
Voting with Witnesses: A Consistency Scheme for Replicated Files

Jehan-François Pâris†

Computer Systems Research Group
Department of Electrical Engineering and Computer Sciences

University of California, San Diego
La Jolla, California 92093

International Conference on Distributed Computing Systems, 1986, pages 606–612

Abstract
Voting schemes ensure the consistency of replicated files by dis-
allowing all read and write requests that cannot collect an ap-
propriate quorum of copies. This procedure requires a minimum
number of three copies to be of any practical use and tends to
disallow a relatively high number of read and write requests.

We propose to replace some of these copies by mere records of
the current state of the file. These records, called witnesses, will
be assigned weights and participate to the collection of quorums.

We show, that under very general assumptions, the reliability
of a replicated file consisting of n copies and m witnesses is the
same as the reliability of a replicated file consisting of n + m
copies. We also compare the availability of a replicated file con-
sisting of two copies and one witness with that of a file having
three copies and show that, under normal circumstances, the two
files have similar availabilities.
Keywords: file consistency, distributed file systems, replicated
files, voting.

1 Introduction
Various distributed file systems maintain replicated copies of the
same file on different hosts [2, 4, 12, 13, 17]. File replication,
as this technique is known, has indeed several major advantages:
Since file contents are replicated, no single device failure can
destroy any data. Storing copies of a file on two or more distinct
hosts guarantees that no single host failure will make the file
unaccessible. Moreover, access times for read operations are
also improved since replication increases the probability that any
given read operation can be performed on a local copy of the file.

The existence of several copies of the same file residing on
different hosts immediately raises the issue of file consistency [1,

†“Voting with Witnesses: A Consistency Scheme for Replicated
Files.” In Proceedings of the 6th International Conference on Dis-
tributed Computing Systems, Cambridge: IEEE, 1986, 606–612.
Author’s address: Department of Computer Science, University of Hous-
ton, 501 Philip G. Hoffman Hall, Houston, Texas 77204-3010.

3, 9–11, 14, 16, 18]. It would indeed be extremely burdensome
for the users of a replicated file system to keep track of the sta-
tus of every copy of every replicated file. We therefore need a
scheme to determine which copies of a the replicated file are up
to date. This scheme is to operate correctly in the presence of
any combination of host and subnet failures.

Voting is the best known example of such consistency
schemes. In its simplest form, voting assumes that the current
state of a replicated file is the state of the majority of its copies.
Ascertaining the state of a replicated file thus require accessing
a majority of its copies. Should this be prevented by one or more
failures, the file is considered unavailable.

We present here an extension of voting in which some copies
of the file are replaced by much smaller records of the current
state of the file. Although not containing any data themselves,
these records called witnesses can testify about the current state
of the replicated file and can vote like conventional copies.

Section 2 of this paper surveys existing consistency schemes
for replicated files. Section 3 introduces witnesses and discusses
variants of our basic schemes. Section 4 contains a brief reliabil-
ity and availability analysis of witness schemes under standard
Markovian assumptions. Finally, section 5 has our conclusions.

2 Existing Consistency Algorithms

As pointed out by Gifford [6], algorithms for maintaining repli-
cated data objects fall into two categories. The first ones select
for each replicated data object a primary site, or synchroniza-
tion site, that performs all update arbitrations. Distributed IN-
GRES [17] and LOCUS [112, 19] follow this approach. The
main advantage of the scheme is its simplicity. Its main draw-
back is its vulnerability to failures of the synchronization site.
LOCUS allows then the selection of a new synchronization site;
even then all the information present at the former synchroniza-
tion site is lost.

Algorithms that do not depend on a unique synchronization
site are more complex. They can rely either on queued update

1



messages or on voting. Systems based on queued update mes-
sages, like SDD-1 [13,1], rely on the ability of their communi-
cation subsystem to buffer update messages over system failures.
Voting [3–6, 9, 14, 15, 18], on the other hand, ascertains the cur-
rent state of a file by polling the accessible copies of the file and
attempting to reach a specific quorum. In the simplest case, this
quorum is the same for read and write operations and is equal to
one copy. Different quorums for read and write operations can
be defined and different weights, including none, allocated to ev-
ery copy. Consistency is guaranteed as long as the two following
conditions are met:

1. the write quorum W is high enough to disallow simultane-
ous writes on two distinct subsets of copies, and

2. the read quorumR is high enough to disallow simultaneous
reads and writes on two disjoint sets of copies.

