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Abstract— A first endeavor for optimizing player satisfaction
in augmented-reality games through the ‘Playware’ physical
interactive platform is presented in this paper. Constructed
user models, reported in the literature, map individual play-
ing characteristics to reported entertainment preferences of
augmented-reality game players. An adaptive mechanism then
adjusts controllable game parameters in real-time in order to
improve the entertainment value of the game for the player.
The basic approach presented here applies gradient ascent to
such a model to reveal the direction toward games of higher
entertainment value while a rule-based system exploits the
derivative information to adjust specific game parameters to
augment the entertainment value. Those adjustments take place
frequently during the game in small time intervals that maintain
the constructed model’s accuracy. Performance of the adapta-
tion mechanism is evaluated using a game survey experiment.
Results reveal that children show a notable preference for the
adaptive versus the static Bug-Smasher (‘Playware’ test-bed)
game variant even when simple adaptive approaches like the
one proposed are used. The limitations and the use of the
methodology as a baseline effective adaptive mechanism to
entertainment augmentation are discussed.

I. INTRODUCTION

Cognitive user models of playing experience promise
significant potential for the design of digital interactive
entertainment systems such as screen-based computer or
augmented-reality games. Quantitatively modeling entertain-
ment or satisfaction as a class of user experiences may reveal
game features or user features of play that relate to the
level of satisfaction perceived by the user (player). That
relationship can then be used to adjust digital entertainment
systems according to individual user preferences to optimize
player satisfaction in real-time. This paper introduces an
adaptive mechanism for achieving this in augmented-reality
games. A game designed on the ‘Playware’ [1] intelligent
interactive physical playground is used as the test-bed for
the experiments presented here.

Entertainment models constructed in our previous studies
[2], [3] are based on quantitative measures of Malone’s in-
trinsic qualitative factors for engaging gameplay [4], namely
challenge and curiosity. In that prior work, a mapping
between the aforementioned factors (game features), the
player’s individual characteristics (player features), such as
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response time and foot pressure, and the children’s notion of
‘fun’ or entertainment (the two terms are used interchange-
ably herein) is derived for a game (Bug-Smasher) developed
on the Playware playground as a test-bed. Preference learning
(neuro-evolution) models are trained on these gameplay ex-
perimental data to construct a function mapping the examined
game and player features to the reported player satisfac-
tion preferences. Feature selection methodology applied in
conjunction with preference learning yielded an artificial
neural network (ANN) model that predicts the entertainment
preferences of children with an accuracy of 77.77% [3], built
on four features: the player’s average response time with
the playground, the variance of the pressure force instances
on the playground, the number of interactions with the
playground and the level of curiosity generated by the game
opponents.

Following from the reported success with entertainment
modeling in physical interactive games [3], an attempt to
optimize the entertainment value of those games in real-time
is presented in this paper. A real-time adaptation mechanism
using gradient ascent on the constructed model is tested
through a survey experiment of children playing variants of
the Bug-Smasher game. Results demonstrate the efficacy of
the adaptive mechanism since the children who participated
in the experiment expressed a considerable preference for
the adaptive version of the game under investigation. These
positive indications for simple hill-climbing mechanisms
applied to augmenting player satisfaction suggest the promise
of future implementations of adaptive learning in real-time
for the same problem.

The work reported here is novel in that it demonstrates a
way of constructing a subjective model (a predictor of user
preferences) of reported entertainment grounded in statistical
features obtained from child-game interaction and introduces
an approach for exploiting the knowledge represented by
that model towards enhancing player satisfaction in real-time.
The limitations of the proposed methodology and its generic
use as an efficient baseline for optimizing entertainment in
physical interactive games in real-time are discussed.

II. ENTERTAINMENT MODELING AND OPTIMIZATION

We classify approaches for capturing the level of player
satisfaction into qualitative and quantitative. The first in-
cludes qualitative features/criteria that collectively contribute
to engaging experiences in entertainment systems, derived
from experimental psychology studies, whereas the latter
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includes studies for quantifying the reported qualitative cri-
teria of entertainment and constructing models that relate to
the complicated mental state of satisfaction perceived while
interacting with digital interactive systems. Related work on
methodologies for improving player satisfaction in real-time
is presented at the end of this section.

