Resumption Strategiesfor Interrupted Programming Tasks

Chris Parnin
College of Computing
Georgia Institute of Technology
Atlanta, GA U.S.A.
chris.parnin@gatech.edu

Abstract

Interruptions are a daily reality for professional pro-
grammers. Unfortunately, the strategies programmers use
to recover lost knowledge and resume work have not yet
been well studied. In this paper, we perform exploratory
analysis on 10,000 recorded programming sessions of 85
programmers to understand the variety of strategies used
by programmers for resuming programming tasks. In our
study, we find that only 10% of the programming sessions
have coding activity start in less than a minute, only 7% of
the programming sessionsinvolve no navigation to other lo-
cations prior to editing, and find evidence of programmers
seeking other sources of task context during task resump-
tion. Based on the analysis, we suggest how task resump-
tion might be better supported in future devel opment tools.

1. Introduction

Everyday, professional developers engage in a process
of recovering knowledge about software. When resuming
an incomplete programming task, the developer must re-
member their previous working state and recover knowl-
edge about the software. Details of working state might
include recalling plans, intentions, and goals. Details of
knowledge might include plan progress, component mech-
anisms, and domain representations.

Several researchers have characterized the effects of in-
terruptions on performing tasks [6, 24, 12, 21]. Despite
efforts for managing interruptions, in situ studies suggest
interruptions remain problematic. Czerwinski’s study [7]
showed that tasks resumed after an interruption were more
difficult to perform and took twice as long. O’Conaill’s
study [23] found 40% of interrupted tasks are not resumed
at all. Further research by Mark et al. [18] observed 57%
of tasks were interrupted — as a result work on a task often
was fragmented into many small work sessions.

Spencer Rugaber
College of Computing
Georgia Institute of Technology
Atlanta, GA U.S.A.
spencer@cc.gatech.edu

Studies examining software companies have also repli-
cated similar results from studies of non-programming tasks
in the workplace. Solingen [36] characterizes interruptions
at several industrial software companies and observed that
an hour a day was spent managing interruptions, and de-
velopers typically required 15 minutes to recover from an
interruption. Ko [15] used a fly-on-the-wall [17] approach
to observe software developers at Microsoft and found that
they were commonly blocked from completing tasks be-
cause of failure to acquire essential information from busy
co-workers. Another study at Microsoft indicated that 62%
of developers surveyed believed recovering from interrup-
tions was a serious problem [16].

Although many studies have been performed on inter-
ruptions, few describe what strategies programmers use for
resuming a programming task. Research on program com-
prehension has typically focused on the perspective of ex-
ploring a new program or making a new change; how-
ever, with an interrupted task, programmers are instead re-
comprehending a program and related artifacts in order to
resume work.

This paper makes the following contributions:

1. An analysis of the beginning of programming sessions
to understand the various activities that take place be-
fore resuming work.

2. A characterization of several possible strategies for re-
suming programming tasks.

The benefit of this paper is that other researchers and
toolsmiths can apply these results when investigating and
designing how to enhance tool support for resuming pro-
gramming tasks.

In the next section of the paper, we describe related work
for programming tool support. This is followed by a discus-
sion of our datasets and relevant concepts. We then describe
a set of resumption strategies and the experiments used to
support the feasibility and plausibility of the strategies. The
strategies are than compared and discussed in the context of

current tool support. Finally, we conclude with future work
for this research.

2. Background

Studies have examined the idea of maintaining a repre-
sentation of task context [14] to help reduce mental work-
load during development. Because the risk of interruptions
includes the loss of details and increased time to recover
working state, some have hypothesized that using a repre-
sentation of context in the IDE would reduce resumption
costs [25, 14, 11, 10]. Although there is some evidence sup-
porting the reduction of navigation cost [25, 14, 29], there
is little evidence describing what effects arise from using
task context when resuming programming tasks. Further,
the scope of task context has been primarily limited to the
files and methods related to the task. However, an increas-
ing amount of research raises the question of what other
knowledge should be included in a context.

Miyata and Norman [20] describe task execution as hav-
ing three phases: planning, execution, and evaluation. Inter-
ruptions during different phases have different effects [38]
that require different sources of knowledge to support re-
sumption. The current approach for representing a context
typically relies on filtering the hierarchical list of files and
methods in the IDE based on recent interaction or items ex-
plicitly specified to belong to the current task. The bene-
fit of this representation would be in its ability to reduce
interference on recall of non-relevant code, especially in
the case of returning to a task that had be shelved for a
long period of time. However, in the case of short term
interruptions, this technique’s representation mainly assists
with continuing execution of the last task, but neither as-
sists the user in planning the next steps or in evaluating the
progress made. Because task execution is commonly hierar-
chical [1], this representation does not include information
from other pending tasks. Finally, the representation of con-
text would provide little benefit when compared with a user
manually controlling the file manager by collapsing nodes;
in either case, only the last editor window is in focus, and
the user must still explore other code elements to recall de-
tail.

There is some evidence that developers use different
sources of information for maintaining context. Software
developers often need to record prospective tasks that they
are unable to complete at the moment but need to complete
in the future. Failure to remember prospective tasks is a
common occurrence with interrupted tasks [7]. Researchers
have observed how programmers use task annotations [32]
to record prospective task and proposed systems for captur-
ing prospective tasks [8, 32].

