
Analyzing and Evaluating
Query Reformulation Strategies in Web Search Logs

Jeff Huang
University of Washington

Information School
cikm09@jeffhuang.com

Efthimis N. Efthimiadis
University of Washington

Information School
efthimis@u.washington.edu

ABSTRACT
Users frequently modify a previous search query in hope of
retrieving better results. These modifications are called query
reformulations or query refinements. Existing research has studied
how web search engines can propose reformulations, but has
given less attention to how people perform query reformulations.
In this paper, we aim to better understand how web searchers
refine queries and form a theoretical foundation for query
reformulation. We study users’ reformulation strategies in the
context of the AOL query logs. We create a taxonomy of query
refinement strategies and build a high precision rule-based
classifier to detect each type of reformulation. Effectiveness of
reformulations is measured using user click behavior. Most
reformulation strategies result in some benefit to the user. Certain
strategies like add/remove words, word substitution, acronym
expansion, and spelling correction are more likely to cause clicks,
especially on higher ranked results. In contrast, users often click
the same result as their previous query or select no results when
forming acronyms and reordering words. Perhaps the most
surprising finding is that some reformulations are better suited to
helping users when the current results are already fruitful, while
other reformulations are more effective when the results are
lacking. Our findings inform the design of applications that can
assist searchers; examples are described in this paper.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query formulation

General Terms
Algorithms, Measurement, Human Factors

Keywords
Query reformulation, search effectiveness, query log analysis.

1. INTRODUCTION
Of the roughly 2 billion daily web searches made by internet
users [8], approximately 28% are modifications to the previous
query [29], also known as query reformulations or query

refinements. For example, a user may search for ‘pizza Seattle’,
but alter their query to ‘sausage pizza Seattle’ if they are
unsatisfied with the results from the initial query. Reformulations
make up a large portion of web search activity. In a study of
Dogpile.com logs, Jansen et al. [16] reported that 37% of search
queries were reformulations when ignoring same queries. A study
of Altavista logs [17] identified that 52% of users reformulated
their queries.

Search engines and humans both try hard to come up with
appropriate query reformulations. Many web search engines today
offer query reformulation suggestions by, for example, mining
query logs. Users are manually reformulating their queries based
on the search results from the initial query, and their knowledge
and experience of how search engines work. The reformulation
process is an iterative endeavor between users and search engines
in getting a satisfactory set of results.

While the search engine side of query reformulation has been
studied extensively by the search companies and in prior
information retrieval research, how users perform query
reformulations has received less attention. Among the benefits to
understanding how people search is being able to automatically
propose query reformulations. If many users searching for
‘hummus’ reformulate their query to ‘hummus recipe’, the search
engine can be proactive and suggest ‘hummus recipe’ when the
user searches for ‘hummus’. Users can also benefit from an
improved search experience when performing reformulations.
Currently, search engines present the same interface regardless of
whether the user gives it a new query, same query, or query
reformulation. Being able to accurately detect when a user is
making a query reformulation gives the search engine an
opportunity to present an improved interface.

The goal of this work is to look at the types of query reformula-
tion users perform and evaluate them using effectiveness metrics
such as click data. In order to study these metrics, we first
construct a taxonomy of query reformulation strategies adopted
by users. Next, we build a classifier for these different types of
reformulations. While there are some existing classifiers that
determine whether a query is a reformulation, ours is the first to
separate them into reformulation types.

Our work makes three specific contributions:

• A comprehensive taxonomy of query reformulation strate-
gies defined by formal language, developed by combining
the different types of reformulations reported in existing
work and iterative experimentation over query logs (Sec-
tion 3).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11...$10.00.

• An unsupervised rule-based classifier with high precision
in detecting the different query reformulation strategies
(Section 4).

• Analysis of correlations between query reformulation
strategies and effectiveness metrics, giving us a better
overall understanding of query reformulation strategy ef-
fectiveness (Section 5).

2. RELATED WORK
2.1 Computer-Generated Reformulations
Much of the work on query reformulation for web search has
focused on offering automatically generated query suggestions to
the user. The suggestions are typically shown on the same page as
the search results. These query suggestions are built into every
major search engine today. Prior research in this vein has explored
computer-generated suggestions using query expansion [26],
query substitution [22], and other refinement techniques [6][23].
Implicit relevance feedback from users is a common data source
for computer-generated reformulations. For example, work by
Baeza-Yates et al. [6] uses query logs to discover new query
reformulations, finding similar queries using a cosine function
over a term-weighted vector built from the clicked documents. A
study by Anick [3] showed that these automatically generated
reformulations were as effective as human constructed reformula-
tions, using metrics such as uptake and click behavior.

2.2 Query Session Boundary Detection
We process query logs containing raw search queries; therefore, to
classify a query reformulation, we must first determine whether a
query is indeed a reformulation instead of a new query. This is
similar to the problem of detecting query sessions and their
boundaries. Jansen et al. define a session as “a series of interac-
tions by the user toward addressing a single information need”
[16]; Silverstein et al. [33] note, “A session is meant to capture a
user's attempt to fill a single information need.” Therefore,
sessions can be considered as a single query, followed by any
number of reformulated queries. From this, our definition of a
query reformulation is: a modification to a search query that
addresses the same information need. Further deriving from these
definitions, we can conclude that if we were able to correctly
identify the boundaries of all query sessions, we would know
which queries are initial queries and which are reformulations.
Conversely, by identifying which queries are reformulations, we
would be able to accurately group query sessions together.
Therefore, the problem of identifying query reformulations is
similar to the problem of detecting session boundaries.

