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Abstract. Quantum error prevention strategies will be required to produce
a scalable quantum computing device and are of central importance in this
regard. Progress in this area has been quite rapid in the past few years. In order
to provide an overview of the achievements in this area, we discuss the three
major classes of error prevention strategies, the abilities of these methods and
the shortcomings. We then discuss the combinations of these strategies which
have recently been proposed in the literature. Finally, we present recent results
in reducing errors on encoded subspaces using decoupling controls. We show
how to generally remove mixing of an encoded subspace with external states
(termed leakage errors) using decoupling controls. Such controls are known as
‘leakage elimination operations’ or ‘LEOs’.

1. Introduction
Preventing errors in quantum information is an important part of quantum

information theory and a central goal in quantum computing. Since efficient
algorithms make use of many particle quantum states which are very fragile, this
will be a key component of any working quantum computing device.

An idealistic goal would be the noiseless evolution of the quantum system.
(We will take ‘noise’ to mean both undesirable unitary evolution and decoherence
in a quantum system throughout this article and will specify if and when the need
arises.) However, it is clear that no system is noiseless, since it will always interact
with an environment and we cannot implement any operation perfectly. Thus after
isolating a system to the best of our ability, we should aim for the realistic goals of
the identification and correction of errors when they occur and/or avoiding noises
when possible and/or suppressing noise in the system. To each of these tasks there
corresponds an error prevention strategy developed for the specific purpose;
quantum error correcting codes (QECCs), decoherence-free or noiseless sub-
systems (DFSs) and ‘bang–bang’ (BB) decoupling controls. All three of these
classes of error prevention have limitations. Therefore, the choice of error preven-
tion protocol depends on the system. Hybrid strategies appear to be required for
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near-future experiments in which controllable qubits are available in a limited
supply.

In the first part of this article we give an overview/review of the three error
prevention strategies. This is designed to be a resource for novices as well as
experts which conveys the ideas, objectives and several key references for quantum
error prevention schemes. This includes an introduction to, and the range of
applicability of, the three quantum error prevention classes. We then review some
proposals for the combinations of these methods. Finally, we discuss recent results
concerning the elimination of errors which serve to destroy the effectiveness of
encoded qubits.

2. Quantum error correction strategies
2.1. Quantum error correcting codes

Very generally, we may describe a quantum error correcting code as a set of
states which can be used to store information in a way that errors are able to
be detected and corrected during a quantum information processing task. As with
classical error correcting codes, the code is a repetition or redundancy code
where information is stored in a state within a subspace. Errors are correctable
as long as they map orthogonal states to orthogonal states. The first to show how to
implement a quantum error correcting code (QECC) were Shor [1] and Steane [2],
who proved the in-principle possibility of correcting errors in quantum computing
devices. Shor’s code uses nine physical qubits to encode one logical qubit and thus
stores one qubit of information reliably. It protects the logical qubit against single
independent errors on the physical qubits and is denoted [9, 1, 3]. The first entry is
the number of physical qubits, the second the number of logical qubits and the
third is the distance. (d ¼ 2tþ 1, where t is the number of errors which the code
can protect against.) Subsequently, several methods were discussed for the
construction of ½n, k, d � codes [2–5]. (A lucid account of the precise requirements
is given in [6].)

Several authors investigated quantum error correcting codes, showing that
there are large classes of such codes. Two especially important classes are the CSS
codes (Calderbank and Shor [3] and Steane [2]) and their generalization, the
stabilizer codes [4, 5]. In addition to the descriptions of the classes of codes which
protect against different types of errors, a bound was obtained, called the quantum
Hamming bound, which describes the smallest set of states needed to protect
against a given set of errors and defines efficient codes [6, 7]. This sets the limit of
five for the number of physical qubits needed to protect one logical qubit against
arbitrary single independent errors on the physical qubits. When errors are not
independent or when gating errors are present, the number of physical qubits
required to encode one logical qubit grows dramatically. In addition, storage and
gating errors must be below a certain threshold for this scheme to work reliably.
(See [8] and references therein for the threshold as well as fault-tolerant recovery
requirements.) These constraints imply QECCs are the least qubit intensive when
gating errors are low and the errors are truly independent.

In the near future (perhaps before 2010), we expect to have fewer than 50
physical qubits available in quantum computing experiments. Therefore, physical
qubits will be a scarce resource. An encoding into a QECC would demand that
50 logical qubits are reduced to, at most, ten (neglecting ancilla qubits which are
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used for fault-tolerant recovery). Ten qubits can be created for use in NMR

experiments at this time and proof-of-principle experiments have already been

performed to exemplify the use of QECCs [9]. We therefore seek error prevention

methods which provide a higher ratio of the number of logical qubits to physical

qubits in order to investigate a wider range of scaling issues and algorithms. This

is, in large part, the motivation for hybrid error prevention techniques, discussed

below, which are sought for use in experiments which will be performed in the

next ten years.