These conditions are simple to verify, which accounts for
the conceptual simplicity and the robustness of voting schemes.
However, they considerably limit the accessibility of replicated
files. Consider, for instance, a replicated file having two physical
copies. Should equal weights be assigned to each copy, condi-
tion (1) requires that both copies be up in order to update the file.
As a result, the availability of the replicated file for write access
is less than it would have been had the file not been replicated.
Should a higher weight be assigned to one of the two copies,
conditions (1) and (2) require that this copy be accessible in or-
der to access the file. The existence of a second copy has then
absolutely no effect on the reliability or the availability of the
file.

A minimum of three copies is thus needed to improve the re-
liability and the availability of the file for both read and write
accesses. The most reasonable solution then is to assign equal
weights to all copies of the replicated files and to have both read
and write quorums equal to two. The file will then remain acces-
sible as long as two out of the three copies are accessible.

3 Voting with Witnesses

3.1 Motivation
Consider a replicated file with five copies. Assume that all
copies are assigned one vote and that the write quorum is equal
to three votes. If we attach to each copy of the file a version
number that is updated every time the copy is updated [6], this
version number will give us an unambiguous representation of
the state of that copy.

Since our read quorum is equal to three, we need to inspect the
version number of three copies to ascertain the state of the repli-
cated file. Thus, if two copies are unaccessible and the version
numbers of the three other ones are

(12, 12, 15),

we know that the current version number of the replicated file is
15 and that two out of the three accessible copies are obsolete.
To reach this decision, we only had to interrogate the version
numbers of the three accessible copies and did not have to ex-
amine their contents.

We thus propose to replace some of these copies by the mere
recordings of the version number of the file with no data attached
to it. We will call these entities witnesses. Witnesses are as-
signed weights like conventional copies and participate like them
to the collection of quorums. Whenever a witness happens to be-
long to a write quorum, its version number is incremented every
time the file is updated. Like conventional copies, witnesses are
to be stored in stable storage [6, 8]. Witnesses are thus the exact
counterparts of the weak copies introduced by Gifford, which
had data but no weights [6].

Because of their very small sizes, witnesses have practically
negligible storage costs. Bringing a witness up to date becomes
also a trivial operation since it only involves the update of a ver-
sion number. Witnesses can thus be created much more freely
than conventional copies, the only limiting factor being the mes-
sage overhead resulting from version number updates at every
write.

3.2 Definitions
A replicated file consists of a collection of mutually consistent
entities having as an ensemble the same operations as a standard
file. These entities are distributed over several sites of a com-
puter network. There are two types of entities within replicated
files: copies and witnesses. A copy contains data and a version
number that always reflects the most recent write recorded by the
copy. Each copy is assigned a specific number of votes which en-
titles it to participate to all elections involving the replicated file.
A witness contains only a version number that always reflects
the most recent write recorded by the witness. Each witness is
assigned a specific number of votes and is therefore entitled it to
participate to all elections involving the replicated file.

3.3 The Collection of Read and Write Quorums
Procedures for collecting read or write quorums are scarcely
affected by the presence of witnesses. One can indeed select
Gifford’s original scheme [6] or one of the several variants that
have been developed more recently. In each of these schemes,
read and write quorums are to be collected as if the witnesses
were conventional copies with the additional restriction that ev-
ery quorum must include at least one current copy1.

The restriction expresses the fact that one cannot read from a
witness or use it to bring a copy up-to-date. Let us illustrate this
by a small example.

1Implementors concerned with the possibility of device failures destroying
data may decide to disallow writes if the write quorum does not include a mini-
mum of two copies.

