
Sampling Large Databases for Association Rules

Hannu Toivonen

University of Helsinki, Department of Computer Science

FIN-00014 University of Helsinki, Finland

Hannu.Toivonen@Helsinki.FI

Abstract

Discovery of association rules is an import-

ant database mining problem. Current al-

gorithms for �nding association rules require

several passes over the analyzed database, and

obviously the role of I/O overhead is very sig-

ni�cant for very large databases. We present

new algorithms that reduce the database activ-

ity considerably. The idea is to pick a random

sample, to �nd using this sample all associ-

ation rules that probably hold in the whole

database, and then to verify the results with

the rest of the database. The algorithms thus

produce exact association rules, not approx-

imations based on a sample. The approach is,

however, probabilistic, and in those rare cases

where our sampling method does not produce

all association rules, the missing rules can be

found in a second pass. Our experiments show

that the proposed algorithms can �nd associ-

ation rules very e�ciently in only one database

pass.

1 Introduction

Database mining, or knowledge discovery in databases

(KDD), has in the recent years attracted a lot of

interest in the database community (for overviews,

see [FPSSU96, PSF91]). The interest is motivated

by the large amounts of computerized data that many

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the VLDB copyright notice and

the title of the publication and its date appear, and notice is

given that copying is by permission of the Very Large Data Base

Endowment. To copy otherwise, or to republish, requires a fee

and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference

Mumbai(Bombay), India, 1996

organizations now have about their business. For in-

stance, supermarkets store electronic copies of millions

of receipts, and banks and credit card companies main-

tain extensive transaction histories. The goal in data-

base mining is to analyze these large data sets and to

discover patterns or regularities that are useful for de-

cision support.

Discovery of association rules [AIS93] is an inter-

esting sub�eld of database mining. The motivation for

searching association rules has come from the desire to

analyze large amounts of supermarket basket data. As-

sociation rules describe how often items are purchased

together: for instance, an association rule \beer)

chips (87 %)" states that 87 % of the customers that

have bought beer, also have bought chips. Such rules

can be useful for decisions concerning, e.g., product

pricing, promotions, or store layout. Association rules

have been used to discover regularities in other data-

bases as well: university course enrollment data has

been analyzed to �nd combinations of courses taken

by the same students, and alarms that occur close to

each other in time have been searched in telecommu-

nication alarm data [MTV94].

The size of the data collection has an essential role

in database mining. Large data sets are necessary

for reliable results; unfortunately, however, the e�-

ciency of the mining algorithms depends heavily on

the database. Association rule algorithms require mul-

tiple passes over the whole database, and subsequently

the database size is by far the most inuential factor

of the execution time for very large databases. Recent

research has managed to reduce the disk I/O activity

to two full scans over the database [SON95].

We present algorithms that make only one full pass

over the database. The idea is to pick a random sample,

use it to determine all association rules that probably

hold in the whole database, and then to verify the res-

ults with the rest of the database. The algorithms thus

produce exact association rules in one full pass over

the database. In those rare cases where our sampling

method does not produce all association rules, the

Page 1

missing rules can be found in a second pass. Our ex-

tensive experiments show that this method works very

well in practice, making the approach attractive espe-

cially for very large databases.

This paper is organized as follows. Section 2 re-

views the de�nition of association rules and the prob-

lem setting. An overview of previous work in asso-

ciation rule discovery is given in Section 3. In Sec-

tion 4 we present our approach to discovering asso-

ciation rules using sampling; sampling is analyzed in

Section 5. Experimental results are given in Section 6.

Finally, Section 7 contains concluding remarks.

2 Association Rules

We shortly review the de�nitions related to association

rules. Consider the supermarket domain and the so

called basket data analysis: the goal is to discover asso-

ciations between items that are often bought together.

Let R = fI1; I2; : : : ; Img represent the set of items

that are being sold in the supermarket. Each item Ii is

an attribute over the binary domain f0; 1g, where value

1 indicates that a particular basket has contained the

corresponding product. The baskets are represented

by rows in a relation r = ft1; : : : ; tng over R. That

is, each basket is represented by a binary vector of

length m, which can be interpreted as the set of items

that was bought in the basket.

Consider sets of items that are bought together. The

relative frequency of an itemset X � R in r is

fr(X; r) =
jft 2 r j t[i] = 1 for all Ii 2 Xgj

jrj
:

In other words, the frequency of an itemset X is the

fraction of the baskets that has contained all the items

in X, i.e., the probability that a randomly chosen row

from r contains the itemset X.

The goal is to �nd items that are bought often to-

gether. The user determines what is often enough

by giving a frequency threshold. Given a frequency

threshold min fr, we say that a set X is frequent
1

if fr(X; r) � min fr: That is, an itemset is frequent

if it is contained in at least a fraction min fr of the

baskets. For notational convenience, we introduce a

shorthand notation F(r;min fr) for the collection of

frequent sets in a given relation r with respect to a

frequency threshold min fr:

F(r;min fr) = fX � R j fr(X; r) � min frg:

Now, �nally, we de�ne association rules. Given dis-

joint and non-empty itemsetsX;Y � R, the expression

X) Y is an association rule over r. The interpreta-

tion is that when all the items in set X are in a basket,

1In the literature, also the terms large and covering have been

used for frequent, and the term support for frequency.

also the items in Y tend to be in the basket. The

strength or con�dence of the rule is

fr(X [Y; r)

fr(X; r)
:

The con�dence can be seen as a conditional probability

in the analyzed relation r. For instance, assume that

the rule fbeerg) fchipsg has a con�dence of 87 %.