Most existing work identifies sessions using a simple temporal
strategy, where a specific time interval of inactivity represents a
boundary. This method is simple to implement and the definition
is unambiguous. He et al. [15] and Ozmutlu [28] used time and
common words to determine session cutoffs. Comparing several
session detection algorithms, He et al. attained 73% precision and
62% recall using time only, and 60% precision and 98% recall
using time and common words together. Arlitt [4] found session
boundaries using a calculated timeout threshold. Murray et al.
[27] extended this work by using hierarchical clustering to find
better timeout values to detect session boundaries. Their method
had 97% precision and 76% recall on a human-classified dataset.

More recently, Jones and Klinkner [21] presented evidence that
any temporal cutoff is arbitrary and detects session boundaries no
better than a random cutoff time. They evaluated the existing
session boundary detection methods alongside their own. Their
study reviewed these methods without considering same queries.
Using the optimal cutoff time, 5 minutes, query reformulations
were accurately identified 63% of the time. Combining the
optimal features from prior work, that is, common word + prisma
(see [3]) + time, they achieved 84% accuracy. Using only
Levenshtein edit distance resulted in 85% accuracy. Lastly, their
own combination of methods resulted in the best accuracy, 87%.

2.3 Click Data Analysis
Many researchers have studied click data as indicators of search
relevance. An early inquiry by Joachims [19] reveals that click
data can indeed be used to improve search relevance. Several later
studies agree that click data are indicators of search result
preferences and discuss best methods of analyzing click data
[2][12]. Joachims et al. also find that analyzing clicks over query
reformulations similarly provides useful information [20]. This
data has also been shown to be helpful for improving search
relevance [1][9]. Our study applies lessons learned from these
reports of click data analysis. While they study the effectiveness
of analyzing different click patterns, we study the effectiveness of
reformulation strategies using different click patterns.

2.4 Taxonomies of Reformulation Strategies
Taxonomies of query reformulation have been developed for
different types of search. A more comprehensive review of query
reformulation in traditional information retrieval can be found in
[10]. Here we focus only on the taxonomies developed by
analyzing query logs. These are generally constructed by
examining a small set of query logs. Some studies are out of date
or incomplete. None have built an automatic classifier distin-
guishing reformulation strategies, as we have.

Table 1 presents a mapping between our taxonomy of query
reformulation strategies and the terminology for these strategies
from prior work. Anick [3] classified a random sample of 100
reformulations by hand into eleven categories. Lau and Horvitz
[24], Jansen et al. [16], and He et al. [15] used the same
reformulation categories—terms taken from linguistics [18]. As
part of a study of re-finding behavior, Teevan et al. [34] con-
structed a taxonomy by looking through query logs, and
implemented algorithms to detect a subset of the reformulation
strategies. Whittle et al. [36] modeled some reformulation
strategies using a graphical network. Bruza and Dennis [7]
manually classified 1,040 queries into their own taxonomy. Guo
et al. [13] also constructed a small taxonomy and used a
conditional random field model to predict query refinements. Rieh
and Xie [32] constructed conceptual reformulation categories like
content, format, resource; these are not included in the table
because their abstract nature makes them difficult to map against
concrete reformulation techniques.

3. REFORMULATION STRATEGIES
We constructed our own taxonomy by combining the types of
query reformulation identified in prior work (Table 1). We
implemented a matching rule for each strategy, which was
iteratively improved to find the best unsupervised algorithm. For

instance, the ‘add words’ rule was modified to detect added words
even when the other words were reordered. To determine if we
were missing any other rules or needed to adjust existing rules,
we ran our classifier over the AOL query logs and randomly
checked the output. We optimized for reducing false positives
while keeping false negatives low since we wanted a high
precision classifier. From this, we tweaked several rules and
added one that would detect a number of query reformulations
that other rules did not, namely substring2.

A few categories from prior work were either vague or difficult to
detect, marked not detected in the table. For example, determining
whether a query was a location reformulation as defined in [3] is
subjective and would reduce the precision of our classifier.
Categories marked not in data could not be classified because the
queries were normalized (via lowercasing and punctuation
removal) in our dataset.

The query reformulation strategies (ordered by rule precedence)
from Table 1 are described below in formal language notation.

3.1 Definitions
Let an underscore _ denote the space character; punctuation,
represented by P comprises the three punctuation characters left
in the query logs: the apostrophe, dash, and period; i.e.

,.},{' −=P . The empty string is represented by λ.

Let Σ be the alphabet of letters, digits, and punctuation,
PU9]}-[0z],-a{[=∑ . ci is a character in that alphabet Σ∈ic ,

wi is a word in that alphabet ∗Σ∈iw , and zi is any string
composed from that alphabet or space character ∗Σ∈ {_})(Uiz ,
including the empty string.

1 Includes form acronym and expand acronym
2 Includes substring and superstring

 REFORMULATION 1. WORD REORDER
In a word reorder, the words in the first (initial) query are
reordered but unchanged otherwise, producing the second
(refomulated) query. This transformation can be defined formally
using a recursive definition,

⎪⎩

⎪
⎨
⎧

⎯→⎯==

==

⎯→⎯

21212121

1221

__,__,__

,
any if

WR

WR

bbaabbbaaa

aabaaa

ba

zzzzzwzzzwzz

zzzzzz
zz

Explicitly, either both queries contain the same two words but
reversed, or removing the same word from both queries makes the
second query a word reorder of the first query. The first condition
is the base case and second condition is the recursive step.
Example: seattle pizza palace pizza seattle palace

 REFORMULATION 2. WHITESPACE AND PUNCTUATION
The second query is a whitespace and punctuation reformulation
of the first query if only whitespace and punctuation are altered in
the reformulation. This can be defined recursively,

⎪⎩

⎪
⎨
⎧

⎯→⎯

=

∈

⎯→⎯

2121

2121

2121

WP

21

2
WP

1

any if

_},{,

bbaa

bbaa

bbaa

zzzz

zzzz
Pvv

zvzzvz

λU

A whitespace and punctuation reformulation occurs when after
removing a whitespace or punctuation character, the remaining
queries are the same or the remaining second query is a whites-
pace and punctuation reformulation of the second query.
Example: wal mart, tomatoprices walmart tomato prices

 REFORMULATION 3. REMOVE WORDS
A remove words reformulation is when any number of words is
removed from the first query resulting in the same words in both
queries. This reformulation neglects word order.