2



Consider a replicated file with three copies and two witnesses.
Assume that all copies are assigned one vote and that both read
and write quorums are set to three votes. If two entities are un-
accessible and the version numbers of the three other ones are
12, 12 and 15, the version numbers of the two unaccessible enti-
ties cannot be lower than 15 as update 15 must have involved at
least three entities, and cannot be higher than 15 since any sub-
sequent update would have involved more than two copies. We
could represent the possible configurations for the three accessi-
ble entities as

(12, 12, 15),
(12, 12, 15w),
(12, 12w, 15),

(12, 12w, 15w),
(12w, 12, 15),

(12w, 12, 15w),
(12w, 12w, 15).

where witnesses are indicated by a “w” appended to their ver-
sion numbers. In three of these seven possible configurations,
namely,

(12, 12, 15w),
(12, 12w, 15w),
(12w, 12, 15w),

the only up-to-date entity is a witness and no quorum will be
reached. There will thus be circumstances where a replicated
file with three copies and two witnesses will not be available
while a file consisting of five copies would have been. The chain
of events susceptible to such a situation is rather complex. In
the previous example, it required that the two entities currently
unaccessible became unaccessible after update 15 but before the
two entities that missed writes 13, 14 and 15 could be brought
up to date. As we will see in section 4, we have strong reasons
to conjecture that these situations will remain rare occurrences
under most normal circumstances and will have a minimal im-
pact on the reliability and the availability of replicated files with
witnesses.

The performance of replicated files can be significantly in-
creased by including in the write quorums additional copies of
the file. In the case of a replicated file consisting of three copies,
one may wish, for instance, to update all the three copies when-
ever possible rather than the two copies required to form a write
quorum. Since one may expect copies to be accessible most of
the time, the average number of copy updates per write will thus
be closer to three than to two. The obvious price to pay is an
increase in the number of messages being transmitted. No such
benefits can be obtained by adding additional witnesses in write
quorums. Thus a replicated file consisting of two copies and one
witness will never require more than two copy updates per write
while a replicated file consisting of three copies will normally
require approximately three copy updates per request.

3.4 Extensions to the Basic Scheme

We have presented a consistency scheme where some copies of
a replicated file were replaced by mere records of the current
version number of the file while keeping their existing weights.
An obvious enhancement to the scheme is to make it dynamic
and let witnesses be upgraded to copies and copies transformed
into witnesses according to the circumstances.

3.4.1 Upgradable Witnesses

Returning to our previous example, let us consider the case
where two of the three copies of the replicated file are unacces-
sible while one copy of the file and two witnesses are accessible.
Say, for instance. that the accessible entities are in the config-
uration (12w, 12w 15). The file remains available and could be
updated, which would leave the two accessible witnesses and
the the only accessible copy in the configuration (16w, 16w, 16).
This might be considered as a less than desirable situation since
the file has now only one copy that is kept up to date. Should the
expected repair times of the faulting hosts significantly exceed
the time required to make an additional copy of the file, one may
wish to upgrade one or two of the two accessible witnesses by
transforming them into conventional copies. This can be done
without altering in any way the consistency scheme as long as
the upgraded witnesses keep their weights.

When the two unaccessible copies recover, one will have too
many copies and not enough witnesses. This situation will have
to be corrected either by returning each entity to its original
state or, more simply, by transforming into witnesses some of
the newly recovered copies. This latter solution has however
the inconvenience of modifying the original lay-out of the repli-
cated file, which may sometimes have an adverse effect on ac-
cess times.

3.4.2 Temporary Witnesses

Even with conventional voting schemes, one may encounter sit-
uations where the collection of a write quorum is impeded by
the presence within this quorum of obsolete copies [6]. Con-
ventional voting algorithms require that these obsolete copies be
brought up to date before the write request is processed. The re-
sulting delays may be incompatible with the constraints of some
real-time applications.

A faster solution would consist of transforming these obsolete
copies into temporary witnesses that could be quickly brought up
to date by modifying their version numbers. This would avoid
any further delays for the write request, which can now be pro-
cessed immediately. The newly created temporary witnesses will
of course have to be brought back as soon as possible to the state
of full copies to minimize the impact of the procedure on the
reliability and the availability of the replicated file.