This means that if a randomly chosen basket contains

beer, then it also contains chips with probability 0.87.

A con�dence threshold is used to exclude rules that

are not strong enough to be interesting. Also, the given

frequency threshold min fr is used to remove rules that

do not apply often enough, i.e., rules such that the

frequency of X [Y is below the frequency threshold.

The problem of �nding association rules can now

be stated in the following way. Given a set R of bin-

ary attributes, a corresponding relation r, a frequency

threshold min fr, and a con�dence threshold min conf,

�nd all association rules in r that have con�dence at

least min conf and frequency at least min fr.

The discovery of association rules can be divided

into two phases [AIS93]. First, discover all frequent

itemsets X � R. Then, for each frequent X, test for

all non-empty subsets Y � X if the rule X n Y) Y

holds with su�cient con�dence. The second part of the

problem can be solved in main memory in a straight-

forward manner once the frequent sets and their fre-

quencies are known. Discovery of the frequent sets is

the hard part of the problem: with m items, there are

2m potentially frequent itemsets. For all but the smal-

lest m, e�cient methods for locating the frequent sets

are needed. For the rest of this article, we consider the

task of discovering all frequent sets.

3 Previous Work on Association Rules

Since the introduction of the problem of mining as-

sociation rules [AIS93] several generate-and-test type

of algorithms have been proposed for the task of

discovering frequent sets. An e�cient breadth-�rst

or level-wise method for generating candidate sets,

i.e., potentially frequent sets, has been presented

in [AS94, MTV94, AMS+96]. This method|also

called Apriori|is the core of all known algorithms

except the original one [AIS93] and its variation for

SQL [HS93], which have been shown to be inferior to

the level-wise method [AS94, MTV94, AMS+96].

An alternative strategy for the database pass, using

inverted structures and a general purpose DBMS, has

been considered in [HKMT95]. The most e�cient al-

gorithm so far, in particular in terms of database oper-

ations, is Partition [SON95]. We review the level-wise

method and the Partition algorithm below.

Page 2

Other work related to association rules includes the

problem of mining rules with generalizations [HF95,

HKMT95, SA95], management of large amounts of dis-

covered association rules [KMR+94, TKR+95], and

a theoretical analysis of an algorithm for a class of

KDD problems including the discovery of frequent

sets [MT96]. A connectionist approach to mining rules

is presented in [LSL95].

3.1 Level-Wise Algorithms

Algorithms for discovering frequent sets are based

on the observation that if a set is not frequent then

its supersets can not be frequent. All current al-

gorithms [MTV94, AS94, HKMT95, HF95, PCY95,

SA95, AMS+96] start on level 1 by evaluating the fre-

quencies of singleton itemsets. On level k, candidate

itemsets X of size k are generated such that all sub-

sets of X are frequent. For instance, in the second

pass, candidates are pairs of items such that both items

are frequent. After the frequencies of the candidates

on level k have been evaluated, new candidates for

level k + 1 are generated and evaluated. This is re-

peated until no new candidates can be generated. The

e�ciency of this approach is based on not generating

and evaluating those candidate itemsets that cannot be

frequent, given all smaller frequent sets.

The level-wise algorithms make one pass over the

database for each level. There are thus K or K + 1

passes over the database, where K is the size of the

largest frequent set.2 Sometimes, if there are only few

candidates in the last iterations, candidates can be gen-

erated and tested for several levels at once.

3.2 Partition Algorithm

The Partition algorithm [SON95] reduces the database

activity: it computes all frequent sets in two passes

over the database. The algorithm works also in the

level-wise manner, but the idea is to partition the data-

base to sections small enough to be handled in main

memory. That is, a part is read once from the disk,

and level-wise generation and evaluation of candidates

for that part are performed in main memory without

further database activity.

The �rst database pass consists of identifying in

each part the collection of all locally frequent sets. For

the second pass, the union of the collections of locally

frequent sets is used as the candidate set. The �rst

pass is guaranteed to locate a superset of the collec-

tion of frequent itemsets; the second pass is needed to

merely compute the frequencies of the sets.

2
K+1 passes are needed if there are candidates of sizeK+1.

4 Sampling for Frequent Sets

A fairly obvious way of reducing the database activity

of knowledge discovery is to use only a random sample

of the relation and to �nd approximate regularities. In

other words, one can trade o� accuracy against e�-

ciency. This can be very useful: samples small enough

to be handled totally in main memory can give reas-

onably accurate results. Or, approximate results from

a sample can be used to set the focus or to adjust

parameters for a more complete discovery phase.

It is often important to know the frequencies and

con�dences of association rules exactly. In business

applications, for example for large volumes of super-

market sales data, even very small di�erences can be

signi�cant. When relying on results from sampling

alone, one also takes the risk of loosing valid associ-

ation rules because their frequency in the sample is

below the threshold.

Using a random sample to get approximate results

is fairly straightforward. Below we give bounds for

sample sizes, given the desired accuracy of the results.

Our main contribution is, however, to show that ex-

act frequencies can be found e�ciently, by analyzing

�rst a random sample and then the whole database as

follows. Use a random sample to e�ciently �nd a su-

perset S of the collection of frequent sets. A superset

can be determined e�ciently by applying the level-wise

method on the sample in main memory, and by using a

lowered frequency threshold. In terms of the Partition

algorithm, discover locally frequent sets from one part

only, and with a lower threshold. Then use the rest of

the database to compute the exact frequencies of the

sets. This approach requires only one full pass over

the database, and two passes in the worst case.