Present Study Anick [3] Teevan [34]
Jansen [16], He
[15], Lau [24]

Whittle [36] Bruza [7] Guo [13]

word reorder syntactic variant word order

whitespace and
punctuation

non‐alphanumerics, word
merge

 SPL, PUN
word splitting,
word merging

remove words remove words / duplicates generalization D(k) DEL

add words head, modifier add words, add stopwords specialization C(k) ADD

url stripping domain

stemming morphological variant stemming and pluralization M(k) DER word stemming

acronym1 acronym abbreviations ABR expansion

substring2

abbreviation

word substitution
alternative, hyponym,
change

word swaps, synonyms reformulation W(k), w(k) SUB

spelling correction spelling misspellings M(k) SPE spelling correction

* not detected elaboration, location reformulation S(k), s(k)

* not in data
capitalization, extra
whitespace

 J(k) CAS

Table 1: Mapping between taxonomies of query reformulation in search logs

⎪
⎩

⎪
⎨

⎧

⎯→⎯==

⎯→⎯

=

⎯→⎯

bcaacaxaa

ba

ba

ba

zzzzzzwzz
zz

zz

zz

RW

WR

RW

,___,____
any if

2121

Words are recursively removed from the first query until it is a
word reorder or equal to the second query. The first and second
conditions are base cases where either the two queries are equal or
a word reorder. The third condition removes words along with the
surrounding spaces from the first query and replaces them with
spaces. Spaces are temporarily added to the left and right of the
query to account for the leftmost and rightmost words.
Example: yahoo stock price price yahoo

 REFORMULATION 4. ADD WORDS
An add words reformulation occurs when one or more words are
added to the first query. This reformulation applies even if words
are reordered in the second query. It is easily defined as the
reverse transformation of remove words,

abba zzzz ⎯→⎯⎯→⎯ RWAW iff
Example: eastlake home eastlake home price index

 REFORMULATION 5. URL STRIPPING
Users often append components from a URL into the query,
mistaking the search box with their browser’s address bar. When
they realize this, they will strip these strings from their query.
This also happens in reverse, where the user copies the target
URL into the search box after searching. A url stripping reformu-
lation occurs when the first and second queries are the same after
removing “.com”, “www.”, and “http” from both sides.
Let { }.com,www.,http_,_http=Ω ,

⎪⎩

⎪
⎨
⎧

⎯→⎯

=

Ω∈

⎯→⎯

2121

2121

2121

US

21

2
US

1

any if

}{,

bbaa

bbaa

bbaa

zzzz

zzzz
vv

zvzzvz

λU

This rule applies if there is some permutation of removing URL
components from both queries that makes them the same.
Example: http www.yahoo.com yahoo

 REFORMULATION 6. STEMMING
A stemming reformulation involves changing the word stems in
the first query. The rule stems every word in both queries using
Porter’s stemming algorithm [30] and compares them.
Let)(wP be the stem of the word w,

())()(if

11

Stem

ii

nini

ba

bbbaaa

wPwPi

wwwwww

=∀

⎯⎯→⎯ KKKK

Example: running over bridges run over bridge

 REFORMULATION 7. FORM ACRONYM
A form acronym transformation occurs when the second query is
an acronym formed from the first query’s words.

ninnii cccwcwcwc KKKK 1
FA

11 __ ⎯→⎯
Example: personal computer pc

 REFORMULATION 8. EXPAND ACRONYM
An expand acronym transformation occurs when the first query is
an acronym and the reformulation is a query consisting of the
words that form the acronym.

nniini wcwcwcccc __11
EA

1 KKKK ⎯→⎯
Example: pda personal digital assistant

 REFORMULATION 9. SUBSTRING
A substring is defined as an instance where the second query is a
strict prefix or suffix of the first query. Unlike the traditional
definition of substring, this does not include instances where only
inside characters of the first query are extracted.

baba zzzz |Sub⎯⎯→⎯
Example: is there spyware on my computer is there spywa

 REFORMULATION 10. SUPERSTRING
A superstring is defined as an instance where the second query
contains the first query as a prefix or suffix.

xaaxa zzzzz |Super⎯⎯ →⎯
Example: nevada police rec nevada police records 2008

 REFORMULATION 11. ABBREVIATION
An abbreviation reformulation is when corresponding words from
the first and second queries are prefixes of each other. This differs
from substring which considers suffixes and only compares the
entire queries.

()cbabca

bbbaaa

wwwwwwi

wwwwww

iiii

nini

=∨=∀

⎯⎯→⎯

 if

11

Abbr KKKK

Example: shortened dict short dictionary

 REFORMULATION 12. WORD SUBSTITUTION
A word substitution occurs when one or more words in the first
query are substituted with semantically related words, determined
from the Wordnet database [10]. Two words are related if one is a
semantic relation (synonym, hyponym, hypernym, meronym, or
holonym) of the other after both are converted to their base
morphological form. This rule is implemented in two steps. First,
if the queries in their entirety are related, they are considered a
word substitution; this detects substitutions of the entire query.
Second, if every corresponding pair of words is the same or
related, this is also a word substitution.

