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Abstract. A graph is chordal if it does not contain any induced cycle of
size greater than three. An alternative characterization of chordal graphs is
via a perfect elimination ordering, which is an ordering of the vertices such
that, for each vertex v, the neighbors of v that occur later than v in the
ordering form a clique. Akcoglu et al [2] define an extension of chordal graphs
whereby the neighbors of v that occur later than v in the elimination order
have at most k independent vertices. We refer to such graphs as sequentially
k-independent graphs. Clearly this extension of chordal graphs also extends
the class of (k+1)-claw-free graphs. We study properties of such families of
graphs, and we show that several natural classes of graphs are sequentially k-
independent for small k. In particular, any intersection graph of translates of a
convex object in a two dimensional plane is a sequentially 3-independent graph;
furthermore, any planar graph is a sequentially 3-independent graph. For any
fixed constant k, we develop simple, polynomial time approximation algorithms
for sequentially k-independent graphs with respect to several well-studied NP-
complete problems based on this k-sequentially independent ordering. Our
generalized formulation unifies and extends several previously known results.
We also consider other classes of sequential elimination graphs.

1 Introduction

Many optimization problems are hard to solve and even hard to approximate. One
way to get around with this difficulty is trying to identify families of inputs for which
we can achieve optimal or good approximation solutions with reasonable efficiency.
A natural approach is to parameterize the input space. For any parameter, we give
three criteria (GTR):

1. Generality: Be as rich and as general as possible, possibly contains interesting
known classes with relatively “small” parameters.

2. Tractability: For input instances with “small” parameters, it admits simple and
relatively efficient algorithms which produce optimal or good approximation so-
lutions for some hard problems.

3. Recognizability: Allows efficient recognition algorithms at least for instances
with “small” parameters; note that this is not always the case, for example, graphs
with chromatic number three.

⋆ This research is supported by the Natural Sciences and Engineering Research Council of
Canada and the University of Toronto, Department of Computer Science. A preliminary
version of this paper appears in ICALP 2009, Rhodes, Greece.



In this paper, we study a particular graph parameter: the sequential independence
number. This parameter is an inductive property based on local independent set size
and it gives a natural extension of chordal graphs. A similar concept is the degree
inductiveness. Hochhaum in [39] and separately Halldórsson in [35] studied approx-
imation algorithms for the maximum independent set problem, and they bounded
the approximation ratios in terms of the degree inductiveness. In a recent paper [45],
Halldórsson et al introduced a weighted measure of inductiveness, which deals with
the weighted case of the maximum independent set problem. Here, we focus on graph
class with a fixed local independence number. We give approximation algorithms for
such class of graphs with respect to several well-studied NP-complete problems. We
assume familiarity with standard graph theory terminology; all graphs in this paper
will be finite, simple, connected and undirected. Let G = (V,E) be a graph of n ver-
tices and m edges. If X ⊆ V , the subgraph of G induced by X is denoted by G[X ].
For a particular vertex vi ∈ V , let d(vi) denote its degree and N(vi) denote the set
of neighbors of vi. We use α(G) to denote the size of a maximum independent set of
G; for example, α(G) = 1 if G is a clique. Given an ordering of vertices v1, v2, . . . , vn,
we use Vi to denote the set of vertices that appear after vi−1 in the ordering, i.e.,
Vi = {vi, . . . , vn}. A graph is chordal if it does not contain any induced cycle of size
greater than three. An alternative characterization of chordal graphs is via a perfect
elimination ordering.

Definition 1. A perfect elimination ordering is an ordering of vertices v1, . . . , vn

such that for any vi, 1 ≤ i ≤ n, α(G[N(vi) ∩ Vi]) = 1.

A natural extension to this perfect elimination ordering is to relax the size of the max-
imum independent set. Surprisingly, this extension seems to have only been relatively
recently proposed in Akcoglu et al [2] and not studied subsequently.

Definition 2. A k-independence ordering is an ordering of vertices v1, v2, . . .,
vn such that for any vi, 1 ≤ i ≤ n, α(G[N(vi) ∩ Vi]) ≤ k. The minimum of such
k over all orderings is called the sequential independence number 1, which we
denote as λ(G).

This extension of a perfect elimination ordering leads to a natural generalization of
chordal graphs.

Definition 3. A graph G is sequentially k-independent if λ(G) ≤ k.

For several natural classes of graphs, the sequential independence number is bounded
by a small constant.

– Chordal graphs: since a chordal graph admits a perfect elimination ordering,
chordal graphs are sequentially 1-independent graphs. All sub-classes of chordal
graphs are then clearly sequentially 1-independent graphs; for example, interval
graphs and trees.

– Graphs with a bounded average degree on every induced subgraph: it
is not hard to see that λ(G) is bounded above by the maximum average degree
over all induced subgraphs of G, though this bound is usually not tight.

1 Akcoglu et al [2] refer to this as the directed local independence number.



– Claw-free graphs: if a graph is k-claw-free, then it is a sequentially (k −
1)-independent graph. For example, line graphs are sequentially 2-independent
graphs. Note that the converse is not always true since for example, a k-ary tree
is not k-claw-free, but it is a sequentially 1-independent graph.

– Graphs with constant tree-width: since the tree-width of G can be viewed
as the smallest k such that G is a partial k-tree, it is not hard to see graphs with
tree-width k are sequentially k-independent graphs.

– Intersection graphs of geometric objects: disk graphs and unit disk graphs
are sequentially 5 and 3-independent graphs, respectively. Marathe et al [49] show
that simple heuristics achieve good approximations for various problems for unit
disk graphs. We extend most of their results in this paper, and explain a connec-
tion between the unit disk graphs and planar graphs as observe in their paper.

Akcoglu et al [2] show that the (weighted) maximum indepedent set (MIS) problem
has a simple k-approximation algorithm for any sequentially k-independent graph.
We call attention to two interesting examples.

– The interval scheduling problem (ISP) and the job interval scheduling
problem (JISP): For a given set of (weighted) intervals on the real line, the goal
is trying to schedule a set of intervals of maximum size (or total weight in the
weighted case) without any overlapping. There are simple algorithms that solve
ISP optimally in both the unweighted and weighted cases. This is not a surprise
since if we order intervals according to non-decreasing finishing times, then it is
a perfect elimination ordering and the underlying intersection graph of ISP is
a chordal graph. The job interval scheduling problem is an extension of ISP and
has been extensively studied in the literature, for example, see [6][19][58]. In JISP,
each interval belongs to a job. A job can be scheduled onto one and only one of
its intervals. The objective is to find the maximum number (or total weight in the
weighted case) of jobs that can be scheduled without conflicts. Using the same
ordering of intervals by finishing time, it is easy to see that the intersection graph
for the JISP problem is a sequentially 2-independent graph.

– The axis parallel rectangles problem: This problem is studied by Berman
and DasGupta in [12] and is motivated by applications to non-overlapping local
alignment problems in computational molecular biology. The input is a set of axis
parallel rectangles such that, for each axis, the projection of a rectangle on this axis
does not enclose that of another. The goal is to select a subset of independent (non-
overlapping projection on both axes) rectangles with maximum cardinality (or
total weight in the weighted case). It is not hard to see that sorting the rectangles
by (say) their rightmost x-coordinate yields a 3-independence ordering; hence the
underlying graph is a sequentially 3-independent graph. This also extends to D
dimension, where the underlying graph is a sequentially (2D − 1)-independent
graph.