4.1 The Negative Border

As a tool for further analysis, consider the concept of

negative border. Given a collection S � P(R) of sets,

closed with respect to the set inclusion relation, the

negative border Bd�(S) of S consists of the minimal

itemsets X � R not in S [MT96].

The collection of all frequent sets is always closed

with respect to set inclusion. For instance, let R =

fA; : : : ; Fg and assume the collection F(r;min fr) of

frequent sets (with some r and min fr) is

fAg; fBg; fCg; fFg;fA;Bg; fA;Cg;

fA;Fg; fC;Fg; fA;C; Fg:

The negative border of this collection contains now,

e.g., the set fB;Cg: it is not in the collection, but all

its subsets are. The whole negative border is

Bd�(F(r;min fr)) = ffB;Cg; fB;Fg; fDg; fEgg:

Page 3

Algorithm 1

Input: A relation r over a binary schema R, a fre-

quency threshold min fr, a sample size ss, and a

lowered frequency threshold low fr.

Output: The collection F(r;min fr) of frequent sets

and their frequencies, or its subset and a failure report.

Method:

1. draw a random sample s of size ss from r;

// �nd frequent sets in the sample:

2. compute S := F(s; low fr) in main memory;

// database pass:

3. compute F :=

fX 2 S [Bd�(S) j fr(X; r) � min frg;

4. for all X 2 F do output X and fr(X; r);

5. report if there possibly was a failure;

The intuition behind the concept is that given a

(closed) collection S of sets that are frequent, the neg-

ative border contains the \closest" itemsets that could

be frequent, too. The candidate collections of the level-

wise algorithms are, in e�ect, the negative borders of

the collections of frequent sets found so far, and the

collection of all candidates that were not frequent is

the negative border of the collection of frequent sets.

Of particular importance is the fact that the negative

border needs to be evaluated, in order to be sure that

no frequent sets are missed [MT96].

4.2 Frequent Set Discovery Using Sampling

We now apply the concept of negative border to using

sampling for �nding frequent sets. It is not su�cient

to locate a superset S of F(r;min fr) using the sample

and then to test S in r, because the negative border

Bd�(F(r;min fr)) needs to be checked, too. If we have

F(r;min fr) � S, then obviously S [Bd�(S) is a su�-

cient collection to be checked. Determining S[Bd�(S)

is easy: it consists of all sets that were candidates of the

level-wise method in the sample. Algorithm 1 presents

the principle: search for frequent sets in the sample,

but lower the frequency threshold so much that it is

very unlikely that any frequent sets are missed. Then

evaluate the sets and their border, i.e., all sets that

were evaluated in the sample, also in the rest of the

database.

Sometimes, unfortunately, it may happen that we

�nd out that not all necessary sets have been evaluated.

There has been a failure in the sampling if all frequent

sets are not found in one pass, i.e., if there is a frequent

set X in F(r;min fr) that is not in S[Bd�(S). A miss

is a frequent set Y in F(r;min fr) that is in Bd�(S).

If there are no misses, then the algorithm is guaran-

teed to have found all frequent sets. Misses themselves

are not a problem. They are evaluated in the whole

relation, and thus they are not actually missed by the

algorithm. Misses, however, indicate a potential fail-

ure. Namely, if there is a miss Y , then some superset of

Y might be frequent but not in S [Bd�(S). A simple

way to recognize a potential failure is thus to check if

there are any misses.

Example. Assume that we have a relation r with

10 million rows over attributes A; : : : ; F , and that we

want to �nd the frequent sets with the threshold 2 %.

Algorithm 1 randomly picks a small fraction s of r, say

20,000 rows, and keeps this sample s in main memory.

The algorithm can now, without any further database

activity, discover very e�ciently sets that are frequent

in the sample.

To make (almost) sure that the collection of fre-

quent sets in the sample includes all sets that really

are frequent in r, the frequency threshold is lowered

to, e.g., 1.5 %. Algorithm 1 now determines the collec-

tion S = F(s; 1:5 %) from the sampled 20,000 rows.

Let the maximal sets of S be

fA;B;Cg; fA;C; Fg;fA;Dg;fB;Dg:

Since the threshold was lowered, S is likely to be a

superset of the collection of frequent sets in r. In the

pass over the rest of r, the frequency of all sets in S

and Bd�(S) is evaluated. That is, in addition to the

sets that are frequent in the sample, we evaluate also

those candidates that were not frequent in the sample,

i.e., the negative border

fB;Fg; fC;Dg; fD;Fg;fEg:

The goal is to discover the collection F(r; 2 %) of

frequent sets in r. Let sets

fA;Bg; fA;C; Fg:

and all their subsets be the frequent sets. All frequent

sets are in S, so they are evaluated and their exact

frequencies are known after the full database pass. We

also know that we have found all frequent sets since

also the negative border

fB;Cg; fB;Fg; fDg;fEg

of F(r; 2 %) was evaluated and found not to be fre-

quent.

Now assume a slightly di�erent situation, where the

set fB;Fg turns out to be frequent in r, that is, fB;Fg

is a miss. What we have actually missed is the set

fA;B; Fg which can be frequent in r, since all its sub-

sets are. In this case Algorithm 1 reports that there

possibly is a failure.

The problem formulation is now the following: given

a database r and a frequency threshold min fr, use a

Page 4

Algorithm 2

Input: A relation r over a binary schema R,

a frequency threshold min fr, and a subset S

of F(r;min fr).

Output: The collection F(r;min fr) of frequent sets

and their frequencies.

