Intra node parallelization of MPI programs with OpenMP

Franck Cappello and Olivier Richard
LRI, Université Paris-Sud, 91405
Orsay, France
Email: fci@lri.fr.

September 28, 1998

Abstract

The availability of multiprocessors and high performance networks offer the opportunity to construct
CLUMPs (Cluster of Multiprocessors) and use them as parallel computing platforms. The main distinc-
tive feature of the CLUMP architecture over the usual parallel computers is its hybrid memory model
(message passing between the nodes and shared memory inside the nodes). Some of the primary issues
to address for the CLUMP are: 1) to be able to execute the existing programs with few modifications 2)
to provide some programming models coherent with the performance hierarchy of the data movements
inside the CLUMP 3) to limit the effort of the programmer while ensuring the portability of the codes on
a wide variety of CLUMP configurations. We investigate an approach based on the MPI and OpenMP
standards. The approach consists in the intra-node parallelization of the MPI programs with an OpenMP
directive based parallel compiler. The paper presents a detailed study of the approach in the context of
the biprocessor PC CLUMPs. It provides three contributions. First, it evaluates the ability of bipro-
cessor PCs to effectively provide a speed up over single processor PCs in the context of shared memory
parallel programs. Second, it investigates the method to transform MPI parallel programs in order to
execute them on a CLUMP. Third, it presents the performance evaluation of this method applied on the
NAS parallel benchmarks executed on a cluster of biprocessor PCs.

1 Introduction

Many computing centers are now equipped with parallel platforms using PCs as computing nodes and a
high performance network like Myrinet as the interconnection network. Today, most of the microprocessors
(and especially the Pentium family) and their chip-set are designed to easily build multiprocessors. One
direct effect of this design strategy is that biprocessor PCs come to the market roughly at the same time
as single processor PCs for a given generation of microprocessor. One other effect is the relatively low ratio
of multiprocessor PC cost / single-processor PC cost. Since the cost of the network connection is a large
portion of the cost of a PC node in a parallel platform, it becomes appealing to use multiprocessor PCs as
the nodes for a parallel platform.

Networks of multiprocessors PC present an hybrid memory model: message passing between nodes and
shared memory inside each node and conform to the term of CLUMP (CLUster of MultiProcessors). It exists
several ways to program the CLUMPs. [1] and [2] presents respectively a taxonomy and a classification of
the programming model for the CLUMPs. We may classify two main approaches by distinguishing the
programmer view of the memory in a CLUMP:

e a single memory model (SMM) or
e an hydride memory model (HMM)

In the SMM approach the programmer only see one memory model. A mechanism is added to the platform
to unify the view of the memory model. The main drawback of the SMM approach is the performance cost
of the unifying mechanisms.

1.1 Message passing SMM

[3], [4] and [2] have developed a version of their message passing libraries to work in SMP platforms. We
also have ported a version of the BIP [5] library for SMP PC. The BIP library had been initially developed
for the Myrinet communication network. The cost of message passing in shared memory has three com-
ponents: First, the system bus will be shared for intra-node communication. So, colliding communications
must be sequentialized. This is a main disadvantage over a high performance network with point to point
communications. Second, a message passing requires at least one buffer copy from the sender buffer to the
receiver buffer even when it is performed in the shared memory. This will add some substantial extra memory
movements over the ideal situation where the shared memory execution model is used inside the SMP nodes.
Third, the message passing implementation in shared memory (i.e. the communications occur within the
shared memory by buffer copies) may reach communication performance lower inside the SMP than between
separate nodes. For example, in our implementation of BIP in shared memory, we obtain approximatively
half the bandwidth of inter-node BIP performance. The bandwidth is reduced due to the PC system bus
performance (500 MB/s with 66 Mhz system bus and 750 MB/s for 100 Mhz system bus) and the need to
cross the bus two times for each communication: buffer read and buffer write. Despite the use of optimized
memory copy or DMA copy mechanisms, the communication bandwidth reaches a maximum of 500 Mb/s.
Inter-node BIP performance reaches 1 Gb/s.

[6] presents a model to program the CLUMP through a small kernel of collective communication and
computation primitives. The communication primitives are implemented on top of a message passing library
and a SMP Library. Algorithms implemented with this model are programmed as a succession of collective
computations and collective communications.

1.2 Shared Memory SMM

Shared Virtual Memory environments provides the opportunity to program the CLUMP with the shared
memory model. Several projects have already published some design and performance results about the
CLUMP:[7], Shasta [8], Cashmere-2L [9] and SoftFLASH [10]. As for the mono-processor platforms, the
performance of DVSM mainly relies on the protocol efficiency.

Other programming paradigms, initially developed in the context of the single-processor node parallel
computers, may also unify the memory model for the CLUMP.

Split C [11] is a parallel extension to the C programming language that support access to a global address
space on distributed memory architectures. Split-C allows the programmer to use two types of pointers:
standard pointers and global pointers. Global pointers reference the entire address space. Standard pointers
reference only a memory region local to the processor. By distinguishing local and remote memory accesses,
Split-c gives the programmer a way to manage the locality of the data references.

Recently, OpenMP [12] has been implemented on a network of workstations on top of the Treadmark
DSM system. It provides a very convenient way to program the distributed memory architectures. Its
performances relies on the shared virtual memory software.

1.3 HMM

HMM has been the first approach used to program the CLUMPs. Original works include programming
the PVPs (Parallel Vector Processor) where Vector Supercomputers are interconnected with a high speed
network to form a parallel architecture. HMM programming has been the theme of a workshop in 1995 [13].
Several contributions concerned the porting of applications from the parallel computers to the CLUMPs.
Recently the NAS parallel benchmarks repository has published the performance of a Power Challenge Array
on a selection of the NPB2 benchmark programs [14].

[15] presents a hybrid shared memory/distributed memory programming model for the CLUMP. Intra-
node computation utilizes a multi-threaded programming style. Inter-node programming is based on message
passing and remote memory operations. The hybrid programming model is based on the SPMD programming
style. The programmer has to manage the data set partition and distribution. Data sets are first partitioned
between the nodes. Each distributed data set portion is then partitioned among the threads within each
node.