3



3.4.3 Application to File Migration

Gifford had already mentioned that weak copies could be used
to bring additional copies of the files to the hosts where the file
was currently consulted [6]. Witnesses also allow the removal of
copies from hosts that are overloaded or too far away by trans-
forming these copies into witnesses.

4 Reliability and Availability of Witness
Schemes

In the section, we will consider a network consisting of several
hosts linked by a communication subnet. Since this will be the
most frequent case, we will assume that copies of the same repli-
cated file will always reside on different hosts. Hosts are subject
to failures; these failures may either involve the host itself or
its communication interface. When a host fails, a repair pro-
cess is immediately initiated. This repair process will never fail
although it may take any arbitrary amount of time before com-
pleting. Should several hosts fail, the repair process will be per-
formed in parallel on these failed hosts. We will also assume that
the repair process will attempt to bring up to date all the copies
that might have become obsolete during the time the host under
repair was not operational. Such attempts will not be always suc-
cessful since they depend on the availability of up-to-date copies
of the replicated file.

We will assume that individual site failures are independent
events distributed according to the same Poisson law. In other
words, the probability that a given site will experience no failure
during a time interval of duration t will be given by

e−λt

where λ is the failure rate. Similarly, we will require that indi-
vidual site repairs also be independent events distributed accord-
ing to a same Poisson law. The probability that a given site will
be repaired in Jess than t time units will be given by

1 − e−µt

where µ is the repair rate.
Although the assumption of a constant failure rate λ is usu-

ally reasonable, the assumption of exponential repair times is
harder to defend on general grounds. Both assumptions are
however necessary to represent our system by a Markov process
with finitely many states. Although a number of queuing theory
problems can now be solved for non-exponential distributions,
similar methods are not used in reliability theory as they would
lead to “cumbersome formulas that are unsuitable for computa-
tion” [7].

4.1 Reliability of Replicated Files with Witnesses
One defines the reliability of a system as the probability that the
system will operate correctly over a time interval of duration t

given that all of its units were operating correctly at time t =
0 [7]. The correct operation of a replicated file managed by a
voting scheme is guaranteed as long as a sufficient number of
copies and witnesses are maintained continuously accessible and
at least one of these entities is a copy.

Consider, for instance, the case of a replicated file consisting
of three copies. Let us neglect for the moment subnet failures.
The file will remain available as long as a quorum of copies can
be collected, which will be the case as long as at least two out of
the three copies remain continuously accessible. Similarly, a file
consisting of of two copies and one witness would also remain
available as long as at least two of these three entities remained
accessible since

1. two entities are enough to constitute a quorum,

2. one of these two entities will necessarily be a copy, and

3. this copy will necessarily be up to date since the continuous
existence of a minimum of two accessible entities guaran-
tees that all copies residing on hosts that have failed will be
automatically be brought up to date by the repair process.

The conditions for the continuous operation of a replicated file
consisting of two copies and one witness are thus the same as
the conditions for the continuous operation of a file consisting of
three copies. In other words, replacing one of the three copies by
a witness does not decrease the reliability of the replicated file
as long as the failure rate and the repair rate of the host on which
the witness resides remains unchanged.

This property will hold for replicated files with an arbitrary
number of copies and witnesses as long as the number and the
weights of the witnesses do not allow the collection of a quorum
entirely made of witnesses. We have thus the following theorem.