Method:

1. repeat

2. compute S := S [Bd�(S);

3. until S does not grow;

// database pass:

4. compute F := fX 2 S j fr(X; r) � min frg;

5. for all X 2 F do output X and fr(X; r);

random sample s to determine a collection S of sets

such that S contains with a high probability the collec-

tion of frequent sets F(r;min fr). For e�ciency reas-

ons, a secondary goal is that S does not contain unne-

cessarily many other sets. We present two variants of

algorithms using sampling. One of them is guaranteed

to �nd all frequent sets in one pass in fraction 1�� of

the cases, where � is a parameter given by the user.

In the fraction of cases where a possible failure is

reported, all frequent sets can be found by making a

second pass over the database. Algorithm 2 can be

used to extend Algorithm 1 with a second pass in such

a case. The algorithm simply computes the collection

of all sets that possibly could be frequent. This can be

done in a similar way that candidates are generated in

the algorithms for �nding frequent sets.

5 Analysis of Sampling

Next we analyze the relation of sample size to the

accuracy of results. We �rst consider how accur-

ate the frequencies computed from a random sample

are. As has been noted before, samples of reason-

able size provide good approximations for frequent

sets [MTV94, AMS+96]. Related work on using a

sample for approximately verifying the truth of sen-

tences of tuple calculus is considered in [KM94].

5.1 Accuracy and Sample Size

We consider the absolute error of the estimated fre-

quency. Given an attribute set X � R and a random

sample s from a relation over binary attributes R, the

error e(X; s) is the di�erence of the frequencies:

e(X; s) = jfr(X) � fr(X; s)j;

where fr(X) is the frequency of X in the relation from

which s was drawn.

To analyze the error, we consider sampling with re-

placement. The reason is that we want to avoid making

other assumptions of the database size except that it

is large. For sampling with replacement the size of the

database has no e�ect on the analysis, so the results

apply, in principle, on in�nitely large databases. To

emphasize this, the relation from which a sample is

drawn is not shown in the notation of the error. For

very large databases there is practically no di�erence

between sampling with and without replacement.

In the following we analyze the number of rows

in the sample s that contain X, denoted m(X; s).

The random variable m(X; s) has binomial distribu-

tion, i.e., the probability of m(X; s) = c, denoted

Pr[m(X; s) = c], is�
jsj

c

�
fr(X)c(1 � fr(X))jsj�c:

First consider the necessary size of a sample, given

requirements on the size of the error. The following

theorem gives a lower bound for the size of the sample,

given an error bound " and a maximum probability �

for an error that exceeds the bound.

Theorem 1 Given an attribute set X and a random

sample s of size

jsj �
1

2"2
ln
2

�

the probability that e(X; s) > " is at most �.

Proof. We have

Pr[e(X; s) > "] = Pr[jfr(X; s) � fr(X)j jsj > " jsj]:

The Cherno� bounds [AS92] give an upper bound

2e�2(" jsj)
2
=jsj = �

for the probability.

Table 1 gives values for the su�cient sample size jsj,

for " = 0:01; 0:001 and � = 0:01; 0:001; 0:0001. With

the tolerable error " around 0.01, samples of a reas-

onable size su�ce. E.g., if a chance of 0.0001 for an

error of more than 0.01 is acceptable, then a sample of

size 50,000 is su�cient. For many applications these

parameter values are perfectly reasonable|errors in

the input data may be more likely than 0:0001. In

such cases, approximate rules can be produced based

on a sample, i.e., in constant time independent of the

size of r. With tighter error requirements the sample

sizes can be quite large.

The result above is for a given set X. The following

corollary gives a result for a more stringent case: given

a collection S of sets, with probability 1 � � there is

no set in S with error more than ".

Page 5

Table 1: Su�cient sample sizes, given " and �.

" � jsj

0.01 0.01 27,000

0.01 0.001 38,000

0.01 0.0001 50,000

0.001 0.01 2,700,000

0.001 0.001 3,800,000

0.001 0.0001 5,000,000

Corollary 2 Given a collection S of sets and a ran-

dom sample s of size

jsj �
1

2"2
ln
2jSj

�
;

the probability that there is a set X 2 S such that

e(X; s) > " is at most �.

Proof. By Theorem 1, the probability for e(X; s) >

" for a given set X is at most �
jSj
. Since there are jSj

such sets, the probability in question is at most �.

The Cherno� bound is not always very tight, and in

practice the exact probability from the binomial dis-

tribution or its normal approximation is much more

useful.

5.2 Probability of a Failure

Consider now the proposed approach to �nding all fre-

quent sets exactly. The idea was to locate a superset of

the collection of frequent sets by discovering frequent

sets in a sample with a lower threshold.

Assume we have a sample s and a collection S =

F(s; low fr) of sets. What can we say about the prob-

ability of a failure? A failure is �rst of all possible if

there is a set that should have been checked but was

not. That is, samplingmight have failed if there is such

a collection T of misses that Bd�(S [T) has sets that

are not in Bd�(S). Given such a collection T of po-

tential misses, estimating the probability that all sets

in T actually are misses is di�cult since the sets are

not independent. To get an upper bound one can com-

pute, as if the sets were independent, the probability

of any of the sets in T being a miss. This, again, is

bounded by considering the whole Bd�(S) instead of

subcollections T . In summary: to estimate the prob-

ability of a failure we can compute an upper bound for

the probability of a miss.

An interesting aspect is that the upper bound can

be computed on the y when processing the sample.

Thus, if an upper bound for the probability of a failure

is desired, the frequency threshold low fr can be adjus-

ted dynamically to reduce the probability of a miss.

A variation of Theorem 1 gives the following result

on how to set the lowered frequency threshold so that

misses are avoided with a high probability.

