
Intra node parallelization of MPI programs with OpenMPFranck Cappello and Olivier RichardLRI, Universit�e Paris-Sud, 91405Orsay, FranceEmail: fci@lri.fr.September 28, 1998AbstractThe availability of multiprocessors and high performance networks o�er the opportunity to constructCLUMPs (Cluster of Multiprocessors) and use them as parallel computing platforms. The main distinc-tive feature of the CLUMP architecture over the usual parallel computers is its hybrid memory model(message passing between the nodes and shared memory inside the nodes). Some of the primary issuesto address for the CLUMP are: 1) to be able to execute the existing programs with few modi�cations 2)to provide some programming models coherent with the performance hierarchy of the data movementsinside the CLUMP 3) to limit the e�ort of the programmer while ensuring the portability of the codes ona wide variety of CLUMP con�gurations. We investigate an approach based on the MPI and OpenMPstandards. The approach consists in the intra-node parallelization of the MPI programs with an OpenMPdirective based parallel compiler. The paper presents a detailed study of the approach in the context ofthe biprocessor PC CLUMPs. It provides three contributions. First, it evaluates the ability of bipro-cessor PCs to e�ectively provide a speed up over single processor PCs in the context of shared memoryparallel programs. Second, it investigates the method to transform MPI parallel programs in order toexecute them on a CLUMP. Third, it presents the performance evaluation of this method applied on theNAS parallel benchmarks executed on a cluster of biprocessor PCs.1 IntroductionMany computing centers are now equipped with parallel platforms using PCs as computing nodes and ahigh performance network like Myrinet as the interconnection network. Today, most of the microprocessors(and especially the Pentium family) and their chip-set are designed to easily build multiprocessors. Onedirect e�ect of this design strategy is that biprocessor PCs come to the market roughly at the same timeas single processor PCs for a given generation of microprocessor. One other e�ect is the relatively low ratioof multiprocessor PC cost / single-processor PC cost. Since the cost of the network connection is a largeportion of the cost of a PC node in a parallel platform, it becomes appealing to use multiprocessor PCs asthe nodes for a parallel platform.Networks of multiprocessors PC present an hybrid memory model: message passing between nodes andshared memory inside each node and conform to the term of CLUMP (CLUster of MultiProcessors). It existsseveral ways to program the CLUMPs. [1] and [2] presents respectively a taxonomy and a classi�cation ofthe programming model for the CLUMPs. We may classify two main approaches by distinguishing theprogrammer view of the memory in a CLUMP:� a single memory model (SMM) or� an hydride memory model (HMM)In the SMM approach the programmer only see one memory model. A mechanism is added to the platformto unify the view of the memory model. The main drawback of the SMM approach is the performance costof the unifying mechanisms. 1

1.1 Message passing SMM[3], [4] and [2] have developed a version of their message passing libraries to work in SMP platforms. Wealso have ported a version of the BIP [5] library for SMP PC. The BIP library had been initially developedfor the Myrinet communication network. The cost of message passing in shared memory has three com-ponents: First, the system bus will be shared for intra-node communication. So, colliding communicationsmust be sequentialized. This is a main disadvantage over a high performance network with point to pointcommunications. Second, a message passing requires at least one bu�er copy from the sender bu�er to thereceiver bu�er even when it is performed in the shared memory. This will add some substantial extra memorymovements over the ideal situation where the shared memory execution model is used inside the SMP nodes.Third, the message passing implementation in shared memory (i.e. the communications occur within theshared memory by bu�er copies) may reach communication performance lower inside the SMP than betweenseparate nodes. For example, in our implementation of BIP in shared memory, we obtain approximativelyhalf the bandwidth of inter-node BIP performance. The bandwidth is reduced due to the PC system busperformance (500 MB/s with 66 Mhz system bus and 750 MB/s for 100 Mhz system bus) and the need tocross the bus two times for each communication: bu�er read and bu�er write. Despite the use of optimizedmemory copy or DMA copy mechanisms, the communication bandwidth reaches a maximum of 500 Mb/s.Inter-node BIP performance reaches 1 Gb/s.[6] presents a model to program the CLUMP through a small kernel of collective communication andcomputation primitives. The communication primitives are implemented on top of a message passing libraryand a SMP Library. Algorithms implemented with this model are programmed as a succession of collectivecomputations and collective communications.1.2 Shared Memory SMMShared Virtual Memory environments provides the opportunity to program the CLUMP with the sharedmemory model. Several projects have already published some design and performance results about theCLUMP:[7], Shasta [8], Cashmere-2L [9] and SoftFLASH [10]. As for the mono-processor platforms, theperformance of DVSM mainly relies on the protocol e�ciency.Other programming paradigms, initially developed in the context of the single-processor node parallelcomputers, may also unify the memory model for the CLUMP.Split C [11] is a parallel extension to the C programming language that support access to a global addressspace on distributed memory architectures. Split-C allows the programmer to use two types of pointers:standard pointers and global pointers. Global pointers reference the entire address space. Standard pointersreference only a memory region local to the processor. By distinguishing local and remote memory accesses,Split-c gives the programmer a way to manage the locality of the data references.Recently, OpenMP [12] has been implemented on a network of workstations on top of the TreadmarkDSM system. It provides a very convenient way to program the distributed memory architectures. Itsperformances relies on the shared virtual memory software.1.3 HMMHMM has been the �rst approach used to program the CLUMPs. Original works include programmingthe PVPs (Parallel Vector Processor) where Vector Supercomputers are interconnected with a high speednetwork to form a parallel architecture. HMM programming has been the theme of a workshop in 1995 [13].Several contributions concerned the porting of applications from the parallel computers to the CLUMPs.Recently the NAS parallel benchmarks repository has published the performance of a Power Challenge Arrayon a selection of the NPB2 benchmark programs [14].[15] presents a hybrid shared memory/distributed memory programming model for the CLUMP. Intra-node computation utilizes a multi-threaded programming style. Inter-node programming is based on messagepassing and remote memory operations. The hybrid programming model is based on the SPMD programmingstyle. The programmer has to manage the data set partition and distribution. Data sets are �rst partitionedbetween the nodes. Each distributed data set portion is then partitioned among the threads within eachnode. 2