Let the ≈ operator represent a semantic relation between two
words, including the case when the words are the same.

ba zz ⎯⎯→⎯WS

ni aaaa wwwz __

1
KK=

ni bbbb wwwz __

1
KK=

 () baba zzwwi
ii

≈∨≈∀ if

Synonym: The two words have the exact same meaning.
Example: easter egg search easter egg hunt

Hyponym: The first word is a specific instance of the second
word. These are also referred as broad terms.
Example: crimson scarf red scarf

Hypernym: The second word is a specific instance of the first
word. These are also referred as narrow terms.
Example: personal computer laptop

Meronym: The first word is a constituent part of the second word.
Example: finger hand

Holonym: The second word is a constituent part of the first word.
Example: automobile wheel

 REFORMULATION 13. SPELLING CORRECTION
A spelling correction is detected using a conservative Levenshtein
edit distance function [25]. This function maps well to a spelling
correction a user would typically make, because it tracks the
number of character edits between two queries. The queries are
classified as a spelling correction reformulation if the Levenshtein
distance is 2 or less. A threshold of 2 matches character swaps and
missing characters.
In the expression below,),(ba zzL is the Levenshtein edit distance
between strings za and zb,

2),(if SC ≤⎯→⎯ baba zzLzz
Example: reformualtion reformulation

3.2 Undetected Reformulations
There are a few categories of reformulations which are not
included in our taxonomy. They are difficult for our classifier to
detect, and may even be difficult for a human to detect. We
randomly sampled 200 of the 962 missed reformulations from our
evaluation data to get a general sense of which reformulations our
classifier missed. Three types of missed reformulations emerged,
described in the next three subsections and quantified in Table 2.

3.2.1 Semantic Rephrasing
Humans can rephrase their queries in complex ways. Many
rephrasings are difficult for even a smart algorithm to detect,
requiring sophisticated semantic association at minimum. Context
or pop culture knowledge may be needed.
Example: easy raspberry mousse cool whip mousse
Example: how to calculate nutritional values weight watchers calculator

3.2.2 Multi-Reformulations
Users often perform more than a single reformulation strategy.
For example, they may correct spelling and replace one word with
a synonym. While a classifier can theoretically try combinations
of reformulation strategies, this is difficult or even impossible
because reformulation strategies do not have a commutative
property. In other words, a different ordering of strategies gives
different results. For example, trying to detect spelling corrections
after stemming will yield different results than doing so before
stemming. Additionally, many reformulations obviously cannot be
combined, such as word reorder and acronym. Add words and
remove words together were not considered a multi-reformulation
since any query can be transformed to any other query. The most
common combinations of reformulations in our sample were add
words & spelling correction, remove words & spelling correction,
url stripping & whitespace and punctuation. Exploring the
challenge of multi-reformulations is planned as future work.

The following example demonstrates a multi-reformulation
involving two reformulations: add words and spelling correction.
Example: lane county gabrage lane county garbage disposal

3.2.3 Classifier Rule Limitations
Some instances of reformulation strategies were insufficiently
matched by a classifier rule. However, fixing the rules to detect
these reformulations would have introduced new complications.

Our rule for detecting spelling correction used a Levenshtein edit
distance of 2. While this achieved high precision, the rule missed
spelling correction involving three or more character edits. For
example, “ametuer” changed to “amateur”. This is an example of
the classic trade-off between precision and recall. We chose a
lower threshold to optimize for a high precision classifier.

Word substitutions are dependent on the Wordnet database.
Substitutions absent from the database cannot be detected by our
classifier. This limitation will likely be solved over time.

Our rule for url stripping currently only removes the .com top-
level domain from the query. Some queries involve other top-level
domains or second-level domains which are not stripped. The list
of top-level domains is not constant and there are an infinite
number of second-level domains so capturing these reformula-
tions requires a more sophisticated rule.

The abbreviation detection rule only checked for a substring
prefix for each word. There are cases in the English language
where an abbreviation is not a substring prefix such as ‘dept’ for
‘department’.

Table 2: Missed reformulations in sample evaluation data

Undetected Reformulation Occurrences

1. Semantic Rephrasing 108
2. Multi‐Reformulations 60

 2‐reformulations 46
 3‐reformulations 14

3. Classifier Rule Limitations 32
 spelling correction 15
 word substitution 11
 url stripping 3
 acronym 2
 abbreviation 1

Total 200

4. THE RULE-BASED CLASSIFIER
Classifiers commonly learn from a set of training data, which we
refer to as machine learning classifiers. We developed a rule-
based classifier instead of a machine learning classifier because
our query reformulation strategies fit a procedural rule model
better than a learning model. No prior work has developed a
machine learning classifier that distinguishes different query
reformulation strategies. Furthermore, using a rule-based
classifier allowed us to make detailed adjustments to our classifier
for special cases. An implementation of the classifier is freely
available to the research community3.

3 Source code: http://jeffhuang.com/reformulationClassifier.py

The classifier reads the query log starting from the top and
compares pairs of consecutive queries (za, zb) from the same user.
The first query in the pair za is the initial query and the second
query zb is potentially a reformulated query. The query pairs are
matched against the ordered reformulation rules defined in
Section 3.1. If there is a match, the second query is classified as a
reformulation of the first query. Figure 1 shows the flow of
queries into the classifier and segmented into query types. Using
the notation zn as the nth query in the query log example from
Figure 1, we can see that (z1, z2), (z2, z3), and (z5, z6) are classified
but not (z3, z4) or (z4, z5) because z4 was from a different user.

user1, query string1, timestamp, rank, url
user1, query string2, timestamp, rank, url
user1, query string3, timestamp, rank, url
user2, query string1, timestamp, rank, url
user3, query string1, timestamp, rank, url
user3, query string2, timestamp, rank, url

Query Logs

Classifier

New Queries

Same Queries

Reformulation

Acronym

Stemming

etc...

Figure 1: Diagram of the queries and classifier

4.1 Precision vs. Recall
Accuracy is the percentage of query pairs correctly detected as a
reformulation. Existing measures of accuracy in most query
reformulation research do not differentiate between precision, the
percentage of query reformulations identified that are actually
reformulations, and recall, the percentage of query reformulations
identified. Our goal is to create a rule-based classifier with high
precision, but not necessarily high recall. We deemphasize recall
because we are studying the properties within each reformulation
rather than between each reformulation. In other words, we are
interested in inter-reformulation, rather than intra-reformulation,
comparisons. For example, the proportion of URL clicks within
each reformulation helps us understand the reformulations better
than comparing the absolute counts of URL clicks between each
reformulation. The magnitude of query logs provides sufficient
events, so the analysis will still be generalizable and compelling
even with lower recall.

