
Vector Evaluated Differential Evolution for
Multiobjective Optimization

K.E. Parsopoulos1,3, D.K. Tasoulis1,3, N.G. Pavlidis1,3, V.P. Plagianakos2,3 and M.N. Vrahatis1,3

1Department of Mathematics, University of Patras, GR–26110 Patras, Greece
2Department of Information and Communication Systems Engineering,

University of the Aegean, GR–83200 Samos, Greece
3University of Patras Artificial Intelligence Research Center (UPAIRC)

Email: {kostasp,dtas,npav,vpp,vrahatis}@math.upatras.gr

Abstract— A parallel, multi–population Differential Evolution
algorithm for multiobjective optimization is introduced. The
algorithm is equipped with a domination selection operator to
enhance its performance by favoring non–dominated individuals
in the populations. Preliminary experimental results on widely
used test problems are promising. Comparisons with the VEGA
approach are provided and discussed.

I. INTRODUCTION

Multiobjective Optimization (MO) problems consist of sev-
eral competing and incommensurable objective functions.
Such problems are frequently encountered in numerous sci-
entific and engineering applications. The need for the con-
current minimization of more than one objective functions,
renders the use of Evolutionary Algorithms (EAs) particularly
attractive. In contrast to traditional gradient–based techniques,
evolutionary algorithms operate on a set of potential solutions
of the problem. Thus, EAs are capable of detecting several
solutions of an MO problem in a single run [1], [2], [3], [4],
[5], [6]. These solutions are called Pareto optimal, and each
corresponds to a different trade–off among the objective func-
tions. Typically, a large number of Pareto optimal solutions
exist.

Differential Evolution (DE) is an efficient evolutionary
optimization algorithm. It has been successfully applied on a
plethora of applications [7], [8], [9], [10], [11], [12]. Like other
EAs, DE can be easily parallelized [8]. Besides a reduction
in execution time, the parallel computation of solutions of
an MO problem can also yield a better representation of the
possible outcomes, thereby enhancing the performance of the
algorithm [4].

This paper introduces a multi–population variant of DE,
named Vector Evaluated Differential Evolution (VEDE), which
is inspired by the Vector Evaluated Genetic Algorithm (VEGA)
approach [3], [13], [14], [15]. In VEDE, each population is
evaluated using one of the objective functions of the problem
under consideration. Information sharing among the popula-
tions takes place through the migration of the best individu-
als. The performance of a parallel version of VEDE, which
incorporates a domination selection scheme, is investigated
on widely used test problems and compared to the VEGA
approach.

The rest of the paper is organized as follows; in Section II
the basic concepts of MO and the Differential Evolution
algorithm, are briefly presented. Section III, is devoted to
the description of the proposed algorithm, as well as, to the
presentation of the experimental results. A short discussion of
the parallel implementation is also included in this section.
Finally, the paper ends with a synopsis in Section IV.

II. BACKGROUND MATERIAL

A. Basic Concepts of Multiobjective Optimization

Let S ⊂ R
n be an n–dimensional search space, and let k

objective functions,

fi(x) : S → R, i = 1, . . . , k, (1)

be defined over S. Further assume,

gj(x) 6 0, j = 1, . . . ,m,

to be m inequality constraints. Then the MO problem can be
stated as finding a vector,

x∗ = (x∗

1, x
∗

2, . . . , x
∗

n)> ∈ S,

that satisfies the constraints and minimizes the function,

f(x) = [f1(x), f2(x), . . . , fk(x)] : R
n → R

k. (2)

The goal of MO is to compute a set of Pareto optimal solutions
to the aforementioned problem.

Let u = (u1, . . . , uk), and v = (v1, . . . , vk), be two vectors.
Then, u dominates v if and only if,

ui 6 vi, i = 1, . . . , k,

and
ui < vi, for at least one i.