1.4 Portability requirementIn both cases SMM and HMM, a main issue for the programmer is the portability of his code. Moving fromtraditional supercomputers (vector machine) to shared memory or message passing parallel computers hasalready forced the users to reconsider their application programming. Some programming standards haveemerged for parallel computers: HPF for data parallel computing and MPI for message passing. Sharedmemory parallel computers are programmed using automatic parallelizers, directive based parallelizing com-pilers or directly using a process or thread API. Moving from single processor nodes to multiprocessor nodesin the parallel architectures may also require an e�ort. However, a methodology to program the CLUMPsshould seriously consider the portability criterion and provide an approach compliant with a wide variety ofCLUMP con�gurations.1.5 A method based on MPI and OpenMPIn this paper, we investigate a methodology which primary aims to provide portable codes with a reducede�ort in the context of the HMM approach. The approach uses OpenMP for shared memory parallelisminside the nodes and MPI for message passing between nodes.OpenMP derives from the ANSI X3H5 standards e�ort. It is a set of compiler directives and runtimelibrary routines that extend a sequential programming language to express shared memory parallelism. Thelanguage is extended by a collection of compiler directives, library routines, and environment variables.The directives include parallel region constructs (OMP PARALLEL), work-sharing constructs (OMP DO)that apply on DO loops to specify how iterations should be split among the threads, and synchronizationconstructs. OpenMP conforms to the SPMD programming paradigm. The OpenMP API uses the fork-join model of parallel execution. Program execution begins as a single process called the Master thread ofexecution. The master thread executes sequentially outside the parallel regions. A parallel region is enclosebetween a pair PARALLEL and a END PARALLEL directives. When the master thread enters a parallelregion it creates a thread team. Then, all threads in the team execute the statements of the parallel region.The threads are synchronized upon the completion of the parallel region. The work sharing construct DOallow to distribute the iterations of a do loop among the threads already existing in the parallel region.By default the scope for variables in a parallel region is SHARED. A clause section in the format of thePARALLEL and DO directives allows the user to control the scope attributes of the variables within thedirectives. The clauses de�ne a data environment for each member of the thread team. In particular, thePRIVATE clause can be used to create dedicated copies of some variables for each thread of the team.MPI is one of the post popular library for message passing for multi-PC parallel platforms. A lot ofapplications have been written or ported for the message passing paradigm. A methodology proposed toprogram the CLUMPs from MPI should also: A) provide a way to execute the existing the MPI programswritten for mono-processor nodes, B) ensure that the programs implemented with this methodology willwork with mono-processor nodes.OpenMP is used in the methodology to express the intra-node parallelism from the Fortran code ofthe MPI programs. This two steps framework corresponds to the hierarchy of granularities of the datamovements a) between SMP nodes and b) inside a SMP node.When programming in the message passing style, the application is constructed as large communicat-ing processes. Data and works are distributed among the nodes in order to 1) minimize the number ofcommunications, 2) pack the data to communicate in long messages and 3) overlap the communications bycomputations. These optimizations are required due to the impact of the communication cost on the globalperformance.In shared memory parallel programming, data movements are also managed in order to limit theircontribution on the total execution time. The sequence of memory references are optimized by the compileror/and the programmer in order to exhibit temporal and spatial localities. However, the basic memorymovements in shared memory is usually a cache block. Moving cache blocs across the network of a parallelarchitecture and especially across a network designed for message passing has two main drawbacks: a) thetime to make a remote reference (few microseconds) is huge for the processor point of view and it has to spina long time (thousands of instructions). b) the bandwidth provided by a high speed network may be wastedwith messages as small as a cache bloc. The non blocking cache and the data prefetch mechanisms are3

used to reduce the penalty of the remote memory references. The block transfer engines in the distributedshared memory machines provide a way to reach the bandwidth of a high speed network by transfering largememory blocs across the network. An other way to reduce the remote memory penalty is to force the sharedmemory data references to stay inside the node.Before presenting the method for executing MPI-OpenMP programs on the CLUMP, we evaluate theability of the biprocessor PCs to e�ectively provide a speed up over the single processor PCs for numericalapplications. We also compare biprocessor versus mono-processor nodes in the domain of the global platformcost.2 Biprocessor versus mono-processor nodesWe have measured the performance of a multi-threaded version of the SPLASH2 [16] benchmark on multi-processor PCs to evaluate the interest of using them as nodes for a parallel platform. The data sets used forthe measurements are presented in the table 1.LU FFT Cholesky radix Ocean Water nsqured fmm Water spq Radiositydata set 2048 20/22 tk29.0 224 514 inuput2 4096 16384 4096 defaultTable 1: Data sets for the SPASH2 benchmark programs used for the performance measurementsThis study has been performed on three successive generations of biprocessor PCs (Pentium PRO 200,Pentium II 300 and Pentium II 400). The main di�erences between the Pentium PRO 200 nodes and thePentium II 300 nodes are the CPU cycle time, the cache size (L1:2*8kB vs 2*16kB, L2: 256kB vs 512kB)and the memory technology and pipelining (EDO vs SDRAM). The di�erences between the Pentium II 300nodes and the Pentium II 400 nodes are the CPU cycle time and the system bus cycle time. The �gure 1presents the speed-up of biprocessor nodes versus single processor nodes for the three generations.

AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

1
1,1
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9

2

L
U

F
F

T

ra
d

ix

o
ce

an

W
at

er
-

n
sq

u
a.

W
at

er
-

sp
a.

R
ad

io
si

ty

PPRO

AAAPII300

PII400

Speed-up

Figure 1: Speed-up of biprocessor versus single processor for three generations of microprocessorsRecent biprocessors provide remarkable speedup over single processor PC for these benchmark programs.For most of the benchmark programs, the last generation provide a higher speedup than the previous ones.4

Two main generation evolutions explains this results : larger processor caches (2*8kB and 256kB for PentiumPro versus 2* 16kB and 512kB for Pentium II) and a lower [processor frequency / bus frequency] ratio (4,5 forthe Pentium II 300 and 4 for the Pentium II 400). For these programs, larger caches and a lower [processorfrequency / bus frequency] ratio reduce the memory penalty and lower the impact of the bus accesses foreach processor.The �gure 2 presents the speed-up among the three generations for single processor.

A
A
AA
AA
AA

A
A
AA
AA
AA
AA
AA

A
A
AA
AA
A
A
AA
AA

1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

2,8

L
U

F
F

T

ch
ol

es
ky

ra
di

x

oc
ea

n

W
at

er
-

ns
qu

a.