We manually classified every query from 100 users in the AOL
query logs for evaluation. Essentially, this was a session boundary
detection task. In total, there were 9,091 query pairs where we
determined whether the second query was a reformulation of the
first. Same queries were removed (40.8% of queries), to avoid
inflating classifier performance because they can be detected
trivially. Of these pairs, we found 2,483 reformulations and 6,608
new queries, or 27.3% reformulations. This is very close to the
28% reformulations reported for this dataset [29].

Our classifier was evaluated on this test data, marking the second
query of each query pair as a reformulation if the query pair
matched a reformulation strategy. Table 3 presents the results,
comparing our classifier with machine learning classifiers.

Table 3: Precision, recall, and accuracy measures
for session boundary detection studies

 Precision Recall Accuracy

Present Study 98.2% 61.3% 89.1%

He [15] 60%4 98%

Jones [22] 87.3%

Murray [27] 97.3%4 76%

Radlinski [31] 96.5%4 92.3%

Our focus on precision rather than recall resulted in 98.2%
precision which is 38% higher than reported in He et al and
slightly higher than Radlinski and Joachim’s 96.5%. Note that
each study used a different set of query logs, so results can not be
directly compared. Certain query logs are easier to classify than
others because of the nature of the search engine and their users.

Looking closer at the 1.8% (28 actual) queries that our classifier
incorrectly determined to be a reformulation, we only found one
case that was a true mistake. The other 27 were difficult to judge
and debatable whether these were reformulations or not (see
Section 5.3.3 for discussion). Therefore, we propose that our
precision is even better than the 98.2% reported.

5. RESULTS
Our results are extracted from the AOL query logs, which were
released on August 3, 2006 [29]. The logs contain 36,389,567
queries from which our classifier identified 16,069,421 new
queries, 14,861,326 same queries, and 3,411,706 reformulations.
Each line in the logs contains five fields: the query string,
timestamp, the rank of the item selected (if any), the domain
portion of the selected item’s URL path (if any), and a unique
identifier for each user.

5.1 Reformulation Effectiveness Metrics
We use effectiveness metrics to infer the quality of search results.
Past studies found that clickthrough data and time spent predicted
users’ satisfaction with the results [12]. Whether users clicked
during the initial query and the reformulated query, which we call
a click pattern, can be a predictor of search relevance [20]. We
apply metrics learned from previous research to study the
effectiveness of different reformulation strategies. These metrics
are mostly based on click behavior and help show the usage
pattern and effectiveness of specific reformulations. In our
analysis, we also included new and same queries for comparison.
Some reformulations are misidentified as new queries due to our
classifier’s lower recall, but identifying new queries has no effect
on our study of reformulated queries. Differences between
reformulation strategies were all statistically significant, due to
the large number of events in our dataset.

5.1.1 Click Pattern
A reformulation is composed of an initial query followed by a
reformulated query. For each query, the user can decide to click or
not click (skip) a result, creating 2×2=4 possible click patterns,
presented in Table 4.

4 Same queries, which inflate precision, may have been included

Table 4: Click patterns for queries and their reformulation

 Searcher Actions on Results

Initial Query Click Skip

Reformulation Click Skip Click Skip

A click pattern of Skip followed by Click (SkipClick) means the
user did not click any result from their initial query, then
reformulated their query and clicked a result. This is an indicator
that the user found the query reformulation to be effective. A
Click followed by a Skip (ClickSkip) suggests that the reformula-
tion did not help [20]. Similarly, two consecutive Clicks can be
taken as successful searches, while two consecutive Skips as
failed searches. Over all queries in the query logs, the ratio of
clicks to skips was approximately 5:4.

Figure 2 shows the proportions of the click patterns for each type
of reformulation. A chi-squared analysis verifies that the query
reformulation type has a statistically significant effect on click
pattern χ2

(42, N=34,342,453) = 6,117,864.37, p < .001.

The results show that different reformulation strategies have
significantly different proportions of Clicks vs. Skips in the initial
query. We can see this by looking at the ratios of SkipSkip +
SkipClick to ClickClick + ClickSkip. Spelling correction, expand
acronym, and superstring have high ratios, meaning people
attempt these reformulations when they are unsatisfied with their
initial query, perhaps due to a misspelled query or ambiguous
acronym. In contrast, form acronym, remove words, word reorder,
and word substitution have lower ratios, indicating the initial
results may be somewhat relevant and users are further refining
their query. Same queries have the lowest ratio as expected since
users are unlikely to repeat a search using the same query if the
initial results were unsatisfying; in fact, same queries usually have
ClickClick patterns probably because they are re-finding queries
[35]. These proportions are consistent with our current under-
standing of users.

Comparing the proportions of Clicks vs. Skips in the reformulated
query gives insight to whether the reformulation was helpful.
Looking at the SkipSkip + ClickSkip to SkipClick + ClickClick
ratios, we can see that reformulation results were clicked about as
often as new queries. This is a positive indicator for reformula-
tions because it suggests users are as successful with reformula-
tions as with new searches. The substring and superstring
reformulations were least helpful, possibly because many of those
reformulations were mistakes by users. Add words, word
substitution, stemming, spelling correction, and expand acronym
were most helpful under this comparison.