THEOREM
The reliability of a replicated file consisting of n

copies with weights w1, w2, . . . , wn and m witnesses with
weights w′1, w

′
2, . . . , w

′
m is equal to the reliability of a

replicated file consisting of n + m copies with weights
w1, w2, . . . , wn, w

′
1, w

′
2, . . . , w

′
m provided that that the Dumber

and weights of the witnesses do not allow the collection of a
quorum entirely made of witnesses.
Proof : Consider a replicated file F consisting of n copies
with weights w1, w2, . . . , wn and m witnesses with weights
w′1, w

′
2, . . . , w

′
m and a replicated file G obtained from F by

replacing the m witnesses by full copies while keeping their
weights. Assume that the two files go through the same pattern
of failures and repair. At any time, F and G will have the same
number of entities up. As long as G will remain continuously
available,

1. F will have enough available entities to constitute a quo-
rum,

2. at least one of these entities will be a copy, and

4



j+1 j j-1

(j+1)λ jλ

(n-j)µ (n-j+1)µ

n n-1 n-2

nλ (n-1)λ

µ 2µ

Figure 1: State-Transition-Rate Diagram for n Copies

3. this copy will necessarily be up to date since the continu-
ous existence of a valid quorum guarantees that all copies
residing on hosts that have failed will be automatically be
brought up to date by the repair process. F will thus re-
main available as long as G does not fail and the two files
will have the same availability.

4.2 Availability of a Replicated Files with Wit-
nesses

The availability A of a system is the limiting value of the prob-
ability p(t) that that system will be operating correctly at the
instant t [7].

A = lim
t→∞

p(t)

To simplify our analysis, we will continue to assume that the
subnet linking the several hosts on which physical copies of
replicated files reside cannot fail. Although not correctly rep-
resenting the actual behavior of typical point-to-point networks,
this hypothesis is an acceptable first-order approximation of the
behavior of many carrier-sense local area networks.

Consider first a replicated file consisting of n copies and no
witnesses. The state of this file can then be conveniently repre-
sented by the current number of copies that are available at any
time. Failures and repairs of sites are the only events that can
change the state of the system. We assume that the probability
of two such events occurring simultaneously is negligible. Sup-
pose that the system was initially in the state n where all current
copies of the file were available. This state will be left for the
state n− 1 if one of the n sites fails. Since each site failure is an
independent event, the total rate at which state n will be left is
equal to n times the individual failure rate λ of a single site. The
state n − 1 will in turn be left if either (a) the only site that was
down is repaired and the system returns to the state n, or (b) one
of the n− 1 sites that were operational now fails.

The rate at which the first event may occur is the repair rate of
a single site µ. The rate at which the second event may occur is
equal to n− 1 times the individual failure rate λ of a single site.

In general, the rate at which a state j, with 0 < j < n, may be
left will be given by jλ+(n−j)µ, as shown on Figure 1. Writing
the equilibrium conditions for our system, one can easily derive

the equilibrium state probabilities pn, . . . , p0. They are given by

pn =
1

(1 + ρ)n

. . .

pj =

(
n
n−j
)
ρn−j

(1 + ρ)n

. . .

p0 =
ρn

(1 + ρ)n

where ρ = λ
µ is the ratio of the failure rate over the repair rate.

If we have an odd number of copies all with equal weights,
the availability A(n)of the file will be given by

A(n) =
dn/2e∑
j=n

(
n
n−j
)
ρn−j

(1 + ρ)n
. (n odd)

Should there be an even number of copies, we will have to ad-
just the weights of the copies in order to break ties. What ever
scheme we choose, the best that we can do is to allow. access
in one half of these ties. The availability of the file will then be
given by

A(n) =
n/2+1∑
j=n

(
n
n−j
)
ρn−j

(1 + ρ)n
+

(
n
n/2

)
ρn/2

2(1 + ρ)n
. (n even)

In particular, we have

A(2) =
1

1 + ρ
= A(1)

and
A(3) =

1 + 3ρ
(1 + ρ)3

.

Since voting with two copies requires one particular copy to
be up in order to access the file, the availability of replicated
file having two physical copies managed by a traditional voting
scheme is no better than the availability of a standard nonrepli-
cated file and we have A(2) = A(1).