This property is known as Pareto dominance and it is used
to define the Pareto optimal points. A solution, x, of the MO
problem is said to be Pareto optimal if and only if, there does
not exist another solution y, such that f(y) dominates f(x).
The set of all Pareto optimal solutions of an MO problem is
called Pareto optimal set and is denoted as P∗. The set,

PF∗ =
{

(f1(x), . . . , fk(x))
>

| x ∈ P∗
}

,



is called Pareto front. A Pareto front PF∗ is convex if and
only if, there exists w ∈ PF∗, such that,

λ‖u‖ + (1 − λ)‖v‖ > ‖w‖, ∀ u, v ∈ PF∗, ∀ λ ∈ (0, 1).

Respectively, it is concave if and only if, there exists w ∈
PF∗, such that,

λ‖u‖ + (1 − λ)‖v‖ 6 ‖w‖, ∀ u, v ∈ PF∗, ∀ λ ∈ (0, 1).

A Pareto front can be convex, concave or partially convex
and/or concave and/or discontinuous.

B. The Differential Evolution Algorithm

Let S ⊂ R
n be the search space of the problem under

consideration. Then, the Differential Evolution (DE) algorithm
utilizes NP, n–dimensional vectors,

Xi = (xi1, . . . , xin)> ∈ S, i = 1, . . . , NP,

as a population for each iteration, called a generation, of the
algorithm. The initial population is usually taken to be uni-
formly distributed in the search space. At each generation, two
operators, namely mutation and crossover (recombination), are
applied on each individual, thus producing the new population.
Then, a selection phase takes place, where each individual
of the new population is compared to the corresponding
individual of the old population, and the best between them is
selected as a member of the population in the next generation.

According to the mutation operator, for each individual,
X

(G)
i , i = 1, . . . , NP, at generation G, a mutant vector,

V
(G+1)
i =

(

v
(G+1)
i1 , v

(G+1)
i2 , . . . , v

(G+1)
in

)>

,

is determined using one of the following equations [16], [17]:

V
(G+1)
i =X(G)

r1
+F

(

X(G)
r2

− X(G)
r3

)

, (3)

V
(G+1)
i =X

(G)
best +F

(

X(G)
r1

− X(G)
r2

)

, (4)

V
(G+1)
i =X

(G)
i +F

(

X
(G)
best − X

(G)
i

)

+F
(

X(G)
r1

− X(G)
r2

)

,(5)

V
(G+1)
i =X

(G)
best +F

(

X(G)
r1

− X(G)
r2

)

+F
(

X(G)
r3

− X(G)
r4

)

,(6)

V
(G+1)
i =X(G)

r1
+F

(

X(G)
r2

− X(G)
r3

)

+F
(

X(G)
r4

− X(G)
r5

)

,(7)

where, X
(G)
best is the best individual of the population at

generation G; F > 0 is a real parameter, called mutation
constant, which controls the amplification of the difference
between two individuals so as to avoid search stagnation;
and r1, r2, r3, r4, r5, are mutually different integers, randomly
selected from the set {1, 2, . . . , i − 1, i + 1, . . . , NP}.

Following the mutation phase, the crossover (recombina-
tion) operator is applied on the population. For each mutant
vector, V

(G+1)
i , an index rnbr(i) ∈ {1, 2, . . . , n} is randomly

chosen, and a trial vector,

U
(G+1)
i =

(

u
(G+1)
i1 , u

(G+1)
i2 , . . . , u

(G+1)
in

)>

,

Pop
1

Pop
2

Pop
3

Pop
4

Pop
5

Pop
M

Fig. 1. The ring topology.

is generated, with

u
(G+1)
ij =

{

v
(G+1)
ij , if (randb(j) 6 CR) or (j = rnbr(i)),

x
(G)
ij , if (randb(j) > CR) and (j 6= rnbr(i)),

where, j = 1, 2, . . . , n; randb(j) is the j–th evaluation of a
uniform random number generator within [0, 1]; and CR is
a user–defined crossover constant in the range [0, 1] [16],
[17]. In other words, the trial vector consists of some of
the components of the mutant vector, and at least one of
the components of a randomly selected individual of the
population (i.e. the individual with index rnbr(i)).