1.4 Portability requirement

In both cases SMM and HMM, a main issue for the programmer is the portability of his code. Moving from
traditional supercomputers (vector machine) to shared memory or message passing parallel computers has
already forced the users to reconsider their application programming. Some programming standards have
emerged for parallel computers: HPF for data parallel computing and MPI for message passing. Shared
memory parallel computers are programmed using automatic parallelizers, directive based parallelizing com-
pilers or directly using a process or thread API. Moving from single processor nodes to multiprocessor nodes
in the parallel architectures may also require an effort. However, a methodology to program the CLUMPs
should seriously consider the portability criterion and provide an approach compliant with a wide variety of
CLUMP configurations.

1.5 A method based on MPI and OpenMP

In this paper, we investigate a methodology which primary aims to provide portable codes with a reduced
effort in the context of the HMM approach. The approach uses OpenMP for shared memory parallelism
inside the nodes and MPI for message passing between nodes.

OpenMP derives from the ANSI X3H5 standards effort. It is a set of compiler directives and runtime
library routines that extend a sequential programming language to express shared memory parallelism. The
language is extended by a collection of compiler directives, library routines, and environment variables.
The directives include parallel region constructs (OMP PARALLEL), work-sharing constructs (OMP DO)
that apply on DO loops to specify how iterations should be split among the threads, and synchronization
constructs. OpenMP conforms to the SPMD programming paradigm. The OpenMP API uses the fork-
join model of parallel execution. Program execution begins as a single process called the Master thread of
execution. The master thread executes sequentially outside the parallel regions. A parallel region is enclose
between a pair PARALLEL and a END PARALLEL directives. When the master thread enters a parallel
region it creates a thread team. Then, all threads in the team execute the statements of the parallel region.
The threads are synchronized upon the completion of the parallel region. The work sharing construct DO
allow to distribute the iterations of a do loop among the threads already existing in the parallel region.
By default the scope for variables in a parallel region is SHARED. A clause section in the format of the
PARALLEL and DO directives allows the user to control the scope attributes of the variables within the
directives. The clauses define a data environment for each member of the thread team. In particular, the
PRIVATE clause can be used to create dedicated copies of some variables for each thread of the team.

MPI is one of the post popular library for message passing for multi-PC parallel platforms. A lot of
applications have been written or ported for the message passing paradigm. A methodology proposed to
program the CLUMPs from MPI should also: A) provide a way to execute the existing the MPI programs
written for mono-processor nodes, B) ensure that the programs implemented with this methodology will
work with mono-processor nodes.

OpenMP is used in the methodology to express the intra-node parallelism from the Fortran code of
the MPI programs. This two steps framework corresponds to the hierarchy of granularities of the data
movements a) between SMP nodes and b) inside a SMP node.

When programming in the message passing style, the application is constructed as large communicat-
ing processes. Data and works are distributed among the nodes in order to 1) minimize the number of
communications, 2) pack the data to communicate in long messages and 3) overlap the communications by
computations. These optimizations are required due to the impact of the communication cost on the global
performance.

In shared memory parallel programming, data movements are also managed in order to limit their
contribution on the total execution time. The sequence of memory references are optimized by the compiler
or/and the programmer in order to exhibit temporal and spatial localities. However, the basic memory
movements in shared memory is usually a cache block. Moving cache blocs across the network of a parallel
architecture and especially across a network designed for message passing has two main drawbacks: a) the
time to make a remote reference (few microseconds) is huge for the processor point of view and it has to spin
a long time (thousands of instructions). b) the bandwidth provided by a high speed network may be wasted
with messages as small as a cache bloc. The non blocking cache and the data prefetch mechanisms are

used to reduce the penalty of the remote memory references. The block transfer engines in the distributed
shared memory machines provide a way to reach the bandwidth of a high speed network by transfering large
memory blocs across the network. An other way to reduce the remote memory penalty is to force the shared
memory data references to stay inside the node.

Before presenting the method for executing MPI-OpenMP programs on the CLUMP, we evaluate the
ability of the biprocessor PCs to effectively provide a speed up over the single processor PCs for numerical
applications. We also compare biprocessor versus mono-processor nodes in the domain of the global platform
cost.

2 Biprocessor versus mono-processor nodes

We have measured the performance of a multi-threaded version of the SPLASH2 [16] benchmark on multi-
processor PCs to evaluate the interest of using them as nodes for a parallel platform. The data sets used for
the measurements are presented in the table 1.

LU FFT | Cholesky | radix | Ocean | Water nsqured | fmm | Water spq | Radiosity
|data set | 2048 | 20/22 tk29.0 224 514 inuput2 4096 | 16384 4096 default

Table 1: Data sets for the SPASH2 benchmark programs used for the performance measurements

This study has been performed on three successive generations of biprocessor PCs (Pentium PRO 200,
Pentium IT 300 and Pentium II 400). The main differences between the Pentium PRO 200 nodes and the
Pentium IT 300 nodes are the CPU cycle time, the cache size (L1:2*8kB vs 2*16kB, L2: 256kB vs 512kB)
and the memory technology and pipelining (EDO vs SDRAM). The differences between the Pentium II 300
nodes and the Pentium II 400 nodes are the CPU cycle time and the system bus cycle time. The figure 1
presents the speed-up of biprocessor nodes versus single processor nodes for the three generations.

[1PPRO

BPI1300

W ri400

LU #
Water- [z
spa.

radix
ocean [
Water- [,
nsqua. [

Radiosity [g

Figure 1: Speed-up of biprocessor versus single processor for three generations of microprocessors

Recent biprocessors provide remarkable speedup over single processor PC for these benchmark programs.
For most of the benchmark programs,; the last generation provide a higher speedup than the previous ones.

Two main generation evolutions explains this results : larger processor caches (2*8kB and 256kB for Pentium
Pro versus 2* 16kB and 512kB for Pentium II) and a lower [processor frequency / bus frequency] ratio (4,5 for
the Pentium IT 300 and 4 for the Pentium IT 400). For these programs, larger caches and a lower [processor
frequency / bus frequency] ratio reduce the memory penalty and lower the impact of the bus accesses for

each processor.
The figure 2 presents the speed-up among the three generations for single processor.