Both of the JISP and local alignment problems are MAX SNP-hard [51][58], al-
though the current inapproximations are very weak. The existence of local ratio ap-
proximation algorithms in Bar-Noy et al [5] and Berman and DasGupta in [12] for the
above two problems was our initial motivation for investigating how the intersection
graph structure underlies the success of those algorithms. In fact, such “elimination



structure” occurs in many natural graph classes and extends in greater generality as
we shall see.

However, not every graph has a small sequential independence number. For ex-
ample, the complete bipartite graph Kn,n has a sequential independence number n.
Some examples of bipartite sequentially k-independent graphs with small k are shown
in Fig. 1. We give some general bounds on the sequential independence number in
Section 3.

Fig. 1. Examples of k-sequentially independent graphs for k = 2, 3, 4.

2 Chordal Graphs and Their Generalizations

The study of chordal graphs can be traced back to Hajnal and Surányi [34] in the late
1950s. One of earliest characterizations of chordal graphs was introduced by Dirac [21]
in terms of minimal vertex separators. Fulkerson and Gross [28] gave an alternative
characterization of chordal graphs in terms of perfect elimination orderings; this was
also observed by Rose [55] in 1970. Following this, Rose, Tarjan and Lueker [56]
introduced the first linear-time algorithm for producing a perfect elimination ordering,
known as the lexicographic breadth-first search (LBFS); and later, Tarjan [60] gave
an even simpler algorithm known as the maximum cardinality search (MCS).

Many generalizations of chordal graphs have been proposed and studied, for exam-
ple as in [18][36][43][44]. Two important related classes are the weakly chordal graphs
introduced by Hayward and the [h, s, t] framework that arises from the study of con-
stant tolerance intersection graphs of subtrees in a tree. The class of weakly chordal
graphs is a sub-family of perfect graphs which is defined on holes and anti-holes. A
hole is an induced cycle greater than four, and an anti-hole is a complement of
a hole. A graph is weakly chordal if it contains no holes and no anti-holes. As a
sub-famliy of perfect graphs, the class of weakly chordal graphs does not contain the
induced cycle C5, which is a sequentially 2-independent graph. On the other hand, it
contains the complete bipartite graph Kn,n, which is not a sequentially k-independent
graph for any constant k. Therefore, the two classes are incomparable, see Fig. 2.

The [h, s, t] framework arises from the context of tolerance intersection graphs and
have been extensively studied. An [h, s, t]-representation of a graph G consists of a
set of subtrees of a host tree, where each subtree corresponds to a vertex in G, such
that

– the maximum degree of the host tree is at most h,
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Fig. 2. Relationship between weakly chordal and sequentially independent graphs.

– every subtree has maximun degree at most s, and
– two vertices in G are adjacent if and only if the corresponding subtrees have at

least t vertices in common in the host tree.

A complete hierarchy of intersection graphs of paths in a tree was recently given by
Golumbic, Lipshteyn and Stern [31], and the relationship with weakly chordal graph
has also been further investigated. Here we show that sequentially 2-independent
graphs cannot be characterized by the [h, s, t] framework with fixed constants of h, s
and t.

Let R(s, t) denote the complete balanced rooted tree whose root has s children,
internal nodes have s− 1 children and all leaves are at distance t− 1 from the root.
Let γ(s, t) be the number of subtrees R(s, t) which have exactly t nodes and which
contain the root. Jamison and Mulder [44] prove the following theorem:

Theorem 1. (Jamison and Mulder, 2005) Let h, s and t be integers with h ≥ s,
and let n be an integer with n > γ(s, t)(t+ 1), then K2,n is not an [h, s, t] graph.

Since K2,n is a sequentially 2-independent graph, it follows immediately that sequen-
tially 2-independent graphs does not fall into any class of [h, s, t] graph with fixed
constants of h, s and t. On the other hand, K3,3 is not a sequentially 2-independent
graph but is [3, 3, 3]-representable.

One very close extension of chordal graphs related to sequentially k-independent
graphs is defined by Jamison and Mulder [43], and recently studied by Kammer et
al [47], in which they use the minimum vertex clique cover number instead of the
maximum independent set number for the neighborhood property. Since for k ≥ 3, it
is NP-hard to determine whether or not a graph has a k vertex clique cover, it seems
unlikely that we can recognize such graphs in polynomial time for k ≥ 3.

Another relevant (but not comparable) class of graphs are the k-interval graphs
as defined by Trotter and Harary [62], and independently by Griggs and West [32].
In a recent paper [16], Butman, Hermelin, Lewenstein and Rawitz studied minimum



vertex cover, minimum dominating set and maximum clique on k-interval graphs and
were able to obtain approximation algorithms for each of problems. One disadvantage
of such a graph class is that recognizing a k-interval graph for k ≥ 2 is NP-hard [65]
and some of the algorithms on k-interval graphs G require a k-interval representation

of G. We note that a complete bipartite graph Kn,n has interval number n2+1
2n [32]

and sequential independence number n. Furthermore, the interval number of chordal
graphs can be arbitrarily large [64], so it follows that the class of k-interval graphs and
the class of sequentially k-independent graphs are incomparable. Since any triangle-
free k-interval graph G has a vertex of degree at most 2k − 1, triangle-free k-interval
graphs are sequentially (2k − 1)-independent graphs.

3 Properties of Sequentially Independent Graphs

We have the following basic lemma.

Lemma 1. Any induced subgraph of a sequentially k-independent graph is a sequen-
tially k-independent graph.

Proof. We prove this by contradiction. Suppose G = (V,E) is a sequentially k-
independent graph but some induced subgraph G1 of G is not a sequentially k-
independent graph, i.e., for any vertex v in the vertex set of G1, α(G1[N(v)]) > k. Let
v1, . . . , vn be the k-independence ordering that admits G and X ⊆ V be the vertex
set that induces G1. Let vi be the first vertex in X that appears in the ordering and
G2 = G[Vi]. It is clear that the graph G1[N(vi)] is an induced subgraph of G2[N(vi)]
since G1 is an induced subgraph of G2. Therefore, any independent set of G1[N(vi)] is
an independent set of G2[N(vi)]. Since α(G1[N(vi)]) > k, we have α(G2[N(vi)]) > k,
which contradicts the fact that v1, . . . , vn is a k-independence ordering. Therefore any
induced subgraph of G is also a sequentially k-independent graph. ⊓⊔

Lemma 1 ensures that we can test if a graph is a sequentially k-independent
graph by repeatedly removing a vertex whose neighbors in the remaining graph have
independent set size at most k, until there is no vertex remaining or for every vertex
v in the remaining graph G, α(G[N(v)]) > k. This k-elimination process, if successful
(i.e., no vertices remain at the end of the process), also constructs a k-independence
ordering. Note that at each step, we can check for each vertex v to see if α(G[N(v)]) >
k in O(k2nk+1) time by enumerating all subsets of size k + 1. Therefore this k-
elimination process terminates in O(k2nk+3) time. By the observation of Itai and
Rodeh [41], and results in [24], we can improve the time complexities of a 2-elimination
process to O(n4.376), a 3-elimination process to O(n5.334) and a 4-elimination process
to O(n6.220). The above algorithms only use linear space of the graph. If we allow the
algorithm to use O(nk+1) space, we can further improve the time complexity of the
k-elimination process.

Theorem 2. A sequentially k-independent graph can be recognized in O(k2nk+2)
time, and a k-independence ordering of a sequentially k-independent graph can be
constructed in O(k2nk+2) time.