Other researchers have explored the recall from episodic
memory (contextual details including time and activity re-

lated to a past event). Safer [28] performed an investigation
comparing the use of alternative user interfaces for recalling
information about recent tasks. In the study, the user’s task
was to identify when a recent task was completed or de-
ferred for another task. One interface displayed screenshots
capturing different stages of performing the task to prompt
episodic recall of the event. The other used a Mylyn con-
text [14] indicating the files and methods visited or edited.
An overall subjective preference was found for the screen-
shots, although the results overall remain inconclusive.

Finally, recent research has identified a strong connec-
tion between environmental cues and reducing resumption
costs [2, 13, 34]. In these experiments, the availability of
cues during task resumption reduces the time to restart the
task. Conversely, if the cue is removed or tampered with,
then this benefit is removed. This even holds for implicit
cues such as the location of a mouse cursor. For example, in
one experiment when the mouse cursor location was moved
from the last button clicked to be in the corner of screen, the
resulting resumption lag was higher than when the implicit
cue was present.

Because most development environments limit the view
to one active element but may hold many active elements in
their working state, developers are limited to the details of
one active element when automatically encoding [35] work-
ing state (making mental notes).

The types of knowledge and representations needed to
restore working context remains an open research problem.
Most proposed solutions have been limited to prescriptive
approaches that have not been evaluated to determine their
impact in assisting developers with recovering from inter-
ruptions. In our work, we are investigating if developers
would like to see other sources of information for restoring
working state.

3. Concepts and Datasets

In this section, we describe the time line of recovering
from an interruption and related concepts. Secondly, we de-
scribe the data sets we use for analysis. The content of the
data sets include the interaction history captured from de-
velopers programming in their natural settings. Interaction
history is the record of low-level events (including naviga-
tion and edit events) from a programmer using an IDE.

3.1. Resumption Timeline

A key measure of the effect of an interruption is resump-
tionlag [1, 3, 4]. Resumption lag measures the time it takes
for a person to recollect their thoughts when returning to
a task. In experimental studies, resumption lag is typically
measured as the time between a subject being told to resume
a task and the first physical response (such as mouse click).

Similarly, interruption lag [3, 4] describes the time be-
tween when the user stop working on a task and when
they begin addressing the interruption (e.g. writing down
a note before picking up the telephone). Taking prospective
measures at the time of interruption has both negative and
positive effects [35] on task resumption. Prospective mea-
sures are primarily successful when users have environmen-
tal cues about working state (e.g. an error message associ-
ated with a bug being fixed) that are present during both the
interruption lag and the resumption lag. When comparing
written notes versus mental notes, written notes were found
to be effective in assisting recall, but negatively effected the
ability to recall contextual details about the task when com-
pared to mental notes. Another positive factor occurs when
users have completed a subtask because there is less inter-
mediate state that has to be recalled [1].

In Figure 1, we show the time line of a programmer edit-
ing code, stopping work, and then resuming work. Each pe-
riod of programming activity describes one session of work.
The depiction of the session is adopted from the visualiza-
tion used in the SpyWare tool [27]. Basically, the graph dis-
plays the edits per minute (EPM) in a development session.
The vertical axis corresponds to the number of edits, and a
point on the horizontal axis corresponds to one minute.

lepPm
minutes
—_—

I R

E)re;k

B Y

session

@

session

Figure 1. Interruption lag (I) and Resumption
lag (R). During the brief period of interrup-
tion lag, the programmer may actively en-
code their mental working state to prevent an
increased latency when resuming a task (re-
sumption lag).

3.2. Edit Lag

Although previous work has demonstrated strong corre-
lations between interruptions and increased resumption lag,
the measured resumption lag has been in the order of sec-
onds. In the domain of software development, the effects of
interruption are believed to have a larger impact on loss of
context and the recovery period to be on the order of min-
utes [36]. Therefore, we propose a specialized measure of
resumption lag, called edit lag, which is the time between
returning to a programming task and making the first edit.

In this study, we focus most of our analysis on edit lag to
gain insight into what activities developers perform before
regaining enough context to resume editing for that session.
Undoubtedly, developers perform numerous activities other
than coding during software development; however, study-
ing the moment coding begins in a session serves as a log-
ical starting point for asking why developers performed a
series of activities before making an edit and how much of
that is related to resumption costs.

{epm
minutes
—_—

Figure 2. Edit lag (E). When starting a new
programming session, a latency can be ob-
served in the time it takes to begin coding
and the time it takes to reach the peak of cod-
ing activity during the session.

3.3. Interruptions

The nature of interruption is an important determinate
on the extent of an interruption’s impact. The worst type
of interruption often comes at an inopportune moment and
gives insufficient time to a programmer for preserving men-
tal working state. These inopportune moments tend to
align with programmers using large amounts of intermedi-
ate knowledge that does not yet have any physical repre-
sentation or have a firm mental foothold in the program-
mer’s mind. However, not all interruptions are involun-
tary. Other reasons for suspending a programming task in-
clude fatigue, desire for reflection, road blocks, and reach-
ing a stopping point. These types of interruptions are called
self-interruptions. The nature and timing of an interruption
will influence the type of suspension strategy used and the
amount of lost knowledge at risk. In this paper, we do not
know the nature of an interruption, but instead focus on ob-
serving the activities of resuming a programming task after
a break in programming activity.