W
at

er
-

sp
a.

fm
m

R
ad

io
si

ty

PII300/PRO

AA
AA

PII400/PII300

PII 400/PRO

Spedd-up

Figure 2: Speed-up among three generations of mono-processorsFor most of the benchmark programs, the increase of the CPU frequency and the cache size (PentiumPRO versus Pentium II 300) allows to provide a speed-up about 1.3. This speed-up evolves with the localityproperties of the data references. The programs exhibiting a high locality of data references do not takebene�ce of the higher bus frequency of the Pentium II 400. So for these programs the speed-up is close tothe ratio of the processor frequency (400/300 = 1.33). The higher speed-ups for the Pentium II 400 over thePentium II 300 occur for the programs with the less data reference localities.Biprocessors seems to be good candidates as nodes for parallel platform because: 1) they o�er theopportunity of a high speedup over single processor nodes and 2) their speedup over single processor remainsstable across the processor generations.2.1 Cost of biprocessorUsing biprocessor PCs as nodes for a message passing parallel platform may reduce their speedup over singleprocessor nodes due to the di�culty to e�ciently program a parallel computer with an hybrid memorymodel.Multiprocessors nodes o�er two potential interests for message passing parallel platforms. First, accordingto their speedup over single processor nodes they may longer resist to the next generation mono-processor.The Figure 3 present the speed-up of biprocessors PC of a given generation (g) over single processor PCof the next generation (g+1). For the SPLASH2 benchmark, the PII 300 biprocessor keep a substantialspeed-up over the single processor PII 400 except for the OCEAN program.Using biprocessors instead of single processors as the nodes increases the parallel platform cost. As forthe other potential applications of the parallelism, we have to compare the cost/performance ratios of thebiprocessor and the single processor nodes. 5

AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA
AA

A
A
A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

L
U

FF
T

ch
ol

es
ky

ra
di

x

oc
ea

n

W
at

er
-

ns
qu

a.

R
ad

io
si

ty

PII300/2*PRO

A
A

PII400/2*PII300

PII 400/2*PRO

Speed-up

Figure 3: Speed-up of the generation g mono-processor over the generation g-1 and g-2 biprocessorsThe second potential interest of multiprocessor nodes resides in the reduced number of the networkconnections for a given number of processors in a parallel platform. The Speed- up of biprocessor nodesover single processor nodes seems to promise identical performance for the parallel platforms composed of nsingle processors nodes or of n/2 biprocessor nodes.This section has shown that the biprocessors are very promising as the nodes of parallel platforms. Thenext section proposes an approach to execute MPI programs on the CLUMPs. Although they provide non-negligible speed-ups for some programs, the result section will moderate our opinion about the performanceof the biprocessor used as the nodes of a parallel platform.3 Intra MPI processes parallelization with OpenMPAlthough the methodology described in this paper can be applied in the context of MIMD applications, wedescribe it only in the context of applications programmed for the SPMD execution model.3.1 The basic methodologyParallelizing an application for the message passing following the SPMD paradigm often produces a programwith the typical layout presented in �gure 4. The program starts initializing the communication system.Then it performs some local computations and calls some communication subroutines to split the data setsamong the nodes participating to the application. The program continues executing a main block typicallycontaining a loop nest. The main block is designed to be executed in parallel. The body of the loop nestcan be described as a succession of three sections. The �rst section executes the node local computations.The second section communicates some partial results to the other nodes. The third section synchronizesthe nodes before the next loop nest iteration. The �nal part of the program gathers the individual partialresults and computes the �nal result.The applications written from MPI programs come in the form of one executable �le that has to beran on each node of the parallel platform. Within each node, the program is executed inside a process. Aspreviously mentioned, this process computes on local data and communicates with the processes on the othernodes. Parallelizing the program executed on each node lead to parallelize the main block. This block oftenencompass an iterative calculus with inter-iteration dependencies. So intra-process parallelization couldnot be attempted at this level in the general case. For most of the NAS programs, we have parallelized6

Message passing Message passing
+ shared memory

init
MPI

init //
part

sync

comm.

end //
part

comp.

init SMP
part

sync

end SMP
part

comp.

subroutine conj_grad (colidx,…)
 do i = 1, l2npcols
 call mpi_irecv(rho,…)
 call mpi_send(sum,…)
 call mpi_wait(request,…)
 enddo
 	 …
!$OMP PARALLEL PRIVATE(k,sum)
!$OMP DO
 do j=1,lastrow-firstrow+1
 sum = 0.d0
 do k=rowstr(j),rowstr(j+1)-1
 sum = sum +
a(k)*p(colidx(k))
 enddo
 w(j) = sum
 enddo
!$OMP END DO
!$OMP END PARALLEL
	 …
 do i = l2npcols, 1, -1
 call mpi_irecv(…)
 call mpi_send(…) 	
	 call mpi_wait(request,…)
 enddo
	 …
 return
 end

program cg
…
call initialize_mpi
…
call setup_proc_info(num_procs, …)
call setup_submatrix_info(l2npcols,…)
…
do it = 1, niter
	 …
 call conj_grad (colidx,…)
	 	 …
 do i = 1, l2npcols
 call mpi_irecv(norm_temp2,…)
 call mpi_send(norm_temp1,…)

 call mpi_wait(request,…)
	 	 …
 enddo
	 …
endo
…
call mpi_finalize(ierr)
…
endFigure 4: Parallelizing the MPI code. The main loop nest of the CG code calls the conj-grad subroutines andcontains some communication calls. The computation loop nest of conj-grad is parallelized for intra-nodeexecution using the shared memory paradigm.the computational section of the main block. Figure 4 presents this hierarchy of parallelism: messagepassing between MPI processes and intra-node parallelism within each MPI process. The intra-node parallelexecution is performed by a group of threads within the same process. The parallelization directives aresimply applied on the parallelizable loop nests of the original MPI code. From the other nodes point of view,a biprocessor node with an intra node multi-threaded execution of a fraction of the MPI code behaves likea mono-processor node.The PGI fortran compiler used for our experiment is a subset of the OpenMP Fortran ApplicationProgram Interface. The PGI thread implementation is based on the Pthread which is a de-facto standard.When there is no inter-iteration dependencies in the program main loop nest, the parallelization can beattempted at the main bloc level. In such a case, all intra-node parallel tasks will execute the communication7

calls. The program correctness may require a total order for the communication performed by each node.In that case, it is the responsibility of the programmer to add the necessary code to control the operationsequence.3.2 Selecting the loop to parallelizeThe application may exhibit a large number of loop nests and subroutine calls. It can be di�cult to discovermanually (reading the text source) which loop nests are worth while to parallelize.In general, three parameters distinguish the loop nests to parallelize to the others: 1) of course, it mustexist a parallelization of the loop nest that respect the semantic of the sequential version, 2) the loop nestmust have a subtential contribution to the total execution time, 3) the body of the loop nests must be longenough to make the parallelization overhead negligible.The �rst parameter should be examined looking for the dependencies. It may also require some inter-procedural analysis when the candidate loop nests contains some subroutine calls in their body. The secondparameter is obtained using a pro�led execution of the application. It provides the respective cost of eachsubroutine and each loop nest. The third parameter must be estimated according to the cost of the paralleloperations in OpenMP. Table 2 gives the cost of the main parallel operations for several nodes of our platform.Pentium Pro 200 Pentium II 300 Pentium II 400Fork-Join (Parallel DO) 5 us 3.5 us 3 usLock (Critical) 1.66 us 1.45 us 1.4 usBarrier 1.36 us 1.33 us 1 usTable 2: The cost of the parallel operations of OpenMP on our platformThe �gure 5 presents a framework for selecting the loop nests to parallelize.
MPI
code