Spedd-up

L1 PII300/PRO
PI1400/PI1300

M PIl 400/PRO

g

3

T,

LU [T
prm

radix
ocean
Water-
nsgua.
Water-
spa.
fmm

t g

Radiosity

Figure 2: Speed-up among three generations of mono-processors

For most of the benchmark programs, the increase of the CPU frequency and the cache size (Pentium
PRO versus Pentium IT 300) allows to provide a speed-up about 1.3. This speed-up evolves with the locality
properties of the data references. The programs exhibiting a high locality of data references do not take
benefice of the higher bus frequency of the Pentium II 400. So for these programs the speed-up is close to
the ratio of the processor frequency (400/300 = 1.33). The higher speed-ups for the Pentium II 400 over the
Pentium IT 300 occur for the programs with the less data reference localities.

Biprocessors seems to be good candidates as nodes for parallel platform because: 1) they offer the
opportunity of a high speedup over single processor nodes and 2) their speedup over single processor remains
stable across the processor generations.

2.1 Cost of biprocessor

Using biprocessor PCs as nodes for a message passing parallel platform may reduce their speedup over single
processor nodes due to the difficulty to efficiently program a parallel computer with an hybrid memory
model.

Multiprocessors nodes offer two potential interests for message passing parallel platforms. First, according
to their speedup over single processor nodes they may longer resist to the next generation mono-processor.
The Figure 3 present the speed-up of biprocessors PC of a given generation (g) over single processor PC
of the next generation (g+1). For the SPLASH2 benchmark, the PII 300 biprocessor keep a substantial
speed-up over the single processor PII 400 except for the OCEAN program.

Using biprocessors instead of single processors as the nodes increases the parallel platform cost. As for
the other potential applications of the parallelism, we have to compare the cost/performance ratios of the
biprocessor and the single processor nodes.

Speed-up

I P11300/2* PRO
B2 PI1400/2* PI1300

B PI1 400/2*PRO

Figure 3: Speed-up of the generation g mono-processor over the generation g-1 and g-2 biprocessors

The second potential interest of multiprocessor nodes resides in the reduced number of the network
connections for a given number of processors in a parallel platform. The Speed- up of biprocessor nodes
over single processor nodes seems to promise identical performance for the parallel platforms composed of n
single processors nodes or of n/2 biprocessor nodes.

This section has shown that the biprocessors are very promising as the nodes of parallel platforms. The
next section proposes an approach to execute MPI programs on the CLUMPs. Although they provide non-
negligible speed-ups for some programs, the result section will moderate our opinion about the performance
of the biprocessor used as the nodes of a parallel platform.

3 Intra MPI processes parallelization with OpenMP

Although the methodology described in this paper can be applied in the context of MIMD applications, we
describe it only in the context of applications programmed for the SPMD execution model.

3.1 The basic methodology

Parallelizing an application for the message passing following the SPMD paradigm often produces a program
with the typical layout presented in figure 4. The program starts initializing the communication system.
Then it performs some local computations and calls some communication subroutines to split the data sets
among the nodes participating to the application. The program continues executing a main block typically
containing a loop nest. The main block is designed to be executed in parallel. The body of the loop nest
can be described as a succession of three sections. The first section executes the node local computations.
The second section communicates some partial results to the other nodes. The third section synchronizes
the nodes before the next loop nest iteration. The final part of the program gathers the individual partial
results and computes the final result.

The applications written from MPI programs come in the form of one executable file that has to be
ran on each node of the parallel platform. Within each node, the program is executed inside a process. As
previously mentioned, this process computes on local data and communicates with the processes on the other
nodes. Parallelizing the program executed on each node lead to parallelize the main block. This block often
encompass an iterative calculus with inter-iteration dependencies. So intra-process parallelization could
not be attempted at this level in the general case. For most of the NAS programs, we have parallelized

: Message passing
Message passing + shared memory

init
MPI

- init SMP

init// _ - part
part _ -
- - - -
comp.
~
~
comm., > o
~
~
~
sync > o
N— =~ ~
~ end SMP
end // S \pat
part =
program cg subroutine conj _grad(colidx,...)
doi=1, I2npcols
call initialize_mpi call mpi_irecv(rho,...)
call mpi_send(sum,...)
call setup_proc_info(num_procs, ...) call mpi_wait(request,...)
call setup_submatrix_info(I2npcols,...) enddo
do it = 1, niter ISOMP PARALLEL PRIVATE(k,sum)
1$OMP DO
cal | conj _grad(colidx,...) do j=1,lastrow-firstrow+1
sum = 0.d0
doi=1, I2npcols do k=rowstr(j),rowstr(j+1)-1
call mpi_irecv(norm_temp2,...) sum = sum +
call mpi_send(norm_templ,...) a(k)*p(colidx(k))
enddo
call mpi_wait(request,...) w(j) = sum
enddo
enddo I1$OMP END DO
I$OMP END PARALLEL
endo
doi=I2npcols, 1, -1
call mpi_finalize(ierr) call mpi_irecv(...)
call mpi_send(...)
end call mpi_wait(request,...)
enddo
return
end

Figure 4: Parallelizing the MPI code. The main loop nest of the CG code calls the conj-grad subroutines and
contains some communication calls. The computation loop nest of conj-grad is parallelized for intra-node
execution using the shared memory paradigm.

the computational section of the main block. Figure 4 presents this hierarchy of parallelism: message
passing between MPI processes and intra-node parallelism within each MPI process. The intra-node parallel
execution is performed by a group of threads within the same process. The parallelization directives are
simply applied on the parallelizable loop nests of the original MPI code. From the other nodes point of view,
a biprocessor node with an intra node multi-threaded execution of a fraction of the MPI code behaves like
a mono-processor node.

The PGI fortran compiler used for our experiment is a subset of the OpenMP Fortran Application
Program Interface. The PGI thread implementation is based on the Pthread which is a de-facto standard.

When there is no inter-iteration dependencies in the program main loop nest, the parallelization can be
attempted at the main bloc level. In such a case, all intra-node parallel tasks will execute the communication

calls. The program correctness may require a total order for the communication performed by each node.
In that case, it is the responsibility of the programmer to add the necessary code to control the operation
sequence.

3.2 Selecting the loop to parallelize

The application may exhibit a large number of loop nests and subroutine calls. It can be difficult to discover
manually (reading the text source) which loop nests are worth while to parallelize.