3.4. Interaction History
We draw upon a variety of data sets in our analysis.

The first data set we will call the Eclipse data set; it was
originally collected in the latter half of 2005 by Murphy

and colleagues [22]. The researchers used the Mylyn Moni-
tor tool to capture and analyze fine-grained usage data from
volunteer programmers using the Eclipse development en-
vironment *.

The second set we will call the Visual Sudio data set; it
was also collected in 2005 by Parnin and Goérg [25]. The
data was collected from 12 developers over several months
at an industrial site.

The third set of data we will call the UDC dataset; it
is publicly-available from the Eclipse Usage Data Collec-
tor [33], and includes data requested from every user of the
Eclipse Ganymede release. Activity is recorded from over
10,000 Java developers between April and December 2008.
The data counts how many programmers have used each
Eclipse command, such as refactoring commands, and how
many times each command was executed.

To obtain the developer’s sessions, the events were seg-
mented when there was a break in activity of 15 minutes
or more. This segmentation is well supported by the nature
of the data. The interval between events follows a Pois-
son distribution: for 98% of the 4.5 million events, the time
between those events is less than a minute. This means
tight clusters can be formed with any threshold above a
minute. Similar thresholds have been supported in other
studies [39, 27].

The events collected are solely from the IDE. Although,
what appears to us is a break in programming activity, the
developer may be engaging in a related task such as check-
ing in source code or searching for online code examples. If
we included window focus events [26], then we could better
explain these breaks. Nevertheless, we believe many breaks
from programming activity are due to diversions [5] that of-
ten derail programming efforts as observed by Ko [15].

There are some instrumentation differences between the
data sets. In the Eclipse data set, an edit event was regis-
tered whenever a programmer typed (i.e. roughly an event
per word); however, in the Visual Studio data set, an edit
event was collected for each line edited. Another differ-
ences was that in the Visual Studio data set, edit lag was
more finely observable because navigation events within a
code editor were recorded which was not true in the Eclipse
data set. This would mainly effect edit lags that did not re-
quire navigation to another file.

In our analysis, we accounted for these differences by
running the experiments separately to check for any dis-
crepancies between the data sets. A summary of our data
sets can be see in Table 1.

4. Resumption Strategies

When a programmer is interrupted from a programming
task, what activities do they need to perform in order to re-

Ihttp://eclipse.org

Dataset Stats

Users Sessions Filtered* Edits+ Events
Visual Studio 12 1972 1561 1213 573,998
Eclipse 73 7927 5931 3962 3,937,526

Total 85 9,899 7492 5175 4,511,524

Table 1. Summary of data in Visual Sudio and
Eclipse data sets. The column Filtered* indi-
cates the remaining number of sessions after
removing sessions with a duration less than
one minute and the column Edits+ indicates
the number of filtered sessions with at least
one edit event.

sume work? In this section, we shed some light on this
guestion — but a more pressing question should be answered
first: Is there even any meaningful impact from interrup-
tion? Are programmers immediately able to return to effec-
tive work without a resumption delay?

To understand the possible impact of interruptions on de-
velopers, we measure the distribution of edit lag. If we ob-
serve most values of edit lag are less than one minute, then
we would likely conclude the impact of interruptions are
negligible or not immediately observable in this window of
time. Second, we characterize the number and size of ses-
sions in the day to see how often a programmer must resume
work in a day.

In Figure 3, we display the distribution of edit lag among
all sessions having editing activity. In 10% of the sessions,
edit lag was less than a minute. For the rest of the ses-
sions, several minutes pass until the first edit event occurs.
In about 30% of sessions, the edit lag is over 30 minutes. In
these sessions, we believe the developers may be engaged
in debugging activities which require a longer investment of
attention before a first edit can be made.

Finally, in Table 2, we show a breakdown of the fre-
guency and duration of sessions in a typical day.

Sessions in a typical day
sessions 1-3 1-2 12 1 0-1 rarely
duration 15m 30m 1h 2h 4h 8h

Table 2. In a typical day, developers program
in several short sessions with an additional
one or two longer sessions.

Overall, this evidence indicates that significant interrup-
tions do occur and that significant time is required for effec-
tive resumption.

Edit Lag Distribution

25%
20% |
15% |
10%

5% |

Sessions

0%\ T T T T T T T T
1 5 10 15 30 45 60 120 360

Minutes

Figure 3. Developers often do not make their
first edit of the session until at least several
minutes have past.

4.1. Return to Last Method Edited

One of the most simple tactics for resuming a program-
ming task is to return to the site where work was last per-
formed. But how sufficient and how frequently is this tactic
applicable for resuming work?