Proof. Given a graph G we build a bipartite graph G∗ = (A,B) in following way.
We construct a subset-node (a node in A) for each of the subsets of size k + 1 in G

and a vertex-node (a node in B) for each vertex in G. We connect a vertex-node to a
subset-node with a red edge if the vertex in the vertex-node is adjacent to all vertices
in the subset-node and the vertices in the subset form an independent set. We connect
a vertex-node to a subset-node with a black edge if the vertex in the vertex-node is
one of the vertices in the subset-node. Constructing such a graph G∗ takes O(k2nk+2)
time and O(nk+1) space. Once G∗ is constructed, we look for a vertex-node in B that
is not incident to any red edge. The vertex in such a vertex-node is then the next
vertex in the ordering. We then delete such a vertex-node in B and all its neighbors
in A together with all incident (black and red) edges, and continue. If finally there
is no node remaining in G∗, then we have constructed a k-sequentially independent
ordering, otherwise at some point of time, every vertex-node in B has at least one red
edge and we conclude that G is not a k-sequentially independent graph. ⊓⊔

Note that by a reduction to the independent set problem, finding the sequential
independence number is complete for W [1], hence it is unlikely to have a fixed pa-
rameter tractable solution. But this does not exclude the possibility to improve the
current complexity bound for a small k. It is interesting to note that recognizing a
chordal graph, i.e., a sequentially 1-independent graph, can be done in linear time
using LBFS or MCS, while our generic algorithm runs in time O(n3). It might be
possible to improve on the bounds above by using different techniques. Note that we
are mostly interested in sequentially k-independent graphs with small k’s, because in
practice, we either know a-priori that a graph is a sequentially k-independent graph
with some small constant k, or we want to test whether or not it is the case. In
many specific cases like JISP and non-overlapping local alignment, the complexity of
computing a k-independence ordering can be reduced to O(n log n).

As mentioned in Section 1, the maximum average degree on every induced sub-
graph provides a trivial bound on the sequential independence number. Here we give
bounds in terms of the number of vertices and edges in a graph.

Theorem 3. A graph G with n vertices and m edges has sequential independence

number no more than min{⌊n
2 ⌋, ⌊

√
m⌋, ⌊

q

1+4[(n

2)−m]+1

2 ⌋}.
Proof. We first prove that the sequential independence number is no more than ⌊n

2 ⌋.
Suppose the sequential independence number is greater than ⌊n

2 ⌋, then there is an
induced subgraph of G such that every vertex has at least ⌊n

2 ⌋ + 1 independent
neighbors. We focus on such an induced subgraph and any vertex v has at least ⌊n

2 ⌋+1
independent neighbors, any one of which, say u, must again have at least ⌊n

2 ⌋ + 1 of
independent neighbors. It is clear that the two independent neighbor sets of u and v
are disjoint so the total number of vertices is 2⌊n

2 ⌋+ 2 > n, which is a contradiction.
Note that this bound is tight provided that Kn,n has sequential independence number
n. We now prove the sequential independence number is no more than

min{⌊√m⌋, ⌊

√

1 + 4[
(

n
2

)

−m] + 1

2
⌋}.

For the first part, let us suppose the sequential independence number is greater than
⌊√m⌋, and we find an induced subgraph such that every vertex has at least ⌊√m⌋+1



independent neighbors. Then for a particular vertex, we denote the set of its inde-
pendent neighbors as S, |S| ≥ ⌊√m⌋ + 1. Note that the degree of any vertex in S is
at least ⌊√m⌋ + 1 and no edge is between any two vertices in S. Therefore the total
number of edges is at least (⌊√m⌋ + 1)2 > m, which is a contradiction.

Now for the second part, let λ(G) be the sequential independence number of G,
and again we find an induced subgraph such that every vertex has at least λ(G)
independent neighbors. For a particular vertex v, it has at least λ(G) independent
neighbors, any one of which, say u, must again have at least λ(G) of independent
neighbors. It is clear that the two independent neighbor sets of u and v are disjoint, and
each of the two independent neighbor sets misses at least

(

λ(G)−1
2

)

edges. Therefore,
we have

2

(

λ(G) − 1

2

)

+m ≤
(

n

2

)

,

hence λ(G) ≤ ⌊
q

1+4[(n

2)−m]+1

2 ⌋. ⊓⊔

4 Natural Classes of Sequentially Independent Graphs

In Section 1, we saw several known examples of sequential independent graphs. In
this section, we show two more natural classes of graphs that fit our definition.

4.1 Translates of a Convex Object

Given a set of translates of a convex object in a two dimensional plane. We consider the
intersection graph of those translates, i.e., each translate is represented by a vertex;
two vertices are adjacent if two associated translates are overlapping. One special case
of such graphs are unit disk graphs, for which a robust PTAS for weighted maximum
independent set is known [54]. In [25], Erlebach, Jansen and Seidel consider a more
general case of geometric intersection graphs (including disk graphs) and give PTASs
for weighted maximum independent set and weighted minimum vertex cover based on
a sophisticated use of the shifting strategy [4]. The running time of both algorithms

is nO(1/ǫ2) for achieving approximation ratio 1 + ǫ. However, both algorithms require
a geometric representation as the part of the input. In this section, we show that the
intersection graph of translates has a small sequential independence number.

Theorem 4. The intersection graph of translates of a convex object in a two dimen-
sional plane is a sequentially 3-independent graph.

We treat each translate as a closed convex set. For each translate S, we fixed an
interior point to be the center of the object, denoted as cS . Note that it does not have
to be the geometric center of S, but it has to be identically located for each translate.
The conflicting region ψ(S, cS) of S is then defined to be the set of points on the
plane such that if we place the center of another translate S′ at that point, S∩S′ 6= ∅;
see Fig. 3. It is not hard to see that the conflicting region ψ(S, cS) is symmetric at
the point cS .

Lemma 2. The conflicting region of a (convex) translate is convex.
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Fig. 3. A translate and its conflicting region.

Proof. We prove this by contradiction. Let S be a translate with center cS and ψ(S, cS)
be its conflicting region. Suppose that ψ(S, cS) is not convex, then there exists three
points cS1

, cS2
and cS3

of the object S1, S2 and S3, such that cS2
is on the line segment

of cS1
cS3

, and cS1
∈ ψ(S, cS), cS3

∈ ψ(S, cS) but cS2
6∈ ψ(S, cS). Since cS1

∈ ψ(S, cS)
and cS3

∈ ψ(S, cS), we know that there are two points p1 and q3 such that p1 ∈ S1∩S
and q3 ∈ S3 ∩ S; see Fig. 4(a).
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Fig. 4. The conflicting region is convex.

We draw lines cS2
p2 q cS1

p1, cS3
p3 q cS1

p1, cS1
q1 q cS3

q3 and cS2
q2 q cS3

q3, then p1,
p3, q3 and q1 form a parallelogram with p1q3 being one of the diagonals; see Fig. 4(b).
Since p2 and q2 are on the opposite sides of the parallelogram p2q2 intersects p1q3 at
x. Since p2 ∈ S2, q2 ∈ S2 and S2 is convex, we know that x ∈ S2. Since p1 ∈ S, q3 ∈ S

and S is convex, we know that x ∈ S. Therefore x ∈ S∩S2, and hence cS2
∈ ψ(S, cS);

which is a contradiction. ⊓⊔



Suppose we have a set of translates on a cartesian plane and we sort the centers by
their x-coordinates. We claim that for any translate S with center cS , the number of
centers of non-overlapping translates with larger or equal x-coordinates, which lies in
ψ(S, cS), is less than four. We can transform this problem into a simpler mathematical
problem: given a set of n real vectors X = {v1,v2, . . . ,vn} in R2 with non-negative
x-coordinates, and D(X) = {vi − vj |i 6= j}. Let C(X) be the convex set

C(X) = {
n

∑

i=1

aivi|
n

∑

i=1

|ai| ≤ 1, |ai| ≤ 1,vi ∈ X}.

