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ABSTRACT

Since the invention of the movable head disk, people have improvezl I/O performance by
intelligent scheduling of disk accesses. We have applied these techmques to systems with large
memories and potentially long disk queues. By viewing the entire buffer cache as a write buffer,
we can improve disk bandwidth utilization by applying some traditional disk scheduling tech-
niques. We have analyzed these techniques, which attempt to optimize head movement and
guarantee fairness in response time, in the presence of long disk queues. We then propose two
algorit/-,.m.s '_hich take rotationaJ latency into account, achieving disk bandwidth utilizations of
nearly four times a simple first come first serve algorithm. One of these two algorithms, •
,_'eigh_ed shortest total time first, is particularly applicable to a file server environment because it
guarantees that alt requests get to disk within a specified time window.

1. Introduction

Presen: day magnetic disks are capable of providing UO bandwidth on the order of two to

three megabytes per second, yet a great deal of this bandwidth is lost during the time required to
posi,.ion the head over the requested sector. This stud)' focuses on improving the effective
th:ou_;hF, u: bv using rotation and seek optimizing algorithms to schedule disk writes.

Since the introduction of the movable head disk, many people have undertaken similar

efforts. However, most of these studies have assumed short queue lengths, and the performance
improvemenl obtained under the various techniques is not substantial. Our approach was to con-
sider a system, such as a file server, with a large main memory dedicated to disk buffering. We
asscmed tha: newly written data need not be transmitted to disk immediately; instead, it may be
re:ained for a shor_ period of time in a main memory buffer and transmitted to disk at a time that
maximizes disk throughput. Given the ever increasing sizes of main memory (up to one hundred

megabytes or more on some file server,s), hundreds or thousands of blocks could be queued for
writing at any given time. By careful ordering of these requests, it thould be possible to rt_lue¢
average head positioning time substantially. On the other hand, the potential for starvation of a
reques, becomes more important and fairness becomes • requirement. To this end, we have

developed two algorithms that attempt to avoid starvation yet provide very good disk utilization.

2. Previous Work

Most previous work has dealt with scheduling a small number (fewer than 50) of I/O
requests. With small numbers of requests, research concentrated on first come first serve (FCFS),
shortest seek time first (SSF), and the scanning algorithms which _rvie¢ requests in cylinder
order scannin_ from one edge of the disk to the other.
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Hoffishows thatundernearlyallloadingconditions,SSF resultsinshortermean waiting

timesthanFCFS [HOFRS0]. The main drawback he findstoSSF isthelargervarianceinI/O

response time. He also alludes to more optimal scheduling which takes into account the number
of requests in a given cylinder, but does not pursue this further. Hofri's results are a combination
of theoretical analysis and simulation.

Coffman, Klimko, and Ryan also discuss FCF'S and $SF [COFF72]. They add to their
analysis two scheduling policies which are intended to control the high variance of SSF. These
are called SCAN and FSCAN. SCAN restricts its search for the minimum seek time request to
one direction (inward or outward). However, SCAN still causes long waiting times for requests

on the extremes of the disk. FSCAN addresses this by "freezing" the queue once the scan starts-
requests that arrive after the scan starts are serviced in the next scan. By pure theoretical analysis,

Coffman et al. concludes that SCAN uniformlyresults in lower average response times than
either FCFS or FSCAN, but higher average response times than SSF. Oeist describes a contin-

uum of algorithms from SSF to SCAN differing only in the importance attached to maintaining
the current scanning direction [GELS87].

In [TEOR72], FCFS, SSF, and SCAN are again analyzed. Similar conclusions are made
that SSF yields shorter response times than SCAN, which yields shorter response times than
FCFS. The Eschenbach scheme, which is similar to SCAN, schedules according to rotational
position in addition to seek position. As a result, the Eschenbach scheme generates lower aver-
age response than any previous scheme as the queue length increases.

In all of these papers, no queue lengths averaging more than 50 are studied. This limitation
is due in large part to the smaller memory sizes of the time and slower CPU's. Now, with
exponentially growing memory sizes [MOOR65] and faster CPU's, more data may accumulate
more quickly, and disk queues are no longer constrained to small lengths. With large queues, we
are able to investigate previously impractical or unnecessary schemes. In particular, we continue
the study of rotationaIly optimal scheduling algorithms.