To measure how often programmers successfully per-
form this tactic, we make several measurements. First, we
measure how often the first change is made without navigat-
ing to other methods or classes. Second, we measure how
often the first change is eventually made in the last edited
method even with intervening navigations to other methods
or classes. Finally, we measure the edit lag for both cases.
Only the Visual Studio data set had sufficient information
about navigation for this analysis.

Resumption cost
Sessions 3B%% 22% 23% 12%
Edit Lag Im 1-5m 5-15m 15-30m

Table 3. Developers are able to resume cod-
ing within 1 minute for 35% of sessions and
within 30 minutes for most sessions when
the work involves completing the last edited
method.

The results show that in 91 of 1213 sessions (7.5%) the
programmers were able to make changes without navigat-
ing to other methods. Second, in 209 out of 1213 sessions
(17%) the programmers do eventually return from navigat-
ing to other locations and make changes to the last method
edited. Otherwise, in the majority of sessions, the program-
mers navigated to other methods or classes to resume work.

The results of the edit lag can be seen in Table 3. When the
programmers do continue work in the same method, they
can often resume work quickly. When resuming coding
in the last method, the programmer does this within one
minute 35% of the time. We believe in these situations,
the programmer can successfully use the method to remem-
ber sufficient details for completing the task. In other cases,
the programmer may be spending time re-understanding the
code or re-evaluating their implementation plan.

One explanation for the results is that programmers may
prefer to stop working at a natural task boundary and there-
fore not need to complete work in that method upon re-
suming the task. The last completed task may serve as a
convenient cue for remembering which next logical task to
perform. Further investigation is needed to understand why
programmers may spend more than a few minutes resuming
work even when the work is in the same location. An ex-
periment comparing the complexity of the source code with
edit lag would confirm the hypothesis that developers need
time to re-comprehend complex code when completing a
task involving that code.

4.2. Navigate to Remember

In the previous subsection, we observed that in 118 of the
209 (56%) sessions (where the programmer made changes
to the last method edited) the programmer still navigated
to other locations first. Navigating to other locations is a
natural tactic to use if the programmer needs to recall details
from other parts of the code before making a change. But
how many places do programmers need to visit, and what is
the cost of performing all these navigations before a change
can be finally be started?

Because of differences in the two data sets, we separate
the analyses and use two different metrics. With the Visual
Sudio data set, to measure the number of places visited,
we record the set of all methods or classes visited before
making the change. We then measure the navigational cost
as determined by the distance between a code element. For
the Eclipse data set, we measure the number of selection
events prior to the edit.

Visual Studio Eclipse
Locations 2-12(7)
Navigation Distance 4-40 (27)

Selection Events 15-150 (135)
Table 4. Developers typically visit several lo-
cations of code before beginning a change.
The range of elements covering 75% of val-
ues is shown with the mean in parenthesis.

Resumption cost
16% 25% 22% 18% 8%
Im 1-5m 5-15m 15-30m 30-45m

Sessions
Edit Lag

Table 5. Developers take a little longer to start
coding when the work involves navigating to
other locations first.

The results can be seen in Table 4. In general, the de-
velopers navigated within the code to several locations be-
fore being able to begin coding. The developers also took
considerably longer to start coding when navigation was in-
volved. As shown in Table 5, sessions with navigations to
other locations (in the Visual Studio data set) have higher
edit lag when compared to results in the previous section
(Table 3).

4.3. Task Tracking

Programmers actively manage and perform many tasks
when developing software. Some tasks may be specific such
as fixing a compile error, or as complex as implementing a
complete system module. When resuming an incomplete
programming task, developers may need to recall details of
the task and other related subtasks. In this subsection, we
are measuring the activity related to viewing details about
tasks stored in a task repository. In addition, we also exam-
ine how developers use task tracking software to understand
how willingly developers are for tracking subtasks or small
tasks with task software.

To measure the use of task information, we examined
commands used in the Eclipse data set related to accessing
a bug repository such as Bugzilla, the Mylyn Task List, and
the Eclipse Task List. We also separately measure the use
of possible implicit task reminders such as the warnings or
compile errors listed in the Problem View. Compile errors
may serve as a good source of reminders, but we do not
know if these are being intentionally left unresolved as a
cue or could not be fixed during the previous session.

To measure the use of task tracking for management of
subtasks, we examined the UDC data set and Eclipse data
set. We count the number of users that use commands re-
lated to creating new subtasks and compare that to the num-
ber of users using other common task management com-
mands. This gives an estimation of the developer population
likely to use task software for small tasks.

The results for viewing task details are shown in Table 6.
Developers viewed task information in 9% of sessions, and
the Problem View was used in 9% of sessions. However, for
both cases the associated edit lag was also very high. For
75% of the sessions that viewed either the Problem View or
task information, the edit lag was greater than 30 minutes.

Pre-Edit Lag Post-Edit Lag % Sessions
tasklist 274 246 9%
problem view 301 265 9%

Table 6. Viewing the task list or problem view
during a session is common.

Commands Users
10/2008 11/2008
View Task List 10,311 11,206
Open Task 861 953
New Local Task 101 101
New Sub Task 11 22

Table 7. Tasking software is popular for re-
viewing assigned tasks but not for recording
low-level tasks.