In general, three parameters distinguish the loop nests to parallelize to the others: 1) of course, it must
exist a parallelization of the loop nest that respect the semantic of the sequential version, 2) the loop nest
must have a subtential contribution to the total execution time, 3) the body of the loop nests must be long
enough to make the parallelization overhead negligible.

The first parameter should be examined looking for the dependencies. It may also require some inter-
procedural analysis when the candidate loop nests contains some subroutine calls in their body. The second
parameter is obtained using a profiled execution of the application. It provides the respective cost of each
subroutine and each loop nest. The third parameter must be estimated according to the cost of the parallel
operations in OpenMP. Table 2 gives the cost of the main parallel operations for several nodes of our platform.

Pentium Pro 200 | Pentium II 300 | Pentium II 400
Fork-Join (Parallel DO) 5 us 3.5 us 3 us
Lock (Critical) 1.66 us 1.45 us 1.4 us
Barrier 1.36 us 1.33 us 1 us

Table 2: The cost of the parallel operations of OpenMP on our platform

The figure 5 presents a framework for selecting the loop nests to parallelize.

Execute
witha

profiler S:;OﬁTe: :J;p to Candidat
gndinsert MPI code for
SMP nodes

directives

Build the
cdling
graph

Remove of
rafine
parallelization

Figure 5: The parallelization framework

The framework begins with the MPI source file. The profiled execution allow to discover the most
expensive loop nests. It is not always judicious to parallelize all expensive loop nests. Assuming that the
calling graph is a tree, the rule to select the loop nests should be to investigate the loop parallelization from
the root of the calling graph to the leaf. Parallelizing at the highest level in the calling graph allows to
reduce the number of fork and join operations. It also allows to distribute more job to each thread. The
figure 6 presents a situation where the loop nest parallelization may be used at two different levels in the
calling hierarchy.

Assume that the three loop nests are parallelizable. The loop nest 1 is at a higher level on the calling
graph. Parallelizing at this level allow to use a single fork-join operation and include b2 in the parallel
execution. Parallelizing at the loop nest 2 and the loop nest 3 level requires 2 n fork join operations
(PARALLEL DO), reduces the amount of operations attributed to each thread and leads the execute b2
sequentially.

Ceall) Loop nest 2
Cop)
@ @ L oop nest 3

Loop nest 1

Figure 6: A situation where the loop nest are parallelizable at two different levels of the calling hierarchy

The next step after selecting the loop nests to parallelize is to add the OpenMP directives in the code
in order to obtain a candidate MPI code for SMP nodes. Then the program is compiled and ran on the
platform. At the end of the execution, the result correctness and the speed-up must be checked. If the result
is falls or if the speed-up is less than one, the parallelization must be refined or removed. This process may
require several iterations in order to provide an efficient and correct code.

3.3 Main conceptual advantage and limit of the method
3.3.1 Advantage

The intra-node parallelization with this methodology lead to an interesting property: all nodes still only
see a single entity on each other node i.e. a single MPI process. This property may be very useful for a
platform with heterogeneous nodes. For example, a parallel platform with a variety of multiprocessor nodes
and some mono-processor nodes will be able to execute all MPI programs. Such a platform could be useful
in the context the SPMD model assuming a balance of the individual performance of all node. For example,
according to the results of our SPLASH 2 experiment, a platform using Pentium IT 400Mhz mono-processor
nodes and Pentium Pro 200 Mhz biprocessor nodes will be balanced. So the methodology provides a way to
add up to date nodes in a parallel platform while continuing to use older nodes.

3.3.2 Limit

A limit of the approach comes from the way the shared memory parallelization is applied to the message
passing programs. With this method, we should not expect a local speed up close to the speedup one can
obtain by directly parallelize a sequential program. As shown on the figure 7, the intra node parallelization
only concerns the computation part of the main bloc of the original MPI program.

In contrast with a shared memory program directly derived from a sequential program, there is a lot of
substantial work that can not be parallelized. More precisely, the speed up is not only bounded by the local
sequential part contribution to the local execution time (Amdahl’s law) but also by the communication and
synchronization contributions to the local execution time. Unfortunately the Gustafson low does not apply
here as it does for usual parallel programs because the communication time may evolve as a function of the
data set size.

4 Intra node parallelization of the NAS NPB 2.3 Benchmarks

The methodology gives a general framework for the program parallelization. In this section, we will discuss
the parallelization of the programs of the NAS NPB 2.3 [17]benchmark suite. Despite several programs
require some specific optimizations to reach a useful speedup, we try to limit our investment to a ”reasonable
effort”: the rule was to obtain a reasonable speed-up (in term of the cost/performance ratio). In particular
we do not investigate the memory hierarchy nor the I/O optimization effects. Also, we do not intent to
parallelize the loops with a cost less than 1% of the total execution time. The parallelization of all the
programs takes about one month.

< \ >

U

Shared memory Sequential Message passing Message passing

™ + shared memory

Seq
part

—/
(parallel)
zable

g [

b=l
2

Figure 7: Fzxpansion of the parallelization overhead. Parallelizing for the shared memory or the message
passing paradigm requires to add some code to the original program. Parallelizing simultaneously with both
paradigms leads to add the initialization and the ending sequences of the both

For each benchmark, we have profiled a single node execution. This approach minimizes the communi-
cation cost and help the programmer to select the loop to parallelize. In other hand, the cost of all loops
changes when the program is executed in a multi-node version. The communication cost and the distribution
of the work among the nodes reduce the cost of the selected loops.

We also choose to profile the execution of the class W benchmark despite we intent to parallelize for the
class A version. Profiling the execution of the class A programs would give more accurate figures for each
loop cost. However profiling the execution of a program with a wide data set, a very long program or a
large set of programs may be not practical in general. Since this approach is attempted to be useful with a
reduced effort, we parallelize the class A version from the profiled execution of the class W version.

The result of the profiled execution is presented by a calling graph with the cost of the main subroutines.
Two costs are reported. The local cost do not includes the cost of the subroutines called by the current
subroutine. The total cost includes the cost of the routines called by the current subroutine. When the
parallelization is not trivial, we detail the structure of the subroutines and its loops.