2.2. Decoherence-free subspaces and (noiseless) subsystems

A decoherence-free subspace and its generalization, a noiseless or decoherence-

free subsystem (DFS), is a state or set of states which is not vulnerable to

decoherence [10–15]. (For a recent review, see [16].) In this case, one takes

advantage of a symmetry in a system–bath interaction in order to store information

in a DFS which is invariant under the action of the interaction Hamiltonian.

Under appropriate circumstances, one can expect such a symmetry to exist.

However, identifying a useful symmetry and taking advantage of it can be very

difficult. One must (1) identify the symmetry, (2) find the states which are

invariant to the interaction and (3) construct, if possible, operations on the system

which will serve as a universal set of gating operations while preserving the

necessary symmetries. Although this may seem a daunting task, DFSs have

been found which satisfy all of these requirements.

DFSs have shown promise in several experiments and have been observed to

reduce noise in others [17–20], including computation in a DFS [21–22]. DFSs

have also led to the concept of encoded universality (finding subspaces in which

universal quantum computing can be performed even when it is not possible to

perform universal computing on the whole space) [14, 23–32].

The simplest example of a DFS which shows promise for several experiments

is a code which uses two physical qubits to encode one logical qubit and protects

against collective phase errors [10–15]. The logical zero for this code is given by

j0Li ¼ j01i and the logical one state is j1Li ¼ j10i. It is clear that when the

operation of a collective error, Sz ¼ að�z � 11þ 11� �zÞ (a is any constant), acts

on this code, whether its origin is a unitary evolution or a collective error, the code

is unaffected. (Sz gives zero when acting on the encoded qubit.) This code can also

be shown to enable universal quantum computing using only the exchange

interaction [26, 28, 33].

For near-future experiments, DFSs have advantages over quantum error

correcting codes since the number of physical qubits required to encode one logical

qubit is typically lower, and they do not require repeated identification and

correction of errors. Once the qubits are encoded, they evolve noiselessly.

The disadvantage is the difficulty in identifying the symmetry and exploiting it.

(We may also note that DFSs are not inherently robust against all types of gating

errors. If gates are chosen properly, the gates do not take the system out of the DFS.

If ‘over- or under-rotation’ occurs, we may choose to concatenate a DFS with a

QECC, as discussed in section 3.) Even when a symmetry cannot be found, in some

cases it can be actively generated, a procedure known as encoded decoupling [28, 29,

33–38].
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2.3. Dynamical decoupling

Bang–bang (BB) decoupling operations can be traced back to the decoupling
operations used in NMR experiments [39, 40]. In the simplest case, one lets the
Hamiltonian evolve for a time t, then changes the open-system evolution by acting
only on the system, and lets it evolve for a second time t 0. This produces an
effective evolution after a total time tþ t 0. If the time evolution (the Hamiltonian)
can be inverted for a time t 0 ¼ t, then the two evolutions will cancel, producing
zero net evolution after time 2t. They may therefore be used to eliminate
Hamiltonian evolutions.

The first uses for the purpose of general noise reduction in quantum computing
systems are found in [41, 42]. These showed that, within a spin-boson model,
strong, fast operations can be used to eliminate the interaction with the environ-
ment which causes dephasing of a qubit. However, BB can be viewed more
generally as a symmetrization, or averaging, technique which is more general
than simply inverting the time evolution directly [43–46]. Several extensions of
this method have been given, including conditions for computing in the presence
of the decoupling controls [47] and for using empirical data to determine an
appropriate set when computing or not [35].

The motivation for studying this technique more thoroughly is clear: dynamical
decoupling controls do not require extra qubits for the reduction/elimination of noise
and decoherence in the quantum system. This is a major advantage since, as stated
above, physical qubits will be a scarce resource in near-future experiments. The
limitation of dynamical decoupling is that the method assumes that the control
operations are strong and fast [35, 41–45, 47–55]. In fact, there is a strong
connection to the quantum Zeno effect (QZE) [56]. Systems certainly exist for
which neither of these assumptions is difficult to satisfy and the strong assumption
is less stringent [57]. However, the fast assumption can be quite difficult to satisfy,
and, if it is not satisfied, decoherence can be accelerated rather than suppressed, as
in the inverse QZE [56]. Roughly speaking, we require a complete set of control
operations to be implemented within the correlation time of the bath [41, 44]. This
is due to the fact that one aims to eliminate the system–bath interaction before the
information is irretrievably lost, quite opposite of a Markovian assumption. There
is a notable exception, however; in the case of 1/f noise, BB has been shown not to
crucially depend on the high-frequency bath cut-off (which is the inverse of the
correlation time of the bath) [58, 59]. This implies that the fast requirement is
not difficult to satisfy in some important cases including trapped ions [37]. The
strength requirement can also be relaxed if certain other conditions apply [60].