The analysis of the availability of a replicated file with wit-
nesses is somewhat more complex. First, we will have to distin-
guish between witness and complete copies. Secondly, we will

5



2S1

2S0

1S1

1S0

1D1

1D0

0D1

0D0

0S1

0S0

1X1

1X0

µ λλ µ µ µ µ µλ λ λ λ

2λ

2λ

µ

µ

µ

µ

µ

µ

λ

λ
2µ

2µ

µ

µ

λ

λ

λ

λ

λ

µ

µ

Figure 2: State-Transition-Rate Diagram for Two Complete Copies and One Witness

have to take into account situations where the witnesses and the
copies disagree about the state of the file. Because of this addi-
tional complexity, we will confine our analysis to the case of a
replicated file having two complete copies and one witness.

The state of the system will be represented by two numbers
separated by a letter. The first of these two numbers will rep-
resent the number of available copies, namely 2, 1 or 0. The
second number will represent the current status of the witness,
namely up (1) or down (0). The middle letter will represent the
possible statuses of the two copies: They can have the same ver-
sion number (S), have different version numbers (D) or have dif-
ferent numbers and the obsolete copy up and the current copy
down (X). Not all possible combinations of numbers and letter
are possible. For instance, when the two copies are simultane-
ously available, they necessarily have the same version numbers.
We have thus the two states “2S1” and “2S0.” Similarly the let-
ter “X” only appears when one of the copies is up and the other
down. Transitions between these states are represented on Fig-
ure 2. They obey the following rules:

1. One or more failure transitions originate from every state
having at least one copy or one witness up. The rates of
the transitions are proportional to the number of copies or
witnesses that are up and therefore susceptible to fail. For
instance, state “2S1” corresponds to the case where both
copies and the witness are up. State “2S1” therefore has
one failure transition to state “1S1” with rate 2λ, which

corresponds to the failure of either one of the two copies,
and one failure transition to state “2S0” with rate λ, which
corresponds to the failure of the witness.

2. One or more repair transitions originate from every state
having at least one copy or one witness down. The rates
of the transitions are proportional to the number of copies
or witnesses that are down and therefore susceptible to be
repaired (with the only exception of the transitions orig-
inating from the states “0D1” and “0D0”). For instance,
state “1D1” has one copy down and therefore has one re-
pair transition to state “2S1” corresponding to the repair of
that copy.

3. When the file has both copies unavailable and in different
states (as in states “0D1” and “0D0”), there is an equal
chance that the first copy to be repaired would he the cur-
rent one or the obsolete one. Thus state “0D1” has one
repair transition with rate µ to state “1D1” and one repair
transition with rate µ to state “1X1” while state “0D0” has
similar repair transition to states “1D0” and “1X0”.

4. The only possible transition from a “s” state to a “D” state
is from state “1S1” to state “1D1.” It occurs when the file
is updated. The rate at which this transition occurs is thus
given by the rate v at which the replicated file is being up-
dated.

6



The equilibrium conditions for our system are thus given by

p2S13λ = µ(p2S0 + p1X1 + p1D1 + p1S1)
p2S0(2λ+ µ) = p2S1λ+ µ(p1X0 + p1D0 + p1S0)

p1S1(2λ+ ν + µ) = 2p2S1λ+ µ(p1S0 + 2p0S1)
p1D1(2λ+ µ) = νp1S1 + µ(p1D0 + p0D1)
p1X1(2λ+ µ) = µ(p1X0 + p0D1)
p1S0(λ+ 2µ) = (2p2S0 + p1S1)λ+ 2µp0S0

p1D0(λ+ 2µ) = p1D1λ+ µp0D0

p1X0(λ+ 2µ) = p1X1λ+ µp0D0

p0S1(λ+ 2µ) = p1S1λ+ µp0S0

p0D1(λ+ 2µ) = (p1X1 + p1D1)λ+ µp0D0

3µp0S0 = (p1S0 + p0S1)λ
3µp0D0 = (p1X0 + p1D0 + p0D1)λ

where p2S1, . . . , p0D0 are the equilibrium probabilities for all
twelve states.