A. Qualitative Approaches

There have been several psychological studies to identify
what is ‘fun’ in a game and what engages people playing
computer games. Theoretical approaches include Malone’s
principles of intrinsic qualitative factors for engaging game
play [4], namely challenge, curiosity and fantasy as well as
the well-known concepts of the theory of flow [5] incorpo-
rated in computer games as a model for evaluating player
enjoyment, namely GameFlow [6]. A comprehensive review
of the literature on qualitative approaches for modeling
player enjoyment demonstrates a tendency of overlapping
with Malone’s and Csikszentmihalyi’s foundational concepts.
Many of these approaches are based on Lazzaro’s ‘fun’
clustering which uses four entertainment factors based on
facial expressions and data obtained from game surveys on
players [7]: hard fun, easy fun, altered states and socializa-
tion. Koster’s [8] theory of fun, which is primarily inspired by
Lazzaro’s four factors, defines ‘fun’ as the act of mastering
the game mentally. An alternative approach to fun capture is
presented in [9] where fun is composed of three dimensions:
endurability, engagement and expectations.

B. Quantitative approaches

Iida’s work on metrics of entertainment in board games
was the first attempt in the area of quantitative ‘fun’ mod-
eling. He introduced a general metric of entertainment for
variants of chess games depending on average game length
and possible moves [10]. Other work in the field of quanti-
tative entertainment capture is based on the hypothesis that
the player-opponent interaction — rather than the audiovisual
features, the context or the genre of the game — is the
property that contributes the majority of the quality features
of entertainment in a computer game [11]. Based on this
fundamental assumption, a metric for measuring the real time
entertainment value of predator/prey games was designed,
and established as efficient and reliable by validation against
human judgement [12], [13]. Further studies by Yannakakis
and Hallam [14] have shown that ANNs and fuzzy neural
networks can extract a better estimator of player satisfaction
than a human-designed one, given appropriate estimators of
the challenge and curiosity of the game and data on human
players’ preferences.

A step further to entertainment capture is towards games
of richer human-computer interaction and affect recognizers
which are able to identify correlations between physiological
signals and the human notion of entertainment. Experiments
by Yannakakis et al. [15], [16] have isolated features of
heart rate (HR) signal recordings of children attributed to
entertainment from those features that correspond to pure

physical activity in action games played in interactive phys-
ical playgrounds. In that study, a highly accurate subjective
model (a predictor of entertainment preferences) of reported
“fun” grounded in statistical features of HR signal dynam-
ics was constructed. Moreover, Rani et al. [17] propose a
methodology for detecting anxiety level of the player and
appropriately adjusting the level of challenge (e.g. speed) in
the game of ‘Pong’. Physiological state (hear-rate, galvanic
skin response) prediction models have also been proposed
for potential entertainment augmentation in computer games
[18].

C. Optimizing Player Satisfaction

Approaches towards optimizing player satisfaction can be
classified to implicit and explicit. Within the first class of
approaches we meet use of machine learning techniques for
adjusting a game’s difficulty — based on the assumption
that challenge is the only factor that contributes to enjoyable
gaming experiences — which implies entertainment augmen-
tation. Such approaches include applications of reinforce-
ment learning [19], genetic algorithms [20], probabilistic
models [21] and dynamic scripting [22], [23]. Moreover, user
models have been constructed for the generation of adaptive
interactive narrative systems that potentially optimize the
experience of the user [24], [25], [26]. User preference
modeling towards content (race track) creation in racing
games has also shown a potential for enhancing the quality
of playing experience in those games [27], [28]. However,
human survey experiments that cross-verify the assumptions
of player satisfaction enhancement have not been reported in
all aforementioned approaches.