How large must n be to guarantee that the two sets C(X) and D(X) are non-disjoint.
It turns out n = 4 is sufficient; we have the following lemma:

Lemma 3. If n ≥ 4, then C(X) ∩D(X) 6= ∅.
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Fig. 5. Cases when n = 2 and 3.

Proof. We present a geometric proof of the lemma. We assume that there are four
points in X such that C(X) ∩D(X) = ∅, and try to derive a contradiction. Without
loss of generality, we can assume that the first two points G and H having the maxi-
mum and minimum slope OG and OH respectively, see Fig. 5(a). Let G′ and H ′ be
the symmetric points of G and H with respect to O, and we draw GO′

q OH and
HO′

q OG; GO′ and HO′ meets at O′.
The third point therefore cannot lie in the left of OG or the right of OH . At

the same time, since △GOO′ ∼= OG′H and △HOO′ ∼= OH ′G, both △GOO′ and
△HOO′ cannot be feasible regions for the third point. Therefore the only feasible
region is region (I). Let C be the third point, and we draw OB q HC and CB q HO

so that OB and CB meets at B; we drawOD q GC and CD q GO so that OD and CD
meets at D. We then draw lines H ′B and G′D, it is easy to see that H ′B q OC q G′D.
Let A be the intersection of CB and OG, E be the intersection of CD and OH ; see
Fig. 5(b).
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Fig. 6. Cases when n = 4.

Let P be the fourth point, so X = {OG,OH,OC,OP }, then depending the
location of P , there are four cases:

1. If P lies in △ABO or △EDO, without loss of generality, assume P lies in △ABO.
We draw lines G′Q q OB and GQ q AB; GQ meets G′Q at Q, then it is clear
that △ABO ∼= △GQG′. Since △GQG′ completely lies in C(X), it follows that
GP ∈ C(X), which is a contradiction; see Fig. 6(a).

2. If P lies in the quadrilateral OBCD, then the quadrilateral OBCD is congruent
to the quadrilateral CHOG, therefore PC ∈ C(X), which is a contradiction; see
Fig. 6(b).

3. If P lies in region (II) or (IV), without loss of generality, assume P in region (II),
then OB ∈ C(X), and hence HC ∈ C(X), which is a contradiction; see Fig. 6(c).

4. If P lies in region (III), then we draw lines PR q CO and OR q CP ; PR meets OR
at R. Since PR q CO and |PR| = |CO|, OR ∈ C(X), and hence CP ∈ C(X),
which is a contradiction; see Fig. 6(d).

Therefore, if n ≥ 4, then C(X) ∩D(X) 6= ∅; this completes the proof. ⊓⊔



We now prove Theorem 4.

Proof. We consider the intersection graph of the translates and show that there always
exists a vertex which has at most 3 independent neighbors. We consider the leftmost
translate S, breaking tie arbitrarily; and we set the center cS of S to be the origin
(0, 0) of coordinate system. Then the centers of all translates have non-negative x-
coordinates, furthermore, each of these centers defines a vector to the origin. Suppose
there are at least four independent translates S1, S2, S3, S4 intersecting with S then
we let v1,v2,v3,v4 be the vectors representing the centers and X = {v1,v2,v3,v4}.
Let

C(X) = {
4

∑

i=1

aivi|
4

∑

i=1

|ai| ≤ 1, |ai| ≤ 1,vi ∈ X},

then by Lemma 2, the conflicting region ψ(S, cS) of S contains C(X). Let D(X) =
{vi − vj |i 6= j}, by Lemma 3, C(X) ∩ D(X) 6= ∅. Therefore ψ(S, cS) ∩ D(X) 6=
∅. Without loss of generality, we can assume v1 − v2 ∈ ψ(S, cS), which means S1

intersecting with S2, which is a contradiction. Therefore, in terms of the intersection
graph of the translates, the leftmost vertex has at most 3 independent neighbors;
hence the graph is sequentially 3-independent. ⊓⊔

The bound in Theorem 4 is in fact tight; see Fig. 7.

Fig. 7. A sequentially 3-independent graph induced by the intersection of unit disks.

Corollary 1. The intersection graph of translates of a convex object in a two dimen-
sional plane is a 6-claw free graph.

This is an immediate consequence of Lemma 3.



Corollary 2. The intersection graph of convex objects with different sizes (same
shape and orientation) is a sequentially 5-independent graph.

Proof. We will order the objects by non-decreasing size. Consider the object of small-
est size. The argument in Lemma 3 and Theorem 4 shows that there are at most 5
independent objects intersecting the smallest object. ⊓⊔

It follows immediately by Corollary 2 that disk graphs and unit disk graphs are
sequentially 5 and 3-independent graphs respectively. We conjecture that Theorem 4
extends to higher dimensions as follows:

Conjecture 1. The intersection graph of translates of a convex object in an D dimen-
sional space is a sequentially (2D − 1)-independent graph.

4.2 Planar Graphs

Planar graphs have been well-studied in the literature not only because their numerous
applications but also due to the existence of many non-trivial results. For many NP-
complete problems, there exist PTASs when the graph is planar [4]. In this section,
we present a nice property of planar graphs in terms of its sequential independence
number. We first show a result for general genus g ≥ 1.

Theorem 5. A graph G with genus g ≥ 1 has sequential independence number no
more than g + 4.

Proof. Let G be a graph with genus g ≥ 1 and n be the number of vertices in G,
then every induced subgraph of G has genus no more than g. We prove the theorem
by induction on n. If n < 12 then by Theorem 3, we have λ(G) ≤ 5 ≤ g + 4. Now
suppose the statement holds for n < k, we consider the case for n = k. If k = 12 then
we have three cases:

1. If λ(G) < 6, then since g ≥ 1, λ(G) ≤ g + 4 clearly holds.
2. if λ(G) = 6, then it can be shown that G has to be K6,6, which has g = 4,

therefore λ(G) ≤ g + 4.
3. If λ(G) > 6, this is impossible by Theorem 3.

If k > 12 then by Euler-Poincaré Theorem, the average degree of G is at most 6 +
12(g−1)

k < g + 5. That implies there exists a vertex v with degree ≤ g + 4. By the
inductive hypothesis, λ(G[V −{v}]) ≤ g+4, and thus λ(G) ≤ g+4. Therefore, a graph
G with genus g ≥ 1 has sequential independence number no more than g + 4. ⊓⊔

The proof of Theorem 5 only relies on the average degree constraint from the
Euler-Poincaré Theorem, and we believe that the following conjecture holds based on
the fact that a graph with n vertices has the largest possible sequential independence
number when it is a complete bipartite graph with equal bipartition.

Conjecture 2. The sequential independence number for a graph G with genus g ≥ 1
is O(

√
g).

For planar graphs, since the average degree is always less than 6, any planar graph
is a sequentially 5-independent graph, but this is not tight.