Candidat
MPI code for
SMP nodes

Check
semantic
and
speedup

Remove of
rafine
parallelization

Correct
MPI code for
SMP nodes

Execute
with a
profiler Select loop to

parallelize
and insert
directives

Correct

False or
Slow down

Build the
calling
graphFigure 5: The parallelization frameworkThe framework begins with the MPI source �le. The pro�led execution allow to discover the mostexpensive loop nests. It is not always judicious to parallelize all expensive loop nests. Assuming that thecalling graph is a tree, the rule to select the loop nests should be to investigate the loop parallelization fromthe root of the calling graph to the leaf. Parallelizing at the highest level in the calling graph allows toreduce the number of fork and join operations. It also allows to distribute more job to each thread. The�gure 6 presents a situation where the loop nest parallelization may be used at two di�erent levels in thecalling hierarchy.Assume that the three loop nests are parallelizable. The loop nest 1 is at a higher level on the callinggraph. Parallelizing at this level allow to use a single fork-join operation and include b2 in the parallelexecution. Parallelizing at the loop nest 2 and the loop nest 3 level requires 2 n fork join operations(PARALLEL DO), reduces the amount of operations attributed to each thread and leads the execute b2sequentially. 8

call

Loop nest 1

op.

Loop nest 3op.

Loop nest 2op.

call

op.Figure 6: A situation where the loop nest are parallelizable at two di�erent levels of the calling hierarchyThe next step after selecting the loop nests to parallelize is to add the OpenMP directives in the codein order to obtain a candidate MPI code for SMP nodes. Then the program is compiled and ran on theplatform. At the end of the execution, the result correctness and the speed-up must be checked. If the resultis falls or if the speed-up is less than one, the parallelization must be re�ned or removed. This process mayrequire several iterations in order to provide an e�cient and correct code.3.3 Main conceptual advantage and limit of the method3.3.1 AdvantageThe intra-node parallelization with this methodology lead to an interesting property: all nodes still onlysee a single entity on each other node i.e. a single MPI process. This property may be very useful for aplatform with heterogeneous nodes. For example, a parallel platform with a variety of multiprocessor nodesand some mono-processor nodes will be able to execute all MPI programs. Such a platform could be usefulin the context the SPMD model assuming a balance of the individual performance of all node. For example,according to the results of our SPLASH 2 experiment, a platform using Pentium II 400Mhz mono-processornodes and Pentium Pro 200 Mhz biprocessor nodes will be balanced. So the methodology provides a way toadd up to date nodes in a parallel platform while continuing to use older nodes.3.3.2 LimitA limit of the approach comes from the way the shared memory parallelization is applied to the messagepassing programs. With this method, we should not expect a local speed up close to the speedup one canobtain by directly parallelize a sequential program. As shown on the �gure 7, the intra node parallelizationonly concerns the computation part of the main bloc of the original MPI program.In contrast with a shared memory program directly derived from a sequential program, there is a lot ofsubstantial work that can not be parallelized. More precisely, the speed up is not only bounded by the localsequential part contribution to the local execution time (Amdahl's law) but also by the communication andsynchronization contributions to the local execution time. Unfortunately the Gustafson low does not applyhere as it does for usual parallel programs because the communication time may evolve as a function of thedata set size.4 Intra node parallelization of the NAS NPB 2.3 BenchmarksThe methodology gives a general framework for the program parallelization. In this section, we will discussthe parallelization of the programs of the NAS NPB 2.3 [17]benchmark suite. Despite several programsrequire some speci�c optimizations to reach a useful speedup, we try to limit our investment to a "reasonablee�ort": the rule was to obtain a reasonable speed-up (in term of the cost/performance ratio). In particularwe do not investigate the memory hierarchy nor the I/O optimization e�ects. Also, we do not intent toparallelize the loops with a cost less than 1% of the total execution time. The parallelization of all theprograms takes about one month. 9

prog

seq
part

paralleli
zable
part

seq
part

end

prog

seq
part

seq
part

end

init
MPI

init //
part

sync

comm.

end //
part

comp.

init SMP
part

sync

end SMP
part

comp.

Sequential Message passing Message passing
+ shared memory

Shared memory

prog

seq
part

seq
part

end

init
SMP

init //
part

sync

end //
part

comp.

seq
part

init SMP
part

sync

end SMP
part

comp.

seq
part

Figure 7: Expansion of the parallelization overhead. Parallelizing for the shared memory or the messagepassing paradigm requires to add some code to the original program. Parallelizing simultaneously with bothparadigms leads to add the initialization and the ending sequences of the bothFor each benchmark, we have pro�led a single node execution. This approach minimizes the communi-cation cost and help the programmer to select the loop to parallelize. In other hand, the cost of all loopschanges when the program is executed in a multi-node version. The communication cost and the distributionof the work among the nodes reduce the cost of the selected loops.We also choose to pro�le the execution of the class W benchmark despite we intent to parallelize for theclass A version. Pro�ling the execution of the class A programs would give more accurate �gures for eachloop cost. However pro�ling the execution of a program with a wide data set, a very long program or alarge set of programs may be not practical in general. Since this approach is attempted to be useful with areduced e�ort, we parallelize the class A version from the pro�led execution of the class W version.The result of the pro�led execution is presented by a calling graph with the cost of the main subroutines.Two costs are reported. The local cost do not includes the cost of the subroutines called by the currentsubroutine. The total cost includes the cost of the routines called by the current subroutine. When theparallelization is not trivial, we detail the structure of the subroutines and its loops.LU, FT and CG are very easy to parallelize following our methodology. MG, EP, SP and BT requiremore e�orts and some dedicated optimizations.
10