Within the explicit methods for optimizing player satisfac-
tion, robust adaptive learning mechanisms have been built to
optimize the human-verified ad-hoc ‘interest’ (entertainment)
metric for prey/predator games introduced in [11], [12].
Experiments showed that an on-line neuro-evolution mecha-
nism [13], [29], [30], [31] and a player modeling technique
through bayesian learning [32] were each capable of main-
taining or increasing the game’s entertainment value while
the game was being played. Effectiveness and robustness of
the adaptive (neuro-evolution) learning mechanism in real-
time has been evaluated via human survey experiments [12].
Furthermore, studies with the “Playware” playground have
shown that real-time adaptive ad-hoc rule-based mechanisms
may improve children’s gameplay experience in physical
interactive playgrounds [33].

Following the theoretical principles reported from Malone
[4], Koster [8] and Yannakakis [34], this paper is primarily
focused on the contributions of game opponents’ behavior
to the real-time entertainment value of the game. We argue
that among the three dimensions of ‘fun’ (endurability, en-
gagement, expectations) defined in [9] it is only engagement
that is affected by the opponent since both endurability and
expectations are based primarily on the game design per se.
Given a successful interactive game design that yields high
expectations and endurability, we focus only on the level of
engagement that generates ‘fun’ (entertainment). However,
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instead of being based on empirical observations of children’s
entertainment, the work presented here uses quantitative
entertainment models already constructed using experimental
data obtained from a survey experiment with children playing
with Playware playground [3]. An adaptive mechanism is
proposed for augmenting children’s satisfaction in real-time
and an additional survey experiment validates its efficacy in
the Bug-Smasher test-bed game.

III. PLAYWARE PLAYGROUND

The Playware [1] prototype playground consists of several
building blocks (i.e. tangible tiles) that allow for the game
designer (e.g. the child) to develop a significant number
of different games within the same platform. The overall
technological concept of Playware is based on embodied AI
[35] where intelligent physical identities (tiles) incorporate
processing power, communication, input and output, focusing
on the role of the morphology-intelligence interplay in de-
veloping game platforms. See [2], [3], [1] for further details
on Playware playground.

A. Bug-Smasher Game

The test-bed game used for the experiments presented here
is called ‘Bug-Smasher’. The game is developed on a 6 x
6 square tile topology. During the game, different ‘bugs’
(colored lights) appear on the game surface and disappear
sequentially after a short period of time by turning a tile’s
light on and off respectively. A bug’s position is picked
randomly according to the predefined level of the bugs’
spatial diversity. Spatial diversity is measured by the entropy
(H) of the bug-visited tiles.

The child’s goal is to smash as many bugs as possible by
stepping on the lighted tiles. Bug-smasher has been used as
a test-bed in previous work; further details can be found in
[2], [15], [36], [3] and [16] .

IV. EXPERIMENTAL DATA FOR ENTERTAINMENT
MODELING

In [3] the Bug-Smasher game was used to acquire data of
platform-child interaction and children’s judgement on enter-
tainment. Three states (‘Low’, ‘Average’, and ‘High’) were
used for each of the two entertainment factors of challenge
and curiosity summing up to 9 different game variants. In
that study the speed (S — in sec−1) that the bugs appear
and disappear from the game and their spatial diversity
(H) on the game’s plane were considered as appropriate
measures to represent the level of challenge and the level of
curiosity (unpredictability) respectively [4] during gameplay.
The former provides a notion of a goal whose attainment
is uncertain and the latter effectively portrays a notion of
unpredictability in the subsequent events of the game —
the higher the H value the higher the bug appearance
unpredictability and therefore the higher the curiosity.

Seventy-two normal-weighted (based on their body mass
index) children whose age covered a range between 8 and
10 years participated in the experiment reported [3]. In that
experiment, each subject played two game variants (A and B)

for 90 seconds each; the two games differed in the levels of
one or both entertainment factors of challenge and curiosity.
Each time a pair of games was finished, the child was asked
whether the first game was more ‘fun’ than the second game
i.e. whether A or B generated a more entertaining game
(pairwise preference — 2-alternative forced choice). Further
details regarding the protocol used in that experimental
survey and the statistical analysis on the effect of order of
play can be found in [3].