This suggests these sessions might have been spent planning
or refining tasks or resolving time-consuming configuration
or compile issues.

In Table 7, the results of the task subtask recording us-
age is shown. A more detailed breakdown of the four com-
mands in Mylyn is the following: users

o listed the tasks in an external task repository,
e opened a task from the task repository,

e created a new task that was not be stored in the task
repository and,

e created a subtask of an existing task.

The table also shows the number of users that have used
the command in the two most recent months of activity.
Mylyn is a popular tool for viewing assigned tasks, but un-
fortunately the number of users using Mylyn for managing
personal tasks (or willing to use the tool to enter new tasks
or sub tasks) is several magnitudes less than managing as-
signed tasks.

4.4. Review Source Code History

Source code repositories hold a vast amount of informa-
tion about the history of a project. Some questions might
have to be answered by accessing the revision history be-
fore resuming a task.

To measure the frequency of using this strategy, we count
the number of sessions that have cvs or subversion history
commands during the edit lag. To obtain the activity related
to history, we separate the actions concerned with retrieving
information from the managerial repository commands. We
were primarily concerned with comparing revisions, view-
ing the history of a revision, viewing the commit log, and
viewing a revision annotation. We also measure the occur-

Pre-Edit Lag Post-Edit Lag % Sessions
history 142 183 4%
commit 193 390 11%

Table 8. Viewing history during the edit lag
is as common as during the rest of the pro-
gramming session.

rence of commands in the rest of the session to gain insight
into the significance of the command occurring during the
edit lag. Finally, we are only able to measure the Eclipse
data set for revision history usage.

The results can be see in Table 8. From this measure-
ment, we only observe occasional use of revision history
during the edit lag (only 4% of sessions). However, relative
to commit commands, the history commands are used fairly
frequently, and are as likely to be used during the edit lag as
during normal coding activity.

The measures we have collected may be conservative.
Not all users always use the Eclipse plugins for accessing
revision history. Future studies should expand the instru-
mentation collection to directly measure access to source
control.

5. Discussion

Several analyses were described in Section 4. In Ta-
ble 9, a summary is given of the frequency of various ac-
tivities developers performed when starting a programming
session. How do the presented results affect future research
and tools?

Strategies Usage
Continue Last Edit 7.5%
Nav Then Continue Last Edit 17%
Navigate to New Location 83%
View Revision History 4%
View Problem List 9%
View Task or Bug List 9%

Table 9. Developers perform various activi-
ties at the beginning of a session.

In the following, we review our findings and provide
hypotheses that might explain the observed behavior and
implications for future tool research. Finally, researchers
should be able to experimentally apply these latency mea-
sures when studying their proposed tools.

5.1. Edit and Navigation Behavior

Considerable doubt was placed on the sufficiency of us-
ing the last edit as an environmental cue. When the cue was
applicable, it was very effective: 35% of these sessions were
resumed in less than a minute, which is much higher than
the 10% of sessions overall that could be resumed in less
than a minute. However, this situation was only applicable
17% of the sessions and still required navigation to other lo-
cations. In other cases, developers had considerable edit lag
even when continuing edits at the same location. It is likely
that in this situation, the code or task was complex. This
suggests there are opportunities for researchers to investi-
gate how additional code representations or visualizations
might eliminate this latency.

If programmers use the last site of completed work as
a launching point, then there are some interesting implica-
tions. Several researchers have reported differences in recall
ability in completed tasks versus incomplete tasks [37, 19].
It is unknown how much contextual detail programmers
lose after task completion. There is some evidence that
gives direction. In Bailey’s study [1], the task-evoked pupil-
lary response was recorded over time (the pupil size dilates
during moments of increased memory access and mental
load) while users performed tasks. In the study, immedi-
ately after subtask completion, pupillary response would re-
turn to baseline levels. This suggests that memory access
ceases after task completion and may effect the retention of
task-related information that was in short-term memory.

Finally, developers are spending a considerable amount
of time navigating to several locations in code before begin-
ning coding. ldeally, a developer should be able to resume
working without having to spend several minutes of ev-
ery session re-orienting themselves. Future research should
continue to evaluate alternative navigation interfaces such
as CodeThumbnails [9], or Relo [30], or SHriMP [31] af-
fect on resumption costs.

5.2. Other Sources of Task Context

We also reviewed two possible sources of information
that may be relevant in resuming a programming task. First,
when developers refer to task or compile errors at the begin-
ning of a session, the time to begin coding was much longer
than in any other sessions. The extra latency needs to be
further investigated. Secondly, a recording formal represen-
tation of task structure including all relevant subtasks could
be an important method of reducing cost of task switching
and managing interruptions. Many research tools rely on
the assumption of developers participate in detailing tasking
information. However, very few users actively use avail-
able facilities for recording subtasks or small tasks. The
issues that developers have with these tools must be dis-

covered and addressed before such an approach becomes
feasible. Other interfaces for recording information may al-
leviate this problem: Developers may be receptive to more
simple input that allows whiteboard-like task sketching.