3. The Test En_-[ronment

We chose to analyze the algorithms in three ways: theoretical model, simulation, and

hardware tests. The theoretical model served as a first approximation of the potential perfor-
mance gain. The simulation provided the most flexible testing platform, and the hardware tests
verified the correctness of the simulator. After the validation of the simulator on rome of the

simpler algorithms, the remaining results were allderived from simulation.

3.I. The Simulator

The simulator modeled a Fujitsu M2361A Eagle described in Figure 1 and Table 1. In all
the simulations, the CPU time required to calculate the next request was ignored on the basis that
this computation could be overlapped with the actual UO operation. Furthermore, we wished to
focus on the potential of the algorithms themselves rather than optimizing their implementation.

Since we were most interested in viewing the behavior of the tlgodthms in the presence of
many requests, we introduced an artificial model of request arrival. In order to examine behavior
for a queue length of Q, we initialized the queue to contain Q events, each with a request time of
0. Whenever a request was serviced, it was replaced with a new request whose request time was
equal to the completion time of the completed request. In this manner, we guaranteed that we

always had a queue of length Q from which to select a request and our simulations were insensi-
tive to the real arrival rate. In order to avoid skewing the response time results ('by leaving unser-

viced requests in the queue at simulation completion), we completed the simulation by emptying
the entire queue. That is, for the last Q requests, we did not generate any new requests, but
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Fuiit_uEafzle disk drive
- T" "

cylinders/disk
tracks_cylinder
sectors/track

bytes/sector
average seek
average rotational latency
time to transfer 4 K.B

"840

20
67

512B
lg ms
8.3 ms
2 ms

Table 1: Specifications of Fujitsu
disk drives.
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Figure 1: Seek Time Calculation Graphed
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see'iced those remaining in the queue.

In order to guarantee that the averages obtained were statistically significant, we needed to

determine an acceptable length for the simulation runs. Let O be the length of the queue and B
be the total number of blocks on the disk. At each point in time, there are O objects sele.eted

from a set of B, in the queue. Therefore the probability of any particular set of Q objects being

present is _1. For the drives we tested, there were 140,280 blocks on the disk. So, for • queue

lengtl_ of 10, ihere are on the order of 10u combinations and for • queue of length 11300, there are
more than 10_ combinations. Clearly, it is infeasible to actually examine a large portion of this

space. Furthermore, in our simulations, each sample of size Q is not independent since the
entries in the queue at time t differ from the O entries in the queue at time t.l by precisely one
evei'lt.

,a
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We define a test run as one simulation which generated a full queue of random I/O requests
and serviced them. We analyzed the variance across N runs where N ranged from 2 to 200. After
I00 runs of size Q, the variance had decreased to a small fraction (I-2%) of the mean response
time and had stabilized. Therefore, we felt thai tests with I00 times the number of queued items

was a representative sample.

Our model of the I/O time was based on the information provided by the disk vendor as
we]] as the results obtained in the disk tests described below. All requests to the disk subsystem

were for 4K blocks I uniformly distributed over the entire disk. The seek time was computed as a

function of the number of cylinders across which the head needed to move (see Figure I). The

rotational ]alency was calculated based on the time requh'¢d to bring the data udder the head on_
the seek was completed and then to read the data.

3.2. The Hardware Tests

To verify our theoretical models and our simulations, we ran tests on the disks that we were
modeling, Fujitsu M2361A Eagles, described in Table 1 and Figure 1. We verified the simula-
tion for the two basic scheduling algorithms: FCFS and SSF. Because of the difficulty in deter-
mining rota:ional position, we did not use hardware to verify the simulation for other algorithms.

As in the simulation, we assume zero CPU time spent to process the I/O. In order to factor out

the cpu time, we subtracted a constant 3 ms from each individual disk access 2.