Pressed tile events during the experiment presented in
[3] were recorded in real-time and a selection of nine
personalized (individual) player features were extracted for
each child. These include the number of smashed bugs
over the total number of bugs presented, P (i.e. child’s
score); the number of interactions with the game environment
NI ; the average and the variance of the response times
(E{rt}, σ2{rt}); the average and the variance of the distance
between the pressed tile and the bugs appearing on the
game (E{Db}, σ2{Db}); the average and the variance of the
pressure recorded from the FSR sensor (E{p}, σ2{p}); and
the entropy of the tiles that the child visited HC . The total
number of game pairs played was 144; however, data from
137 game pairs were used due to hardware (communication
ports) failure during seven games. The child’s answers and
recorded data were used to guide the training of an ANN
model of reported entertainment (see Section V).

A. Statistical Analysis

A statistical analysis introduced in [3] was applied to iden-
tify statistically significant correlations between children’s
notion of entertainment and any of the aforementioned indi-
vidual player features and/or the quantitative entertainment
factors (game features): challenge and curiosity. Among the
obtained significant effects presented in that study we report
the effect of NI (p-value = 0.0298) and E{rt} (p-value =
0.0050) on reported entertainment. These linear correlations
are used as background knowledge for the construction of
the rules of the adaptation mechanism (see Section IX). The
reader may refer to [3] for further details on the statistical
analysis briefly presented here.

V. PREFERENCE LEARNING

The proposed approach to entertainment modeling is based
on selecting a (constrained) minimal subset (see Section VI)
of individual features and constructing a quantitative user
model that predicts the subject’s reported entertainment
preferences. The assumption is that the entertainment value
y of a given game, which models the subject’s internal
response to playing the game, that is, how much “fun”
it is, is an unknown function of individual features which
a machine learning mechanism can learn. The subject’s
expressed preferences constrain but do not specify the values
of y for individual games but we assume that the subject’s
expressed preferences are consistent.

Constraint satisfaction algorithms cannot solve the prob-
lem since the variable y under the constraint yA > yB

for any two given games A and B has no specific domain
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values. Likewise, any machine learning which is based on
learning a target output is inapplicable since target outputs
are unknown. By the use of a ranking approach numerical
values for the y variable could be made available; however,
ranking is an undesired method for the self-report design of
comparative “fun” analysis for the disadvantages mentioned
earlier. Preference learning [37] is the only applicable type of
machine learning for this constrained classification problem.
There are several techniques that learn from a set of pairwise
preferences such as algorithms based on support vector
machines [38], gaussian processes [39] and evolving ANNs
[40].

A. Neuro-evolution

Among the aforementioned preference learning ap-
proaches a fully-connected feedforward ANN has success-
fully been used for learning the relation between the selected
game and player features (ANN inputs) and the “entertain-
ment value” (ANN output) of a game [3]. Since there are
no prescribed target outputs for the learning problem (i.e.
no differentiable output error function), ANN training algo-
rithms such as back-propagation are inapplicable. Learning
is achieved through artificial evolution [40].

A generational genetic algorithm (GA) [41] is imple-
mented, which uses a fitness function that measures the
difference between the children’s reported preferences of
entertainment and the model output value y. The ANN is
itself evolved. In the algorithm presented in [3], the ANN
topology is fixed and the GA chromosome is a vector of
ANN connection weights. For further information on the
neuro-evolution algorithm the reader may refer to [2] and
[3].

VI. FEATURE SELECTION

There were two different feature selection schemes applied
and compared for the construction of entertainment models in
[3]: the n Best Features Selection (nBest) and the Sequential
Forward Selection (SFS). Features selected by each method
constitute the input vector of the evolving ANN. The feature
selection procedure followed in that study evaluates the
usability of each one of the features available and obtains the
minimal feature subset that performs best in the classification
between games reported as entertaining and games reported
as non-entertaining (see Section V). To evaluate the perfor-
mance of each feature subset the available data is randomly
divided into three subsets which are combined to give three
training and, independent, validation data sets each consisting
of 2/3 and 1/3 of the data respectively. The performance of an
ANN model is measured through the average classification
accuracy of the ANN in three independent runs using 3-fold
cross-validation technique on the training and validation data
sets. The reader may refer to [3] for further information on
the motivation behind the use of feature selection and the
details of each method used.