To decide whether the vector U
(G+1)
i should be a member of

the population comprising the next generation, it is compared
to the corresponding vector X

(G)
i . Thus, if f denotes the

objective function under consideration, then,

X
(G+1)
i =

{

U
(G+1)
i , if f

(

U
(G+1)
i

)

< f
(

X
(G)
i

)

,

X
(G)
i , otherwise.

(8)

III. PROPOSED ALGORITHM AND EXPERIMENTAL

RESULTS

A. The Proposed Algorithm

Vector Evaluated Differential Evolution (VEDE) is a multi–
population DE approach, inspired by VEGA [3], [13], [14],
[15]. Specifically, a number, M , of populations are considered
in a prespecified ring topology, as depicted in Fig. 1. Each
population is evaluated using as fitness function, one of
the objective functions of the problem at hand. If k is the
number of the objective functions, and k < M , then the
i–th population is evaluated according to the j–th objective
function, where,

j ≡

{

i mod k, if i 6= rk, r = 1, 2, . . . ,
k, otherwise,

and i = 1, . . . ,M .
In every generation, the best individual, X

(G)
i,best, of the

i–th population, migrates to the (i + 1)–th population of the
ring. Then, the (i + 1)–th population uses X

(G)
i,best as the best



individual to produce its mutant vectors at generation (G+1).
Obviously, only the DE operators that use the best individual
in the mutations, i.e. the variants described in Eqs. (4), (5),
and (6), can take full advantage of this information exchange
procedure.

Moreover, a domination selection procedure, similar to that
of Abbass [18], is applied, i.e. instead of using the plain DE
selection operator of Eq. (8), we use the following one:

X
(G+1)
i =

{

U
(G+1)
i , if f

(

U
(G+1)
i

)

dominates f

(

X
(G)
i

)

,

X
(G)
i , otherwise,

where, f is the vector function defined in Eq. (2). This
selection scheme favors non–dominated individuals in the
population and it has proved to perform better in practice.

VEDE can be easily parallelized. The populations can be
distributed in several machines, with migrations taking place
from node to node. For this purpose, the Parallel Virtual
Machine (PVM) was used [8], [19].

A high level description of the parallel algorithmic scheme
follows:

At the master node
1. Spawn M populations,

each one on a different processor.
2. For each generation
3. Receive an individual from each population.
4. Send the individual that will migrate to the

next population of the ring topology.
At each population
1. For each generation
2. Perform a complete DE generation.
3. Send the best individual to the master node.
4. Receive a migrated individual

and assign it to the best individual.

B. Presentation of Experimental Results

Four well–known MO benchmark problems were used as
a first step in the investigation of VEDE’s performance. Each
test problem consists of two objective functions of the form

f1(x1) = x1, (9)

f2(x1, . . . , xn) = g(x2, . . . , xn) × h(f1, g). (10)

Specifically, we considered the following problems [6]:

TEST PROBLEM 1. This test problem is defined as:

f1(x1) = x1, (11)

g(x2, . . . , xn) = 1 +
9

n − 1

n
∑

i=2

xi, (12)

h(f1, g) = 1 −

√

f1

g
, (13)

with n = 30 and xi ∈ [0, 1]. The Pareto front for this problem
is convex.

TABLE I

THE CHARACTERISTICS OF THE SYSTEM USED.

Characteristic Description
Number of CPUs 2 to 5
CPU Type Intel Celeron 900-MHz
Memory 256-MB per machine
Operating System Red Hat Linux 8.0
Communication Network Fast Ethernet 100-Mbps
Communication Library PVM 3.4.4

Compiler GNU Compiler Collection (gcc) 3.2.2

TEST PROBLEM 2. This test problem is the non–convex
counterpart to Test Problem 1. It is defined as:

f1(x1) = x1, (14)

g(x2, . . . , xn) = 1 +
9

n − 1

n
∑

i=2

xi, (15)

h(f1, g) = 1 −

(

f1

g

)2

, (16)

with n = 30 and xi ∈ [0, 1].

