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Fig.2. Structure ofa Coda client.

4.1 Client Structure

Because of the complexity of Venus, we made it a user-level process rather

than part of the kernel. The latter approach may have yielded better perfor-

mance, but would have been less portable and considerably more difficult to

debug. Figure 2 illustrates the high-level structure of a Coda client.

Venus intercepts Unix file system calls via the widely used Sun Vnode

interface [10]. Since this interface imposes a heavy performance overhead on

user-level cache managers, we use a tiny in-kernel MiniCache to filter out

many kernel-Venus interactions. The MiniCache contains no support for

remote access, disconnected operation or server replication; these functions

are handled entirely by Venus.

A system call on a Coda object is forwarded by the Vnode interface to the

MiniCache. If possible, the call is serviced by the MiniCache and control is

returned to the application. Otherwise, the MiniCache contacts Venus to

service the call. This, in turn, may involve contacting Coda servers. Control

returns from Venus via the MiniCache to the application program, updating

MiniCache state as a side effect. MiniCache state changes may also be

initiated by Venus on events such as callback breaks from Coda servers.

Measurements from our implementation confirm that the MiniCache is

critical for good performance [211,

4.2 Venus States

Logically, Venus operates in one of three states: hoarding, emulation, and

reintegration. Figure 3 depicts these states and the transitions between them.

Venus is normally in the hoarding state, relying on server replication but
always on the alert for possible disconnection. Upon disconnection, it enters

the emulation state and remains there for the duration of disconnection.

Upon reconnection, Venus enters the reintegration state, desynchronizes its
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write-sharing is even more striking: more than 99.570 of all mutations are by

the previous writer, and the chances of two different users modifying the

same object within a week are less than 0.4~o! This data is highly encourag-

ing from the point of view of optimistic replication. It suggests that conflicts

would not be a serious problem if AFS were replaced by Coda in our

environment.

6. RELATED WORK

Coda is unique in that it exploits caching for both performance and high

availability while preserving a high degree of transparency. We are aware of

no other system, published or unpublished, that duplicates this key aspect of

Coda.

By providing tools to link local and remote name spaces, the Cedar file

system [20] provided rudimentary support for disconnected operation. But

since this was not its primary goal, Cedar did not provide support for

hoarding, transparent reintegz-ation or conflict detection. Files were ver-

sioned and immutable, and a Cedar cache manager could substitute a cached

version of a file on reference to an unqualified remote file whose server was

inaccessible. However, the implementors of Cedar observe that this capabil-

ity was not often exploited since remote files were normally referenced by

specific version number.

Birrell and Schroeder pointed out the possibility of “stashing” data for

availability in an early discussion of the Echo file system [141. However, a

more recent description of Echo [8] indicates that it uses stashing only for the

highest levels of the naming hierarchy.

The FACE file system [3] uses stashing but does not integrate it with

caching. The lack of integration has at least three negative consequences.

First, it reduces transparency because users and applications deal with two

different name spaces, with different consistency properties. Second, utiliza-

tion of local disk space is likely to be much worse. Third, recent usage

information from cache management is not available to manage the stash.

The available literature on FACE does not report on how much the lack of

integration detracted from the usability of the system.

An application-specific form of disconnected operation was implemented in

the PCMAIL system at MIT [12]. PCMAIL allowed clients to disconnect,

manipulate existing mail messages and generate new ones, and desynchro-

nize with a central repository at reconnection. Besides relying heavily on the

semantics of mail, PCMAIL was less transparent than Coda since it required
manual resynchronization as well as preregistration of clients with servers.

The use of optimistic replication in distributed file systems was pioneered

by Locus [23]. Since Locus used a peer-to-peer model rather than a client-

server model, availability was achieved solely through server replication.

There was no notion of caching, and hence of disconnected operation.

Coda has benefited in a general sense from the large body of work on
transparency and performance in distributed file systems. In particular, Coda

owes much to AFS [191, from which it inherits its model of trust and

integrity, as well as its mechanisms and design philosophy for scalability.
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7. FUTURE WORK

Disconnected operation in Coda is a facility under active development. In

earlier sections of this paper we described work in progress in the areas of log

optimization, granularity of reintegration, and evaluation of hoarding. Much

additional work is also being done at lower levels of the system. In this

section we consider two ways in which the scope of our work may be

broadened.

An excellent opportunity exists in Coda for adding transactional support to

Unix. Explicit transactions become more desirable as systems scale to hun-

dreds or thousands of nodes, and the informal concurrency control of Unix

becomes less effective. Many of the mechanisms supporting disconnected

operation, such as operation logging, precedence graph maintenance, and

conflict checking would transfer directly to a transactional system using

optimistic concurrency control. Although transactional file systems are not a

new idea, no such system with the scalability, availability and performance

properties of Coda has been proposed or built.

A different opportunity exists in extended Coda to support weakly con-

nected operation, in environments where connectivity is intermittent or of

low bandwidth. Such conditions are found in networks that rely on voice-grade

lines, or that use wireless technologies such as packet radio. The ability to

mask failures, as provided by disconnected operation, is of value even with

weak connectivity. But techniques which exploit and adapt to the communi -

cation opportunities at hand are also needed. Such techniques may include

more aggressive write-back policies, compressed network transmission,

partial file transfer and caching at intermediate levels.

8. CONCLUSION

Disconnected operation is a tantalizingly simple idea. All one has to do is to

preload one’s cache with critical data, continue normal operation until dis-

connection, log all changes made while disconnected and replay them upon

reconnect ion.

Implementing disconnected operation is not so simple. It involves major

modifications and careful attention to detail in many aspects of cache man-

agement. While hoarding, a surprisingly large volume and variety of interre-

lated state has to be maintained. When emulating, the persistence and

integrity of client data structures become critical. During reintegration,

there are dynamic choices to be made about the granularity of reintegration.

Only in hindsight do we realize the extent to which implementations of

traditional caching schemes have been simplified by the guaranteed presence

of a lifeline to a first-class replica. Purging and refetching on demand, a

strategy often used to handle pathological situations in those implementa-

tions, is not viable when supporting disconnected operation. However, the

obstacles to realizing disconnected operation are not insurmountable. Rather,

the central message of this paper is that disconnected operation is indeed
feasible, efficient and usable.

One way to view our work is to regard it as an extension of the idea of

write-back caching. Whereas write-back caching has hitherto been used for
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performance, we have shown that it can be extended to mask temporary

failures too. A broader view is that disconnected operation allows graceful

transitions between states of autonomy and interdependence in a distributed

system. Under favorable conditions, our approach provides all the benefits of

remote data access; under unfavorable conditions, it provides continued

access to critical data. We are certain that disconnected operation will

become increasingly important as distributed systems grow in scale, diversity

and vulnerability y.
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