Soon after the initial research into BB, several authors sought to combine BB
with DFSs [33–35, 43, 46, 50]. This is, in part, the subject of the next section:
combining error prevention techniques.

3. Combining methods of error prevention
Given the three different error prevention methods described above, several

possibilities for combinations exist. To be specific, we could combine

(1) DFSs and QECCs,
(2) QECCs and BB,
(3) DFSs and BB,
(4) QECCs, DFSs and BB.
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At this time, all of these combinations have been explored to varying degrees in
the literature. The first combination, DFSs and QECCs, is described in [61, 62].
In the case of [61], a perturbative independent error on a DFS structure may be
detected and corrected. In the case of [62], computation takes the encoded
information out of and then into the DFS, and errors that occur along this
trajectory may be corrected by a compatible QECC. The subject was also studied
for ‘detected-jump error correcting’ (detecting a spontaneously emitted excitation)
in [63–66]. The idea is to let the DFS encoding protect against the non-unitary,
conditional evolution that arises in the quantum trajectories picture, and let the
QECC correct the errors that arise during quantum jumps in the same picture.
The second combination, QECCs and BB, can be achieved in at least two ways.
First, one can use BB on each physical qubit in the code to reduce noise on that
particular independent qubit. One could also use BB on the logical qubits using the
stabilizer formalism to determine the appropriate decoupling sequence [33, 67].
A third possibility is to use BB to suppress the conditional evolution and use
QECC to correct quantum jumps, in the quantum trajectories picture [68]. This
combination is interesting in the sense that it uses a minimal QECC (nþ 1 physical
qubits per n logical qubits) and applies BB in the Markovian regime (though the
trajectories themselves are non-Markovian). The third combination, DFSs and
BB, has been the most thoroughly explored. There are several different motiva-
tions for this, but the primary objective is to produce an effective evolution which
is compatible with a DFS [33–37, 43, 46, 50, 67, 69]. In all of these scenarios, the
demands on the physical system have been drastically reduced by requiring only
that the Hamiltonian be modified by BB in order to produce an interaction
Hamiltonian which is compatible with an encoding method. This is in contrast
to the original decoupling proposals which required that the interaction Hamilto-
nian be eliminated.

In principle, BB can be combined with any encoding [33, 35, 43, 69]. The
codewords could then be DFS codewords, QECC codewords or any combination
thereof. However, more specific results exist for the combination of all three
methods in order to actively produce the conditions for a DFS and for correction
of the departure from the symmetry required for a DFS using QECC
techniques [34, 62]. In the next few sections we discuss methods of eliminating
errors on a predefined qubit (encoded or physical) using BB.

4. Eliminating leakage
We now discuss a specific combination of encoding and BB methods called

‘leakage elimination’. We begin by reviewing previous results, then presenting new
results and finally we provide examples of physical systems where such techniques
are useful.

An ideal qubit is a two-level system consisting of a pair of orthonormal
quantum states. However, this idealization neglects other levels which are typically
present and can mix with those defining the qubit. This mixing is what we
will refer to as ‘leakage’. Leakage may be the result of the application of logical
operations, or induced by system–bath coupling. In the former case, a rather
general solution was proposed in [70]. In the next few sections we will be
interested in decoherence-induced leakage. The logical qubits of codes, as well
as physical qubits, can undergo leakage errors, which are particularly serious: by
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mixing states from within the code and outside the code space, leakage completely
invalidates the encoding. A simple procedure to detect and correct leakage, which
can be incorporated into a fault-tolerant QECC circuit, was given in [71]. This
scheme is, however, not necessarily compatible with all encodings [30]. Here we
present a universal BB solution to leakage elimination in the limit of fast and strong
‘bang–bang’ (BB) pulses [41, 44, 49, 72].

4.1. Leakage elimination operators

Suppose that several multilevel systems are used to encode 2K logical states
representing K qubits (with the appropriate tensor product structure). Let us
arrange the basis states fjkigNk¼0, N ¼ 2K of HN so that j0ii and j1ii (i 2 K )
represent the physical or encoded (logical) qubit states. The code subspace will
be denoted C and its orthogonal complement C?. For example, C could consist of
the ground and first excited states of a quantum dot or atom representing j0i and
j1i (the other states in the dot/atom would be C?) or they could be j0Li and j1Li of
a DFS or QECC.

We can classify all system operators as follows:

E ¼
�L 0
0 0

� �
, E? ¼

0 0
0 �?