TEST PROBLEM 3. This test problem is defined as:

f1(x1) = x1, (17)

g(x2, . . . , xn) = 1 +
9

n − 1

n
∑

i=2

xi, (18)

h(f1, g) = 1 −

√

f1

g
−

f1

g
sin(10πf1), (19)

with n = 30 and xi ∈ [0, 1]. The Pareto front consists of
several convex parts.

TEST PROBLEM 4. This test problem is defined as:

f1(x) = x1, (20)

g(x2, . . . , xn) = 1 + 10(n − 1) +

+

n
∑

i=2

(

x2
i − 10 cos(4πxi)

)

, (21)

h(f1, g) = 1 −

√

f1

g
, (22)

and it has 219 local Pareto fronts.
All experiments were performed in parallel, using the PVM

communication library. The key characteristics of the system
used, are reported in Table I. In addition to the reported
hardware, a Pentium III machine with 512-MB of memory,
running under Red Hat Linux 8.0, was used as a server.

For the maintenance of the Pareto optimal set, the archiving
technique described in [20], which uses an external archive,
was employed.

The obtained results were compared to that of VEGA,
reported in http://www.tik.ee.ethz.ch/∼zitzler/testdata.html. For
this purpose, two established measures, namely the C mea-
sure [6], [21], and the V measure [21], [22] were employed.



2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEDE,VEGA)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEDE,VEGA)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEGA,VEDE)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEGA,VEDE)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS

Fig. 2. Results of VEDE1 for the Test Problem 1.

2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEDE,VEGA)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEDE,VEGA)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEGA,VEDE)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEGA,VEDE)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS

Fig. 3. Results of VEDE1 for the Test Problem 2.

2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEDE,VEGA)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEDE,VEGA)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEGA,VEDE)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEGA,VEDE)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS

Fig. 4. Results of VEDE1 for the Test Problem 3.

2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEDE,VEGA)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEDE,VEGA)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEGA,VEDE)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEGA,VEDE)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS

Fig. 5. Results of VEDE1 for the Test Problem 4.



2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEDE,VEGA)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEDE,VEGA)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEGA,VEDE)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEGA,VEDE)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS

Fig. 6. Results of VEDE2 for the Test Problem 1.

2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEDE,VEGA)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEDE,VEGA)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEGA,VEDE)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEGA,VEDE)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS

Fig. 7. Results of VEDE2 for the Test Problem 2.

2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEDE,VEGA)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEDE,VEGA)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEGA,VEDE)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEGA,VEDE)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS

Fig. 8. Results of VEDE2 for the Test Problem 3.

2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEDE,VEGA)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEDE,VEGA)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEGA,VEDE)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEGA,VEDE)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS

Fig. 9. Results of VEDE2 for the Test Problem 4.



2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEDE,VEGA)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEDE,VEGA)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEGA,VEDE)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEGA,VEDE)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS

Fig. 10. Results of VEDE3 for the Test Problem 1.

2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEDE,VEGA)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEDE,VEGA)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEGA,VEDE)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEGA,VEDE)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS

Fig. 11. Results of VEDE3 for the Test Problem 2.

2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEDE,VEGA)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEDE,VEGA)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEGA,VEDE)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEGA,VEDE)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS

Fig. 12. Results of VEDE3 for the Test Problem 3.

2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEDE,VEGA)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEDE,VEGA)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C(VEGA,VEDE)

C
 M

E
T

R
IC

NUMBER OF POPULATIONS
2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V(VEGA,VEDE)

V
 M

E
T

R
IC

NUMBER OF POPULATIONS

Fig. 13. Results of VEDE3 for the Test Problem 4.