Theorem 6. Any planar graph is a sequentially 3-independent graph.

Proof. Let G∗ be a minimum counter example, so for any vertex v in G∗, we have
α(G∗[N(v)]) > 3. We look at a planar embedding of G∗, for a specific vertex v,
depending on its degree, there are three cases:

1. If d(v) = 4, then since α(G∗[N(v)]) > 3, none of the neighbors are adjacent.
Therefore, for each edge e incident to v, the face to its left has at least four edges
as its boundary and so does the face to its right. Since each edge is counted twice,
e contributes at most 1

8 to the left face and 1
8 to the right face; so the total face

contribution of e is at most 1
4 . The edge contribution of e is 1

2 due to double
counting. Therefore, for such a vertex v, the total face contributions from all v’s
edges is at most 1 and the total edge contributions from all its edges is 2. We
assume there are x such vertices.

2. If d(v) = 5, then since α(G∗[N(v)]) > 3, there are only three cases:
(a) If none of the neighbors are adjacent; see Fig. 8(a). Using a similar argument,

(b)
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Fig. 8. Face contributions of edges for d(v) = 5.

we can show that for such a vertex v, the total face contributions from all its
edges is at most 5

4 and the total edge contributions from all its edges is 5
2 . We

assume there are y1 such vertices.
(b) If exactly two neighbors are adjacent; see Fig. 8(b). Exactly one face associated

with the vertex v is a triangle. We see that for such a vertex v, the total face
contributions from all its edges is at most 4

3 and the total edge contributions
from all its edges is 5

2 . We assume there are y2 such vertices.
(c) If there exists one neighbor adjacent to two of the other two neighbors; see

Fig. 8(c). Exactly two adjacent faces associated with the vertex v are triangles.
We see that for such a vertex v, the total face contributions from all its edges
is at most 17

12 and the total edge contributions from all its edges is 5
2 . We

assume there are y3 such vertices.
3. If d(v) > 5, then we can conclude, for such a vertex v, the total face contributions

from all its edges is at most 1
3d(v) and the total edge contributions from all its

edges is 1
2d(v). We assume there are z such vertices, and we label them v1, . . . , vz .

Now by summing up for all vertices, we get the total number of edges:

|E| = 2x+
5

2
(y1 + y2 + y3) +

1

2

z
∑

i=1

d(vi).



The total number of faces:

|F | ≤ x+
5

4
y1 +

4

3
y2 +

17

12
y3 +

1

3

z
∑

i=1

d(vi).

The total number of vertices:

|V | = x+ y1 + y2 + y3 + z.

Therefore, the Euler characteristic:

|V | − |E| + |F | ≤ z − 1

4
y1 −

1

6
y2 −

1

12
y3 −

1

6

z
∑

i=1

d(vi) ≤ 0.

This contradicts the fact that G is planar. Therefore any planar graph is a sequentially
3-independent graph. ⊓⊔

5 Algorithmic Aspects of Sequentially Independent Graphs

In this section, we show several algorithmic results for sequentially k-independent
graphs. We do not explicitly state the time complexity for those algorithms (with
the exception of the vertex cover problem) since they depend on the complexity for
constructing a k-independence ordering. But by Theorem 2, all algorithms discussed
here run in polynomial time when k is a fixed constant.

It is well known that many NP-complete problems can be solved optimally when
restricted to chordal graphs [29][66]. We show that if we restrict the graph to be a
sequentially k-independent graph, we get simple approximation algorithms for several
NP-complete problems. In fact, the structure of sequentially k-independent graphs
gives a unified treatment for many previous results. Note that for both minimization
problem and maximization problems, we always consider approximation ratios to be
greater or equal to one.

5.1 Weighted Maximum Independent Set

The maximum independent set problem is NP-complete for general graphs and for
graphs with maximum degree ∆ it is NP-hard to approximate within ∆ǫ for some
ǫ > 0 even for the unweighted case [3], but polynomial time solvable for chordal
graphs. Akcoglu et al [2] show that the local ratio technique ([7][11]) achieves a k-
approximation for the weighted maximum independent set on sequentially k-independent
graphs. The local ratio technique is usually described as a recursive algorithm. As in
Berman and DasGupta [11], we view it as an iterative algorithm, modeled as stack
algorithms in [13].

The Stack Algorithm for packing problems

Push Phase:



while V is not empty
select the next data item v according to some rule2

decide to either push v onto the stack or discard it
end while

Pop Phase:

while the stack is not empty
pop the data item v from the stack
accept v if it is feasible with respect to current solution
otherwise discard v

end while

When restricting to the MIS graph problem, ”feasibility” simply means indepen-
dence in the above algorithm. For some graph classes such as those defined by the JISP
and axis paralell rectangles problems mentioned in section 1, the orderings satisfy the
locally defined orderings in priority algorithms [14] and hence we obtain greedy (in
the unweighted case) or greedy-like stack algorithms. For completeness, we include a
proof of the weighted MIS result in this subsection. We study a natural generalization
of the MIS problem in the next subsection from which the MIS result will follow.

Theorem 7. [2] For all fixed constant k ≥ 1, there is a polynomial time stack algo-
rithm that achieves a k-approximation for the weighted maximum independent set if
G is a sequentially k-independent graph. In the unweighted case, the pop phase is not
needed.

Proof. The stack algorithm in this case always selects a vertex v according to the
sequentially k-independent ordering. It then checks if the weight of v is greater than
the updated total weight of its neighboring vertices in the current stack. If it is, then
update the weight to be the difference and push it onto the stack; otherwise, reject.

Let v1, v2, . . . , vn be a sequentially k-independent ordering, A be the output of the
stack algorithm, and O be an optimal solution. Let S be the set of vertices in the
stack at the end of push phase, and Si be the content of the stack when vi is being
considered. We first prove the following claim:

Claim. The stack algorithm achieves at least the total weight of the stack.

For a given vertex vi ∈ A, let w(vi) denote the weight of vi and w̄(vi) denote the
updated weight of vi in the stack, we then have

w(vi) = w̄(vi) +
∑

vj∈Si∩N(vi)

w̄(vj).

If we sum up for all vi ∈ A, we have

∑

vi∈A

w(vi) =
∑

vi∈A

w̄(vi) +
∑

vi∈A

∑

vj∈Si∩N(vi)

w̄(vj) ≥
∑

vt∈S

w̄(vt).

2 These rules are often “local priority rules” as defined in [13] but here we only require that
the rule is polynomial time computable.



The second equality holds because for any vt ∈ S, we either have vt ∈ Si ∩N(vi) for
some vi ∈ A or we have vt ∈ A.

Now we show that the optimal solution achieves at most k times the weight of the
stack. For a given vertex vi ∈ O, we have

w(vi) ≤ w̄(vi) +
∑

vj∈Si∩N(vi)

w̄(vj).

If we sum up for all vi ∈ O, we have

∑

vi∈O

w(vi) ≤
∑

vi∈O

w̄(vi) +
∑

vi∈O

∑

vj∈Si∩N(vi)

w̄(vj) ≤ k
∑

vt∈S

w̄(vt).

The second inequality holds because when we sum up for all vi ∈ O, each of the
terms w̄(vt) for any vertex vt ∈ S can at most appear k times, since the ordering
v1, v2, . . . , vn is a sequentially k-independent ordering. Therefore, we have

∑

vi∈O

w(vi) ≤ k
∑

vi∈A

w(vi).