LU, FT and CG are very easy to parallelize following our methodology. MG, EP, SP and BT require
more efforts and some dedicated optimizations.

10

4.1 LU

LU factors a dense matrix into the product of a lower triangular and a upper triangular matrix. The figure
8 presents the calling hierarchy and the cost of each function as returned by the profiled execution of the
original MPI version. The initialization sequence counts for less than 1% of the total execution time.

local cost: 0%, total cost : 100%

local cost: ~8%, total cost : ~99%
~

total cost : ~10%
total cost : ~19%

jacu | total cost: ~8%

total cost : ~17%
total cost : ~37%

Figure 8: The calling graph of LU

ssor contains four main loops. Two of these loops are parallelizable. The two other loops are not directly
parallelizable at least because they call some communication subroutines. rsh contains a sequence of 6 loop
nests. All the 6 loop nests have been parallelized. There are 2 calls to a communication procedure inside the
sequence between the loop nests. blts and buts begins and ends with a communication between nodes.They
also contains two loop nests of which only one (with the smallest body) is parallelizable. Finally, jacld and
jacu contain one loop nest with a long body which is parallelizable.

4.2 FT

FT implements a 3-D FFT to solve a partial differential equation. The 3-D FFT performs 1-D FFTs in each
dimension by calling the cffts(1,2,3) subroutines. The figure 9 presents the hierarchy of the main function
calls and their respective weights. The initialization are not presented in the figure. Their execution times
are included in the computation of the benchmark performance. Two subroutines (compute-indexmap and
compute-initial-conditions) total 5% of the execution time. We do not investigate their parallelization.

The fft routine contains a loop which cannot be parallelized at least because it contains some calls to
the transpose routine which, in turn, contains some communications calls. So the parallelization should be
applied only from the next call levels i.e. the cffts(1,2,3) routines. The cffts(1,2,3) have the same structure.
There is a single loop nest containing a call to the cfftz routine. As presented in [18], an inter-procedural
analysis shows that the subroutine calls are independents. So the outermost loop of the cffts(1,2,3) loop nest
is parallelizable providing the opportunity to get substantial job for each thread.

4.3 CG

GC Solves an unstructured sparse linear system by the conjugate gradient method. It uses the inverse power
method to find an estimate of the largest eigenvalue of a symmetric positive definite sparse matrix with a
random pattern of non-zeros. As shown in figure 10, most of the execution time is spent within the conj-grad
subroutine. However, initialization procedure for the CG program has a higher cost than for the previous
ones: about 7%. The percentage in the figure are not normalized. The first loop nest and the second one
are responsible respectively of 92% and 4% of the conj-grad procedure execution time. conj-grad contains
some other loop nests. All of them count for less than 1% of the procedure execution time. Nevertheless,
together these loop nests cost 4% of the procedure execution time.

11

local cost: 0%, total cost : 100%

local cost: ~1%, total cost : ~4%

local cost: ~<<1%, total cost : ~89%
\

local cost: 9%, total cost : ~31%

(cfis2) local cost: 9% —
total cost: ~31% local cost: 12%, total cost : ~64%

\
ocal cost: 10% total cost : ~27% total cost : ~49%

total cost : <<1%
~—a
transpose_local | total cost : <<1%
transpose_global | total cost: <<1%
transpose_finish | total cost :<<1%

Figure 9: The calling graph of FT

local cost: 0,2 %, total cost : 100%

~

total cost : ~92%

do cgit = 1, cgitmax
do j=1,lastrow-firstrow+1
sum = 0.d0

do k=rowstr(j),...
sum = sunq)+... total cost : ~85,5%

enddo
w(j) = sum
enddo
endo
do j=1,lastrow-firstrow+1
sum = 0.d0

do k=rowstr(j),...
sum =sum + ... total cost : ~3,5%

enddo
w(j) = sum
enddo

Figure 10: The calling graph and main loop nests of CG

We have parallelized the two main loop nests (j index).

4.4 MG

MG uses a multi-grid algorithm to obtain an approximate solution of a three-dimensional scalar Poisson
equation. MG is more complicated to parallelize essentially because its execution time is split among more
than ten subroutines. As for the previous figures, the figure 11 presents the calling hierarchy of the parallelized
subroutines. The figures (% of the total execution time) must be understood taking into account a very long

12

initialization procedure. The initialization time in W class is approximatively 66% of the total execution
time. Some time consuming subroutines can not be parallelized (zran3, comm1p, norm2u3, comm3) because
they contain communication calls or inter-iteration dependencies. Their combined execution time exceeds
30% of the total execution time.

local cost: 1,2%, total cost : 100%
~

local cost: <<1%,
total cost : ~53,5%

local cost: ~3,2%, total cost : ~6%
total cost : ~5,3%

total cost : ~6%

local cost: ~38,5%, total cost : ~42,5%

local cost: ~17%, total cost : ~20,3%

Figure 11: The calling graph of MG

mg3p is not parallelizable because it calls some communication subroutines. zero3, rprj3, interp, resid
and psinv contains loop nests that are parallelizable at the outermost loop.

4.5 EP

EP generates pairs of Gaussian random deviates according to a specific scheme and tabulates the number of
pairs in successive square annuli. With our methodology EP does not provide the property promised by its
name. It is a typical case where the programmer has to add some code and carefully manage the threads.
As shown in figure 12, EP contains one main loop nest. The initialization delay is negligible for EP. For each
MPI parallel process, most of the execution time (95%) is spent in the two innermost loops.

The loop nests do not execute any communication call. The communications occur at the end of the
program by the way of three reduction operations. The local computation provides a ¢ array and two scalars
(sx and sy) in each node. The reduction operations add the value of the distributed q arrays and (sx, sy)
scalars. The parallelization of the outermost or the innermost loop leads to create dedicated storage of sx,
sy and ¢ for each local thread. In both cases, some code must be added before the reduction operations to
combine the partial results computed by the threads within each node. We parallelize the outermost loop.
sx, sy and q becomes arrays indexed by the thread number. They are reduced locally to scalars (sx and sy)
or to one dimensional array (q) before the reduction operations.