Observing that
∑
j pj = 1, one can obtain the solution

p2S1 =
1

(ρ+ 1)3

p2S0 =
ρ

(ρ+ 1)3

p1S1 =
4ρ(ρ(ρ+ 3) + 3)

(ρ+ 1)3(ρ(2ρ+ 3ψ + 6) + 6(ψ + 1))

p1D1 =
ρ(ρ+ 2)(ρ(4ρ+ 9) + 6)ψ

(ρ+ 1)5(ρ(2ρ+ 3ψ + 6) + 6(ψ + 1))
p1X1 = · · ·
. . .

where ρ = λ/µ ψ = ν/µ.
The availability A(2, 1) of the file will be given by

A(2, 1) = p2S1 + p2S0 + p1S1 + p1D1

=
7ρ3 + 18ρ2 + 15ρ+ 3

3(ρ+ 1)5

+
2
(
2ρ5 + 9ρ4 + 15ρ3 + 9ρ2

)
3(ρ+ 1)5 (2ρ2 + 3ρψ + 6ρ+ 6ψ + 6)

Observing that this expression is a monotonously decreasing
function of ρ and ψ, a lower bound for A(2, 1) can be obtained
by computing the limit of A(2, 1) for ψ going to infinity, i.e.
when the file update rate becomes unbounded. This lower bound
will be given by

L(2, 1) =
7ρ3 + 18ρ2 + 15ρ+ 3

3(ρ+ 1)5
.

Figure 3 contains the compared availabilities of replicated
files with one or two copies, three copies and two copies and

a witness for values of ρ between 0 and 0.2 and ψ equal to in-
finity. Replicated files consisting of two copies and one witness
that are less often updated will have availabilities falling in the
area between those of files with three copies and files with two
copies and one witness being constantly updated. As one can
see, the availability of a replicated file with two copies and one
witness remains very close to the availability of a replicated file
with three copies as long as ρ remains small. This will be the
case in all non-pathological systems, since we may expect sites
to be repaired at a much faster rate than they break down.

5 Conclusions

We have presented a novel consistency scheme for replicated
files based on the concept of witness. Witnesses are mere records
of the current state of the file. They are assigned weights like
conventional copies and participate like them to the collection
of quorums. Since they contain no data about the contents of
the file, they occupy a negligible amount of secondary storage
Unlike conventional voting schemes that required a minimum
number of three copies to be of any practical use, our scheme
can operate efficiently with two copies and one witness.

We have shown under very general assumptions that the relia-
bility of a replicated file consisting of n copies and m witnesses
is the same as the reliability of a replicated file consisting of
n+m copies. A comparison of the availability of a replicated file
consisting of two copies and one witness with that of a file hav-
ing three copies also showed that, under normal circumstances,
the two files have comparable availabilities.

We are currently studying the performance of replicated files
consisting of more than two copies and one witness. Our first
results are very encouraging although we have still to derive ana-
lytical models for more than two copies. Another area still under
investigation concerns the feasibility of dynamic schemes allow-
ing witnesses to be upgraded to copies and copies transformed
into witnesses.

Witnesses will be included in the second version of the fault-
tolerant file system Gemini currently under development at the
University of California, San Diego. We found that they signifi-
cantly reduce the cost of managing replicated files and thus hope
that they might be a key factor of a greater acceptance of file
replication by the UNIX user community.

Acknowledgments
I wish to thank Walter Burkhard, Bruce Martin and all the

members of the Gemini group for their help and their encourage-
ments; Darrell Long and Melanie Singer deserve special thanks
for their careful implementation of witnesses. The Markov anal-
ysis of the availability of witness schemes has been done with
the aid of MACSYMA, a large symbolic manipulation program
developed at the Massachusetts Institute of Technology Labora-
tory for Computer Science and supported from 1975 to 1983 by
the National Aeronautics and Space Administration under grant

7



0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2

Three Copies

One or Two Copies

Two Copies and One Witness

(!)

(A)

Figure 3: State-Transition-Rate Diagram for Two Complete Copies and One Witness

NSG 1323, by the Office of Naval Research under grant N00014-
77-C-0641, by the U. S. Department of Energy under grant ET-
78-C-02-4686, and by the U. S. Air Force under grant F49620-
79-C-020, and since 1982 by Symbolics, Inc. MACSYMA is a
trademark of Symbolics, Inc.