4. Seek Optimizing Algorithms

We started with algorithms that optimize solely on seek distances: first come first serve,
shortest seek first, and the scanning algorithms. For each algorithm we evaluated, we provide a
brief description of the algorithm, an intuitive theoretical estimate of its performance (where

feasible), the actual results, and a graph comparing the simulated versus theoretical results. Our
metric for evaluating the algorithms was disk utilization, which we define as the fraction of time
that the disk spends transferring data.

4.1. First Come First Se_'e

The simplest scheduling algorithm imaginable is first come first serve (FCFS). As one
would expect, this model is independent of the queue length and we obtain an average 1/O time
equal to the predicted average seek plus the predicted average rotation. We also used these
numbers to verify the other algorithms since any of the algorithms with queue length of 1 should
eq'aa] FC'FS.

The disks were spinning at 3600 RPM yielding a revolution time of 16.67 ms for 67 sectors
of 512 bytes each, providing a transfer rate of 4K / 2.0 ms. A back-of-the-envelope calculation
will show that for simple first come first serve scheduling policies, we can expect the average 1/O

time to be one half a rotation (8.3 ms) plus the time for an average seek (18 ms). This yields a

disk utilization (the fraction of time the disks are actually transferring data) of _-7% As

Figure 2 shows, this is very close to the hardware-derived and simulated utilizations.

.w .

.o

JW¢ chose a a ]_ block size _ a gomm_ file _ _ Id.lt.

_,'c esuma_d ',be Cl_U time a,_d i_ issuiag an ]/0 f_'om a uur proc_ by iuu_ two co_e.cudv¢ I/O's for two te,CtO_ ¢m tb¢

sa._e t:acL ¢,e fo_ tha: a_.er reading semor 0, the ae_ _,¢tot we could read w_thoul _ u entire tevoJutloe wit se,_r 12, 116
of a revotut/o_ ta,,'r. This irr_l_lied a 3 ms C'PU t'u_tto_d time..
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Figure 2: Comparing FCF$ utilization derived from theoretical analysis ('FC'FS-thcor), hardware
meas'aremer.:s (FCFS-hw), and simulation (FC"FS-sim).

4.2. Shortest Seek First

For this algorithm, we ignore the rotational latency and re]ect requests based on the reek
time required On the average, we expect to see a half rotation (8.3 ms) and a reek to the closest
cylinfer "xi:E a request on it. This is a function of the total number of cylinders on the disk and

the ]eng:h of the queue. For example, the Eagles have 840 cylinders. With a queue length of
100, we expe=t the average seek to be 8.3 cylinders. Thus, for a queue length of 103, we expect

average I'O time to be approximately 8.3 + 4.6 + .87 " sqn(8.3) or 15.4 ms. 3 Figure 3 depicts

these predicted values against the results actually obtained in simulation. The maximum queue
length we used, 1000, corresponds to about 4 MB of dirty blocks. For example, consider a file
server with 64 MB of main memory. It is r_nable to assume that 50% may be dedicated to It
file cache, and of that, approximately 10-15% (3-5 MB) might be dirty.

4.3. SCAN and CSCAN

The SCAN scheduling algorithm is oriented towards producing fairer response time. It ord-
ers the requests by cylinder number and services all the requests for a given cylinder before mov-
ing the head to the next cylinder. When the head reaches one end of the disk, it merely reverses
direction and begins scanning towards the other end of the disk. It is important to notice that this

_T'h.i: is no" quiet mczuJ'atc, it we have utec) the time of mmaverage meek, wbich is not the ,..,_e as the trverat, t tiate. It b m dote

mpproximm'ior, be..=au_ of the tlmos: linetz t,e.ek profile ('Figure 1).
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Figure 3: Comparing SSF utilization derived from theoretical analysis (SSF-theor) and out simu-
lator (SSF-sim).

is actually very similar to the shortest seek first algorithm and we expect similar results.

One shortcoming of the SCAN algorithm is that requests on either end of the disks experi-
ence worse response time than those in the middle of the disk since those in the middle experi-
ence two passes of the head evenly spaced in time whereas the outermost cylinders delay for two
full sweeps of all the cylinders before being revisited. Cyclical scan (C.SCAN) alleviates this by
paying one large seek at the end of the disk to move the head all the way to the other end. That
is, the head always moves in one direction and we pay one very long seek at the end of each pass.
This long seek is amortized over the requests, and the utilization is nearly the same as SCAN.
The major difference is in the maximum observed response times and the variance of the

response times. Figure 4 shows the utilizations for CSCAN which are essentially identical to
SSF. However, as shown in Figure 5, CSCAN substantially improves the maximum observed
response time.