4.6 SP

The SP solves three sets of uncoupled systems of equations in the x, y, and z direction. These systems are
scalar pentadiagonal. The execution time of the SP benchmark is split among ten main subroutines. As for
EP, the initialization cost can be neglected. So percentages of the total execution time can be considered as
is. The figure 13 presents the calling graph of SP.

The local cost of copy-face is negligible. It calls the compute-rhs subroutine and some MPI communication
routines. compute-rhs contains a long loop nest parallelizable at its outermost loop. It requires the dedication
of fifteen private scalar variables for each thread. (x,y,z)-solve contain a succession of loop nests. Most of them
are parallelizable at the outermost loop. The other generate or read messages to or from the communication

13

1 100%

total cost

do 150k =1, np
"do 120 =1, 100
120 continue
do 1401 = 1, nk
7 q@) = q(l) + 1.dO
SX =SX+t3
sy =sy+t4

140 continue

150 continue

call mpi_allreduce(sx, ...
call mpi_allreduce(sy, ...
call mpi_allreduce(q, ...)

NN

total cost : ~45%

total cost : ~50%

Figure 12: The main loop nest of EP

local cost: 0%, total cost : 100%

~
®."

local cost: ~0%, total cost : ~99%

/

900 {

total cost : ~1,5% txmvr

local cost; ~15%, total cost : ~21% | x_solve

local cost; ~16,5%, total cost : ~21,5% (y_solve

local cost: ~17,5%, total cost ; ~23% (z_solve

a1

(=]
o
=
i~<
—
QD
(=]
M
w

total cost : ~3,5%

compute_rhs) total cost : ~28,5%

lhsx total cost : ~4%

lhsy total cost : ~4%

lhsz total cost :

~

~4,5%

tzefar) total cost : ~1%

Figure 13: The calling graph of SP

buffers. These loop nests are not parallelizable due to an inter-iteration dependency: increment of the buffer
pointer. One loop nests of z-solve requires a loop exchange to provide the good result when parallelized.
lhs(x,y,z) contain five loop nest fully parallelizable. Finally, add, tzefar and txinvr contain one loop nest also

fully parallelizable.

4.7 BT

BT has the same structure as SP. The three sets of uncoupled systems of equations are block tridiagonal with
5x5 blocks in the BT code. The figure 14 presents the calling hierarchy of BT. Like for EP the percentages
of the total execution time can be considered as is.

local cost: 0%, total cost : 100%
~a

local cost: ~0%, total cost : ~99%
~a
~~ total cost : ~14%
local cost: ~0%, total cost : ~27%

~~a
total cost : ~5,5%
local cost : ~1%, total cost : 11,5% \
total cost : ~10%
local cost: ~0%, total cost : ~28% @ ~ total cost : ~10%

total cost : ~6,5% /
total cost : ~10%

local cost : ~1%, total cost : 11,5% (y_solve_cell

total cost : ~10% - total cost : ~12,5%
y_backsubstitute

- ~(00 .~ 0,
local cost: ~0%, total cost : ~29% M ~

total cost : ~7%
local cost : ~1%, total cost : 11,5%
total cost - ~10% | z_backsubstitute

total cost : ~3%

Figure 14: The calling graph of BT

copy-faces fills a communication buffer, executes some communication calls, reads the communication
buffer and finally calls compute-rhs. The buffer manipulation loop nests are not parallelizables due to the
buffer pointer increment within the innermost loop. compute-rhs contains one long loop nest fully paral-
lelizable at the outermost loop. (x,y,z)-solve make subroutine and communication calls. lhs(x,y,z) contain
two loop nests fully parallelizable. (x,y,z)-solve-cell call matvec-sub, matmul-sub and binverhs within a loop
nest. The inter-procedural analysis does not reveal any inter-iteration dependencies for these subroutine
calls. The loop nest can be parallelized at the outermost loop. (x,y,z)-backsubstitute contain one main loop
nest fully parallelizable assuming a loop exchange of the two outermost loops for z-backsubstitute.

5 Performance

In this section, we start presenting the platform used for the performance evaluation. Then, we compare
biprocessor versus single-processor configurations on the NAS 2.3 parallel benchmark. Finally, the CLUMP
performances are compared against the performances of some high end supercomputers with the same
benchmark.

5.1 Platform hardware and software

The platform contains a Myrinet network with four ports. We use three types of biprocessor nodes: Pentium
Pro 200 Mhz, Pentium IT 300 Mhz and Pentium IT 400 Mhz. Each myrinet PCI interface has a 1MB local

memory.

15

The software environment includes Linux 2.0.33, the BIP 0.94c version of the MPI library, the F77 PGI
1.7 programming environment, and the Linux Pthread library. BIP raw performances on Myrinet connected
PC is a latency of 5us and a bandwidth of 1 Gbit/s. MPI BIP reach 20 us (latency) and 1 Gb/s (bandwidth).
All benchmarks have been compiled with the 02, unroll and P6 options.

With this platform we are not able to provide global speedup scalability results due to the modest number
of nodes in our largest configuration. However, the global speedup scalability is not a main issue here. The
NAS Benchmark repository already provides some scalability results of some message passing architectures
(IBM SP2, NOW, P6 PC mono-processor connected by myrinet) executing the NAS benchmarks. From the
global speedup point of view, each biprocessor node behaves like a fast mono-processor node. So the global
speed-up versus number of nodes curve with biprocessor nodes are likely to follow the one of mono-processor
nodes.

The relevant issue here is to evaluate the change of the local speed-up (within the biprocessors) with
the number of nodes. As the result section will show, the local speedup evolve with the number of nodes
depending of the application and the data set size. As the next section will show, some general trends can
be derived for the local speedup even with a modest number of nodes.

5.2 Mono-processor PC versus biprocessor PC

In this section, we compare a parallel platform based on mono-processor nodes against a parallel platform
based on biprocessor nodes. We compare these platforms for three different configurations: 1 node, 2 nodes
and 4 nodes. All the measurements are made with Pentium II 300 Mhz nodes.

The figure 15 presents the speedup of the biprocessors based CLUMP over the single processor based
platform for a constant number of nodes.