4.1 LULU factors a dense matrix into the product of a lower triangular and a upper triangular matrix. The �gure8 presents the calling hierarchy and the cost of each function as returned by the pro�led execution of theoriginal MPI version. The initialization sequence counts for less than 1% of the total execution time.
main

ssor

jacld

blts

jacu

buts

rhs

local cost: 0%, total cost : 100%

local cost: ~8%, total cost : ~99%

total cost : ~10%

total cost : ~19%

total cost : ~8%

total cost : ~17%

total cost : ~37%Figure 8: The calling graph of LUssor contains four main loops. Two of these loops are parallelizable. The two other loops are not directlyparallelizable at least because they call some communication subroutines. rsh contains a sequence of 6 loopnests. All the 6 loop nests have been parallelized. There are 2 calls to a communication procedure inside thesequence between the loop nests. blts and buts begins and ends with a communication between nodes.Theyalso contains two loop nests of which only one (with the smallest body) is parallelizable. Finally, jacld andjacu contain one loop nest with a long body which is parallelizable.4.2 FTFT implements a 3-D FFT to solve a partial di�erential equation. The 3-D FFT performs 1-D FFTs in eachdimension by calling the c�ts(1,2,3) subroutines. The �gure 9 presents the hierarchy of the main functioncalls and their respective weights. The initialization are not presented in the �gure. Their execution timesare included in the computation of the benchmark performance. Two subroutines (compute-indexmap andcompute-initial-conditions) total 5% of the execution time. We do not investigate their parallelization.The �t routine contains a loop which cannot be parallelized at least because it contains some calls tothe transpose routine which, in turn, contains some communications calls. So the parallelization should beapplied only from the next call levels i.e. the c�ts(1,2,3) routines. The c�ts(1,2,3) have the same structure.There is a single loop nest containing a call to the c�tz routine. As presented in [18], an inter-proceduralanalysis shows that the subroutine calls are independents. So the outermost loop of the c�ts(1,2,3) loop nestis parallelizable providing the opportunity to get substantial job for each thread.4.3 CGGC Solves an unstructured sparse linear system by the conjugate gradient method. It uses the inverse powermethod to �nd an estimate of the largest eigenvalue of a symmetric positive de�nite sparse matrix with arandom pattern of non-zeros. As shown in �gure 10, most of the execution time is spent within the conj-gradsubroutine. However, initialization procedure for the CG program has a higher cost than for the previousones: about 7%. The percentage in the �gure are not normalized. The �rst loop nest and the second oneare responsible respectively of 92% and 4% of the conj-grad procedure execution time. conj-grad containssome other loop nests. All of them count for less than 1% of the procedure execution time. Nevertheless,together these loop nests cost 4% of the procedure execution time.11

main

evolve

cffts1

transpose

local cost: 0%, total cost : 100%

local cost: ~1%, total cost : ~4%

local cost: 9%, total cost : ~31%

local cost: 9%
total cost: ~31%

local cost: 10% total cost : ~27%

total cost : <<1%

fft

cffts2

cffts3

cfftsz

fftz2

local cost: 12%, total cost : ~64%

total cost : ~49%

transpose_local

transpose_global

transpose_finish

total cost : <<1%

total cost : <<1%

total cost :<<1%

local cost: ~<<1%, total cost : ~89%

Figure 9: The calling graph of FT
main local cost: 0,2 %, total cost : 100%

 total cost : ~92%conj_grad

 do cgit = 1, cgitmax
 do j=1,lastrow-firstrow+1
 sum = 0.d0
 do k=rowstr(j),…
 sum = sum +…
 enddo
 w(j) = sum
 enddo
 …
 endo
 …
 do j=1,lastrow-firstrow+1
 sum = 0.d0
 do k=rowstr(j),…
 sum = sum + …
 enddo
 w(j) = sum
 enddo

 total cost : ~85,5%

 total cost : ~3,5%Figure 10: The calling graph and main loop nests of CGWe have parallelized the two main loop nests (j index).4.4 MGMG uses a multi-grid algorithm to obtain an approximate solution of a three-dimensional scalar Poissonequation. MG is more complicated to parallelize essentially because its execution time is split among morethan ten subroutines. As for the previous �gures, the �gure 11 presents the calling hierarchy of the parallelizedsubroutines. The �gures (% of the total execution time) must be understood taking into account a very long12

initialization procedure. The initialization time in W class is approximatively 66% of the total executiontime. Some time consuming subroutines can not be parallelized (zran3, comm1p, norm2u3, comm3) becausethey contain communication calls or inter-iteration dependencies. Their combined execution time exceeds30% of the total execution time.
main

mg3p

zero3

rprj3

zero3

interp

resid

local cost: 1,2%, total cost : 100%

local cost: ~3,2%, total cost : ~6%

total cost : ~5,3%

total cost : ~6%

local cost: ~38,5%, total cost : ~42,5%

resid

psinv

psinv

local cost: <<1%,
total cost : ~53,5%

local cost: ~17%, total cost : ~20,3%Figure 11: The calling graph of MGmg3p is not parallelizable because it calls some communication subroutines. zero3, rprj3, interp, residand psinv contains loop nests that are parallelizable at the outermost loop.4.5 EPEP generates pairs of Gaussian random deviates according to a speci�c scheme and tabulates the number ofpairs in successive square annuli. With our methodology EP does not provide the property promised by itsname. It is a typical case where the programmer has to add some code and carefully manage the threads.As shown in �gure 12, EP contains one main loop nest. The initialization delay is negligible for EP. For eachMPI parallel process, most of the execution time (95%) is spent in the two innermost loops.The loop nests do not execute any communication call. The communications occur at the end of theprogram by the way of three reduction operations. The local computation provides a q array and two scalars(sx and sy) in each node. The reduction operations add the value of the distributed q arrays and (sx, sy)scalars. The parallelization of the outermost or the innermost loop leads to create dedicated storage of sx,sy and q for each local thread. In both cases, some code must be added before the reduction operations tocombine the partial results computed by the threads within each node. We parallelize the outermost loop.sx, sy and q becomes arrays indexed by the thread number. They are reduced locally to scalars (sx and sy)or to one dimensional array (q) before the reduction operations.4.6 SPThe SP solves three sets of uncoupled systems of equations in the x, y, and z direction. These systems arescalar pentadiagonal. The execution time of the SP benchmark is split among ten main subroutines. As forEP, the initialization cost can be neglected. So percentages of the total execution time can be considered asis. The �gure 13 presents the calling graph of SP.The local cost of copy-face is negligible. It calls the compute-rhs subroutine and some MPI communicationroutines. compute-rhs contains a long loop nest parallelizable at its outermost loop. It requires the dedicationof �fteen private scalar variables for each thread. (x,y,z)-solve contain a succession of loop nests. Most of themare parallelizable at the outermost loop. The other generate or read messages to or from the communication13

main total cost : 100%

 do 150 k = 1, np
 …
 do 120 i = 1, 100
 …
 120 continue
 …
 do 140 i = 1, nk
 …
 q(l) = q(l) + 1.d0
 sx = sx + t3
 sy = sy + t4