We can also compare the proportions of Clicks vs. Skips in the
reformulated query given a specific action in the initial query. We
control the action variable in the initial query and regard the
action in the reformulated query as the dependent variable. For
example, we compare the ratio of SkipSkip to SkipClick to see
whether a user is more likely to click if the initial action is Skip.
Same queries behave as expected: if the initial query was Skip,
the user is significantly more likely to skip the second query as
well; if the initial query caused a click, the user is about 10× more
likely to click than skip after searching with the same query.
When the initial query causes a Skip, the spelling correction,
expand acronym, and add words reformulations have the highest

likelihood that the user will click. Likely explanations are that
spelling correction and expand acronym fix incorrect queries and
disambiguate acronyms, while add words narrows the search to
make the results more relevant. In contrast, superstring, url
stripping, and substring are least likely to help when the initial
query results in a Skip. Different reformulations are effective
when looking at initial queries that result in a Click. Word
substitutions, word reorder, and add words are the three most
helpful reformulations in this condition. When a search provides
relevant queries, users that substitute words for related words,
reorder their words, and add new words get better follow-up
results. On the other hand, substring, superstring, abbreviation,
and spelling correction are not useful when the initial query
results in a Click. This is interesting because spelling correction is
one of the most helpful reformulations when the initial action is
Skip, but one of the least helpful reformulations when the initial
action is Click.

Q
ue

ry
 R

ef
or

m
ul

at
io

n
Ty

pe word reorder

word substitution

stemming

spelling correction

url stripping

expand acronym

superstring

substring

whitespace / punctuation

form acronym

abbreviation

remove words

add words

same

new

SkipSkip ClickClick SkipClick ClickSkip
Click Pattern

Figure 2: Proportions of Click Patterns used for each

Reformulation Type

The next two metrics, Click URL and Rank Change of Clicked
Results, only apply in the case of a ClickClick pattern because
rank and URL from corresponding clicks are used in the analysis.

5.1.2 Click URL
Users may be re-finding rather than reformulating queries to
retrieve better results. This can be observed by checking if the
URL is the same between queries. We hypothesize that users click
on the same URL in same queries (re-finding). There are some
limitations to the analysis because the URLs in the AOL logs are
truncated at the domain level for privacy.

Figure 3 shows the proportions of clicked URLs which were the
same for each reformulation type. A chi-squared analysis shows
that reformulation type has a statistically significant effect on this
metric χ2

(28, N=34,342,453) = 5,394,409.56, p < .001. The number of
new queries which resulted in the same URL is small as expected.
The same URLs were often selected before and after url stripping
from the query—this is also obviously expected. Users substitut-

ing related words in their query, i.e. word substitution, seemed to
select different results. The marked difference between forming
and expanding acronyms may be because users form acronyms to
return to the same URL and are simply using a shortcut query,
while users expand acronyms to look for new results, perhaps to
disambiguate a common acronym. Also notable is that spelling
correction caused few same URL clicks, suggesting that the
correction helped fetch new, improved results.

Q
ue

ry
 R

ef
or

m
ul

at
io

n
Ty

pe word reorder

superstring

word substitution

stemming

same

remove words

new

spelling correction

 url stripping

expand acronym

substring

whitespace / punctuation

add words

form acronym

abbreviation

Same Different
URL Clicked

Figure 3: Proportions of URLs Clicked which were the Same

vs. Different for each Reformulation Type

5.1.3 Rank Change of Clicked Results
A rank change is the difference between the rank of the result
clicked in the initial query subtracted from the rank of the result
clicked in the reformulated query. Successful reformulations
should have a positive effect on rank change.

Table 5 shows that all reformulations have positively affected the
rank of the selected result. The rank change is positive if the user
clicked a higher ranked result in the query reformulation. The
most positive rank changes occurred with the reformulation types
word substitution and add / remove words. Url stripping, changing
whitespace and punctuation, and forming acronyms resulted in a
small positive rank change. We suspect url stripping only had a
small rank change effect because most clicks were for the same
URL (see Section 5.1.2) which would likely have the same or
similar rank. Calculated rank changes were found to be signifi-
cantly different (F14,34342438 = 116,670.58, p < 0.001).

5.1.4 Median Time between Queries
This metric measures how quickly users performed each type of
reformulation. The average time was computed for each
reformulation strategy. Our results in Table 5 show that complex
reformulations such as word substitutions and forming acronyms
took users longer than simple ones like spelling correction.
Surprisingly, the median time for same query was 1 second; this
suggests that some same queries may be made by computers
rather than humans. As expected, new queries took the longest
time since they are often part of different query sessions.
Calculated times were found to be significantly different
according to an ANOVA (F14,13813144 = 48,235.05, p < 0.001).

Table 5: The median time (in seconds) between queries and
mean rank change for each reformulation

Reformulation Type Median Time (s)
between Queries

Mean Rank
Change

word substitution 73 +4.04
add words 63 +3.19
substring 33 +3.15
remove words 68 +3.02
word reorder 85 +2.86
expand acronym 42 +2.02
stemming 33 +2.00
new 2,417 +1.91
abbreviation 35 +1.39
superstring 53 +1.10
spelling correction 22 +1.03
form acronym 103 +.64
whitespace & punctuation 27 +.54
url stripping 57 +.29
same 1 ‐1.83

5.2 Discussion
Most findings were consistent with our expectations, evidence
that the general approach of analyzing effectiveness metrics of
reformulation strategies is useful. A surprising finding was that
different reformulation strategies were effective depending on the
action from the initial query. This emerged when comparing the
ratios of actions in a reformulated query while controlling for the
initial action. Word substitution reformulations were more likely
to result in a Skip than a Click when the initial action was Skip,
but result in Click 3× as often as Skip when the initial action is a
Click. This is supported by metrics that show word substitution is
correlated with different URL clicks as well as higher ranked
clicks, suggesting that the user is interested in related but better
results. In contrast, spelling correction is one of the least effective
reformulations when the initial action is a Click, but becomes one
of the most effective reformulations when the initial action is a
Skip. This demonstrates the prior action needs to be considered
when determining the effectiveness of reformulation strategies.