Developers actively refer to revision history information
but are slower to resume coding when they do. Research
needs to elaborate on the motivations and requirements for
viewing revision history when resuming a task. One possi-
ble explanation is that developers need to review the status
of other teammates activities to see if it impacts their task.
This would be consistent with other research: Status aware-
ness was one of the top information needs found in Ko’s
study [15] of developers. Developers may also be using fa-
cilities such as a code difference to remind themselves of
what changes were made during their last activity. Surpris-
ingly, this process is still manual and may be an explana-
tion for the low observance of use. Future enhancement to
IDEs may include the ability to automatically summarize
and highlight code differences between programming ses-
sions. This may provide additional cues for programmers
to trigger reminders on any incomplete tasks or unresolved
bugs.

5.3. Toward Supporting Task Resumption

Having seen the variety of activities developers perform
at the beginning of a programming session, we attempt
to identify how better tool support can be constructed for
suspending and resuming programming tasks. Developers
are devoting a significant amount of time toward building
knowledge and planning how to perform a programming
task during the start of a session. When resuming a pro-
gramming task, developers have a spectrum of resumption
strategies available. The selection of these strategies will
largely depend on the manner in which the developer was
interrupted and the current state of the programming task.
However, the variety of suspended task states and types of
knowledge programmers need to recall will pose many chal-
lenges to developing tool support.

With involuntary interruptions, developers have limited
time to properly suspend the programming task and as a
result will most likely select strategies that will prompt re-
call by using implicit cues. Unfortunately, the source of
implicit cues are limited in current IDE systems. Because
there are no explicit representations of plans, goals, or in-
termediate knowledge used during a task, developers rely
on ad-hoc strategies to trigger and activate those memories.
A likely reason why these strategies fail is caused by in-
sufficient cues contained at the last site of work. There are
several measures that future tools can make to improving
this scenario:

e Automatic Tags. A tag cloud of links to recent source
code symbols and names inside method bodies.

¢ Instant Diff Highlighted code showing how a developer
changed a method body as well as a global view.

e Snapshots and Instant Replay. Time line of screen-
shot thumbnails or an instant replay of past work.

e Change Summary. Short summary of changes.

Continuing from the last state of the programming task
can happen in a variety of ways: the developer may resume
coding in the previous location, may need to transition to the
next step of the task, or may need to evaluate the progress
of the task. The complex nature of programming requires
developers to concentrate on a fixed set of artifacts in the
context of a task. Developers linearize tasks so that upon
completing a subtask, they are aware of what the next sub-
task will be. In effect, developers maintain a rolling window
of focus. Unfortunately, an interruption can severely derail
this process due to the memory strategies used in this pro-
cess. The diverging needs of different task states suggest
that there are opportunities for devising notations for ex-
pressing the steps, objectives, and stages of a programming
task. An IDE can formally support task stages by includ-
ing perspectives for different task stages or introduce light-
weight mechanisms for annotating programming artifacts.
A list of some measures that can support task state include:

e Task Sketches. Light-weight annotations of a task
breakdown: steps, objectives, and plans.

e Runtime Information. Values or visualizations of vari-
ables or expressions from previous execution or debug-
ging session(s).

e Prospective Cues. Contextual reminders that are dis-
played when a condition is true.

5.4. Threats to Validity

One main threat to validity for this analysis is that the
period of edit lag does not necessarily distinguish the time
related to resuming a task from that of thinking about a new
task. In a controlled study, a researcher would be able to
control for whether a programmer was resuming an incom-
plete task or starting a new task. In this study, we can use
the structure of activity to infer properties about task re-
sumption, but ultimately the effects may be confounded. In
the worst case, the experimental values found in this study
serve as an upper bound. Future studies needs a stronger
method of separating this effect by accounting for which
task(s) comprise a session. Possible methods include relat-
ing sessions to source code check-ins and task repository
activity.

Similarly, for the activities detected; such as task track-
ing usage, there is no direct causal relationship between
starting a session and observance of an activity. Again, the
experimental results found establish an upper bound on the
activity corresponding with resuming a programming task

and set the basis for future confirmatory studies.

Finally, the data does not capture a complete representa-
tion of all possible activities that were performed. Devel-
opers may be using other sources of reminder cues such as
notes on their desk or comments in source code. Other types
of studies would be needed to be performed to measure the
frequency and effectiveness of these techniques.

5.5. Future Work

We are investigating several directions for expanding this
research. To continue our work, we are conducting a formal
survey of developers to further understand the kinds of re-
sumption strategies that are commonly used. Second, we
will perform an ethnographic evaluation of developers re-
suming programming tasks to capture-information seeking
requirements and common barriers faced. Finally, we will
perform several experiments to better answer some of the
questions raised in this study. What information are devel-
opers seeking (or what did they forget) when resuming a
programming task? What are effective cues for resuming
tasks: For example, would highlighting code differences of
changes made during the last session better prompt devel-
opers’ memories?

The analysis of session data can be expanded in several
ways. An interesting aspect of the session data to investi-
gate is the time after the last edit in the session (interruption
lag). The interruption lag may include activities related to
preparing the workspace to facilitate resumption. Another
possible analysis includes examining the relationships be-
tween groups of sessions. For example, in reviewing vi-
sualizations of developer sessions, we observed a pattern
of “dabbling sessions” early in the day where developers
would navigate for a few minutes but make no changes. Pre-
sumingly, after “warming up” for an hour or two, the devel-
oper have a long productive session. Another trend we ob-
served that was very productive days containing many long
sessions were followed by several days of low productivity
(a few small sessions). There may be the effects of mental
fatigue and workload regulating the nature of sessions.