Theorem 3 Given a frequent set X, a random

sample s, and a probability parameter �, the probabil-

ity that X is a miss is at most � when

low fr < min fr�

s
1

2jsj
ln
1

�
:

Proof. Using the Cherno� bounds again|this time

for one-sided error|we have

Pr[fr(X; s) < low fr] � e
�2(
p

1

2jsj
ln 1

�
jsj)2=jsj

= �:

Consider now the number of sets checked in the

second pass by Algorithm 2, in the case of a failure.

The collection S can, in principle, grow much. Each

independent miss can in the worst case generate as

many new candidates as there are frequent sets. Note,

however, that if the probability that a given set is a

miss is at most �, then the probability of l independent

misses can be at most �l. In a pathological case the

misses are very much dependent: there is a very large

frequent set X such that its subsets only occur with

the whole X. If X is not frequent in a sample, then

also all its subsets are missed. At least in the applic-

ation domain of supermarket basket data this kind of

sets are very unlikely to exist at all.

6 Experiments

We now describe the experiments we conducted in or-

der to assess the practical feasibility of using samples

for �nding frequent sets. We present two new variants

of algorithms using sampling and give experimental

results.

6.1 Test Organization

We used three synthetic data sets from [AS94] in

our tests. These databases model supermarket bas-

ket data, and they have been used as benchmarks for

several association rule algorithms [AS94, HKMT95,

PCY95, SON95, AMS+96]. The central properties of

the data sets are the following. There are jRj = 1; 000

attributes, and the average number T of attributes per

row is 5, 10, and 20. The number jrj of rows is ap-

proximately 100; 000. The average size I of maximal

frequent sets is 2, 4, and 6. Table 2 summarizes the

parameters for the data sets; see [AS94] for details of

the data generation.

We assume that the real data sets from which as-

sociation rules are discovered can be much larger than

Page 6

1

2

3

4

5

6

7

1.5 1 0.75 0.5 0.25

Passes

T5.I2.100K

2
Frequency threshold (%)

Level-wise r

r

r

rrrr

Partition b

bbbbbb

Algorithm 1 ?

?????? 1

2

3

4

5

6

7

1.5 1 0.75 0.5

T10.I4.100K

2

rr

r

rr bbbbb

????? 1

2

3

4

5

6

7

1.5 1

T20.I6.100K

2

r

r

r bbb

???

Figure 1: The number of database passes made by frequent set algorithms.

Table 2: Synthetic data set characteristics (T = row

size on average, I = size of maximal frequent sets on

average).

Data set name jRj T I jrj

T5.I2.D100K 1,000 5 2 97,233

T10.I4.D100K 1,000 10 4 98,827

T20.I6.D100K 1,000 20 6 99,941

the test data sets. To make the experiments fair we

use sampling with replacement. This means that the

real data sets could, in principle, have been arbitrary

large data sets such that these data sets represent their

distributional properties.

We considered sample sizes from 20,000 to 80,000.

Samples of these sizes are large enough to give good

approximations and small enough to be handled in

main memory. Since our approach is probabilistic, we

repeated every experiment 100 times for each para-

meter combination. Altogether, over 10,000 trials were

run. We did not experiment with all the frequency

thresholds used in the literature; the repeated trials

would have taken too long. The tests were run on a

PC with 90 MHz Pentium processor and 32 MB main

memory under Linux operating system.

6.2 Number of Database Passes and Misses

We experimented with Algorithm 1 with the above

mentioned sample sizes 20,000 to 80,000. We selected

the lowered threshold so that the probability of missing

any given frequent set X is less than � = 0:001, i.e.,

given any set X with fr(X) � min fr, we have

Pr[fr(X; s) < low fr] < 0:001:

The lowered threshold depends on the frequency

threshold and the sample size. The lowered threshold

Table 3: Lowered frequency thresholds (%) for � =

0:001.

Sample size

min fr (%) 20,000 40,000 60,000 80,000

0.25 0.13 0.17 0.18 0.19

0.50 0.34 0.38 0.40 0.41

0.75 0.55 0.61 0.63 0.65

1.00 0.77 0.83 0.86 0.88

1.50 1.22 1.30 1.33 1.35

2.00 1.67 1.77 1.81 1.84

values are given in Table 3; we used in the computa-

tions the exact probabilities from the binomial distri-

bution, not the Cherno� bounds.

Figure 1 shows the number of database passes for

the three di�erent types of algorithms: the level-wise

algorithm, Partition, and the sampling Algorithm 1.

Each of the data points in the results shown for Al-

gorithm 1 is the average value over 100 trials. Explain-

ing the results is easy. The level-wise algorithm makes

K(+1) passes over the database, where K is the size

of the largest frequent set. The Partition algorithm

makes two passes over the database when there are

any frequent sets. For Algorithm 1, the fraction of tri-

als with misses is expected to be larger than � = 0:001;

depending on how many frequent sets have a frequency

relatively close to the threshold and are thus likely

misses in a sample. The algorithm has succeeded in

�nding all frequent sets in one pass in almost all cases.

The number of database passes made by Partition al-

gorithm is practically twice that of Algorithm 1, and

the number of passes of the level-wise algorithm is up

to six times that of Algorithm 1.

Table 4 shows the number of trials with misses for

each data set, sample size, and frequency threshold. In

Page 7

Table 4: Number of trials with misses.