L

� �
, L ¼

0 D

F 0

� �
, ð1Þ

where �L and �?
L correspond to operations on the logical states and the orthogonal

subspace, respectively. Operators of type E produce logical operations, i.e. they act
entirely within the code subspace. These could be unitary evolutions in the space
or non-unitary errors which arise in the logical subspace due to system–bath
coupling. E? operators, on the other hand, have no effect on the code as they act
entirely outside the qubit subspace. Finally, L represents the leakage operators,
with D,F off-diagonal blocks which have the effect of creating superpositions
between states within a code and outside of the code subspace. These algebraic
elements correspond to the leakage from, or to, the logically encoded subspace.

Let us now recall the ‘parity-kick’ scheme [41, 49], which is a special case of
BB. The total system–bath Hamiltonian can be written as HSB ¼ HC þH? þHL,
where HC (H?,HL) is a linear combination of elements of the set E (E?,L)
tensored with bath operators. Now consider a leakage-elimination operator (LEO)

RL ¼ ei�
�I 0
0 I

� �
, ð2Þ

where the blocks have the same dimensions as in equation (1) and expði�Þ is an
overall phase factor. This operator anticommutes with the leakage operators:
fRL,Lg ¼ 0, while ½RL,E � ¼ ½RL,E

?� ¼ 0. It is an LEO since it follows that the
following (parity-kick) sequence eliminates the leakage errors:

lim
n!1

ðe�iHSBt=nR
y

Le
�iHSBt=nRLÞ

n
¼ e�iHCte�iH?t: ð3Þ

To physically implement this, in practice one takes n ¼ 1 and makes the time t
very small compared to the bath correlation time [41, 49]. Equation (3) then holds
to order t2, and implies that one intersperses periods of free evolution for time t
with RL, R

y

L pulses which are so strong thatHSB is negligible during the BB pulses.
The term e�iH?t in equation (3) has no effect on the qubit subspace. The term
e�iHCt may result in logical errors, which will have to be treated by other methods,
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e.g., concatenation with a QECC [61, 71, 73], or additional pulses [33, 44, 45].
Therefore, in order to eliminate leakage, we seek an LEO for a given encoding,
which is obtainable from a controllable system Hamiltonian HS acting for a time �,
i.e. RL ¼ expð�iHS�Þ.

4.2. Generalized LEO

The leakage operator given in [36] was termed canonical if the corresponding
Hamiltonian was also a projection operator onto the code space C. The physically
available logical operations may or may not be canonical in this sense. Here we
show that we may relax this restriction and that one may obtain an LEO that need
not also be a projective operation. In section 4.4 we will give an explicit example of
such an operator.

In [36, 43] it was shown that an LEO RL may be obtained through the
exponentiation of a Hamiltonian in the following form:

RL ¼ expð� ip�L PÞ, ð4Þ

where P is a projection and �L any operation such that �L ¼ �y

L and �2
L ¼ 1,

e.g. a logical operation. Note that the logical operations very often are already
projective in the sense that they operate only on the code space. Examples will be
given below.

However, not all LEOs have such a form and we now give a more general
characterization of an LEO. Let the Hamiltonian for an LEO be given by

H ¼
H1 0
0 H2

� �
, ð5Þ

where H1 acts on the code subspace and H2 on the orthogonal complement. If H1

is diagonal with even (odd) integers as the diagonal elements and H2 is diagonal
with odd (even) integers as the diagonal elements, then one may write the LEO as

RL ¼ U expð�ipHÞUy, ð6Þ

where U ¼ U1 �U2 is a direct sum (block diagonal). In this case, H is not
projective since it may have non-zero eigenvalues when acting on the subspace
orthogonal to the code. The effective LEO, however, is unchanged, i.e. the form
equation (2) is obtained, which again produces and thus eliminates leakage errors
as desired. Such is the case for the four-qubit DFS example in section 4.4.

We should note at this point that this can immediately be generalized to an
arbitrary number of qubits (physical or logical qubits) [36]. We will review several
physical examples of leakage elimination from [36] in the next section.

4.3. Examples of leakage elimination in physical systems

4.3.1. Example 1. As a simple first example, consider physical qubits (without
encoding), such as electrons on liquid helium [74], or an electron-spin qubit in
quantum dots [75–78], or a nuclear-spin qubit in donor atoms in silicon [79–80].
In those cases, a potential well at each site traps one fermion. Usually, the ground
and first excited state are taken as a qubit for a given site: jki ¼ c

y

kjvaci, where cyk is
a fermionic creation operator for level k ¼ 0, 1. Let nk ¼ c

y

kck be the fermion
number operator. The logical operations for this qubit are E ¼ fX ¼ c

y

0c1 þ c
y

0c1,
Y ¼ iðc

y

1c0 � c
y

0c1Þ, Z ¼ n0 � n1g, whose elements satisfy su(2) commutation
relations. In this case, a general linear Hamiltonian which includes hopping
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terms, HSB ¼
PN�1

k, l¼0 aklc
y

kcl, where akl includes parameters and bath operators, and
k, l denote all electron states, can leak the qubit states k ¼ 0, 1 into any of the other
states. Using parity-kicks, we can eliminate this leakage in terms of the LEO:
RL ¼ exp½�ipðn0 þ n1Þ�. This LEO is implemented simply by controlling on-site
energies.