VII. ENTERTAINMENT MODEL CONSTRUCTED

This section presents briefly the model generated and in-
troduced in [3]. Experiments for finding the minimal feature
subset that yields the highest classification performance in
matching the ANNs output with children’s reported answers
on entertainment in unknown data (validation data set) reveal
a 3-fold cross-validation performance of 77.77% (average
of 70%, 73.33% and 90%) when the ANN input (selected
features) contains E{rt}, σ2{p}, H and NI . The binomial-
distributed probability of this performance to occur at random
is 0.0019 demonstrating statistical significance and providing
evidence for this solution’s robustness.

Difficulties in obtaining higher classification accuracy
were found in experimental noise in both the recorded
features and the children’s answers on self reports. Even
though comparative fun analysis is a reliable and established
method for capturing reported entertainment in computer
[34] and augmented-reality [2], [3] games, it generates a
significant amount of uncertainty in subjects’ reported an-
swers. Uncertainty appears when the two games played are
not significantly different with regards to the entertainment
value they generate for the player and therefore cannot be
distinguished.

A further analysis of the feature subset {E{rt}, σ2{p},
NI , H} with the highest validation performance (90.00%,
in one of the three learning attempts) reveals that fast
responding children (E{rt} ≈ 0) tend to enjoy average and
high curiosity values whereas slow children (E{rt} ≈ 1)
appear to prefer games that generate low curiosity levels [3].

VIII. “FUN” DURING THE GAME

The main assumption guiding this research is that enter-
tainment is constant during the selected gameplay window
(i.e. 90 seconds). In other words, the expressed entertainment
preference for a game is valid for the game as a whole.
Obtaining entertainment preferences during play is a protocol
an experiment designer may follow; however, it was not pre-
ferred since it could have a significant impact on the validity
of the obtained data. According to the ideal conditions for
effective data collection, subjects (children) should not be
questioned during the task under examination (game) [42].

To test the extent to which the entertainment value of
a game is constant over the entire playing time window
we proceed as follows. ANNs models of entertainment
built through 3-fold cross-validation on data derived from
the whole game play (e.g. average response time over 90
seconds) are available from [3] (see Section VII). Those
three ANN models are tested on the entire data set of 137
game pairs (see Section IV) and the average classification
performance is calculated. Then the game is divided in two
equal parts and all features are recalculated for those two
45-second time windows. The models are tested on the
entire new data set (2 times 137 data) assuming that the
expressed entertainment preferences are valid for both 45-
second segments. The performance is calculated and the
gameplay data are further divided into smaller time periods.
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This procedure continues up to the point where a small time
window is reached (e.g. 9 seconds). This test indicates the
minimum length time window for which the model can still
predict reported entertainment with high accuracy. That time
window can then be used to set the frequency of any real-
time adaptation mechanism applied.

Fig. 1 illustrates the classification performance of the
ANN models with respect to the time window selected. The
percentage of data lost are also presented. A data point is
lost when a child does not interact with the platform within
a specific time window, so no calculation of interaction data
is possible since there are no recorded instances. Results
show that there appear to be gameplay intervals which yield
better classification performance than others and that player
satisfaction may vary in between those intervals. This is
demonstrated by the immediate decrease of the model’s
performance (62.23%) as soon as the game’s time window
is split in half (i.e. 45 seconds). The performance stabilizes
around 58% when the time interval is further reduced. Even
though the difference between the ANN model’s evalua-
tion performance on the 90-second play window and the
respective performance on the 9-second time window is
approximately only 16%, it demonstrates that the hypothesis
of constant entertainment is ruled out for small time intervals.