5.3 Limitations
5.3.1 Lack of Context
Grimes et al. [14] note that while a vast amount of information
can be discovered from aggregating data, query logs are the least
rich source of data for individual events. Query logs only show
the recorded actions and not the intent behind the queries.
Identifying the user intent can be difficult or impossible without
context, which is absent from logs. For example, query logs
cannot tell whether a user did not click because the information
they were looking for was found on the results page, or because
the results were unsatisfying. Complementing this research with
survey and user studies could address the lack of context.

5.3.2 Normalized Query Logs
The AOL query logs were released with normalized data, which
may skew the results. Some queries were removed or modified for
privacy reasons. The paths in the click URLs were stripped
leaving only the domains. Lastly, all queries were lowercased and
most punctuation was removed, preventing us from detecting
when the user performed a capitalization query reformulation.

5.3.3 Ambiguous Queries
Baeza-Yates et al. [5] note that even humans have difficulty
manually classifying some queries and the subjectivity involved
can lead to errors. When manually separating query sessions, we
encountered queries where it was ambiguous whether they were a
reformulation. Queries can be related, but whether they fit the
definition of a reformulation, ‘as part of the same information
need’, may still be unclear. If a human cannot accurately classify
a query, a computer programmed by a human, subject to their
limitations, will not be more successful. An example is a first
query ‘american airlines’ and a second query ‘delta airlines’;
would they be considered part of the same information need? The
intent behind the queries could be different (e.g. the user wants to
find information about each airline), or part of the same informa-
tion need (e.g. comparing prices between the airlines).

5.3.4 Search Engine Effects
The findings in this paper are influenced by the AOL search
engine’s implementation. Studying a different search engine’s
query logs may affect the reformulations used because of the
different results displayed or the way it handles queries. A
reformulation may work better for a different search engine. For
example, users may learn over time not to reorder words in their
query if they find it is ineffective due to the search engine’s
ignoring of word order. During the period when these logs were
collected, AOL Search returned results from Google [Chowdhury,
personal communication] and query suggestions were offered for
some queries. Despite these effects, the results here are uncom-
promised because we study inter-reformulation rather than intra-
reformulation effectiveness metrics.

6. APPLICATIONS
6.1 Interfaces Supporting Reformulation
Current search engines have integrated automatically generated
query reformulation suggestions into their interface. However,
they do not distinguish between new and reformulated queries.
Users often perform a query reformulation because they are
dissatisfied with the results from their initial query. One possible
interface change would be displaying differently the overlapping
search results between the reformulated search and the initial
search. For example, when a user searches for ‘laptop’ and then
‘widescreen laptop’, the search engine can gray out the results in
the second query that were also presented in the ‘laptop’ query
because it knows the user was not interested in those results. A
related interface has been already built into web browsers since
their inception—visited links turn purple while unvisited links are
blue, which helps users avoid selecting results already visited.

Email applications show the conversational history between
recipients which reminds them of past discussion. We suspect that
query session history is not shown in search pages because
existing reformulation detection methods are error prone.
However, with our high precision classifier, many previous
queries can be determined with confidence. While we may miss
some previous queries, that is less crucial in this application.
Showing query history fits the need of a high precision, low recall
classifier. We can design and evaluate a search interface that
shows a user’s query history when the user is in a query session,
i.e., performing a query reformulation. It may help the user to see
prior queries while they are reformulating.

6.2 Query Session Boundary Detection
Anick [3] notes that query reformulations exist in 56% of
sessions; while Pass et al. [29] find the typical session contains
2.6 reformulations on average. A classifier like ours that identifies
query reformulations solves the same problem as classifiers that
identify query session boundaries (see Section 2.2 for discussion).
Generally, when orthogonal classifiers are combined, the result is
one that is better than either of its components. Since our
classifier is rule-based, operating orthogonally to existing
classifiers, it can theoretically be combined with an existing
temporal or machine learning classifier. This will produce a
reliable overall classifier for detecting session boundaries.

6.3 Intelligent Query Assistance
Understanding how users are reformulating queries and their
effectiveness can help search engines provide better automatic
query assistance. For example, a search engine should propose
different reformulation strategies depending on the user’s action
after a query. Our findings have shown that expanding acronyms
and spelling corrections are helpful reformulations when a user
does not click on any result, but word substitutions and query
expansion are more helpful when a user has clicked.

6.4 Personalized Search
Reformulation strategies also greatly vary between users. Search
engines can react differently depending on the user performing
the search. A search engine that has a history of a user’s queries
will be able to offer query assistance suited for that user, or offer
helpful suggestions about how the user can improve their
searching and reformulating. For example, the search engine can
suggest stemmed queries to a user who would benefit from
stemming reformulation, or it might display a message like “We
noticed you have been using future tenses in your searches, we
suggest changing to present tense for better results.”

7. CONCLUSIONS
This paper describes the human side of query reformulation and
contributes to our understanding of users in search interaction. We
created a taxonomy of query reformulation strategies, built a high
precision rule-based classifier to detect each type of reformula-
tion, and analyzed query reformulations in the AOL query logs
using metrics which are indicators of effectiveness. We found that
different reformulation strategies have distinct characteristics
when studied through the lens of click data. Certain reformula-
tions like add/remove words, word substitution, acronym
expansion, and spelling correction seem most effective. On the
other hand, acronym formation and reordering words may be less
beneficial to the user. We discovered that different reformulation
strategies are useful depending on the user’s behavior in response
to the initial set of results. These findings benefit research in
query session boundary detection, improve query assistance and
personalized search, and propose design implications for user
interfaces supporting reformulation.

8. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers, and
Eytan Adar, Nicholas J. Belkin, Edie Rasmussen, Jacob O.
Wobbrock for helpful comments on earlier drafts. We also thank
Xueming Huang for help with formal language notation.

9. REFERENCES
[1] Agichtein, E., Brill, E., and Dumais, S. (2006). Improving

web search ranking by incorporating user behavior informa-
tion. In SIGIR ‘06, 19-26.