4.3.2. Example 2. We can also treat bosonic systems, such as the linear optics
quantum computing (QC) proposal [81]. In this case, a qubit is encoded into two
modes. The first qubit has states j0i1 ¼ b

y

1jvaci and j1i1 ¼ b
y

2jvaci, and the second
qubit is j0i2 ¼ b

y

3j vaci and j1i2 ¼ b
y

4jvaci, where b
y

i are bosonic creation operators.
Encoded two-qubit states are j00i ¼ b

y

1b
y

3jvaci, j01i ¼ b
y

1b
y

4jvaci, j10i ¼ b
y

2b
y

3jvaci
and j11i ¼ b

y

2b
y

4jvaci. But the linear optics Hamiltonian H ¼
P4

k, l¼1 aklb
y

kbl contains
beam-splitter terms like b

y

1b3 and b
y

2b3, which can cause leakage into states such as
b
y

1b
y

2jvaci or b
y2
1 jvaci. By using the LEO RL ¼ exp½�ipðby1b1 þ b

y

2b2Þ�, we can

eliminate the leakage terms. This LEO can be implemented simply using a
phase shifter. However, generalizing this LEO to multiple encoded qubits requires
a photon–photon interaction, which is not readily available.

4.3.3. Example 3. A substantial number of promising solid-state QC proposals,
e.g. [74–80, 82], are governed by effective isotropic and anisotropic exchange
interactions, which, quite generally, can be written as

Hex ¼
X
i< j

JxijXiXj þ J
y
ijYiYj þ JzijZiZj, ð7Þ

where Xi is the Pauli �x matrix on the ith qubit, etc. The encoding j0iL ¼ j01i,
j1iL ¼ j10i (using two physical qubits per logical qubit) is highly compatible with
Hex in the sense that universal QC can be performed by controlling the single
parameter Jxij in the Heisenberg (Jxij ¼ J

y
ij ¼ Jzij), XXZ (Jxij ¼ �J

y
ij 6¼ Jzij), and XY

(Jxij ¼ J
y
ij, Jzij ¼ 0) instances of Hex, provided there is a Zeeman splitting that

distinguishes single-qubit Zi terms. This is done using the ‘encoded selective
recoupling’ method [29]. Furthermore, the fj01i, j10ig encoding is a DFS for
collective dephasing (where the bath couples only to system Z2i�1 þ Z2i

operators) [11, 14, 61]. A set of logical operations on the code is
E ¼ fX1 ¼ ðX1X2 þY1Y2Þ=2, Y1 ¼ ðX2Y1 �Y2X1Þ=2, Z1 ¼ ðZ1 � Z2Þ=2g. Only
the X1 term is assumed to be directly controllable (by manipulation of Jx12),
whereas the Z1 term can be turned on/off using recoupling [29]. The Y1 term can
then be reached in a few steps:

e�i�Y1 ¼ eiðp=4ÞX1e�i�Z1e�iðp=4ÞX1 :

The leakage errors are due to system–bath interactions where the system terms
include any of Xi,Yj, XiZj and YiZj, since, as is easily seen, such terms do not
preserve the fj01i, j10ig code subspace. As pointed out first in [33], the LEO can be
expressed as RL ¼ expðipX1Þ ¼ Z1Z2, which means that it is implementable using
just the controllable Jx12 parameter in the instances of Hex mentioned above. This
form for RL is an instance of equation (4). Note that, in agreement with our general
comments above, RL commutes with every element of E, meaning that logical
operations can be performed on the encoded subspace while eliminating leakage.
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4.3.4. Example 4. The most economical encoding of a DFS against collective
decoherence requires three physical qubits per logical qubit. In the tensor product
of three qubits, there exists two doublets and a quadruplet. In this case the logical
qubit states are stored in the two doublet states which represent the logical zero
and one. Under the action of collective errors, the two doublets mix within their
respective subspaces, but not with each other. The logical operations are formed
from the Heisenberg exchange interaction, which is known to be universal for this
code [14]. This example is given in detail in [36, 83], where it is shown that it is
possible to construct efficient, canonical LEOs by using only the Heisenberg
exchange interaction. This follows, in principle, from the theorem in [33] and can
be done in practice using the constructions in [36, 83].