T5.I2.D100K

Sample size

min fr (%) 20,000 40,000 60,000 80,000

0.25 0 1 0 0

0.50 0 1 0 1

0.75 0 0 0 0

1.00 0 0 0 0

1.50 0 0 0 0

2.00 0 0 0 0

T10.I4.D100K

Sample size

min fr (%) 20,000 40,000 60,000 80,000

0.50 0 2 1 1

0.75 0 1 1 1

1.00 1 0 1 1

1.50 0 2 0 0

2.00 0 0 0 0

T20.I6.D100K

Sample size

min fr (%) 20,000 40,000 60,000 80,000

1.00 0 0 0 0

1.50 1 1 1 0

2.00 0 1 0 2

each set of 100 trials, there have been zero to two trials

with misses. The overall fraction of trials with misses

was 0.0038. We repeated the experiment with � = 0:01,

i.e., so that the miss probability of any given frequent

set is at most 0.01. This experiment gave misses in

fraction 0.041 of all the trials. In both cases the frac-

tion of trials with misses was about four times �.

The actual amount of reduction in the database

activity depends very much on the storage structures.

For instance, if the database has 10 million rows, a disk

block contains on average 100 rows, and the sample

size is 20,000, then the sampling phase could read up

to 20 % of the database. For the design and analysis of

sampling methods see, e.g, [OR89]. The related prob-

lem of sampling for query estimation is considered in

more detail in [HS92]. An alternative for randomly

drawing each row in separation is, of course, to draw

whole blocks of rows to the sample. Depending on how

randomly the rows have been assigned to the blocks,

this method can give very good or very bad results.

The reduction in database activity is achieved at the

cost of considering some attribute sets that the level-

wise algorithm does not generate and check. Table 5

shows the average number of sets considered for data

set T10.I4.D100K with di�erent sample sizes, and

the number of candidate sets of the level-wise al-

gorithm. The largest absolute overhead occurs with

low thresholds, where the number of itemsets con-

sidered has grown from 318,588 by 64,694 in the worst

case. This growth is not signi�cant for the total exe-

cution time since the itemsets are handled entirely in

main memory. The relative overhead is larger with

higher thresholds, but since the absolute overheads are

very small the e�ect is negligible. Table 5 indicates

that larger samples cause less overhead (with equally

good results), but that for sample sizes from 20,000 to

80,000 the di�erence in the overhead is not signi�cant.

To obtain a better picture of the relation of � and

the experimental number of trials with misses, we con-

ducted the following test. We took 100 samples (for

each frequency threshold and sample size) and determ-

ined the lowered frequency threshold that would have

given misses in one out of the hundred trials. Figure 2

presents these results (as points), together with lines

showing the lowered thresholds with � = 0:01 or 0.001,

i.e., the thresholds corresponding to miss probabilit-

ies of 0.01 and 0.001 for a given frequent set. The

frequency thresholds that would give misses in frac-

tion 0.01 of cases approximate surprisingly closely the

thresholds for � = 0:01. Experiments with a larger

scale of sample sizes give comparable results. There

are two explanations for the similarity of the values.

One reason is that there are not necessarily many

potential misses, i.e., not many frequent sets with

frequency relatively close to the threshold. Another

reason that contributes to the similarity is that the sets

are not independent.

In the case of a possible failure, Algorithm 2 gener-

ates iteratively all new candidates and makes another

pass over the database. In our experiments the number

of frequent sets missed|when any were missed|was

one or two for � = 0:001, and one to 16 for � = 0:01.

The number of candidates checked on the second pass

was very small compared to the total number of item-

sets checked.

6.3 Guaranteed 1�� Success Probability

Setting the lowered threshold for Algorithm 1 is not

trivial: how to select it so that the probability of a fail-

ure is low but there are not unnecessarily many sets

to check? An automatic way of setting the parameter

would be desirable. Consider, for instance, an inter-

active mining tool. It would be very useful to know

in advance how long an operation will approximately

take|or, in the case of mining association rules, how

many database passes there will be.

We now present two algorithms that are guaranteed

to �nd all frequent sets in a given fraction 1 � � of

Page 8

Table 5: Number of attribute sets considered for data set T10.I4.D100K.

Sample size

min fr (%) 20,000 40,000 60,000 80,000 Level-wise

0.50 382,282 368,057 359,473 356,527 318,588

0.75 290,311 259,015 248,594 237,595 188,024

1.00 181,031 158,189 146,228 139,006 97,613

1.50 52,369 40,512 36,679 34,200 20,701

2.00 10,903 7,098 5,904 5,135 3,211

0.25

0.50

0.75

1.00

1.50

2.00

20000 40000 60000 80000

min fr (%)

Sample size

T5.I2.100K

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

0.01
0.001

Figure 2: Frequency thresholds giving misses in 0.01 cases (points) and lowered thresholds with � = 0:01 and

0.001 (lines).

the cases. The �rst one uses a simple greedy principle

with which an optimal lowered frequency threshold can

be found. The other algorithm is not as optimal, but

its central phase is almost identical to the level-wise

method and it is therefore very easy to incorporate

into existing software. We present experimental results

with this latter algorithm.

The greedy Algorithm 3 starts with an empty set S.

It then greedily increases the probability of success by

adding the most probable misses to S until the upper

bound for the probability of a miss is at most �.

Algorithm 4 is a very simple variation of the level-

wise algorithm. It utilizes also the upper bound ap-

proximation described in Section 5: it monitors the

upper bound of the probability of a miss and keeps the

probability small by lowering the frequency threshold

low fr, when necessary, for the rest of the algorithm.