Loca Speed-up
17
i\ —0- 0
16 + —&— LU
—B-
15 L F
—— CG
14 4
13 +
—O— EP
Y
12 A
/
11 4 —o— g7
1 } i
1node 2 nodes 4 nodes

Figure 15: Intra-node speed-up of the biprocessors over mono-processors for the NPB 2.3 Benchmarks and
for the same number of nodes

The speed-up evolves with the number of node in the CLUMPs following one of three trends:
e it remains constant (the inter node communications and synchronization have negligible impact on the

global performance. Typically the application data sets are large and the main loops exhibit substantial
parallelism)

3

16

e it increases (this is a case analogue to the previous one but reducing the data set attributed to each
node may increase the memory hierarchy effectiveness by reducing the block conflict penalty).

e it decreases (the inter node communications significantly contribute to the global performance. With
the increase of the number of nodes in the platform, each node has less data to compute for a given data
set size. The communication time is marginally reduced by the increase of the number of nodes. So
the communication time contribution to the local execution time increases with the number of nodes.
The consequence is the reduction of the local speedup.

The figure 16 shows that Pentium II 400 biprocessors provide a more constant speed-ups across the
different benchmarks. Their lower CPU frequency /bus frequency ratio help them to reach a higher speed up
for the applications with the less data reference localities. They are also more sensitive to the communication
cost.

Loca Speed-up
19+

1.8 1
1.7 1
1.6 1
1.5 1
1.4 1
1.3 1

[1 node PIl 300
E& 2 nodes PIl 300
1 node PIl 400

M 2 nodes PIl 400

LU FT CG MG EP

Figure 16: Local speed-up of the biprocessors Pentium II 400 Mhz nodes and of the biprocessors Pentium I
300 Mhz nodes for the NPB 2.3 Benchmarks

The figure 17 presents the performance of the biprocessors based CLUMP against the single processor
based platform for a constant number of processors.

We should consider the cost/performance ratio of the biprocessor nodes against the mono-processor nodes.
As we have previously mentioned, using multiprocessors instead of mono-processors as the nodes of a parallel
platform allows to significantly reduce the number of network connections in the platform. A biprocessor
based platform requires half the connections of a mono-processor based platform. This is a significant issue
for the PC based parallel platforms because the cost of the network connections is a significant part of the
global node cost. The PC based parallel platforms typically associate high performance PCs (but relatively
low cost) with very high performance network (Myrinet, SCI, etc.). In a typical mono-processor PC based
parallel platform, the network cost is the half of the total platform cost. Biprocessors are about 1.5 times
more expensive than mono-processor for a given microprocessor and memory size. Assuming these ratio, for
a given number of nodes, a biprocessor based platform is 1.25 times more expensive than a mono-processor
based platform. According to the speed-up in the figure 15, biprocessor nodes justify their extra cost (up
to 4 nodes, at least). For a constant number of processors, a biprocessors based platform is about 1.6 times
less expensive than mono-processor based platform. The figure 17 shows that the global speed-up of the
biprocessor based platform is higher than 0.6 except for LU. So biprocessor based platforms justify their
usefulness by providing an alternative to the mono-processor based platforms.

17

O 2 nodes

&4 4 nodes

[a
2 & 8 g &

Figure 17: Global speed-up of the biprocessors over mono-processors for the NPB 2.3 Benchmarks and for
the same number of processors

5.3 Network of biprocessor PC versus high end supercomputers

We compare a parallel platform based on biprocessor PC nodes against some of the most powerful parallel
computers. The comparison is made for three different configurations: 1 node, 2 nodes and 4 nodes. The
measurements for the two first configurations are made with Pentium IT 400 Mhz biprocessor nodes. The
figures for the 4 node performances are estimations (to the reviewer: the final version of the paper will
include the actual measurements. The figures are obtained with the equation:

Single node
Pentium Il 400 Mhz
biprocessor

4 Pentium Il 400 Mhz performance 4 Pentium Il 300 Mhz

biprocessornode =~ — ————— >< biprocessor node

performance Single node performance

Pentium Il 300 Mhz
biprocessor
performance

Figure 18: The equation used to compute the performance of the 4 nodes Pentium II 400 biprocessors

The resulting figures should be understood as optimistics. The communications may have a greater
influence for the Pentium IT 400 nodes and they may reduce the speed-up of the Pentium IT 400 nodes over
the Pentium IT 300 nodes for these programs.)

The figures 19,20 and 21 presents the performance of the biprocessors PC CLUMP against the SGI/CRAY
T3E 900, T3E 1200, the SGI Origin 2k with 195 Mhz processors, the IBM SP2 with 66Mhz Power 2, the
HP/Convex Exemplar SPP2000 and the SUN Ultra Entreprise 4000 for a constant number of nodes. The
figures come from the NAS NPB2.3 repository.

The benchmark sources have been modified for the parallelization on the CLUMP with the OpenMP
directives. However, less than 5% of the lines of the source code differs of the original code. For a same
number of nodes (2 processors per node on the CLUMP), our PC based CLUMP approximatively reaches
the performance of the supercomputers.

18

Mflops
100 - 1 node

[] cLump

B 1BM sPe6

SGI Or. 2k 195
HP/conv. Ex. SPP 2k

B sun uit. Ent. 4k

N

FT. CG MG EP

Figure 19: Performance of the CLUMP and some parallel supercomputers on the NAS NPB 2.3 Benchmark
suite for the single node configuration

Mflops
200 -+
180 -
160 -
£ U cLump
140 {| B
120 gg Z IBM SP 66
100 - %E B T3E 900
N
80 1 §§ E T3E 1200
60 4 BEE]
N SGI Or. 2k 195
40 4B E
e
20 4 E
o ILEEE

LU CG MG EP

Figure 20: Performance of the CLUMP and some parallel supercomputers on the NAS NPB 2.3 Benchmark
suite for the configuration with 2 nodes

6 Conclusion
In this paper, we have investigated a method for programming the cluster of multiprocessors. This method

belongs to the HMM (hybrid memory model) approach. It requires the programmer to deal both with the
message passing and the shared memory paradigms.