$. Seek and Rotation Optimizing Algorithms

$.1. Shortest Time First

In SSF, we chose the request which yielded the fastest seek. In shortest time first (STF'), we
choose the request which yields the shortest I./O time, including both the seek time and the rota-

tional latency. Advances in disk technology have reduced seek time more than rotational latency.
As this trend continues, we expect rotational latency to account for a greater fraction of the total
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Figure _: Maximum Observed Response
Time for FCFS, SSF, mad CSCAN. SSF has

significantly worse maximum response time
than FCFS, but CSCAN has roughly the
same, or lower, maximum response time than
FC'FS. In some instances, CSCAN is able to

have lower response time than FC'FS because

its average response time is lower.

I/O time, and rotation optimizing algorithms such as S'IFwill become increasingly important.

For example, saving half a rotation (8 ms) may cause an access 10(3 cylinders away to have a
shorter totalt/0 time thanan access 1 cyhnder away.

STF is expected to yield the best throughput since we always select the fastest I/O. The
algorithm scans the entire queue calculating how much time each request will take. It then selects
that request with the shortest expected service time. For very long queue lengths (O much greater
than the number of cylinders), we expect to see the STF time approach 2.0 ms (the time to read a
single 4K b]ock), For very short queue lengths, we expect STF to approximate SSF since it is
unlikely to have multiple requests on the same cylinder and adjacent requests arc likely to be far
enough apart so that seek time dominates rotation. Figure 6 shows the simulated results for $TF.
Note that,e,.'e_atqueue lengthof I000,S'IFutilizationisstillrising.Preliminaryrunsatqueue

lengthsof5000 haveutilizationsof40%.

Unfortunately, the scheduling algorithm is a function of both cylinder and rotational posi-

t/on, thus this algorithm is one of the most costly in terms of CPU utilization. In addition, STF
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has the potential to starve requests, producing very bad response time ('Figure 7). Note that,
because the maximum observed response times ha Figure 7 mere empirically determined, max-

imum response times in a real system could be even worse.

The next two algorithms attempt to provide the utilization benefits offered by the shortest
time first algorithm without paying a substantial penalty m response time.

$.1.1. Grouped Shortest Time First (GSTF)

In this algorithm, we combine scan techniques with shortest time first techniques. The disk
is divided into some number of cylinder groups. Within each cylinder group, we apply a shortest
time first algorithm, servicing requests within that group before advancing to the next group.

This algorithm introduces two parameters, the queue length and the size of the cylinder group.
Figure 8a shows the relationship between average I/O times as one holds the queue size at 1000

0.30

0,_'

0.20'

0.i._,

OAO'

0.05'

O.CE

Utilization

..........i..i ..........i..........i..........i
I."T _, ":,,_!____'<_
__=-..: .....

queuelv, itth

Figure 6: Disk Utilization for FCFS,
CSCAN, S'I'F, GSTF210, and WSTF. We

graph the disk utilization for seek and rota-
tion optimizing algorithms. FCF$ and
CSCAN are shown for comparison.
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Figure 7: Maximum Response Time for
CSCAN, SIT, GSTF210, and WSTF. We
graph the maximum response time for seek
and rotation optimizing algorithms. Max-
imum response time for STF is much worse
than other algorithms, but GSTF210 and

WSTF bring maximum response time back
down. Recall from Figure 5 that the max-

imum response time of FCFS is very close to
that of CSCAN.
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Shortest Time First Graphed above are the utilization and maximum response times as • func-

tion ofthe cylindergroup size,The above resultsareforqueue lengthsof I000.

'T.

,w

g,

and changes the cylindergroup size.Figure 8b shows the maximum r_pons¢ times.

As the cylinder group size increases, the utilization of GSTF increases. Eventually, when

the group size is $40 (the entire disk), GSTF is the same (by definition) ms $TF. Also, as the

group size increases,the maximum response time becomes longer and longer,Ippmaching SIT.