To use the level-wise algorithm for the discovery of

frequent sets in a sample with the dynamic adjustment

of the lowered threshold, the only modi�cation con-

cerns the phase where candidates are either added to

the collection of frequent sets or thrown away. In Al-

gorithm 4, lines 8 { 13 have been added to implement

this change. Every time there is a candidate X that is

not frequent in the sample, compute the probability p

that X is frequent. If the total probability P of a miss

increases too much (see below) with such an X, then

lower the frequency threshold low fr to the frequency

of X in the sample for the rest of the algorithm. Thus

X is eventually considered frequent in the sample, and

so are all following candidate sets that would increase

the overall probability of a miss at least as much as X.

We use the following heuristic to decide whether the

possibility of a miss increases too much. Given a para-

meter in [0; 1], the frequency threshold is lowered if

the probability p is larger than fraction of the \re-

maining error reserve" � � P . More complex heur-

istics for changing the frequency threshold could be

Page 9

Algorithm 3

Input: A relation r over a binary attributes R, a

sample size ss, a frequency threshold min fr, and a

maximum miss probability �.

Output: The collection F(r;min fr) of frequent sets

and their frequencies at least in fraction 1 �� of the

cases, and a subset of F(r;min fr) and a failure report

in the rest of the cases.

Method:

1. draw a random sample s of size ss from r;

2. S := ;;

// �nd frequent sets in the sample:

3. while probability of a miss > � do begin

4. select X 2 Bd�(S) with the highest

probability of being a miss;

5. S := S [fXg;

6. end;

// database pass:

7. compute F :=

fX 2 S [Bd�(S) j fr(X; r) � min frg;

8. for all X 2 F do output X and fr(X; r);

9. report if there possibly was a failure;

developed, e.g., by taking into account the number of

candidates on the level and whether the number of fre-

quent sets per level is growing or shrinking. The ob-

servations made from Figure 2 hint that the lowered

threshold can be set in the start-up to roughly cor-

respond to the desired probability of a miss, i.e., for

� = 0:01 the lowered threshold could be set as for

� = 0:01.

We tested Algorithm 4 with maximum miss prob-

ability � = 0:1 and dynamic adjustment parameter

 = 0:01 for two frequency thresholds for each data set.

The fraction of trials with misses is shown in Table 6.

The fraction succesfully remained below � = 0:1 in

each set of experiments.

As Table 6 shows, the fraction of cases with misses

was actually less than half of �. The reason is that

with a small the algorithm tends to be conservat-

ive and keeps a lot of space for the probability of a

miss in reserve. This is useful when there can be very

many candidates. The negligible trade-o� is that the

algorithmmay consider unnecessarily many sets as fre-

quent in the sample.

7 Concluding Remarks

We have discussed the use of sampling in the task of

discovering association rules in large databases. We

described algorithms that take a random sample from

a database, identify those sets that probably are fre-

Algorithm 4

Input: A relation r over a binary attributes R, a

sample size ss, a frequency threshold min fr, and a

maximum miss probability �.

Output: The collection F(r;min fr) of frequent sets

and their frequencies at least in fraction 1 �� of the

cases, and a subset of F(r;min fr) and a failure report

in the rest of the cases.

Method:

1. draw a random sample s of size ss from r;

2. P := 0;

3. low fr := min fr;

// �nd frequent sets in the sample:

4. C1 := ffAg j A 2 Rg;

5. i := 1;

6. while Ci 6= ; do begin

7. for all X 2 Ci do begin

8. if fr(X; s) < low fr then do

9. p := Pr[X is frequent];

10. if p=(�� P) > then

11. low fr := fr(X; s)

12. else P := 1� (1� P)(1� p);

13. end;

14. if fr(X; s) � low fr then

15. Si := Si [fXg;

16. end;

17. i := i+ 1;

18. Ci := ComputeCandidates(Si�1);

19. end;

// database pass:

20. compute F :=

fX 2
S
j<i

Cj j fr(X; r) � min frg;

21. for all X 2 F do output X and fr(X; r);

22. report if there possibly was a failure;

quent in the database, and then compute the exact fre-

quencies from the rest of the database.

The described algorithms are fairly simple. Two

of the algorithms have the property that they discover

all frequent sets in one pass in a fraction 1�� of the

cases, where � is given by the user. Those cases where

sampling possibly missed frequent sets can be recog-

nized, and the missing sets can be found in a second

pass.

Our experiments showed that the approach works:

all frequent sets can actually be found in almost one

pass over the database. For the e�ciency of mining

association rules in very large databases the reduction

of disk I/O is signi�cant.

This work raises two obvious open questions. The

�rst one concerns the discovery of association rules: is

there a method for discovering exact association rules

Page 10

Table 6: Fraction of trials with misses with � = 0:10.

T5.I2.D100K

Sample size

min fr (%) 20,000 40,000 60,000 80,000

0.50 0.03 0.03 0.00 0.02

1.00 0.00 0.00 0.00 0.00

T10.I4.D100K

Sample size

min fr (%) 20,000 40,000 60,000 80,000

0.75 0.01 0.04 0.02 0.01

1.50 0.00 0.02 0.04 0.01

T20.I6.D100K

Sample size

min fr (%) 20,000 40,000 60,000 80,000

1.00 0.02 0.01 0.01 0.01

2.00 0.01 0.03 0.01 0.03

in at most one pass? The other question is, how much

can database mining methods gain from sampling in

general?

Acknowledgements

I would like to thank Heikki Mannila for his many help-

ful comments on an earlier draft. I also wish to thank

the anonymous referees for their constructive criticism.

This research has been supported by the Academy

of Finland.

References

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and

Arun Swami. Mining association rules

between sets of items in large databases. In

Proceedings of ACM SIGMOD Conference

on Management of Data (SIGMOD'93),

pages 207 { 216, May 1993.