Metric C(A,B) measures the fraction of members of the
Pareto front B that are dominated by members of the Pareto
front A, while V(A,B) is the fraction of the volume of
the minimal hypercube containing both fronts, that is strictly
dominated by members of A but is not dominated by members
of B [21]. Following the analysis presented in [6], a total
number of 100 individuals divided in several populations,
as well as a maximum of 250 iterations per population per
run, were used. We performed 30 experiments for each test
problem, using the DE variants described in Eqs. (4), (5),
and (6), respectively, because they suit better the migration
scheme described in the previous section. The three variants
are denoted as VEDE1, VEDE2, and VEDE3, respectively. All
results are reported in the boxplots of Figs. 2–13. Each boxplot
depicts the obtained values of the corresponding measure,
in 30 experiments. The box has lines at the lower quartile,
median, and upper quartile values. The lines extending from
each end of the box (whiskers) show the extent of the rest of
the data. The outliers, i.e. the values that lie beyond the ends
of the whiskers, are denoted with crosses.

DE is quite sensitive to population size, especially when
the number of individuals becomes small. This was verified
in our preliminary experiments with VEDE. Dividing the
100 individuals into more than 5 populations (less than 20
individuals per population) resulted in substantial performance
decline. Thus, our experiments were performed using 2 up to
5 populations. In Test Problems 1 to 3, standard values for
the F and CR parameters, equal to 0.7 and 0.9, respectively,
were used. These values have proved to be good default
values for the DE algorithm in many applications [8]. In Test
Problem 4, the aforementioned values proved inappropriate.
Good parameter values proved to be F = 0.5 and CR = 0.6,
for VEDE1 and VEDE3, while for VEDE2, F was set to 0.1
and CR was set to 0.7.

The speedup gained from the parallel implementation using
up to 5 nodes is depicted in Fig. 14. As illustrated, there is a
linearly increasing speedup rate using up to 4 nodes. Beyond
4 nodes, the speedup rate increases marginally. This effect can
be attributed to the small number of individuals per population,
which falls under 20.

In all cases, VEDE outperformed the VEGA with respect to
the two metrics, C and V . As seen in the first two boxplots of
Figs. 2, 6, and 10, all three VEDE variants performed similarly
in Test Problem 1. However, VEDE2 seems more robust, since
the boxes are shorter and they lie closer to the upper bound,
1.0. The same can be noticed in the results for Test Problem 4.
In the other two problems, the algorithms performed similarly,
with VEDE3 having a slightly better performance, with respect
to the V measure, in Test Problem 2. In all cases, increasing
the number of populations resulted in a decrease of the overall
performance of the algorithm with respect to the metric C. An
exception is Test Problem 2, where increasing the number of
populations improved the V metric. The results support the
claim that VEDE, like DE, is sensitive to population size.

2 3 4 5
0.9

1

1.1

1.2

1.3

1.4

1.5

NUMBER OF NODES

S
P

E
E

D
U

P
 R

A
T

E

Fig. 14. Speedup gained using up to 5 nodes.

IV. SYNOPSIS

This paper introduces a parallel, multi–population Differ-
ential Evolution algorithm, called Vector Evaluated Differen-
tial Evolution (VEDE), for multiobjective optimization. The
algorithm uses a domination selection operator to enhance
its performance by favoring non–dominated individuals in
the populations. Preliminary experimental results on widely
used test problems, as well as comparisons with the VEGA
approach, are promising. The algorithm’s sensitivity posed by
the inherent sensitivity of the DE algorithm to its parameters
(most notably population size) requires further investigation.
This issue, along with alternatives to the ring topology, will
be addressed in a future work.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees
for their useful comments and suggestions. This work was
partially supported by the “Karatheodoris” research grant,
awarded by the Research Committee of the University of
Patras, and the “Pythagoras” research grant, awarded by the
Greek Ministry of Education and Religious Affairs, as well
as, the European Union.

REFERENCES

[1] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont.
Evolutionary Algorithms for Solving Multi–Objective Problems. Kluwer,
New York, 2002.

[2] K. Deb. Multi–objective genetic algorithms: Problem difficulties and
construction of test problems. Evolutionary Computation, 7(3):205–230,
1999.