⊓⊔

5.2 Weighted Maximum m-Colorable Subgraph

The interval scheduling problem is often extended to scheduling on m machines. For
identical machines, the graph-theoretic formulation of this problem leads to the fol-
lowing natural generalization of the MIS problem. Given a graph G = (V,E) with a
positive weight w(v) for each vertex v, an m-colorable subgraph of G is an induced
subgraph G[V ′] on a subset V ′ of V such that G[V ′] is m-colorable. A maximum
m-colorable subgraph is an m-colorable subgraph with maximum number (or total
weight in the weighted case) of the vertices. This problem has also been referred to as
the (weighted) maximumm-partite induced subgraph problem [1] in some other graph
theory literature. For chordal graphs, the unweighted case of the problem is polyno-
mial time solvable for any fixed m, but NP-complete otherwise [66]. In a recent paper,
Chakaravarthy and Roy [17] showed that the problem has a simple 2-approximation
algorithm for the weighted case. Here we strengthen their approximation result.

Theorem 8. For all fixed constant k ≥ 1, there is a polynomial time algorithm that
achieves a (k+ 1− 1

m )-approximation for weighted maximum m-colorable subgraph if
G is a sequentially k-independent graph.

We first describe the algorithm. We use almost the same idea for the weighted
maximum independent set as proven in the previous subsection except that we now
use a stack Sc for each color class c. At each step i, the algorithm considers the vertex
vi in the k-independence ordering, and computes the updated weight

w̄(vi) = w(vi) −
∑

vj∈Sc∩N(vi)

w̄(vj)



for each color class c. If w̄(vi) is non-positive for every color class, then reject vi

without coloring it. Otherwise, find a color class with the largest w̄(vi) value and
assign vi with that color. We next prove the following permutation lemma.

Let M be an m by m square matrix, and σ ∈ Σ be a permutation on {1, 2, . . . , n}.
and σi be the ith element in the permutation.

Lemma 4. There exists a permutation σ such that

∑

i

Miσi
≤ 1

m

∑

i,j

Mij .

Proof. Suppose otherwise, then for each permutation σ we have

∑

i

Miσi
>

1

m

∑

i,j

Mij .

We sum up for all σ ∈ Σ, since in total we have m! permutations, we have

∑

σ∈Σ

∑

i

Miσi
> m! · 1

m

∑

i,j

Mij .

Since each Mij is counted exactly (m− 1)! times on the left hand side, we have

(m− 1)!
∑

i,j

Mij > (m− 1)!
∑

i,j

Mij ,

which is a contradiction. ⊓⊔

Let c1, c2, . . . , cm be the color classes and S1, S2, . . . , Sm be the sets of vertices
that have been put onto the stacks at the end of the push phase. Let S be the union
of all the stacks. Now we prove the theorem.

Proof. It is not hard to see that the algorithm achieves at least the total weight
W =

∑

vt∈S w̄(vt) of all stacks. The goal is to show that the weight of the optimal

solution will be at most (k+ 1− 1
m ) ·W . Let A be the output of the algorithm and O

be the optimal solution. For each given vertex vi in O, let coi be its color class in O,
and csi be its color class in S if it is accepted into one of the stacks. Let Si

oi be the
content of the stack in color class coi when the algorithm considers vi, then we have
three cases:

1. If vi is rejected during the push phase of the algorithm then we have

w(vi) ≤
∑

vj∈Si
oi
∩N(vi)

w̄(vj).

In this case, we can view that w(vi) is charged to all w̄(vj) with vj ∈ Si
oi ∩N(vi),

each of which appears in the same color class coi and is charged at most k times
coming from the same color class.



2. If vi is accepted into the same color class during the push phase of the algorithm
then we have

w(vi) = w̄(vi) +
∑

vj∈Si
oi
∩N(vi)

w̄(vj).

In this case, we can view that w(vi) is charged to w̄(vi) and all w̄(vj) with vj ∈
Si

oi∩N(vi). Note that they all appear in the same color class coi; w̄(vi) is charged
at most once and each w̄(vj) is charged at most k times coming from the same
color class.

3. If vi is accepted into a different color class during the push phase of the algorithm
then we have

w(vi) ≤ w̄(vi) +
∑

vj∈Si
oi∩N(vi)

w̄(vj).

In this case, we can view that w(vi) is charged to w̄(vi) and all w̄(vj) with vj ∈
Si

oi∩N(vi). Note that each w̄(vj) appears in the same color class coi and is charged
at most k times coming from the same color class. However w̄(vi) in this case is
in a different color class csi and is charged at most once coming from a different
color class.

If we sum up for all vi ∈ O, we have

∑

vi∈O

w(vi) ≤
∑

vi∈S∩O∧coi 6=csi

w̄(vi) + k

m
∑

i=1

∑

vt∈Si

w̄(vt).

The inequality holds when we sum up for all vi ∈ O, since the number of charges
coming from the same color class can be at most k; the number of charges coming from
a different color class can be at most one, which only appears when vi is accepted into
a stack of a different color class (comparing to the optimal) during the push phase of
the algorithm. Therefore we have the extra term

∑

vi∈S∩O∧coi 6=csi
w̄(vi). Now if we can

permute the color classes of the optimal solution so that for any vi ∈ S ∩O, coi = csi,
then the term

∑

vi∈S∩O∧coi 6=csi
w̄(vi) disappears and we achieve a k approximation.

But it might be the case that no matter how we permute the color classes of the
optimal solution, we always have some vi ∈ S ∩ O with coi 6= csi. We construct the
weight matrix M in the following way. An assignment ci → cj is to assign the color
class ci of O to the color class cj of S. A vertex is misplaced with respect to this
assignment ci → cj if it is in S ∩ O and its color class is ci in O, but is not cj in S.
We then set Mij be total updated weight of misplaced vertices with respect to the
assignment ci → cj . Note that the total weight of the matrix is (m−1)

∑

vi∈S∩O w̄(vi),
and applying Lemma 4, there exists a permutation of the color class in O such that

∑

vi∈S∩O∧coi 6=csi

w̄(vi) ≤
m− 1

m

∑

vi∈S∩O

w̄(vi) ≤
m− 1

m

∑

vi∈A

w(vi).

Therefore, we have

∑

vi∈O

w(vi) ≤
m− 1

m

∑

vi∈A

w(vi) + k

m
∑

i=1

∑

vt∈Si

w̄(vt) ≤ (k + 1 − 1

m
)

∑

vi∈A

w(vi).

⊓⊔



Given a k-independence ordering, the running time of the above algorithm is
O(min{|E| logm + |V |, |E| +m|V |}). Using a machine by machine (i.e., by viewing
each color class as one machine) greedy approach used in [6], we can further improve
the approximation ratio to

(mk)k

(mk)k − (mk − 1)k
,

with an increased running time of O(m(|E| + |V |)).

5.3 Minimum Vertex Coloring

Minimum vertex coloring is a well-studied NP-hard problem, and is not approximable
within n1−ǫ for any fixed ǫ > 0, unless ZPP=NP [26]. For chordal graphs, a greedy
algorithm on the reverse ordering of any perfect elimination ordering gives an optimal
coloring. For sequentially k-independent graphs, the same greedy algorithm achieves
a k-approximation.

Theorem 9. For all fixed constant k ≥ 1, there is a polynomial time algorithm that
achieves a k-approximation for the minimal vertex coloring if G is a sequentially
k-independent graph.