6. Conclusions

We have presented an analysis of three sets of data that
provides new insight into how programmers resume a pro-
gramming task — particularly characterizing what activi-
ties are performed at the beginning of a resumed session.

Some interesting results have emerged from these data.
In only a small percentage of sessions did developers re-
sume coding in less than a minute. Developers consistently
spend a significant portion of their time doing non-editing
activities before making their first edit in a session. Dur-

ing this time period, developers are performing a variety of
activities that relate to rebuilding their task context.

However, there is still much work to be done. The psy-
chology and environmental factors related to interruptions
remains a complex topic. Fortunately, understanding this
topic has broad impact on the everyday activities of devel-
opers. Future research should investigate why developers
must visit several locations of code before coding and con-
sider ways to rethink how IDE organizes content beyond
tabbed editing and hierarchical lists.

References

[1] P. D. Adamczyk and B. P. Bailey. If not now, when?: the ef-
fects of interruption at different moments within task execu-
tion. In CHI '04: Proceedings of the SSGCHI conference on
Human factors in computing systems, pages 271-278, New
York, NY, USA, 2004. ACM.

[2] E. M. Altmann and J. G. Trafton. Memory for goals: an
activation-based model. Cognitive Science, 26:39-83, 2002.

[3] E. M. Altmann and J. G. Trafton. Task interruption: Re-
sumption lag and the role of cues. In Proceedings of the 26th
annual conference of the Cognitive Science Society, 2004.

[4] E. M. Altmann and J. G. Trafton. Timecourse of recovery
from task interruption: Data and a model. Psychonomic Bul-
letin & Review, 14:1079-1084, 2007.

[5] L. Bannon, A. Cypher, S. Greenspan, and M. L. Monty.
Evaluation and analysis of users’ activity organization. In
CHI '83: Proceedings of the SGCHI conference on Human
Factorsin Computing Systems, pages 54-57, New York, NY,
USA, 1983. ACM.

[6] E. Cutrell, M. Czerwinski, and E. Horvitz. Notification, dis-
ruption and memory: Effects of messaging interruptions on
memory and performance. 2001.

[7]1 M. Czerwinski, E. Horvitz, and S. Wilhite. A diary study of
task switching and interruptions. In CHI '04: Proceedings
of the SGCHI conference on Human factors in computing
systems, pages 175-182, New York, NY, USA, 2004. ACM
Press.

[8] U. Dekel. Designing a prosthetic memory to support soft-
ware developers. In ICSE Companion '08: Companion of
the 30th international conference on Software engineering,
pages 1011-1014, New York, NY, USA, 2008. ACM.

[9] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia,
S. Drucker, and G. Robertson. Code thumbnails: Using spa-
tial memory to navigate source code. In VLHCC '06: Pro-
ceedings of the Visual Languages and Human-Centric Com-
puting, pages 11-18, Washington, DC, USA, 2006. IEEE
Computer Society.

[10] R. DeLine, M. Czerwinski, and G. Robertson. Easing pro-
gram comprehension by sharing navigation data. In VLHCC
'05: Proceedings of the 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing, pages 241-248,
Washington, DC, USA, 2005. IEEE Computer Society.

[11] R. DeLine, A. Khella, M. Czerwinski, and G. Robertson.
Towards understanding programs through wear-based filter-
ing. In SoftVis '05; Proceedings of the 2005 ACM sympo-

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

sium on Software visualization, pages 183-192, New York,
NY, USA, 2005. ACM.

T. Gillie and D. Broadbent. What makes interruptions dis-
ruptive? a study of length, similiarity, and complexity. Psy-
chological Research, 50:243-250, 1998.

H. M. Hodgetts and D. M. Jones. Contextual cues aid re-
covery from interrruption: The role of associative activita-
tion. Journal of Experimental Psychology: Learning, Mem-
ory, and Cognition, 32(5):1120-1132, 2006.

M. Kersten and G. C. Murphy. Using task context to im-
prove programmer productivity. In SSGSOFT ' 06/FSE-14:
Proceedings of the 14th ACM S GSOFT international sym-
posium on Foundations of software engineering, pages 1-11,
New York, NY, USA, 2006. ACM.

A. J. Ko, R. DeLine, and G. Venolia. Information needs in
collocated software development teams. In ICSE '07: Pro-
ceedings of the 29th international conference on Software
Engineering, pages 344-353, Washington, DC, USA, 2007.
IEEE Computer Society.

T. D. Latoza, G. Venolia, and R. Deline. Maintaining mental
models: a study of developer work habits. In ICSE '06:
Proceeding of the 28th international conference on Software
engineering, pages 492-501, New York, NY, USA, 2006.
ACM Press.

T. C. Lethbridge, S. E. Sim, and J. Singer. Studying soft-
ware engineers: Data collection techniques for software
field studies. Empirical Software Engineering, 10(3):311-
341, July 2005.