 140 continue
 …

150 continue

 call mpi_allreduce(sx, …)
 call mpi_allreduce(sy, …)
 call mpi_allreduce(q, …)

total cost : ~45%

total cost : ~50%

Figure 12: The main loop nest of EP
main

adi

copy_faces

txmvr

x_solve

y_solve

z_solve

local cost: 0%, total cost : 100%

local cost: ~0%, total cost : ~99%

total cost : ~28,5%
total cost : ~1,5%

total cost : ~4%

total cost : ~4%

total cost : ~4,5%add

compute_rhs

lhsx

lhsy

lhsz

tzefar

total cost : ~3,5%

local cost: ~15%, total cost : ~21%

local cost: ~16,5%, total cost : ~21,5%

local cost: ~17,5%, total cost : ~23%

total cost : ~1%Figure 13: The calling graph of SPbu�ers. These loop nests are not parallelizable due to an inter-iteration dependency: increment of the bu�erpointer. One loop nests of z-solve requires a loop exchange to provide the good result when parallelized.lhs(x,y,z) contain �ve loop nest fully parallelizable. Finally, add, tzefar and txinvr contain one loop nest alsofully parallelizable. 14

4.7 BTBT has the same structure as SP. The three sets of uncoupled systems of equations are block tridiagonal with5x5 blocks in the BT code. The �gure 14 presents the calling hierarchy of BT. Like for EP the percentagesof the total execution time can be considered as is.
main

adi

copy_faces

x_solve

y_solve

z_solve

local cost: 0%, total cost : 100%

local cost: ~0%, total cost : ~99%

total cost : ~14%

total cost : ~5,5%

total cost : ~10%

add

compute_rhs

lhsx

total cost : ~3%

local cost: ~0%, total cost : ~27%

local cost: ~0%, total cost : ~28%

local cost: ~0%, total cost : ~29%

x_solve_cell

x_backsubstitute

lhsy

y_solve_cell

y_backsubstitute

lhsz

z_solve_cell

z_backsubstitute

binvcrhs

matvect_sub

matmul_sub

total cost : ~10%

total cost : ~6,5%

local cost : ~1%, total cost : 11,5%

total cost : ~10%

local cost : ~1%, total cost : 11,5%

local cost : ~1%, total cost : 11,5%

total cost : ~7%

total cost : ~10%

total cost : ~10%

total cost : ~12,5%

Figure 14: The calling graph of BTcopy-faces �lls a communication bu�er, executes some communication calls, reads the communicationbu�er and �nally calls compute-rhs. The bu�er manipulation loop nests are not parallelizables due to thebu�er pointer increment within the innermost loop. compute-rhs contains one long loop nest fully paral-lelizable at the outermost loop. (x,y,z)-solve make subroutine and communication calls. lhs(x,y,z) containtwo loop nests fully parallelizable. (x,y,z)-solve-cell call matvec-sub, matmul-sub and binvcrhs within a loopnest. The inter-procedural analysis does not reveal any inter-iteration dependencies for these subroutinecalls. The loop nest can be parallelized at the outermost loop. (x,y,z)-backsubstitute contain one main loopnest fully parallelizable assuming a loop exchange of the two outermost loops for z-backsubstitute.5 PerformanceIn this section, we start presenting the platform used for the performance evaluation. Then, we comparebiprocessor versus single-processor con�gurations on the NAS 2.3 parallel benchmark. Finally, the CLUMPperformances are compared against the performances of some high end supercomputers with the samebenchmark.5.1 Platform hardware and softwareThe platform contains a Myrinet network with four ports. We use three types of biprocessor nodes: PentiumPro 200 Mhz, Pentium II 300 Mhz and Pentium II 400 Mhz. Each myrinet PCI interface has a 1MB localmemory. 15

The software environment includes Linux 2.0.33, the BIP 0.94c version of the MPI library, the F77 PGI1.7 programming environment and the Linux Pthread library. BIP raw performances on Myrinet connectedPC is a latency of 5us and a bandwidth of 1 Gbit/s. MPI BIP reach 20 us (latency) and 1 Gb/s (bandwidth).All benchmarks have been compiled with the o2, unroll and P6 options.With this platform we are not able to provide global speedup scalability results due to the modest numberof nodes in our largest con�guration. However, the global speedup scalability is not a main issue here. TheNAS Benchmark repository already provides some scalability results of some message passing architectures(IBM SP2, NOW, P6 PC mono-processor connected by myrinet) executing the NAS benchmarks. From theglobal speedup point of view, each biprocessor node behaves like a fast mono-processor node. So the globalspeed-up versus number of nodes curve with biprocessor nodes are likely to follow the one of mono-processornodes.The relevant issue here is to evaluate the change of the local speed-up (within the biprocessors) withthe number of nodes. As the result section will show, the local speedup evolve with the number of nodesdepending of the application and the data set size. As the next section will show, some general trends canbe derived for the local speedup even with a modest number of nodes.5.2 Mono-processor PC versus biprocessor PCIn this section, we compare a parallel platform based on mono-processor nodes against a parallel platformbased on biprocessor nodes. We compare these platforms for three di�erent con�gurations: 1 node, 2 nodesand 4 nodes. All the measurements are made with Pentium II 300 Mhz nodes.The �gure 15 presents the speedup of the biprocessors based CLUMP over the single processor basedplatform for a constant number of nodes.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 node 2 nodes 4 nodes

LU

FT

CG

MG

EP

SP

BT

Local Speed-up

Figure 15: Intra-node speed-up of the biprocessors over mono-processors for the NPB 2.3 Benchmarks andfor the same number of nodesThe speed-up evolves with the number of node in the CLUMPs following one of three trends:� it remains constant (the inter node communications and synchronization have negligible impact on theglobal performance. Typically the application data sets are large and the main loops exhibit substantialparallelism), 16

� it increases (this is a case analogue to the previous one but reducing the data set attributed to eachnode may increase the memory hierarchy e�ectiveness by reducing the block conict penalty).� it decreases (the inter node communications signi�cantly contribute to the global performance. Withthe increase of the number of nodes in the platform, each node has less data to compute for a given dataset size. The communication time is marginally reduced by the increase of the number of nodes. Sothe communication time contribution to the local execution time increases with the number of nodes.The consequence is the reduction of the local speedup.The �gure 16 shows that Pentium II 400 biprocessors provide a more constant speed-ups across thedi�erent benchmarks. Their lower CPU frequency/bus frequency ratio help them to reach a higher speed upfor the applications with the less data reference localities. They are also more sensitive to the communicationcost.