Fig. 1 shows that data are lost when gameplay time
windows become smaller than 22.5 seconds. This suggests
that the minimum acceptable time window lies between 30
and 45 seconds since the performance of the models, even
though reduced, is still above 60.0%. To further investigate
the 30–45 second interval we introduce time-shifted offsets
(TSOs) for those two time windows. TSO is a time interval
that is added to the selected time window to yield a new
time interval. For instance, a 45-second window with a 15-
second TSO generates the following four time intervals: 0
to 45, 15 to 60, 30 to 75 and 45 to 90 seconds. Given that
definition, if the TSO equals the time window length there
is no overlap between the generated time intervals (no offset
effect). As seen in Table I, TSOs of 45, 22.5 and 15 seconds
are used for the 45-second time window whereas TSOs of
30 and 15 seconds are used for the 30-seconds time window.
Table I presents the classification performances for all time
window-TSO combinations mentioned above. The amount of
data that ANN models are evaluated on and data lost due to
the lack of interaction instances with the game platform are
also presented.

TABLE I
TIME-SHIFTED OFFSET (TSO) IMPACT ON 45 AND 30-SECOND

WINDOWS

Time Window TSO Data Data Lost Performance (%)

45 45 274 0 62.23
45 22.5 411 0 63.17
45 15 548 0 64.53

30 30 407 4 59.34
30 15 680 5 60.88

Fig. 1. ANN model performance and respective data loss percentage over
different gameplay time windows. The two percentage values (columns) are
independent in this illustration.

ANN models evaluated on the 45:15 (45-second time
window combined with a 15-second TSO) intervals yield
a performance of 64.53% while interaction is maintained
within that time period (data are not lost). This suggests that
the 45:15 time scheme is the most appropriate — among
the ones tested — to be used for real-time adaptation of the
Bug-Smasher game. This, furthermore, implies that action
of any adaptation mechanism designed occurs at 45 seconds
and each time a 15 second interval elapses thereafter — i.e.
after 45, 60, and 75 seconds of play.

IX. REAL-TIME ADAPTATION MECHANISM

Given the ANN model of entertainment preferences built
on individual gameplay features (see Section VII), the ques-
tion that arises is how this model can be used for improv-
ing children’s gameplay experience in real-time. There are
several ways of exploiting the model’s built-in knowledge
(discussed below in section XI of this paper) and adapting
Playware games for enhancing the level of entertainment.
In this initial study we start with a simple hill-climbing
mechanism presented in this section.

The idea behind real-time adaptation is to use the metric
evaluation function constructed using machine learning di-
rectly to enhance the entertainment provided by the game.
The key to this is the observation that the model (ANN)
relates game features to an entertainment value y. It is
therefore possible in principle to infer what changes to
game features will cause an increase in the entertainment
value of the game, and to adjust game parameters to make
those changes. Thus, adaptation of the game opponents
(e.g. bugs) may occur according to the player’s individual
playing style, based on reaction time, recorded pressure on
tiles and amount of interactions, and as far as the curiosity
factor (H) of entertainment is concerned. Given the real-time
average response time (E{rt}) of a child, the variance of
his/her pressure forces on the tiles (σ2{p}) and the number
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of times he/she interacts with the environment (NI ), the
partial derivative of the model output ϑy/ϑH can be used
to appropriately adjust the level of entropy (curiosity) of the
opponent for the entertainment value y to be augmented (see
equation (1)).

ϑy/ϑH = y(1− y)
M∑
i=1

{oi(1− oi)w1
H,iw

2
i,1} (1)

In equation (1), oi is the output of the i-th hidden neuron of
the ANN model; w1

H,i is the connection weight between the
H input and the i-th hidden neuron and w2

i,1 is the connection
weight between the i-th hidden neuron and the output neuron
of the ANN model.

Given that the ϑy/ϑH value indicates the change in
entertainment for a small change in the curiosity level, one
could use gradient ascent to attempt to improve entertainment
with such a model.