[2] Agichtein, E., Brill, E., Dumais, S., and Ragno, R. (2006).
Learning user interaction models for predicting web search
result preferences. In SIGIR ‘06, 3-10.

[3] Anick, P. (2003). Using terminological feedback for web
search refinement: a log-based study. In SIGIR ‘03, 88-95.

[4] Arlitt, M. (2000). Characterizing Web user sessions. ACM
SIGMETRICS Performance Eval Review, 28(2), 50-63.

[5] Baeza-Yates, R., Calderón-Benavides, L., and González-
Caro, C. (2006). The intention behind Web queries. In SPIRE
’06, 98-109.

[6] Baeza-Yates, R., Hurtado, C., and Mendoza, M. (2004).
Query recommendation using query logs in search engines.
In EDBT ’04, 588-596.

[7] Bruza, P.D. and Dennis, S. (1997). Query Reformulation on
the Internet: Empirical Data and the Hyperindex Search En-
gine. In RIAO ‘97, 488-499.

[8] comScore. (2008). Baidu Ranked Third Largest Worldwide
Search Property in Dec 2007. Retrieved Nov 30, 2008 from
http://www.comscore.com/press/release.asp?press=2018

[9] Dou, Z., Song, R., Yuan, X., and Wen, J. (2008). Are click-
through data adequate for learning web search rankings?. In
CIKM ‘08, 73-82.

[10] Efthimiadis, E.N. (1996). Query Expansion. Annual Review
of Information Science and Technology, 31, 121-187.

[11] Fellbaum, C. (1998). WordNet: An Electronic Lexical
Database. The MIT Press.

[12] Fox, S., Karnawat, K., Mydland, M., Dumais, S., and White,
T. (2005). Evaluating implicit measures to improve web
search. ACM Transactions on Information Systems, 23(2),
147-168.

[13] Guo, J., Xu, G., Li, H., and Cheng, X. (2008). A unified and
discriminative model for query refinement. In SIGIR ‘08,
379-386.

[14] Grimes, C., Tang, D., and Russell, D.M. (2007). Query Logs
Alone are not Enough. In WWW ‘07, Workshop on Logs
Analysis.

[15] He, D., Göker, A., and Harper, D.J. (2002). Combining
evidence for automatic web session identification. Informa-
tion Processing & Management, 38(5), 727-742.

[16] Jansen, B.J., Spink, A., Blakely, C., and Koshman, S. (2007).
Defining a session on Web search engines. Journal of the
American Society for Information Science and Technology,
58(6), 862-871.

[17] Jansen, B.J., Spink, A., and Pedersen, J. (2005). A temporal
comparison of AltaVista Web searching. Journal of the
American Society for Information Science and Technology,
56(6), 559-570.

[18] Jansen, B.J., Zhang, M., and Spink, A. (2007). Patterns and
transitions of query reformulation during web searching.

International Journal of Web Information Systems, 3(4), 328-
340.

[19] Joachims, T. (2002). Optimizing search engines using
clickthrough data. In SIGKDD ’02, 133-142.

[20] Joachims, T., Granka, L., Pan, B., Hembrooke, H., Radlinski,
F., and Gay, G. (2007). Evaluating the accuracy of implicit
feedback from clicks and query reformulations in Web
search. ACM Transactions on Information Systems, 25(2).

[21] Jones, R. and Klinkner, K.L. (2008). Beyond the session
timeout: automatic hierarchical segmentation of search topics
in query logs. In CIKM ‘08, 699-708.

[22] Jones, R., Rey, B., Madani, O., and Greiner, W. (2006).
Generating query substitutions. In WWW ‘06, 387-396.

[23] Kraft, R. and Zien, J. (2004). Mining anchor text for query
refinement. In WWW ‘04, 666-674.

[24] Lau, T. and Horvitz, E. (1999). Patterns of search: analyzing
and modeling Web query refinement. In User Modeling ‘99,
119-128.

[25] Levenshtein, V.I. (1996). Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics Doklady,
10, 707–710.

[26] Mitra, M., Singhal, A., and Buckley, C. (1998). Improving
automatic query expansion. In SIGIR ‘98, 206-214.

[27] Murray, G.C., J. Lin, and A. Chowdhury,. (2006). Identifica-
tion of User Sessions with Hierarchical Agglomerative Clus-
tering. In ASIS&T ‘06, 43(1), 1-5.

[28] Ozmutlu, S. (2006). Automatic new topic identification using
multiple linear regression. Information Processing & Man-
agement, 42(4), 934-950.

[29] Pass, G., Chowdhury, A., and Torgeson, C. (2006). A picture
of search. In InfoScale ‘06, 1.

[30] Porter, M.F. (1980). An algorithm for suffix stripping,
Program, 14(3), 130-137.

[31] Radlinski, F. and Joachims, T. (2005). Query chains: learning
to rank from implicit feedback. In SIGKDD ‘05, 239-248.

[32] Rieh, S.Y. and Xie, H. (2006). Analysis of multiple query
reformulations on the web: the interactive information re-
trieval context. Information Processing & Management,
42(3), 751-768.

[33] Silverstein, C., Marais, H., Henzinger, M., and Moricz, M.
(1999). Analysis of a very large web search engine query
log. SIGIR Forum 33(1), 6-12.

[34] Teevan, J., Adar, E., Jones, R., and Potts, M.A. (2007).
Information re-retrieval: repeat queries in Yahoo's logs. In
SIGIR ‘07, 151-158.

[35] Teevan, J. (2007). The re:search engine: simultaneous
support for finding and re-finding. In UIST ‘07, 23-32.

[36] Whittle, M., Eaglestone, B., Ford, N., Gillet, V. J., and
Madden, A. (2007). Data mining of search engine logs. Jour-
nal of the American Society for Information Science and
Technology, 58, 14, 2382-2400.