G. Mark, V. M. Gonzalez, and J. Harris. No task left be-
hind? Examining the nature of fragmented work. In CHI
'05: Proceedings of the SGCHI conference on Human fac-
tors in computing systems, pages 321-330, New York, NY,
USA, 2005. ACM Press.

F. McKinney. Studies in the retention of interrupted learning
activities. Journal of Comparative Psychology, 19 (2):265-
296, 1935.

Y. Miyata and D. A. Norman. Psychological issues in sup-
port of multiple activities. In D. A. Norman and S. W.
Draper, editors, User Centered System Design: New Per-
spectives on Human-Computer Interaction, pages 265-284.
Erlbaum, Hillsdale, NJ, 1986.

C. A. Monk. The efffect of frequent versus infrequent inter-
ruptions on primary task resumption. In Proceedings of the
Human Factors and Ergonomics Society 48th Annual Meet-
ing, 2004.

G. C. Murphy, M. Kersten, and L. Findlater. How are Java
software developers using the Eclipse IDE? volume 23,
pages 76-83, Los Alamitos, CA, USA, 2006. IEEE Comp.
Soc. Press.

B. O’Conaill and D. Frohlich. Timespace in the workplace:
dealing with interruptions. In CHI ' 95: Conference compan-
ion on Human factorsin computing systems, pages 262-263,
New York, NY, USA, 1995. ACM Press.

M. Offner. Mental Fatigue. Warwick & York, 1911.

C. Parnin and C. Gorg. Building usage contexts during pro-
gram comprehension. In ICPC '06: Proceedings of the
14th IEEE International Conference on Program Compre-
hension, pages 13-22, 2006.

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]

K. Renaud and P. Gray. Making sense of low-level usage
data to understand user activities. In In Proceedings of SAIC-
ST '04, pages 115-124, , Republic of South Africa, 2004.
South African Institute for Computer Scientists and Infor-
mation Technologists.

R. Robbes and M. Lanza. Characterizing and understand-
ing development sessions. In ICPC '07: Proceedings of
the 15th |EEE International Conference on Program Com-
prehension, pages 155-166, Washington, DC, USA, 2007.
IEEE Computer Society.

I. Safer and G. C. Murphy. Comparing episodic and se-

mantic interfaces for task boundary identification. In CAS
CON '07: Proceedings of the 2007 conference of the center
for advanced studies on Collaborative research, pages 229-

243, New York, NY, USA, 2007. ACM.

J. Singer, R. Elves, and M.-A. Storey. Navtracks: Supporting
navigation in software maintenance. In ICSM ’'05: Proceed-
ings of the 21st |EEE International Conference on Software
Maintenance, pages 325-334, Washington, DC, USA, 2005.
IEEE Computer Society.

V. Sinha, D. Karger, and R. Miller. Relo: Helping users man-
age context during interactive exploratory visualization of
large codebases. In VLHCC '06: Proceedings of the Visual
Languages and Human-Centric Computing, pages 187-194,
Washington, DC, USA, 2006. IEEE Computer Society.
M.-A. Storey, C. Best, J. Michaud, D. Rayside, M. Litoiu,

and M. Musen. Shrimp views: an interactive environment
for information visualization and navigation. In CHI '02:
CHI ' 02 extended abstracts on Human factors in computing

systems, pages 520-521, New York, NY, USA, 2002. ACM.
M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer.
Todo or to bug: exploring how task annotations play a role in
the work practices of software developers. In ICSE’08: Pro-
ceedings of the 30th international conference on Software
engineering, pages 251-260, New York, NY, USA, 2008.
ACM.

The Eclipse Foundation. Usage Data Collector Results.
January 5th, 2009. Website, http://www.eclipse.org/org/

usagedata/reports/data/commands.csv.

J. G. Trafton, E. M. Altmann, and D. P. Brock. Huh, what
was i doing? how people use environmental cues after an
interruption. In Proceedings of the Human Factors and Er-
gonomics Society 49th Annual Meeting, 2005.

J. G. Trafton, E. M. Altmann, D. P. Brock, and F. E. Mintz.
Preparing to resume an interrupted task: effects of prospec-
tive goal encoding and retrospective rehearsal. International

Journal of Human-Computer Sudies, 58:583-603, 2003.

R. van Solingen, E. Berghout, and F. van Latum. Interrupts:
Just a minute never is. |EEE Software, 15(5):97-103, 1998.
B. Zeigarnik. Das behalten erledigter und unerledigter hand-
lungen. Psychologische Forschung, 9 (1):1-85, 1927.

F. R. H. Zijlstra, R. A. Roe, A. B. Leonova, and I. Krediet.
Temporal factors in mental work: Effects of interrupted ac-
tivities. Journal of Occupational and Organizational Psy-
chology, 72:163-185, 1999.

L. Zou and M. W. Godfrey. An industrial case study of pro-

gram artifacts viewed during maintenance tasks. In WCRE
'06: Proceedings of the 13th Working Conference on Re-
verse Engineering, pages 71-82, Washington, DC, USA,
2006. IEEE Computer Society.