Previous studies [3] have shown that the number of inter-
actions and the average response time are features correlated
linearly with entertainment preferences (see Section IV-A).
Our assumption is that these two features are strongly related
to the speed (challenge) of the game under investigation.
Therefore, in addition to curiosity level adjustment, the game
speed is adapted in real-time. Analogously to (1), the partial
derivatives ϑy/ϑNI and ϑy/ϑE{rt} are calculated and the
game’s speed is altered if those values have different signs:
higher speed for positive ϑy/ϑNI and negative ϑy/ϑE{rt};
lower speed for negative ϑy/ϑNI and positive ϑy/ϑE{rt}.
Table II presents the rules used for adjusting the curiosity
and challenge levels of the game using a 45:15 second time
window scheme in a 90 second game — that is on the 45th,
the 60th and the 75th second (see Section VIII). Adjustments
are implemented by altering the state (‘Low’, ‘Average’,
‘High’) of the internal controls (challenge, curiosity) by one
level up (+) or down (−). Note that when |ϑy/ϑH| < ε
(third row of Table II), curiosity is either increased or
decreased (50% probability for each action to occur).

TABLE II
ADAPTATION MECHANISM RULES. ε EQUALS 0.5 IN THIS PAPER.

Condition Action

ϑy/ϑH > ε H +

ϑy/ϑH < −ε H −
|ϑy/ϑH| < ε H + or H −

(ϑy/ϑE{rt} < −ε) AND (ϑy/ϑNI > ε) S +

(ϑy/ϑE{rt} > ε) AND (ϑy/ϑNI < −ε) S −

X. ADAPTATION EXPERIMENT

The Bug-Smasher game has been used to test the efficiency
of the adaptation mechanism proposed. Two variants of this
game have been constructed: the static and the adaptive. The
bugs’ speed (S) and spatial diversity (H) in the game plane
for the static game are adjusted to the average values of
the three different levels (‘Low’, ‘Average’, and ‘High’) of

challenge and curiosity respectively used in the Bug-Smasher
experiments. The adaptive game is initialized with the same
values for speed and spatial diversity but the challenge and
curiosity levels (states) are adjusted on the 45th, 60th and
75th second of the game according to the adaptation rules
presented in Table II.

For the adaptation experiment, we asked 24 naı̈ve normal-
weighted children (13 boys and 11 girls) aged 8 to 10 years
to play 4 games each on the Playware platform. The set of
4 games played comprised 2 games of static and 2 games of
adaptive Bug-Smasher in all combinations. Thus, the number
of children participated in the experiment is derived from
4 · C4

2 = 24 being four times the required number of all
combinations of 2 out of 4 games. Subjects play games in
pairs (game A and game B) and each time a pair of games
is finished, the child is asked to choose among the following
alternatives (note that, children are not interviewed but are
asked to fill in a questionnaire, minimizing the interviewing
effects reported in [43])
• the first [second] game was more ‘fun’ (see [9] for

terminology used in experiments with children) than the
second [first] game (cf. 2-alternative forced choice)

• both games were equally ‘fun’ or
• neither of the two games was ‘fun.’
Children complete the comparison questionnaire above

after games 2, 3, and 4, resulting in three fun comparisons
(expressed preferences) between games 1–2, 2–3, and 3–4,
for each child to report. That provides a total of 72 (24
children times 3 comparisons) “fun” comparisons. The 4-
alternative forced choice (4-AFC) protocol above is used
since it offers several advantages for subjective entertainment
capture: it minimizes the assumptions made about children’s
notions of “fun” and allows a fair comparison between the
answers of different children. The 4-AFC protocol provides
the same preference information as the 2-AFC used in
previous experiments [3], [16] for any machine learning
process applied to construct entertainment models while also
making explicit the “no preference” cases concealed by 2-
AFC.