4.4. Leakage elimination on the 4-qubit DFS

The 4-qubit DFS [10] contains two singlet states for the representative qubit,
three triplets and a spin 2, or quintuplet. The singlet states represent the logical
zero and one of the DFS encoded qubit. It was shown in [14, 23] that the exchange
operation between the first and second qubits in the computational basis will
provide a logical Z operation which we denote �ZZ. However, on further analysis, we
find that we cannot create a ‘canonical’ LEO in the sense described in [36]. In this
case, we require the more general characterization of the LEO given above.

First we give a LEO that is appropriate in the Kempe et al. [14] basis. Let the
(square of the) total angular momentum operator be denoted S2 with eigenvalue
SðSþ 1Þ. Then

4S2 ¼
X
i

ri

 !2

,

where ri ¼ ð�x
i , �

y
i , �

z
i Þ are the Pauli matrices acting on the ith qubit. Therefore,

1

2
S2 ¼

1

8
12iþ 2

X
i<j

ri � rj

 !

gives an appropriate LEO of the form given in equation (2). This can be seen as
follows. On the S ¼ 0 (singlet) subspaces the operator gives zero. On the S ¼ 1
(triplet) subspaces the operator gives 1 and on the S ¼ 2 (quintuplet) subspace it
gives 3. Therefore, the appropriate LEO can be obtained using

RL ¼ expð�ipS2=2Þ:

Since the operator S2 is composed of exchange interactions, it is also experi-
mentally available.

5. Concluding remarks
We have provided an overview of the quantum error preventing strategies for

quantum computing devices. While the methods of QECC were motivated by
error correction methods for classical computing, the other methods are more
physically motivated. We believe the theory and practice of error prevention in
quantum computing systems is converging based upon strategies which combine
more than one of the error prevention techniques discussed here. The progress is
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motivated by the desire to construct practical error prevention schemes for near-
future experiments. We hope that the overview given here will provide a resource/
review for novices/experts working in quantum computing and that the progress
concerning the elimination of leakage from encoded spaces will aid in the
development of practical error prevention strategies.

Acknowledgments
DAL gratefully acknowledges financial support from the DARPA-QuIST

program (managed by AFOSR under agreement No. F49620-01-1-0468), the
Sloan Foundation, NSERC, PREA, and the Connaught Fund.

References
[1] SHOR, P. W., 1995, Phys. Rev. A, 52, 2493.
[2] STEANE, A., 1996, Phys. Rev. Lett., 77, 793.
[3] CALDERBANK, A. R., and SHOR, P. W., 1996, Phys. Rev. A, 54, 1098.
[4] GOTTESMAN, D., 1996, Phys. Rev. A, 54, 1862.
[5] GOTTESMAN, D., 1997, Ph.D. thesis, California Institute of Technology, Pasadena,

CA, eprint quant-ph/9705052.
[6] KNILL, E., and LAFLAMME, R., 1997, Phys. Rev. A, 55, 900.
[7] EKERT, A., and MACCHIAVELLO, C., 1996, Phys. Rev. Lett., 77, 2585.
[8] PRESKILL, J., 1999, Introduction to Quantum Computation and Information, edited by

H. K. Lo, S. Popescu and T. P. Spiller (Singapore: World Scientific).
[9] KNILL, E., LAFLAMME, R., MARTINEZ, R., and NEGREVERGNE, C., 2001, Phys. Rev.

Lett., 86, 5811.
[10] ZANARDI, P., and RASETTI, M., 1997, Phys. Rev. Lett., 79, 3306.
[11] DUAN, L.-M., and GUO, G.-C., 1998, Phys. Rev. A, 57, 737.
[12] LIDAR, D. A., CHUANG, I. L., and WHALEY, K. B., 1998, Phys. Rev. Lett., 81, 2594.
[13] KNILL, E., LAFLAMME, R., and VIOLA, L., 2000, Phys. Rev. Lett., 84, 2525.
[14] KEMPE, J., BACON, D., LIDAR, D. A., and WHALEY, K. B., 2001, Phys. Rev. A, 63,

042307.
[15] LIDAR, D. A., BACON, D., KEMPE, J., and WHALEY, K. B., 2001, Phys. Rev. A, 63,

022306.
[16] LIDAR, D. A., and WHALEY, K. B., 2003, Irreversible Quantum Dynamics. In: Springer

Lecture Notes in Physics, volume 622, edited by F. Benatti and R. Floreanini
(Berlin: Springer) pp. 83–120.

[17] KWIAT, P. G., BERGLUND, A. J., ALTEPETER, J. B., and WHITE, A. G., 2000, Science,
290, 498.

