stream. A different quality
of service function is provided for each query. The Aurora
approach is best suited for applications where the value of
processing each individual tuple is independent of the other
tuples that are processed, an assumption that does not hold
for aggregation queries, the query class that is our focus in
this paper.

The papers [9, 18] also consider the problem of how to
most effectively shed load in an overloaded data stream sys-
tem. The class of queries considered is windowed joins be-
tween data streams, and the metric being optimized is the
number of tuples produced in the approximate answer (in
the case of [9]) or the output rate of tuples (in the case of
[18]). For this reason, the techniques proposed in [9, 18]
are not applicable to our problem setting, where there are
no joins between streams and the metric being optimized is
the accuracy of approximate answers to aggregate queries.

Some other approaches to dealing with data stream rates
that temporarily exceed system capacity focus on limiting
the memory utilization of the system. Improving the ef-
ficiency of the allocation of memory among query opera-
tors, as proposed in [18] and [21], or among inter-operator
queues, as in [2], are alternatives to load shedding that can
improve system performance when limited main memory is
the primary resource bottleneck.

The analytical techniques used in this paper are similar
to those used in approximate query processing systems such
as AQUA [1]. Our work is similar to [6] in that both take
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as their objective the minimization of relative error across
a given set of aggregate queries. However, the techniques
in [6] are different from ours and are designed for standard
stored data sets rather than data streams. Research in online
aggregation, where progressively refined answers are given
to an aggregation query over a stored data set based on the
tuples processed so far, is more similar to data stream query
processing, but prior work in online aggregation, such as
[11, 13], has concentrated on a single-query scenario rather
than optimizing across multiple continuous queries.

7 Summary

It is important for computer systems to be able to adapt
to changes in their operating environments. This is par-
ticularly true of systems for monitoring continuous data
streams, which are often prone to unpredictable changes
in data arrival rates and data characteristics. We have de-
scribed a framework for one type of adaptive data stream
processing, namely graceful performance degradation via
load shedding in response to excessive system loads. In the
context of data stream aggregation queries, we formalized
load shedding as an optimization problem with the objective
of minimizing query inaccuracy within the limits imposed
by resource constraints. Our solution to the load shedding
problem uses probabilistic bounds to determine the sensitiv-
ity of different queries to load shedding in order to perform
load shedding where it will have minimum adverse impact
on the accuracy of query answers.
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