[3] J. D. Schaffer. Multiple Objective Optimization With Vector Evaluated
Genetic Algorithms. PhD thesis, Vanderbilt University, Nashville, TN,
USA, 1984.

[4] D. A. Van Veldhuizen, J. B. Zydallis, and G. B. Lamont. Considerations
in engineering parallel multiobjective evolutionary algorithms. IEEE
Trans. Evol. Comp., 7(2):144–173, 2003.

[5] E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications. PhD thesis, Swiss Federal Institute of
Technology Zürich, Switzerland, 1999.

[6] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective
evolution algorithms: Empirical results. Evolutionary Computation,
8(2):173–195, 2000.



[7] E. C. Laskari, K. E. Parsopoulos, and M. N. Vrahatis. Evolutionary
operators in global optimization with dynamic search trajectories. Nu-
merical Algorithms, 34(2–4):393–403, 2003.

[8] V. P. Plagianakos and M. N. Vrahatis. Parallel evolutionary training al-
gorithms for “hardware–friendly” neural networks. Natural Computing,
1(2–3):307–322, 2002.

[9] R. Storn. System design by constraint adaptation and differential
evolution. Technical Report Technical Report TR-96-039, ICSI, ICSI,
1996.

[10] J. Rajive and A. C. Sanderson. Minimal representation multisensor
fusion using differential evolution. In Proceedings 1997 IEEE Inter-
national Symposium on Computational Intelligence in Robotics and
Automation, 1997.

[11] B. V. Babu and K. K. N. Sastry. Estimation of heat transfer parameters
in a trickle–bed reactor using differential evolution and orthogonal
collocation. Computers & Chemical Engineering, 23(3):327–339, 1999.

[12] M. M. Fischer, K. Hlavackova-Schindler, and M. Reismann. A global
search procedure for parameter estimation in neural spatial interaction
modelling. Papers in Regional Science, 78(2):119–134, 1999.

[13] K. E. Parsopoulos, D. K. Tasoulis, and M. N. Vrahatis. Multiobjective
optimization using parallel vector evaluated particle swarm optimization.
In Proceedings of the IASTED International Conference on Artificial
Intelligence and Applications (AIA 2004), Innsbruck, Austria, 2004.

[14] K. E. Parsopoulos and M. N. Vrahatis. Particle swarm optimization
method in multiobjective problems. In Proceedins of the 2002 ACM
Symposium on Applied Computing (SAC 2002), pages 603–607, Madrid,
Spain, 2002. ACM Press.

[15] K. E. Parsopoulos and M. N. Vrahatis. Recent approaches to global
optimization problems through particle swarm optimization. Natural
Computing, 1(2–3):235–306, 2002.

[16] R. Storn and K. Price. Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces. J. Global
Optimization, 11:341–359, 1997.

[17] K. Price. Differential evolution: A fast and simple numerical optimizer.
In Proceedings NAFIPS’96, pages 524–525, 1996.

[18] H. Abbass. Self–adaptive pareto differential evolution. In Proceedings of
the IEEE 2002 Congress on Evolutionary Computation, pages 831–836,
Honolulu, Hawaii, 2002. IEEE Press.

[19] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-
deram. PVM: Parallel Virtual Machine. A User’s Guide and Tutorial
for Networked Parallel Computing. MIT Press, Cambridge, 1994.

[20] Y. Jin, M. Olhofer, and B. Sendhoff. Evolutionary dynamic weighted
aggregation for multiobjective optimization: Why does it work and
how? In Proceedings GECCO 2001 Conference, pages 1042–1049, San
Francisco, CA, 2001.

[21] J. E. Fieldsend, R. M. Everson, and S. Singh. Using unconstrained
elite archives for multiobjective optimization. IEEE Trans. Evol. Comp.,
7(3):305–323, 2003.

[22] M. Laumanns, E. Zitzler, and L. Thiele. A unified model for multiob-
jective evolutionary algorithms with elitism. In Proc. IEEE Congr. Evol.
Comp., pages 46–53, Piscataway, NJ, 2000. IEEE Press.