[18] KIELPINSKI,D.,MEYER,V.,ROWE,M.A.,SACKETT,C.A., ITANO,W.M.,MONROE,C.,
and WINELAND, D. J., 2001, Science, 291, 1013.

[19] VIOLA, L., FORTUNATO, E. M., PRAVIA, M. A., KNILL, E., LAFLAMME, R., and
CORY, D. G., 2001, Science, 293.

[20] FORTUNATO, E. M., VIOLA, L., HODGES, J., TEKLEMARIAM, G., and CORY, D. G.,
2002, New J. Phys., 4, 5.

[21] OLLERENSHAW, J. E., LIDAR, D. A., and KAY, L. E., 2003, Phys. Rev. Lett., 91,
217904.

[22] MOHSENI, M., LUNDEEN, J. S., RESCH, K. J., and STEINBERG, A. M., 2003, Phys. Rev.
Lett., 91, 187903.

[23] BACON, D., KEMPE, J., LIDAR, D. A., and WHALEY, K. B., 2000, Phys. Rev. Lett., 85,
1758.

[24] BACON, D., KEMPE, J., LIDAR, D. A., WHALEY, K. B., and DIVINCENZO, D. P., 2001,
Proceedings of the 1st International Conference on Experimental Implementations
of Quantum Computation, edited by R. Clark (Princeton, NJ: Rinton), p. 257.

2458 M. S. Byrd et al.



[25] DIVINCENZO, D. P., BACON, D., KEMPE, J., BURKARD, G., and WHALEY, K. B., 2000,
Nature, 408, 339.

[26] LEVY, J., 2002, Phys. Rev. Lett., 89, 147902.
[27] BENJAMIN, S. C., 2001, Phys. Rev. A, 64, 054303.
[28] WU, L.-A., and LIDAR, D. A., 2002, Phys. Rev. A, 65, 042318.
[29] LIDAR, D. A., and WU, L.-A., 2002, Phys. Rev. Lett., 88, 017905.
[30] KEMPE, J., BACON, D., DIVINCENZO, D. P., and WHALEY, K. B., 2002, Qu. Inf.

Comp., 1, 33.
[31] KEMPE, J., and WHALEY, K. B., 2002, Phys. Rev. A, 65, 052330, LANL ePrint quant-

ph/0112014.
[32] LIDAR, D. A., WU, L.-A., and BLAIS, A., 2002, Qu. Inf. Proc., 1, 155.
[33] BYRD, M. S., and LIDAR, D. A., 2002, Phys. Rev. Lett., 89, 047901.
[34] WU, L.-A., and LIDAR, D. A., 2002, Phys. Rev. Lett., 88, 207902.
[35] BYRD, M. S., and LIDAR, D. A., 2003, Phys. Rev. A, 67, 012324.
[36] WU, L.-A., BYRD, M. S., and LIDAR, D. A., 2002, Phys. Rev. Lett., 89,

127901.
[37] LIDAR, D. A., and WU, L.-A., 2003, Phys. Rev. A, 67, 032313.
[38] LIDAR, D. A., and WU, L.-A., 2003, Proc. SPIE, 5115, 256.
[39] HAEBERLEN, U., and WAUGH, J. S., 1968, Phys. Rev., 125.
[40] ERNST, R. R., BODENHAUSEN, G., and WOKAUN, A., 1987, Principles of Nuclear

Magnetic Resonance in One and Two Dimensions (Oxford: Clarendon Press).
[41] VIOLA, L., and LLOYD, S., 1998, Phys. Rev. A, 58, 2733.
[42] BAN, M., 1998, J. Mod. Optics, 45, 2315.
[43] ZANARDI, P., 1999, Phys. Lett. A, 258, 77.
[44] VIOLA, L., KNILL, E., and LLOYD, S., 1999, Phys. Rev. Lett., 82, 2417.
[45] BYRD, M. S., and LIDAR, D. A., 2001, Quantum Information Processing, 1, 19.
[46] VIOLA, L., 2002, Phys. Rev. A, 66, 012307.
[47] VIOLA, L., LLOYD, S., and KNILL, E., 1999, Phys. Rev. Lett., 83, 4888.
[48] DUAN, L.-M., and GUO, G., 1999, Phys. Lett. A, 261, 139.
[49] VITALI, D., and TOMBESI, P., 1999, Phys. Rev. A, 59, 4178.
[50] VIOLA, L., KNILL, E., and LLOYD, S., 2000, Phys. Rev. Lett., 85, 3520.
[51] VITALI, D., and TOMBESI, P., 2002, Phys. Rev. A, 65, 012305.
[52] CORY, D. G., LAFLAMME, V., KNILL, E., VIOLA, L., HAVEL, T. F., BOULANT, N.,

BOUTIS, G., FORTUNATO, E., LLOYD, S., MARTINEZ, R., NEGREVERGNE, C.,
PRAVIA, M., SHARF, Y., TEKLEMARIAM, G., WEINSTEIN, Y. S., and ZUREK, W. H.,
2000, Fortschr. Phys., 48, 875.