19

Mflops

500 —
40 + N 4 nodes CLUMP
\ 0 pir 300
R\
N B4 1BM sP 66
350 N i
§ T3E 900
300 + BN
A B T3E 1200
250 N
N 74 SGI Or. 2k 195
200 A
N HP/conv. Ex. SPP 2k
150 A
K
A I SUN Ut Ent. 4
100 §§
; =i
50 N
A
O A

Figure 21: Performance of the CLUMP and some parallel supercomputers on the NAS NPB 2.3 Benchmark
suite for the configuration with 4 nodes

The method consists in the intra-node parallelization of the MPI programs by using an OpenMP directives
based parallel compiler. We have presented a framework to select the loop to parallelize. The NAS NPB 2.3
benchmark suite has been parallelized using this method. We have presented a detailed analysis of the intra-
node parallelization for each benchmark program. We have pointed-out some advantages of the method: 1)
the existing MPI programs can be reused with few modifications, 2) the programming model is coherent
with the performance hierarchy of the data movements inside the CLUMP, 3) the effort of the programmer
is limited while ensuring the portability of the codes on a wide variety of CLUMP configurations.

and also a main drawbacks: a sort of Amdahl’s law governing the intra node speed-up.

A preliminary performance study has shown the potential speed-up of the biprocessor PC over the
mono-processor PC. For most of the programs of the SPASH2 benchmark suite, the potential speed-up of
the biprocessors is close to 2. The intra-node speed-up for the NAS parallel benchmark is lower (between 1.2
and 1.8 depending of the program for the PII 400 node). Moreover the speed-up evolves with the number
of nodes following one of the three behavior: staying constant, reducing of increasing, depending of the
benchmark program features.

Despite the method provides variable local speed-ups, it is much more practical than the manual par-
allelization approach to program the CLUMP. Using this method we have compared the performance of
the CLUMP and some of the high end supercomputers from the NAS NPB 2.3 benchmark. For a same
number of nodes (2 processors per node on the CLUMP), our PC based CLUMP approximatively reaches
the performance of the supercomputers.

Finally, from the cost/performance point of view and under certain conditions, the biprocessors are a
competitive alternative to the mono-processors the nodes of a parallel platform.

20

References

[1]

2]

E. L. Lusk W. W. Gropp. A taxonomy of programming models for symmetric multiprocessors and smp
clusters. In in Proceedings of Programming Models for Massively Parallel Computers, pages 2—7, 1995.

Hakon o. Bugge and Per O. Husoy. Efficient sar processing on the scali system. Report IPPS97, Scali
Computer AS, 1997.

M. Bernaschi. Efficient message passing on shared memory multiprocessors. Lecture Notes in Computer
Science, 1156:221, 1996.

Steven S. Lumetta, Alan Mainwaring, and David E. Culler. Multi-protocol active messages on a cluster
of SMPs. In ACM, editor, SC’97: High Performance Networking and Computing: Proceedings of the
1997 ACM/IEEE SC97 Conference: November 15 21, 1997, San Jose, California, USA., pages 77 77,
New York, NY 10036, USA and 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1997.
ACM Press and IEEE Computer Society Press.

L. Prylli and B. Tourancheau. Bip: a new protocol designed for high performance networking on
myrinet. In Workshop on Personal Computers based Networks Of Workstations, 1998.

David A. Bader and Joseph J J . SIMPLE: A methodology for programming high performance algorithms
on clusters of symmetric multiprocessors (SMPs). Technical Report CS-TR-3798 and UMIACS-TR-97-
48, Institute for Advanced Computer Studies, University of Maryland, College Park, MD, May 1997.

R. Samanta, A. Bilas, L. Iftode, and J. P. Singh. Home-based SVM protocols for SMP clusters: Design
and performance. In Proc. of the 4th IEEE Symp. on High-Performance Computer Architecture (HPCA-
4), February 1998.

D. J. Scales, K. Gharachorloo, and A. Aggarwal. Fine-grain software distributed shared memory on
SMP clusters. In Proc. of the 4th IEEE Symp. on High-Performance Computer Architecture (HPCA-4),
February 1998.

R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis, S. Parthasarathy, and Michael
Scott. Cashmere-2L: Software coherent shared memory on a clustered remote-write network. In Proc.
of the 16th ACM Symp. on Operating Systems Principles (SOSP-16), October 1997.

Andrew Erlichson, Neal Nuckolls, Greg Chesson, and John Hennessy. SoftFLASH: Analyzing the per-
formance of clustered distributed virtual shared memory. In Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages and Operating Systems, pages 210-
220, Cambridge, Massachusetts, October 1-5, 1996. ACM SIGARCH, SIGOPS, SIGPLAN, and the
IEEE Computer Society.

David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishnamurthy, Steven Lumetta,
Thorsten von Eicken, and Katherine Yelick. Parallel programming in Split-C. In IEEE, editor, Pro-
ceedings, Supercomputing '93: Portland, Oregon, November 15 19, 1993, pages 262 273, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA, 1993. IEEE Computer Society Press.

Charlie Hu Honghui Lu and Willy Zwaenepoel. Openmp on networks of workstations. In Proc. of Super
Computing 98, Orlando, 1998.

Mike Norman Karl-Heinz Winkler Bill Dannevik Michael Levine Matthew O’Keefe Paul R. Woodward,
Larry Smarr. University of Minnesota, Minneapolis, 1995.

NAS Parallel Benchmark Home page. http://science.nas.nasa.gov/software/npb/. Technical report.

M. Ando K. Kazuto Y. Tanaka, M. Matsuda and M. Sato. Compas: A pentium pro pc-based smp
cluster and its experience. In IPPS Workshop on Personal Computer Based Networks of Workstations,
pages 486 497. LNCS, 1998.

21

[16]

[17]

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs: Characteriation
and methodological considerations. In Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 24-37, New York, June 22-24 1995. ACM Press.

David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and Maurice Yarrow.
The NAS Parallel Benchmarks 2.0. Report NAS-95-020, Numerical Aerodynamic Simulation Facility,
NASA Ames Research Center, Mail Stop T 27 A-1, Moffett Field, CA 94035-1000, USA, December
1995.

Abdul Waheed and Jerry Yan. Parallelization of nas benchmarks for shared memory multiprocessors.
In Marian Bubak Peter Sloot and Bob Hertzberger, editors, HPCN’98: High Performance Computing
and Networking: Proceedings of the 1998 Conference: April, 1998, Amsterdam, The Netherlands., pages
377-385. Springer verlag, 1998.

22