Proof. The algorithm just takes the reverse of a k-independence ordering, and as-
signs the minimal color number to each vertex. Let v1, v2, . . . , vn be a k-independence
ordering, and Vi = {vi, . . . , vn}. We prove by induction that the algorithm achieves
k-approximation for G[Vi] for all i from n to 1. The base case is clear, since when
i = n, G[Vn] is just a single vertex. Now we assume the statement holds for i > t, i.e.,
the number of color ci used in the algorithm for G[Vi] satisfies

ci ≤ k · χ(G[Vi]).

Now we consider i = t. There are three cases:

1. If ct = ct+1, then the statement holds trivially since

ct = ct+1 ≤ k · χ(G[Vt+1]) ≤ k · χ(G[Vt]).

2. If χ(G[Vt]) = χ(G[Vt+1]) + 1, then the statement also holds trivially since

ct ≤ ct+1 + 1 ≤ k · χ(G[Vt+1]) + 1 ≤ k(χ(G[Vt+1]) + 1) = k · χ(G[Vt]).

3. The only remaining case is when ct = ct+1 + 1, and χ(G[Vt]) = χ(G[Vt+1]).
Suppose ct > k · χ(G[Vt]). Since we have to increase the color number in the
algorithm, there exist ct+1 neighbors of vt, each having a different color. These
ct+1 neighbors together with vt must be grouped into χ(G[Vt]) color classes in the
optimal coloring. Therefore at least one color class in the optimal coloring will
have at least ct+1+1

χ(G[Vt])
vertices from the set N(vt) ∩ Vt. Since

ct+1 + 1

χ(G[Vt])
=

ct

χ(G[Vt])
> k,

we have one color class containing more than k vertices from N(vt) ∩ Vt. This
contradicts the fact that v1, v2, . . . , vn is a sequentially k-independent ordering.



This completes the induction. Therefore the algorithm achieves k-approximation for
the minimal vertex coloring if G is a sequentially k-independent graph. ⊓⊔

Lemma 5. For a triangle-free, sequentially k-independent graph, a simple greedy al-
gorithm can color its vertices with k + 1 colors.

Proof. The greedy algorithm colors vertices on the reverse of a k-independence or-
dering. Since whenever the algorithm colors a vertex v, at most k neighbors of v are
already colored, the algorithm uses at most k + 1 colors. ⊓⊔

5.4 Minimum Vertex Cover

Minimum vertex cover is one of the most celebrated problems for approximation
algorithms, because there exist simple 2-approximation algorithms, yet for general
graphs no known algorithm can achieve approximation ratio 2−ǫ for any fixed ǫ > 0. In
this section, we show a (2− 1

k )-approximation algorithm for minimum vertex cover on
sequentially k-independent graphs. The algorithm shares the same spirit of the result
of Bar-Yehuda and Even [8] for the 5

3 approximation of vertex cover for planar graphs,
and can be viewed as a generalization of that algorithm. Baker’s PTAS algorithm [4]
for minimum vertex cover on planar graphs depends on a planar embedding and would
not be considered as a simple combinatorial algorithm.

Theorem 10. There is a simple polynomial time algorithm that achieves a (2 − 1
k )-

approximation for minimum vertex cover if G is a sequentially k-independent graph.
Furthermore, for triangle free graphs sequentially k-independent graphs with k > 1,
the algorithm is a greedy algorithm (in the sense of [14]).

Proof. If k = 1 then it is a chordal graph, and hence minimum vertex cover can
be done optimally. Now assume k > 1; if the sequentially k-independent graph G

contains triangles, then since finding a triangle can be done in polynomial time, we
can find a triangle, select all three vertices and delete all incident edges, hence reduce
the problem to a smaller sequentially k-independent graph. We can do this because
covering three edges of the triangle requires at least two nodes, this elimination can
only improve the approximation ratio. Therefore we can assume, at a certain point of
time, the remaining sequentially k-independent graph G∗ does not contain triangles.
Let v be a vertex with the smallest degree in G∗ and N ′(v) be the set of vertices,
excluding v, adjacent to vertices in N(v). Note that since there are no triangles, N(v)
is an independent set and d(v) ≤ k. We first prove the following claim:

Claim. The size of the maximum matching betweenN(v) andN ′(v) is at least d(v)−1.

Suppose the size of the maximum matching between N(v) and N ′(v) is less d(v)− 1,
then there must exist some vertex x ∈ N(v), which is not in the maximum matching,
such that d(x) < d(v)−1+1 = d(v). This contradicts the fact that v has the minimum
degree.

Therefore, we select a d(v) − 1 matching M between N(v) and N ′(v), and let u
be the vertex in N(v) which is not selected in M , then M ∪ {uv} is a matching of
size d(v), depicted by the thick edges in Fig. 9. The algorithm then selects both end-
vertices of the matching M , plus u. This set C of 2d(v)− 1 vertices covers M ∪ {uv},



A d(v)−1 matching between N(v) and N’(v)      . . . . . .

v

u

. . . . . .

Selected vertices for the cover

N’(v)N(v)

Fig. 9. A large local matching in G[{v} ∪ N(v) ∪ N ′(v)].

which requires at least d(v) vertices to cover. At the same time, this covering C is
also maximum in the sense that for any other covering C′, where C′ is a subset of the
vertex set of matching M ∪ {uv}, the set of edges covered by C′ is always a subset
of the set of edges covered by C. Therefore by taking C the algorithm can always do
better locally. Since d(v) ≤ k, the approximation ratio is at most 2 − 1

k . ⊓⊔
The running time of this algorithm is dominated by the time to remove all triangles

which can be done in n×nmatrix multiplication time O(nω) ≈ O(n2.376); or in O(nm)
time for sparse graphs. We can further improve the ratio to 2 − 2

k+1 using a result
of Hochbaum [39], which uses Nemhauser and Trotter’s decomposition scheme [53].
This yields a 3

2 approximation for planar graphs.

Theorem 11. (Hochbaum) Let G be a weighted graph with n vertices and m edges.
If it takes only s steps to color the vertices of G in c colors then it takes only s +
O(nm log n) steps to find a cover whose weight is at most 2 − 2

c times the weight of
an optimal cover.

Theorem 12. For k > 2, there is a polynomial time algorithm that achieves a (2 −
2

k+1 )-approximation for minimum vertex cover if G is a sequentially k-independent
graph.

Proof. Note that if we remove all triangles from a sequentially k-independent graph,
the remaining graph is (k + 1)-colorable by Lemma 5. It then follows immediately
by Theorem 11 that there is a polynomial time algorithm that achieves a (2 − 2

k+1 )-
approximation for minimum vertex cover if G is a sequentially k-independent graph.
The running time is O(nm logn). ⊓⊔
Theorem 13. For k > 2, there is a polynomial time algorithm that achieves a
(2 − 2

k+1 )-approximation for weighted minimum vertex cover if G is a sequentially
k-independent graph.

Proof. As observed by Zimny [67], this follows directly from the Local Ratio vertex
cover algorithm of Bar Yehuda and Even [8]. Namely, for any triangle in the graph,



the local ratio algorithm removes the vertex with minimum weight and reduces the
weights of the other two vertices by that weight. The algorithm keeps doing that until
the graph is triangle free. Then it applies Theorem 11 to get (2− 2

k+1 )-approximation.
⊓⊔

6 Sequential Neighborhood Properties

We view properties such as “the chromatic number is no more than k” as global prop-
erties of a graph, and properties like “k-claw-freeness” as (universal) neighborhood
properties. Graph properties associated with sequential independence numbers are
different and we refer to them as sequential neighborhood properties. They give rise
to a general development of sequential elimination graphs.