AAA
AAA

A
A
A
A
A

A
A
A
A
A

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

A
A
A

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

LU FT CG MG EP

1 node PII 300

A
A
A

2 nodes PII 300

A
A
A

1 node PII 400

2 nodes PII 400

Local Speed-up

Figure 16: Local speed-up of the biprocessors Pentium II 400 Mhz nodes and of the biprocessors Pentium II300 Mhz nodes for the NPB 2.3 BenchmarksThe �gure 17 presents the performance of the biprocessors based CLUMP against the single processorbased platform for a constant number of processors.We should consider the cost/performance ratio of the biprocessor nodes against the mono-processor nodes.As we have previously mentioned, using multiprocessors instead of mono-processors as the nodes of a parallelplatform allows to signi�cantly reduce the number of network connections in the platform. A biprocessorbased platform requires half the connections of a mono-processor based platform. This is a signi�cant issuefor the PC based parallel platforms because the cost of the network connections is a signi�cant part of theglobal node cost. The PC based parallel platforms typically associate high performance PCs (but relativelylow cost) with very high performance network (Myrinet, SCI, etc.). In a typical mono-processor PC basedparallel platform, the network cost is the half of the total platform cost. Biprocessors are about 1.5 timesmore expensive than mono-processor for a given microprocessor and memory size. Assuming these ratio, fora given number of nodes, a biprocessor based platform is 1.25 times more expensive than a mono-processorbased platform. According to the speed-up in the �gure 15, biprocessor nodes justify their extra cost (upto 4 nodes, at least). For a constant number of processors, a biprocessors based platform is about 1.6 timesless expensive than mono-processor based platform. The �gure 17 shows that the global speed-up of thebiprocessor based platform is higher than 0.6 except for LU. So biprocessor based platforms justify theirusefulness by providing an alternative to the mono-processor based platforms.
17

AAA
AAA
AAA
AAA
AAA
AAA

A
A
A
A
A
A
A

AAA
AAA
AAA
AAA
AAA
AAA
AAA

A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA

0

0,2

0,4

0,6

0,8

1

1,2

LU FT C
G

M
G EP

AA
AA
AA

4 nodes

2 nodes

Speed-up

Figure 17: Global speed-up of the biprocessors over mono-processors for the NPB 2.3 Benchmarks and forthe same number of processors5.3 Network of biprocessor PC versus high end supercomputersWe compare a parallel platform based on biprocessor PC nodes against some of the most powerful parallelcomputers. The comparison is made for three di�erent con�gurations: 1 node, 2 nodes and 4 nodes. Themeasurements for the two �rst con�gurations are made with Pentium II 400 Mhz biprocessor nodes. The�gures for the 4 node performances are estimations (to the reviewer: the �nal version of the paper willinclude the actual measurements. The �gures are obtained with the equation:
4 Pentium II 400 Mhz
biprocessor node
performance

Single node
Pentium II 400 Mhz
biprocessor
performance

Single node
Pentium II 300 Mhz
biprocessor
performance

4 Pentium II 300 Mhz
biprocessor node
performanceFigure 18: The equation used to compute the performance of the 4 nodes Pentium II 400 biprocessorsThe resulting �gures should be understood as optimistics. The communications may have a greaterinuence for the Pentium II 400 nodes and they may reduce the speed-up of the Pentium II 400 nodes overthe Pentium II 300 nodes for these programs.)The �gures 19,20 and 21 presents the performance of the biprocessors PC CLUMP against the SGI/CRAYT3E 900, T3E 1200, the SGI Origin 2k with 195 Mhz processors, the IBM SP2 with 66Mhz Power 2, theHP/Convex Exemplar SPP2000 and the SUN Ultra Entreprise 4000 for a constant number of nodes. The�gures come from the NAS NPB2.3 repository.The benchmark sources have been modi�ed for the parallelization on the CLUMP with the OpenMPdirectives. However, less than 5% of the lines of the source code di�ers of the original code. For a samenumber of nodes (2 processors per node on the CLUMP), our PC based CLUMP approximatively reachesthe performance of the supercomputers. 18

A
A
A
A
A
A
A

A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A

A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA

A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA

0

10

20

30

40

50

60

70

80

90

100

LU FT CG MG EP SP BT

CLUMP

A
A

IBM SP 66

A
A SGI Or. 2k 195

A
A
A

HP/conv. Ex. SPP 2k

SUN Ult. Ent. 4k

Mflops
1 node

Figure 19: Performance of the CLUMP and some parallel supercomputers on the NAS NPB 2.3 Benchmarksuite for the single node con�guration

A
A
A
A
A
A
A
A

AAA
AAA
AAA
AAA
AAA
AAA
AAA

A
A
A
A
A
A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A

AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A

AA
AA

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A

A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A

AA
AA

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A
A
A
A

AA
AA0

20

40

60

80

100

120

140

160

180

200

LU FT CG MG EP

CLUMP

AA
AAIBM SP 66

AA
AA

T3E 900

AAT3E 1200

AASGI Or. 2k 195

Mflops

2 nodes

Figure 20: Performance of the CLUMP and some parallel supercomputers on the NAS NPB 2.3 Benchmarksuite for the con�guration with 2 nodes6 ConclusionIn this paper, we have investigated a method for programming the cluster of multiprocessors. This methodbelongs to the HMM (hybrid memory model) approach. It requires the programmer to deal both with themessage passing and the shared memory paradigms.19

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

A
A
A
A

AAA
AAA
AAA
AAA
AAA
AAA
AAA

A
A
A
A
A

AAA
AAA
AAA
AAA
AAA
AAA

A
A
A
A
A
A
A

AA
AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A

AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAAA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