References
[1] P. A. Bernstein and D. W. Shipman, “The Correctness

of Concurrency Control Mechanisms in a Systems for
Distributed Databases–(SDD-1),” ACM Transactions on
Database Systems, 5, 1980.

[2] W. A. Burkhard, B. E. Martin and J.-F. Paris, “The
Gemini Fault-Tolerant File System: the Management of
Replicated Files,” Computer Sciences Technical Report,
Department of EE&CS, University of California, San
Diego, 1985.

[3] C. A. Ellis, “Consistency and Correctness of Duplicate
Database Systems,” Operating Systems Review, 11, 1977.

[4] C. A. Ellis and R A. Floyd, “The Roe File Systems,” Pro-
ceedings Third Symposium on Reliability in Distributed
Software and Database Systems, 1983.

[5] H. Garcia-Molina, “Elections in a Distributed Computer
System,” IEEE Transactions on Computers, C-31, 1982,
pp. 48–59.

[6] D. K. Gifford, “Weighted Voting for Replicated Data,”
Proceedings Seventh ACM Symposium on Operating Sys-
tem Principles, 1979, pp. 150–161.

[7] B. V. Gnedenko, Yu. K. Belyayev and A. D. Soloviev,
Mathematical Methods of Reliability Theory, (English
translation of “Matematicheskiye Metody V Teorii
Nadezhnosti”), Academic Press, New York, 1969.

[8] B. W. Lampson, Distributed Systems – Architecture and
Implementation, Springer-Verlag, New York, 1983.

[9] D. A. Mensace, G. J. Popek, R. A. Muntz, “A Lock-
ing Protocol for Resource Coordination in Distributed
Databases,” ACM Transactions on Database Systems, 5,
1980.

[10] T. Minoura and G. Wiederhold, “Resilient Extended
True-Copy Token Scheme for a Distributed Database
Systems,” IEEE Transactions on Software Engineering,
SE-8, 1982, pp. 173–189.

8



[11] D. S. Parker et al., “Detection of Mutual Inconsistency
on Distributed Systems,” IEEE Transactions on Software
Engineering, SE-9, 1983.

[12] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G.
Rudisin and G. Thiel, “LOCUS: A Network Transparent,
High Reliability Distributed System,” Proceedings Eight
ACM Symposium on Operating Systems Principles, Pa-
cific Grove, 1981, pp. 169–177.

[13] J. B. Rothnie, N. Goodman and P. A. Bernstein. “The Re-
dundant Update Methodology of SDD-1: A System for
Distributed Databases (The Fully Redundant Case),” Re-
port No. CCA-77-02, Computer Corporation of America,
1977.

[14] J. Seguin, G. Sergeant, and P. Wilms, “A Majority
Consensus Algorithm for the Consistency of Duplicated
and Distributed Information,” Proceedings First Inter-
national Conference on Distributed Computing Systems,
1979, pp. 617–624.

[15] D. Skeen, “A Quorum-Based Commit Protocol,” Pro-
ceedings Sixth Berkeley Workshop on Distributed Data
Management and Computer Networks, February 1982,
pp. 69–80.

[16] D. Skeen and M. Stonebraker, “A Formal Model of Crash
Recovery in a Distributed Systems,” IEEE Transactions
on Software Engineering, SE-9, 3, (May 1983), pp. 219–
228.

[17] M. Stonebraker, “Concurrency Control and Consistency
of Multiple Copies of Data in Distributed INGRES,”
IEEE Transactions on Software Engineering, SE-5, 3
(May 1979), pp. 188–194.

[18] R. H. Thomas, “A Majority Consensus Approach to Con-
currency Control,” ACM Transactions on Database Sys-
tems, 4, 1979, pp. 180–209.

[19] B. Walker, G. Popek, R. English, C. Kline and G. Thiel,
“The LOCUS Distributed Operating System,” Proceed-
ings Ninth ACM Symposium on Operating Systems Prin-
ciples, Bretton Woods, 1983, pp. 49-70.

9