[53] AGARWAL, G. S., SCULLY, M. O., and WALTHER, H., 2001, Phys. Rev. Lett.,
86, 4271.

[54] UCHIYAMA, C., and AIHARA, M., 2002, Phys. Rev. A, 032313.
[55] UCHIYAMA, C., and AIHARA, M., 2003, Phys. Rev. A, 68, 052302.
[56] FACCHI, P., LIDAR, D. A., and PASCAZIO, S., 2004, Phys. Rev. A, 69, 032314.
[57] One normally assumes that any reasonable candidate for a quantum computing device

will satisfy the requirement that many gating operations can be performed within
the decoherence time. Thus we somewhat reasonably assume external controls are
strong compared to the strength of the interaction Hamiltonian so that the
interaction Hamiltonian can be neglected during the gating operation.

[58] SHIOKAWA, K., and LIDAR, D. A., 2004, Phys. Rev. A, 69, 030302(R).
[59] FAORO, L., and VIOLA, L., 2004, Phys. Rev. Lett., 92, 117905.
[60] VIOLA, L., and KNILL, E., 2003, Phys. Rev. Lett., 90, 037901.
[61] LIDAR, D. A., BACON, D., and WHALEY, K. B., 1999, Phys. Rev. Lett., 82,

4556.
[62] LIDAR, D. A., BACON, D., KEMPE, J., and WHALEY, K. B., 2001, Phys. Rev. A, 63,

022307.
[63] ALBER,G.,BETH,TH.,CHARNES,CH.,DELGADO,A.,GRASSL,M., andMUSSINGER,M.,

2001, Phys. Rev. Lett., 86, 4402.
[64] ALBER,G.,BETH,TH.,CHARNES,CH.,DELGADO,A.,GRASSL,M., andMUSSINGER,M.,

2003, Phys. Rev. A, 68, 012316.
[65] ALBER, G., MUSSINGER, M., and DELGADO, A., 2002, quant-ph/0208177.

Quantum error prevention and leakage elimination 2459



[66] KHODJASTEH, K., and LIDAR, D. A., 2002, Phys. Rev. Lett., 89, 197904.
[67] BYRD, M. S., and LIDAR, D. A., 2002, J. Mod. Optics, 50, 1285.
[68] KHODJASTEH, K., and LIDAR, D. A., 2003, Phys. Rev. A, 68, 022322.
[69] ZANARDI, P., 1999, Phys. Rev. A, 60, R729.
[70] TIAN, L., and LLOYD, S., 2000, Phys. Rev. A, 62, 050301.
[71] PRESKILL, J., 1998, Proc. Roy. Soc. London A, 454, 385.
[72] ZANARDI, P., 2002, Phys. Rev. A, 63, 012301.
[73] KNILL, E., LAFLAMME, R., and ZUREK, W., 1998, Science, 279, 342.
[74] PLATZMAN, P. M., and DYKMAN, M. I., 1999, Science, 284, 1967.
[75] LOSS, D., and DIVINCENZO, D. P., 1998, Phys. Rev. A, 57, 120.
[76] LEVY, J., 2001, Phys. Rev. A, 64.
[77] IMAMO �ggLU, A., AWSCHALOM, D. D., BURKARD, G., DIVINCENZO, D. P., LOSS, D.,

SHERWIN, M., and SMALL, A., 1999, Phys. Rev. Lett., 83, 4204.
[78] PAZY, E., BIOLATTI, E., CALARCO, T., D’AMICO, I., ZANARDI, P., ROSSI, F., and

ZOLLER, P., 2003, Euro Phys. Lett., 62, 175.
[79] KANE, B. E., 1998, Nature, 393, 133.
[80] VRIJEN, R., YABLONOVITCH, E., WANG, K., JIANG, H. W., BALANDIN, A.,

ROYCHOWDHURY, V., MOR, T., and DIVINCENZO, D., 2000, Phys. Rev. A, 62,
012306.

[81] KNILL, E., LAFLAMME, R., and MILBURN, G. J., 2001, Nature, 409, 46.
[82] MOZYRSKY, D., PRIVMAN, V., and GLASSER, M. L., 2001, Phys. Rev. Lett., 86, 5112.
[83] BYRD, M. S., LIDAR, D. A., WU, L.-A., and ZANARDI, P., 2004, in preparation.

2460 M. S. Byrd et al.


	first