AAAA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA

A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

A
A
A
A
A
A

AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A

0

50

100

150

200

250

300

350

400

450

500

LU FT CG MG EP SP BT

CLUMP
PII 300

AA
AAIBM SP 66

AA
AA

T3E 900

AA
AA

T3E 1200

AASGI Or. 2k 195

AA
AA

HP/conv. Ex. SPP 2k

SUN Ult. Ent. 4k

AA
AA
AA

CLUMP
PII 400

Mflops

4 nodes

Figure 21: Performance of the CLUMP and some parallel supercomputers on the NAS NPB 2.3 Benchmarksuite for the con�guration with 4 nodesThe method consists in the intra-node parallelization of the MPI programs by using an OpenMP directivesbased parallel compiler. We have presented a framework to select the loop to parallelize. The NAS NPB 2.3benchmark suite has been parallelized using this method. We have presented a detailed analysis of the intra-node parallelization for each benchmark program. We have pointed-out some advantages of the method: 1)the existing MPI programs can be reused with few modi�cations, 2) the programming model is coherentwith the performance hierarchy of the data movements inside the CLUMP, 3) the e�ort of the programmeris limited while ensuring the portability of the codes on a wide variety of CLUMP con�gurations.and also a main drawbacks: a sort of Amdahl's law governing the intra node speed-up.A preliminary performance study has shown the potential speed-up of the biprocessor PC over themono-processor PC. For most of the programs of the SPASH2 benchmark suite, the potential speed-up ofthe biprocessors is close to 2. The intra-node speed-up for the NAS parallel benchmark is lower (between 1:2and 1:8 depending of the program for the PII 400 node). Moreover the speed-up evolves with the numberof nodes following one of the three behavior: staying constant, reducing of increasing, depending of thebenchmark program features.Despite the method provides variable local speed-ups, it is much more practical than the manual par-allelization approach to program the CLUMP. Using this method we have compared the performance ofthe CLUMP and some of the high end supercomputers from the NAS NPB 2.3 benchmark. For a samenumber of nodes (2 processors per node on the CLUMP), our PC based CLUMP approximatively reachesthe performance of the supercomputers.Finally, from the cost/performance point of view and under certain conditions, the biprocessors are acompetitive alternative to the mono-processors the nodes of a parallel platform.
20

References[1] E. L. Lusk W. W. Gropp. A taxonomy of programming models for symmetric multiprocessors and smpclusters. In in Proceedings of Programming Models for Massively Parallel Computers, pages 2{7, 1995.[2] Hakon o. Bugge and Per O. Husoy. E�cient sar processing on the scali system. Report IPPS97, ScaliComputer AS, 1997.[3] M. Bernaschi. E�cient message passing on shared memory multiprocessors. Lecture Notes in ComputerScience, 1156:221, 1996.[4] Steven S. Lumetta, Alan Mainwaring, and David E. Culler. Multi-protocol active messages on a clusterof SMPs. In ACM, editor, SC'97: High Performance Networking and Computing: Proceedings of the1997 ACM/IEEE SC97 Conference: November 15{21, 1997, San Jose, California, USA., pages ??{??,New York, NY 10036, USA and 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1997.ACM Press and IEEE Computer Society Press.[5] L. Prylli and B. Tourancheau. Bip: a new protocol designed for high performance networking onmyrinet. In Workshop on Personal Computers based Networks Of Workstations, 1998.[6] David A. Bader and Joseph J J . SIMPLE: A methodology for programming high performance algorithmson clusters of symmetric multiprocessors (SMPs). Technical Report CS-TR-3798 and UMIACS-TR-97-48, Institute for Advanced Computer Studies, University of Maryland, College Park, MD, May 1997.[7] R. Samanta, A. Bilas, L. Iftode, and J. P. Singh. Home-based SVM protocols for SMP clusters: Designand performance. In Proc. of the 4th IEEE Symp. on High-Performance Computer Architecture (HPCA-4), February 1998.[8] D. J. Scales, K. Gharachorloo, and A. Aggarwal. Fine-grain software distributed shared memory onSMP clusters. In Proc. of the 4th IEEE Symp. on High-Performance Computer Architecture (HPCA-4),February 1998.[9] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis, S. Parthasarathy, and MichaelScott. Cashmere-2L: Software coherent shared memory on a clustered remote-write network. In Proc.of the 16th ACM Symp. on Operating Systems Principles (SOSP-16), October 1997.[10] Andrew Erlichson, Neal Nuckolls, Greg Chesson, and John Hennessy. SoftFLASH: Analyzing the per-formance of clustered distributed virtual shared memory. In Proceedings of the Seventh InternationalConference on Architectural Support for Programming Languages and Operating Systems, pages 210{220, Cambridge, Massachusetts, October 1{5, 1996. ACM SIGARCH, SIGOPS, SIGPLAN, and theIEEE Computer Society.[11] David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishnamurthy, Steven Lumetta,Thorsten von Eicken, and Katherine Yelick. Parallel programming in Split-C. In IEEE, editor, Pro-ceedings, Supercomputing '93: Portland, Oregon, November 15{19, 1993, pages 262{273, 1109 SpringStreet, Suite 300, Silver Spring, MD 20910, USA, 1993. IEEE Computer Society Press.[12] Charlie Hu Honghui Lu and Willy Zwaenepoel. Openmp on networks of workstations. In Proc. of SuperComputing 98, Orlando, 1998.[13] Mike Norman Karl-Heinz Winkler Bill Dannevik Michael Levine Matthew O'Keefe Paul R. Woodward,Larry Smarr. University of Minnesota, Minneapolis, 1995.[14] NAS Parallel Benchmark Home page. http://science.nas.nasa.gov/software/npb/. Technical report.[15] M. Ando K. Kazuto Y. Tanaka, M. Matsuda and M. Sato. Compas: A pentium pro pc-based smpcluster and its experience. In IPPS Workshop on Personal Computer Based Networks of Workstations,pages 486{497. LNCS, 1998. 21

[16] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs: Characteriationand methodological considerations. In Proceedings of the 22nd Annual International Symposium onComputer Architecture, pages 24{37, New York, June 22{24 1995. ACM Press.[17] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and Maurice Yarrow.The NAS Parallel Benchmarks 2.0. Report NAS-95-020, Numerical Aerodynamic Simulation Facility,NASA Ames Research Center, Mail Stop T 27 A-1, Mo�ett Field, CA 94035-1000, USA, December1995.[18] Abdul Waheed and Jerry Yan. Parallelization of nas benchmarks for shared memory multiprocessors.In Marian Bubak Peter Sloot and Bob Hertzberger, editors, HPCN'98: High Performance Computingand Networking: Proceedings of the 1998 Conference: April, 1998, Amsterdam, The Netherlands., pages377{385. Springer verlag, 1998.

22