A. Adaptive vs. Static Bug-Smasher

Given the experimental protocol there are 50 out of 72
‘fun’ comparisons between the static and the adaptive Bug-
Smasher. Results demonstrate that within those 50 compar-
isons there are 20 choices for the ‘both games were equally
fun’ alternative and not a single choice for the ‘neither
was fun’ alternative. The first indicates the difficulty for the
respective children of distinguishing between the two games
whereas the latter shows that both games offered an enjoyable
experience to all children participated to the experiment.
Moreover, in 18 and 12 out of the 30 comparisons remaining,
children expressed a preference for the adaptive and the
static game respectively. This results in a percentage of
60% and 76% for respectively higher, and higher or equal,
preference for the adaptive game versus the static game.
Even though not statistically significant, the percentages of
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children’s preference over the adaptive game provide promise
for the effectiveness of the adaptation mechanism proposed
here.

XI. CONCLUSIONS & DISCUSSION

This paper introduced an adaptive approach for augment-
ing the player’s satisfaction in Playware games in real-time.
The first step in applying adaptive learning in those games is
to make use of the player satisfaction formulae derived from
entertainment modeling processes to adjust Bug-Smasher
game parameters on-line. Previous studies [3] on preference
learning through the combination of neuro-evolution and
feature selection generated ANN models which derive from
a feature subset of four features: {E{rt}, σ2{p}, NI , H}.
This model managed to map between children’s average
response time, the variance of their force pressure on the tiles,
the number of interactions with the playground, the game
feature of curiosity and the children’s notion of gameplay
entertainment with a 3-fold cross-validation accuracy of
77.77% (binomial-distributed p-value = 0.0019).

The mechanism presented here uses gradient ascent on the
constructed entertainment model with regard to the number
of interactions, average response time and curiosity metric
inputs of that model. Thus, for instance, if the partial deriva-
tive of the entertainment value (model output) with respect
to curiosity (model input) is positive, one could increase
the curiosity level control a little and expect a positive
increment in player enjoyment. Continual adjustments of
both the speed (challenge) and spatial diversity (curiosity) of
the game opponents (i.e. bugs) are controlled by simple rules
and they take place in a time window of 45 seconds combined
with a shifted time offset of 15 seconds. That time interval
is extracted from experiments that evaluate the accuracy of
the entertainment model over different time intervals testing
the assumption of a constant entertainment value during the
game.

A survey experiment for evaluating the performance of the
adaptation mechanism was designed in which 24 children
were asked to compare the standard (static) versus the
adaptive variant of the Bug-Smasher game. Results reveal a
positive preference of children for the adaptive Bug-Smasher
game in 60% of those ‘fun’ comparisons. These results
provide some first indications that augmenting player satis-
faction in Playware games in real-time is possible even with
simple hill-climbing adaptive mechanisms. Further analysis
of the entertainment value generated might lead to safer
conclusions regarding the effectiveness of the adaptation
mechanism.

One of the limitations of the proposed entertainment
modeling approach lies in the complexity of entertainment
as a mental state. The generated y value cannot be regarded
as a mental affective state approximator but as a correlate of
expressed children’s preferences of entertainment. However,
this correlate serves the purpose of this work well as far
as entertainment modeling and optimization is concerned.
Using the proposed entertainment augmentation scheme,
knowledge of the direction (from the partial derivative)

that specific controllable features should be adjusted in is
available through the model; however, the magnitude of such
an adjustment is not known a priori. Thus, applying gradient
search with a fixed step (difference of two states) in the
search map between playing features and entertainment value
may unexpectedly lead to lower values of entertainment. This
constitutes a major limitation of the adaptive mechanism
which might be resolved by injecting more controllable
feature (challenge, curiosity) states in the search space or by
introducing machine learning in real-time as proposed below.

The proposed adaptation mechanism can be used as a
baseline approach for future implementations of adaptive
learning on Playware games. The next obvious step is to ap-
ply reinforcement learning, most likely via classifier systems.
In such an approach, the game internal controls (challenge,
curiosity) could be adjusted (within limits) and the effect on
player satisfaction monitored using the entertainment model.
The observed satisfaction can act as reinforcement for the
actor process adjusting the controls. To speed up learning,
the reinforcement learning system could be seeded with
the gradient information from the satisfaction measure. The
results of learning could be saved so that experience with
a given player accumulates: the game then adapts to the
particular player over time.
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