Definition 4. Let P be a graph property, a graph has a (universal) neighborhood
property with respect to P if for all vertices v1, v2, . . . , vn, P holds on G[N(vi)].
The set of all graphs satisfying such a neighborhood property is denoted as Ĝ(P ). A
graph has a sequential neighborhood property with respect to P if there exists
an ordering of vertices v1, v2, . . . , vn such that for any vi, 1 ≤ i ≤ n, P holds on
G[N(vi) ∩ Vi], where we recall that Vi = {vi, . . . , vn}. The set of all graphs satisfying
such a sequential neighborhood property is denoted as G̃(P ).

It is obvious that if the property P is closed on induced subgraphs, then Ĝ(P ) is a
sub-family of G̃(P ), and both Ĝ(P ) and G̃(P ) can be recognized in polynomial time
provided that the property P can be tested in polynomial time. Using this notion,
we can express many known graph classes; it also gives a rise to many interesting
graph classes which have not been previously studied. For illustration, we consider
the following three graph properties:

1. |V |k: the size of the vertex set is no more than k.
2. V CCk: the size of the minimum (vertex) clique cover is no more than k.
3. ISk: the size of the maximum independent set is no more than k.

Using these defined properties, sequentially k-independent graphs discussed in this
paper are G̃(ISk), k-claw-free graphs are Ĝ(ISk−1), forests are G̃(|V |1). The JISP
graphs are in G̃(V CC2) as well as in G̃(IS2), and graphs with tree-width no more
than k are in G̃(|V |k). Jamison and Mulder’s generalization of chordal graphs in our
notion is just G̃(V CCk). It is obvious that |V |k ⇒ V CCk ⇒ ISk, therefore, we have

Ĝ(|V |k) ⊂ Ĝ(V CCk) ⊂ Ĝ(ISk).

Similarly, we have
G̃(|V |k) ⊂ G̃(V CCk) ⊂ G̃(ISk).

It is not difficult to construct examples to show that all inclusions are proper. In
what follows we specify the minimal ℓ such that the indicated graph is in the class
G̃(Pℓ) for each of the relevant properties P . A clique of size k is in G̃(|V |k−1) and
G̃(V CC1). This separates G̃(|V |k) and G̃(V CCk). In order to separate G̃(V CCk) and
G̃(ISk), we construct the following example. Given two cycles of length 2k + 1, we
connect every vertex in the first cycle to every vertex in the second cycle. It is not
hard to see that the graph is in G̃(V CCk+1) and G̃(ISk).



One motivation for defining these graph classes comes from our attempt to find
good approximation algorithms for (weighted) maximum clique and minimum vertex
clique cover on sequentially k-independent graphs. In [29], Gavril optimally solved
both problems for chordal graphs, but our extension based on the maximum indepen-
dent set size does not seem to allow an approximation argument for either problem.
We note that a graph with a small maximum independence number, say 2, can have
arbitrarily large minimum vertex clique cover number.

6.1 Graph Class of G̃(V CC2)

The graph class G̃(V CCk) is a subclass of G̃(ISk), however testing membership in
G̃(V CCk) is NP-hard for k > 2. The graph class G̃(V CC2) can be recognized in
polynomial time, and it contains several interesting classes such as translates of a
rectangle, JISP graphs and circular-arc graphs. Here, we give an optimal algorithm
for weighted maximum clique and a 2-approximation algorithm for minimum vertex
clique cover.

Theorem 14. Given a graph in G̃(V CC2), there is a polynomial time algorithm that
solves weighted maximum clique.

Proof. Let v1, v2, . . . , vn be a 2-elimination ordering with respect to the vertex clique
cover. For each vi, let Gi = G[(N(vi) ∪ {vi}) ∩ Vi]. Since Gi has vertex clique cover
size 2, the complement of Gi is a bipartite graph. Since finding weighted maximum
independent set in a bipartite graph can be determined in polynomial time [27][33],
weighted maximum clique in Gi can be computed in polynomial time. We compute
weighted maximum clique for each Gi, and the largest one is weighted maximum
clique for G. This is because for any weighted maximum clique C of G, there exist
some vertex vj in C that appears first in the ordering. Hence, when we compute the
weighted maximum clique for Gj , we catch the weighted maximum clique C of G. ⊓⊔

Theorem 15. Given a graph in G̃(V CC2), there is a polynomial time 2-approximation
algorithm for minimum vertex clique cover.

Proof. Let v1, v2, . . . , vn be a 2-elimination ordering with respect to the vertex clique
cover. We construct an independent set S by repeatedly taking a vertex according
to the 2-elimination ordering and removing all its neighbors. For each vi ∈ S, let
Gi = G[(N(vi) ∪ {vi}) ∩ Vi]. Since Gi has vertex clique cover size 2, we take both
cliques to cover vi, resulting a clique cover of size 2|S|. Since S is an independent
set, the optimal clique cover has size at least |S|. Therefore, the algorithm achieves
approximation ratio 2. ⊓⊔

7 Conclusion and Open Questions

We considered a generalization of chordal graphs due to Akcoglu et al [2] based on a
specific type of elimination ordering. We showed that several natural classes of graphs
have a small sequential independence number, and give a unified approach for several
optimization problems when such structure is present. Since the notion of indepen-
dence naturally extends to hypergraphs, our results also extend to hypergraphs.



There are many open questions. The first and perhaps the most important issue
is to improve the time complexity to recognize a sequentially k-independent graph for
small constants k. As we already mentioned, the current time complexity is unsatis-
factory, and one can expect it to be improved.

Our second question is related to the intersection of graph classes. It is known [48]
that the intersection of asteroidal triple-free graphs and chordal graphs is exactly
interval graphs. One immediate question is what is the intersection of asteroidal triple-
free graphs [20] and sequentially k-independent graphs for k ≥ 2? Do they present
any interesting properties?

Our third question is on the algorithmic aspects of sequentially k-independent
graphs. We have studied the weighted maximum m-colorable subgraph, minimum
vertex cover, and minimum vertex coloring problems. What can be said about other
basic graph problems? Several other problems can be solved optimally in polynomial
time for chordal graphs such as maximum clique and minimum clique cover. Can we
O(k)-approximate such problems for sequentially k-independent graphs? A particu-
larly interesting problem is minimum independent dominating set. The unweighted
case can be solved optimally in polynomial time for chordal graphs, but the weighted
case is NP-complete even for chordal graphs. Can we O(k)-approximate the indepen-
dent dominating set problem for sequentially k-independent graphs?

Last but not the least, we think there is a correspondence between algorithm
paradigms and problem structures. We have seen multiple evidences for simple al-
gorithms based on local decisions. The most notable one is the matroid [23] and
greedoid [46] structures in correspondence to greedy algorithms, which have been
studied extensively in the literature. As illustrated in this paper, various problems
solved (or approximated) by the local ratio technique seem to be connected with the
graphs having small sequential independence number. One other interesting class is
d-claw-free graphs. In [10], Berman gives a d

2 approximation for maximum weight in-
dependent set in d-claw-free graphs. We also note that Edmond’s weighted matching
algorithm [22] has been extended to 3-claw-free graphs [50][52]. These algorithms are
local search based algorithms.
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