The earl)"dip inthe maximum response time curve isdue to the interactionof utilization(•vcmge

disk I/O time) and fairness. Although GSTF is more fair (less variation between response times)

•_ small group sizes,the disk isbeing used lessefficiently,,rodthe •verage response time is

larger.As utilizationflattensout, the decreasingfairnesscauses increasingmaximum r=sponse

limes. In Figures6 and 7,we show the utilization,,d maximum response time for group sizeof

210 (4 cylinder groups per disk). We see that GST'F has utilization close to STF', but also

succeeds inlowering the response time toclosetothe m_imum response time ofCSCAN.

GSTF servicesallrequestsfor the currentcylinder group beforemoving lo the nexl cylinder

group. If requests for the current cylinder group saturatethe I/O system, it is possible to starve

requests on other parts of the disk. A slight variation of GST'F freezes the queue of • cylinder

group as soon as an)' requests to that cylinder group are serviced, guaranteeing that all the

requests within that cylinder group are serviced before the head moves to the next cylinder group.
Runs usin_ _his variationhave 3%-4% lower disk utilizationsand 15%-25% lower maximum
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response times than the GS'I'F depicted in Figure 6.

$.1.2. Weighted Shortest Time First

This algorithm applies the standard shortest time first technique, but applies an aging func-
tion to the times computed. First, we assume a maximum acceptable delay between the time a
write to the buffer cache is issued and when that data is written to disk (for these simulations, the

time chosen was 30 seconds based on how frequently the UNIX kernel flushes its buffer cache)

[MCKU84] 4. For each STF calculation, the actual I/O time is multiplied by a weighting value W.
W is computed by calculating how much time is left before this request will exceed the maximum
allowed response time. Thus, the weighted time is:

Let Tw be the Weighted Time
T,,._ be the actual 1/0 Time
M be the Max response time allowed
E be the elapsed time since this request arrived

As the elapsed time increases, the weighting factor becomes smaller, the weighted time

decreases, and the request is more likely to be serviced.

This algorithm displays remarkable performance. In most cases, the average I/O time is
within 1-2% of the STF I/O, yet the maximum response time drops dramatically. Since WSTF
has an enforced maximum response time, no I/O response time is allowed to take more than 30
seconds. In contrast, the STF "maximum" response time was empirically determined, and it did
not guarantee tha_ every request got serviced.

In tr3,.'ing lo understand why WSTF performs so well, it is useful to observe that $TF is a
greedy algorithm. A/ways selecting the shortest time first means that regions of the disk get ser-
viced first. However, as regions get cleaned off, there are fewer close requests to service. With
WSTF, periodically, the arm is forced to do a "bad" seek, that is, one more costly than another.

As a result, the head is in a new region providing the algorithm a better choice of requests from
which to select. "Bad" seeks may also occur when a read or a forced write ( i.e. • write that
must go immediately to disk ) is issued. Our results imply that these long seeks are unlikely to
harm overall utilization.

6. Conclusion

There are two main conclusions from our work. First, substantial performance improve-

ments (on the order of 3 to 4 times) can be gained by these scheduling mechanisms. As the queue
from which one selects requests becomes larger, even more improvement can be realized.
Second, there are algorithms which achieve this improved performance and still ensure fairness.
However, notethatatqueue lengthsof up toI000,thebestalgorithmsyieldlessthan40% disk

utilization.Thisstillleavesmuch room forimprovement.

The implicationisthatgreaterutilizationofdiskbandwidthisachievableby viewingmost

of main memory as a large write buffer. In systems where the order of writes is unconstrained,
one can take advantage of this unordered nature of writes to minimize the disk seek overhead.
Therefore, larger file caches may be used not only to minimize I/O's but to make the necessary
I/O's individually cheaper.

"One eouJd also _jas: the acceptable respon_ time based o_ ,he nambe) of rcque_ in the queue (¢.& 150% • average I/O time

of FCI_ "queue length), Runs with these response time limits yicldgl results withfin t few percent of runs with tbc 30 u_eoml limit.
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