[AMS+96] Rakesh Agrawal, Heikki Mannila, Ra-

makrishnan Srikant, Hannu Toivonen, and

A. Inkeri Verkamo. Fast discovery of as-

sociation rules. In Usama M. Fayyad,

Gregory Piatetsky-Shapiro, Padhraic

Smyth, and Ramasamy Uthurusamy,

editors, Advances in Knowledge Discovery

and Data Mining, pages 307 { 328. AAAI

Press, Menlo Park, CA, 1996.

[AS92] Noga Alon and Joel H. Spencer. The Prob-

abilistic Method. John Wiley Inc., New

York, NY, 1992.

[AS94] Rakesh Agrawal and Ramakrishnan Srik-

ant. Fast algorithms for mining association

rules in large databases. In Proceedings of

the Twentieth International Conference on

Very Large Data Bases (VLDB'94), pages

487 { 499, September 1994.

[FPSSU96] Usama M. Fayyad, Gregory Piatetsky-

Shapiro, Padhraic Smyth, and Ramasamy

Uthurusamy, editors. Advances in Know-

ledge Discovery and Data Mining. AAAI

Press, Menlo Park, CA, 1996.

[HF95] Jiawei Han and Yongjian Fu. Discovery

of multiple-level association rules from

large databases. In Proceedings of the 21st

International Conference on Very Large

Data Bases (VLDB'95), pages 420 { 431,

Zurich, Swizerland, 1995.

[HKMT95] Marcel Holsheimer, Martin Kersten,

Heikki Mannila, and Hannu Toivonen. A

perspective on databases and data mining.

In Proceedings of the First International

Conference on Knowledge Discovery and

Data Mining (KDD'95), pages 150 { 155,

Montreal, Canada, August 1995.

[HS92] Peter J. Haas and Arun N. Swami. Sequen-

tial sampling procedures for query size es-

timation. In Proceedings of ACM SIGMOD

Conference on Management of Data (SIG-

MOD'92), pages 341 { 350, San Diego,

CA, June 1992.

[HS93] Maurice Houtsma and Arun Swami. Set-

oriented mining of association rules. Re-

search Report RJ 9567, IBM Almaden Re-

search Center, San Jose, California, Octo-

ber 1993.

[KM94] Jyrki Kivinen and Heikki Mannila. The

power of sampling in knowledge discov-

ery. In Proceedings of the Thirteenth

ACM SIGACT-SIGMOD-SIGART Sym-

posium on Principles of Database Systems

(PODS'94), pages 77 { 85, Minneapolis,

MN, May 1994.

[KMR+94] Mika Klemettinen, Heikki Mannila, Pirjo

Ronkainen, Hannu Toivonen, and A. Inkeri

Verkamo. Finding interesting rules from

large sets of discovered association rules.

In Proceedings of the Third International

Conference on Information and Know-

ledge Management (CIKM'94), pages

401 { 407, Gaithersburg, MD, November

1994. ACM.

Page 11

[LSL95] Hongjun Lu, Rudy Setiono, and Huan Liu.

Neurorule: A connectionist approach to

data mining. In Proceedings of the 21st

International Conference on Very Large

Data Bases (VLDB'95), pages 478 { 489,

Zurich, Swizerland, 1995.

[MT96] Heikki Mannila and Hannu Toivonen.

On an algorithm for �nding all interest-

ing sentences. In Cybernetics and Sys-

tems, Volume II, The Thirteenth European

Meeting on Cybernetics and Systems Re-

search, pages 973 { 978, Vienna, Austria,

April 1996.

[MTV94] Heikki Mannila, Hannu Toivonen, and

A. Inkeri Verkamo. E�cient algorithms

for discovering association rules. In

Knowledge Discovery in Databases, Papers

from the 1994 AAAI Workshop (KDD'94),

pages 181 { 192, Seattle, Washington, July

1994.

[OR89] Frank Olken and Doron Rotem. Random

sampling from B+ trees. In Proceedings of

the Fifteenth International Conference on

Very Large Data Bases (VLDB'89), pages

269 { 277, Amsterdam, August 1989.

[PCY95] Jong Soo Park, Ming-Syan Chen, and

Philip S. Yu. An e�ective hash-based al-

gorithm for mining association rules. In

Proceedings of ACM SIGMOD Conference

on Management of Data (SIGMOD'95),

pages 175 { 186, San Jose, California, May

1995.

[PSF91] Gregory Piatetsky-Shapiro and William J.

Frawley, editors. Knowledge Discovery in

Databases. AAAI Press, Menlo Park, CA,

1991.

[SA95] Ramakrishnan Srikant and Rakesh

Agrawal. Mining generalized association

rules. In Proceedings of the 21st Inter-

national Conference on Very Large Data

Bases (VLDB'95), pages 407 { 419,

Zurich, Swizerland, 1995.

[SON95] Ashok Savasere, Edward Omiecinski, and

Shamkant Navathe. An e�cient algorithm

for mining association rules in large data-

bases. In Proceedings of the 21st In-

ternational Conference on Very Large

Data Bases (VLDB'95), pages 432 { 444,

Zurich, Swizerland, 1995.

[TKR+95] Hannu Toivonen, Mika Klemettinen, Pirjo

Ronkainen, Kimmo H�at�onen, and Heikki

Mannila. Pruning and grouping of dis-

covered association rules. In Workshop

Notes of the ECML-95 Workshop on Stat-

istics, Machine Learning, and Knowledge

Discovery in Databases, pages 47 { 52,

Heraklion, Crete, Greece, April 1995.

Page 12

